| Index: base/message_pump_win.cc
 | 
| diff --git a/base/message_pump_win.cc b/base/message_pump_win.cc
 | 
| deleted file mode 100644
 | 
| index dcbb3201cd8f57c38d6a3b744727d514559df336..0000000000000000000000000000000000000000
 | 
| --- a/base/message_pump_win.cc
 | 
| +++ /dev/null
 | 
| @@ -1,686 +0,0 @@
 | 
| -// Copyright (c) 2012 The Chromium Authors. All rights reserved.
 | 
| -// Use of this source code is governed by a BSD-style license that can be
 | 
| -// found in the LICENSE file.
 | 
| -
 | 
| -#include "base/message_pump_win.h"
 | 
| -
 | 
| -#include <math.h>
 | 
| -
 | 
| -#include "base/debug/trace_event.h"
 | 
| -#include "base/message_loop.h"
 | 
| -#include "base/metrics/histogram.h"
 | 
| -#include "base/process_util.h"
 | 
| -#include "base/stringprintf.h"
 | 
| -#include "base/win/wrapped_window_proc.h"
 | 
| -
 | 
| -namespace {
 | 
| -
 | 
| -enum MessageLoopProblems {
 | 
| -  MESSAGE_POST_ERROR,
 | 
| -  COMPLETION_POST_ERROR,
 | 
| -  SET_TIMER_ERROR,
 | 
| -  MESSAGE_LOOP_PROBLEM_MAX,
 | 
| -};
 | 
| -
 | 
| -}  // namespace
 | 
| -
 | 
| -namespace base {
 | 
| -
 | 
| -static const wchar_t kWndClassFormat[] = L"Chrome_MessagePumpWindow_%p";
 | 
| -
 | 
| -// Message sent to get an additional time slice for pumping (processing) another
 | 
| -// task (a series of such messages creates a continuous task pump).
 | 
| -static const int kMsgHaveWork = WM_USER + 1;
 | 
| -
 | 
| -//-----------------------------------------------------------------------------
 | 
| -// MessagePumpWin public:
 | 
| -
 | 
| -void MessagePumpWin::AddObserver(MessagePumpObserver* observer) {
 | 
| -  observers_.AddObserver(observer);
 | 
| -}
 | 
| -
 | 
| -void MessagePumpWin::RemoveObserver(MessagePumpObserver* observer) {
 | 
| -  observers_.RemoveObserver(observer);
 | 
| -}
 | 
| -
 | 
| -void MessagePumpWin::WillProcessMessage(const MSG& msg) {
 | 
| -  FOR_EACH_OBSERVER(MessagePumpObserver, observers_, WillProcessEvent(msg));
 | 
| -}
 | 
| -
 | 
| -void MessagePumpWin::DidProcessMessage(const MSG& msg) {
 | 
| -  FOR_EACH_OBSERVER(MessagePumpObserver, observers_, DidProcessEvent(msg));
 | 
| -}
 | 
| -
 | 
| -void MessagePumpWin::RunWithDispatcher(
 | 
| -    Delegate* delegate, MessagePumpDispatcher* dispatcher) {
 | 
| -  RunState s;
 | 
| -  s.delegate = delegate;
 | 
| -  s.dispatcher = dispatcher;
 | 
| -  s.should_quit = false;
 | 
| -  s.run_depth = state_ ? state_->run_depth + 1 : 1;
 | 
| -
 | 
| -  RunState* previous_state = state_;
 | 
| -  state_ = &s;
 | 
| -
 | 
| -  DoRunLoop();
 | 
| -
 | 
| -  state_ = previous_state;
 | 
| -}
 | 
| -
 | 
| -void MessagePumpWin::Quit() {
 | 
| -  DCHECK(state_);
 | 
| -  state_->should_quit = true;
 | 
| -}
 | 
| -
 | 
| -//-----------------------------------------------------------------------------
 | 
| -// MessagePumpWin protected:
 | 
| -
 | 
| -int MessagePumpWin::GetCurrentDelay() const {
 | 
| -  if (delayed_work_time_.is_null())
 | 
| -    return -1;
 | 
| -
 | 
| -  // Be careful here.  TimeDelta has a precision of microseconds, but we want a
 | 
| -  // value in milliseconds.  If there are 5.5ms left, should the delay be 5 or
 | 
| -  // 6?  It should be 6 to avoid executing delayed work too early.
 | 
| -  double timeout =
 | 
| -      ceil((delayed_work_time_ - TimeTicks::Now()).InMillisecondsF());
 | 
| -
 | 
| -  // If this value is negative, then we need to run delayed work soon.
 | 
| -  int delay = static_cast<int>(timeout);
 | 
| -  if (delay < 0)
 | 
| -    delay = 0;
 | 
| -
 | 
| -  return delay;
 | 
| -}
 | 
| -
 | 
| -//-----------------------------------------------------------------------------
 | 
| -// MessagePumpForUI public:
 | 
| -
 | 
| -MessagePumpForUI::MessagePumpForUI()
 | 
| -    : atom_(0),
 | 
| -      message_filter_(new MessageFilter) {
 | 
| -  InitMessageWnd();
 | 
| -}
 | 
| -
 | 
| -MessagePumpForUI::~MessagePumpForUI() {
 | 
| -  DestroyWindow(message_hwnd_);
 | 
| -  UnregisterClass(MAKEINTATOM(atom_),
 | 
| -                  base::GetModuleFromAddress(&WndProcThunk));
 | 
| -}
 | 
| -
 | 
| -void MessagePumpForUI::ScheduleWork() {
 | 
| -  if (InterlockedExchange(&have_work_, 1))
 | 
| -    return;  // Someone else continued the pumping.
 | 
| -
 | 
| -  // Make sure the MessagePump does some work for us.
 | 
| -  BOOL ret = PostMessage(message_hwnd_, kMsgHaveWork,
 | 
| -                         reinterpret_cast<WPARAM>(this), 0);
 | 
| -  if (ret)
 | 
| -    return;  // There was room in the Window Message queue.
 | 
| -
 | 
| -  // We have failed to insert a have-work message, so there is a chance that we
 | 
| -  // will starve tasks/timers while sitting in a nested message loop.  Nested
 | 
| -  // loops only look at Windows Message queues, and don't look at *our* task
 | 
| -  // queues, etc., so we might not get a time slice in such. :-(
 | 
| -  // We could abort here, but the fear is that this failure mode is plausibly
 | 
| -  // common (queue is full, of about 2000 messages), so we'll do a near-graceful
 | 
| -  // recovery.  Nested loops are pretty transient (we think), so this will
 | 
| -  // probably be recoverable.
 | 
| -  InterlockedExchange(&have_work_, 0);  // Clarify that we didn't really insert.
 | 
| -  UMA_HISTOGRAM_ENUMERATION("Chrome.MessageLoopProblem", MESSAGE_POST_ERROR,
 | 
| -                            MESSAGE_LOOP_PROBLEM_MAX);
 | 
| -}
 | 
| -
 | 
| -void MessagePumpForUI::ScheduleDelayedWork(const TimeTicks& delayed_work_time) {
 | 
| -  //
 | 
| -  // We would *like* to provide high resolution timers.  Windows timers using
 | 
| -  // SetTimer() have a 10ms granularity.  We have to use WM_TIMER as a wakeup
 | 
| -  // mechanism because the application can enter modal windows loops where it
 | 
| -  // is not running our MessageLoop; the only way to have our timers fire in
 | 
| -  // these cases is to post messages there.
 | 
| -  //
 | 
| -  // To provide sub-10ms timers, we process timers directly from our run loop.
 | 
| -  // For the common case, timers will be processed there as the run loop does
 | 
| -  // its normal work.  However, we *also* set the system timer so that WM_TIMER
 | 
| -  // events fire.  This mops up the case of timers not being able to work in
 | 
| -  // modal message loops.  It is possible for the SetTimer to pop and have no
 | 
| -  // pending timers, because they could have already been processed by the
 | 
| -  // run loop itself.
 | 
| -  //
 | 
| -  // We use a single SetTimer corresponding to the timer that will expire
 | 
| -  // soonest.  As new timers are created and destroyed, we update SetTimer.
 | 
| -  // Getting a spurrious SetTimer event firing is benign, as we'll just be
 | 
| -  // processing an empty timer queue.
 | 
| -  //
 | 
| -  delayed_work_time_ = delayed_work_time;
 | 
| -
 | 
| -  int delay_msec = GetCurrentDelay();
 | 
| -  DCHECK_GE(delay_msec, 0);
 | 
| -  if (delay_msec < USER_TIMER_MINIMUM)
 | 
| -    delay_msec = USER_TIMER_MINIMUM;
 | 
| -
 | 
| -  // Create a WM_TIMER event that will wake us up to check for any pending
 | 
| -  // timers (in case we are running within a nested, external sub-pump).
 | 
| -  BOOL ret = SetTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this),
 | 
| -                      delay_msec, NULL);
 | 
| -  if (ret)
 | 
| -    return;
 | 
| -  // If we can't set timers, we are in big trouble... but cross our fingers for
 | 
| -  // now.
 | 
| -  // TODO(jar): If we don't see this error, use a CHECK() here instead.
 | 
| -  UMA_HISTOGRAM_ENUMERATION("Chrome.MessageLoopProblem", SET_TIMER_ERROR,
 | 
| -                            MESSAGE_LOOP_PROBLEM_MAX);
 | 
| -}
 | 
| -
 | 
| -void MessagePumpForUI::PumpOutPendingPaintMessages() {
 | 
| -  // If we are being called outside of the context of Run, then don't try to do
 | 
| -  // any work.
 | 
| -  if (!state_)
 | 
| -    return;
 | 
| -
 | 
| -  // Create a mini-message-pump to force immediate processing of only Windows
 | 
| -  // WM_PAINT messages.  Don't provide an infinite loop, but do enough peeking
 | 
| -  // to get the job done.  Actual common max is 4 peeks, but we'll be a little
 | 
| -  // safe here.
 | 
| -  const int kMaxPeekCount = 20;
 | 
| -  int peek_count;
 | 
| -  for (peek_count = 0; peek_count < kMaxPeekCount; ++peek_count) {
 | 
| -    MSG msg;
 | 
| -    if (!PeekMessage(&msg, NULL, 0, 0, PM_REMOVE | PM_QS_PAINT))
 | 
| -      break;
 | 
| -    ProcessMessageHelper(msg);
 | 
| -    if (state_->should_quit)  // Handle WM_QUIT.
 | 
| -      break;
 | 
| -  }
 | 
| -  // Histogram what was really being used, to help to adjust kMaxPeekCount.
 | 
| -  DHISTOGRAM_COUNTS("Loop.PumpOutPendingPaintMessages Peeks", peek_count);
 | 
| -}
 | 
| -
 | 
| -//-----------------------------------------------------------------------------
 | 
| -// MessagePumpForUI private:
 | 
| -
 | 
| -// static
 | 
| -LRESULT CALLBACK MessagePumpForUI::WndProcThunk(
 | 
| -    HWND hwnd, UINT message, WPARAM wparam, LPARAM lparam) {
 | 
| -  switch (message) {
 | 
| -    case kMsgHaveWork:
 | 
| -      reinterpret_cast<MessagePumpForUI*>(wparam)->HandleWorkMessage();
 | 
| -      break;
 | 
| -    case WM_TIMER:
 | 
| -      reinterpret_cast<MessagePumpForUI*>(wparam)->HandleTimerMessage();
 | 
| -      break;
 | 
| -  }
 | 
| -  return DefWindowProc(hwnd, message, wparam, lparam);
 | 
| -}
 | 
| -
 | 
| -void MessagePumpForUI::DoRunLoop() {
 | 
| -  // IF this was just a simple PeekMessage() loop (servicing all possible work
 | 
| -  // queues), then Windows would try to achieve the following order according
 | 
| -  // to MSDN documentation about PeekMessage with no filter):
 | 
| -  //    * Sent messages
 | 
| -  //    * Posted messages
 | 
| -  //    * Sent messages (again)
 | 
| -  //    * WM_PAINT messages
 | 
| -  //    * WM_TIMER messages
 | 
| -  //
 | 
| -  // Summary: none of the above classes is starved, and sent messages has twice
 | 
| -  // the chance of being processed (i.e., reduced service time).
 | 
| -
 | 
| -  for (;;) {
 | 
| -    // If we do any work, we may create more messages etc., and more work may
 | 
| -    // possibly be waiting in another task group.  When we (for example)
 | 
| -    // ProcessNextWindowsMessage(), there is a good chance there are still more
 | 
| -    // messages waiting.  On the other hand, when any of these methods return
 | 
| -    // having done no work, then it is pretty unlikely that calling them again
 | 
| -    // quickly will find any work to do.  Finally, if they all say they had no
 | 
| -    // work, then it is a good time to consider sleeping (waiting) for more
 | 
| -    // work.
 | 
| -
 | 
| -    bool more_work_is_plausible = ProcessNextWindowsMessage();
 | 
| -    if (state_->should_quit)
 | 
| -      break;
 | 
| -
 | 
| -    more_work_is_plausible |= state_->delegate->DoWork();
 | 
| -    if (state_->should_quit)
 | 
| -      break;
 | 
| -
 | 
| -    more_work_is_plausible |=
 | 
| -        state_->delegate->DoDelayedWork(&delayed_work_time_);
 | 
| -    // If we did not process any delayed work, then we can assume that our
 | 
| -    // existing WM_TIMER if any will fire when delayed work should run.  We
 | 
| -    // don't want to disturb that timer if it is already in flight.  However,
 | 
| -    // if we did do all remaining delayed work, then lets kill the WM_TIMER.
 | 
| -    if (more_work_is_plausible && delayed_work_time_.is_null())
 | 
| -      KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this));
 | 
| -    if (state_->should_quit)
 | 
| -      break;
 | 
| -
 | 
| -    if (more_work_is_plausible)
 | 
| -      continue;
 | 
| -
 | 
| -    more_work_is_plausible = state_->delegate->DoIdleWork();
 | 
| -    if (state_->should_quit)
 | 
| -      break;
 | 
| -
 | 
| -    if (more_work_is_plausible)
 | 
| -      continue;
 | 
| -
 | 
| -    WaitForWork();  // Wait (sleep) until we have work to do again.
 | 
| -  }
 | 
| -}
 | 
| -
 | 
| -void MessagePumpForUI::InitMessageWnd() {
 | 
| -  // Generate a unique window class name.
 | 
| -  string16 class_name = base::StringPrintf(kWndClassFormat, this);
 | 
| -
 | 
| -  HINSTANCE instance = base::GetModuleFromAddress(&WndProcThunk);
 | 
| -  WNDCLASSEX wc = {0};
 | 
| -  wc.cbSize = sizeof(wc);
 | 
| -  wc.lpfnWndProc = base::win::WrappedWindowProc<WndProcThunk>;
 | 
| -  wc.hInstance = instance;
 | 
| -  wc.lpszClassName = class_name.c_str();
 | 
| -  atom_ = RegisterClassEx(&wc);
 | 
| -  DCHECK(atom_);
 | 
| -
 | 
| -  message_hwnd_ = CreateWindow(MAKEINTATOM(atom_), 0, 0, 0, 0, 0, 0,
 | 
| -                               HWND_MESSAGE, 0, instance, 0);
 | 
| -  DCHECK(message_hwnd_);
 | 
| -}
 | 
| -
 | 
| -void MessagePumpForUI::WaitForWork() {
 | 
| -  // Wait until a message is available, up to the time needed by the timer
 | 
| -  // manager to fire the next set of timers.
 | 
| -  int delay = GetCurrentDelay();
 | 
| -  if (delay < 0)  // Negative value means no timers waiting.
 | 
| -    delay = INFINITE;
 | 
| -
 | 
| -  DWORD result;
 | 
| -  result = MsgWaitForMultipleObjectsEx(0, NULL, delay, QS_ALLINPUT,
 | 
| -                                       MWMO_INPUTAVAILABLE);
 | 
| -
 | 
| -  if (WAIT_OBJECT_0 == result) {
 | 
| -    // A WM_* message is available.
 | 
| -    // If a parent child relationship exists between windows across threads
 | 
| -    // then their thread inputs are implicitly attached.
 | 
| -    // This causes the MsgWaitForMultipleObjectsEx API to return indicating
 | 
| -    // that messages are ready for processing (Specifically, mouse messages
 | 
| -    // intended for the child window may appear if the child window has
 | 
| -    // capture).
 | 
| -    // The subsequent PeekMessages call may fail to return any messages thus
 | 
| -    // causing us to enter a tight loop at times.
 | 
| -    // The WaitMessage call below is a workaround to give the child window
 | 
| -    // some time to process its input messages.
 | 
| -    MSG msg = {0};
 | 
| -    DWORD queue_status = GetQueueStatus(QS_MOUSE);
 | 
| -    if (HIWORD(queue_status) & QS_MOUSE &&
 | 
| -        !PeekMessage(&msg, NULL, WM_MOUSEFIRST, WM_MOUSELAST, PM_NOREMOVE)) {
 | 
| -      WaitMessage();
 | 
| -    }
 | 
| -    return;
 | 
| -  }
 | 
| -
 | 
| -  DCHECK_NE(WAIT_FAILED, result) << GetLastError();
 | 
| -}
 | 
| -
 | 
| -void MessagePumpForUI::HandleWorkMessage() {
 | 
| -  // If we are being called outside of the context of Run, then don't try to do
 | 
| -  // any work.  This could correspond to a MessageBox call or something of that
 | 
| -  // sort.
 | 
| -  if (!state_) {
 | 
| -    // Since we handled a kMsgHaveWork message, we must still update this flag.
 | 
| -    InterlockedExchange(&have_work_, 0);
 | 
| -    return;
 | 
| -  }
 | 
| -
 | 
| -  // Let whatever would have run had we not been putting messages in the queue
 | 
| -  // run now.  This is an attempt to make our dummy message not starve other
 | 
| -  // messages that may be in the Windows message queue.
 | 
| -  ProcessPumpReplacementMessage();
 | 
| -
 | 
| -  // Now give the delegate a chance to do some work.  He'll let us know if he
 | 
| -  // needs to do more work.
 | 
| -  if (state_->delegate->DoWork())
 | 
| -    ScheduleWork();
 | 
| -}
 | 
| -
 | 
| -void MessagePumpForUI::HandleTimerMessage() {
 | 
| -  KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this));
 | 
| -
 | 
| -  // If we are being called outside of the context of Run, then don't do
 | 
| -  // anything.  This could correspond to a MessageBox call or something of
 | 
| -  // that sort.
 | 
| -  if (!state_)
 | 
| -    return;
 | 
| -
 | 
| -  state_->delegate->DoDelayedWork(&delayed_work_time_);
 | 
| -  if (!delayed_work_time_.is_null()) {
 | 
| -    // A bit gratuitous to set delayed_work_time_ again, but oh well.
 | 
| -    ScheduleDelayedWork(delayed_work_time_);
 | 
| -  }
 | 
| -}
 | 
| -
 | 
| -bool MessagePumpForUI::ProcessNextWindowsMessage() {
 | 
| -  // If there are sent messages in the queue then PeekMessage internally
 | 
| -  // dispatches the message and returns false. We return true in this
 | 
| -  // case to ensure that the message loop peeks again instead of calling
 | 
| -  // MsgWaitForMultipleObjectsEx again.
 | 
| -  bool sent_messages_in_queue = false;
 | 
| -  DWORD queue_status = GetQueueStatus(QS_SENDMESSAGE);
 | 
| -  if (HIWORD(queue_status) & QS_SENDMESSAGE)
 | 
| -    sent_messages_in_queue = true;
 | 
| -
 | 
| -  MSG msg;
 | 
| -  if (message_filter_->DoPeekMessage(&msg, NULL, 0, 0, PM_REMOVE))
 | 
| -    return ProcessMessageHelper(msg);
 | 
| -
 | 
| -  return sent_messages_in_queue;
 | 
| -}
 | 
| -
 | 
| -bool MessagePumpForUI::ProcessMessageHelper(const MSG& msg) {
 | 
| -  TRACE_EVENT1("base", "MessagePumpForUI::ProcessMessageHelper",
 | 
| -               "message", msg.message);
 | 
| -  if (WM_QUIT == msg.message) {
 | 
| -    // Repost the QUIT message so that it will be retrieved by the primary
 | 
| -    // GetMessage() loop.
 | 
| -    state_->should_quit = true;
 | 
| -    PostQuitMessage(static_cast<int>(msg.wParam));
 | 
| -    return false;
 | 
| -  }
 | 
| -
 | 
| -  // While running our main message pump, we discard kMsgHaveWork messages.
 | 
| -  if (msg.message == kMsgHaveWork && msg.hwnd == message_hwnd_)
 | 
| -    return ProcessPumpReplacementMessage();
 | 
| -
 | 
| -  if (CallMsgFilter(const_cast<MSG*>(&msg), kMessageFilterCode))
 | 
| -    return true;
 | 
| -
 | 
| -  WillProcessMessage(msg);
 | 
| -
 | 
| -  if (!message_filter_->ProcessMessage(msg)) {
 | 
| -    if (state_->dispatcher) {
 | 
| -      if (!state_->dispatcher->Dispatch(msg))
 | 
| -        state_->should_quit = true;
 | 
| -    } else {
 | 
| -      TranslateMessage(&msg);
 | 
| -      DispatchMessage(&msg);
 | 
| -    }
 | 
| -  }
 | 
| -
 | 
| -  DidProcessMessage(msg);
 | 
| -  return true;
 | 
| -}
 | 
| -
 | 
| -bool MessagePumpForUI::ProcessPumpReplacementMessage() {
 | 
| -  // When we encounter a kMsgHaveWork message, this method is called to peek
 | 
| -  // and process a replacement message, such as a WM_PAINT or WM_TIMER.  The
 | 
| -  // goal is to make the kMsgHaveWork as non-intrusive as possible, even though
 | 
| -  // a continuous stream of such messages are posted.  This method carefully
 | 
| -  // peeks a message while there is no chance for a kMsgHaveWork to be pending,
 | 
| -  // then resets the have_work_ flag (allowing a replacement kMsgHaveWork to
 | 
| -  // possibly be posted), and finally dispatches that peeked replacement.  Note
 | 
| -  // that the re-post of kMsgHaveWork may be asynchronous to this thread!!
 | 
| -
 | 
| -  bool have_message = false;
 | 
| -  MSG msg;
 | 
| -  // We should not process all window messages if we are in the context of an
 | 
| -  // OS modal loop, i.e. in the context of a windows API call like MessageBox.
 | 
| -  // This is to ensure that these messages are peeked out by the OS modal loop.
 | 
| -  if (MessageLoop::current()->os_modal_loop()) {
 | 
| -    // We only peek out WM_PAINT and WM_TIMER here for reasons mentioned above.
 | 
| -    have_message = PeekMessage(&msg, NULL, WM_PAINT, WM_PAINT, PM_REMOVE) ||
 | 
| -                   PeekMessage(&msg, NULL, WM_TIMER, WM_TIMER, PM_REMOVE);
 | 
| -  } else {
 | 
| -    have_message = !!message_filter_->DoPeekMessage(&msg, NULL, 0, 0,
 | 
| -                                                    PM_REMOVE);
 | 
| -  }
 | 
| -
 | 
| -  DCHECK(!have_message || kMsgHaveWork != msg.message ||
 | 
| -         msg.hwnd != message_hwnd_);
 | 
| -
 | 
| -  // Since we discarded a kMsgHaveWork message, we must update the flag.
 | 
| -  int old_have_work = InterlockedExchange(&have_work_, 0);
 | 
| -  DCHECK(old_have_work);
 | 
| -
 | 
| -  // We don't need a special time slice if we didn't have_message to process.
 | 
| -  if (!have_message)
 | 
| -    return false;
 | 
| -
 | 
| -  // Guarantee we'll get another time slice in the case where we go into native
 | 
| -  // windows code.   This ScheduleWork() may hurt performance a tiny bit when
 | 
| -  // tasks appear very infrequently, but when the event queue is busy, the
 | 
| -  // kMsgHaveWork events get (percentage wise) rarer and rarer.
 | 
| -  ScheduleWork();
 | 
| -  return ProcessMessageHelper(msg);
 | 
| -}
 | 
| -
 | 
| -void MessagePumpForUI::SetMessageFilter(
 | 
| -    scoped_ptr<MessageFilter> message_filter) {
 | 
| -  message_filter_ = message_filter.Pass();
 | 
| -}
 | 
| -
 | 
| -//-----------------------------------------------------------------------------
 | 
| -// MessagePumpForIO public:
 | 
| -
 | 
| -MessagePumpForIO::MessagePumpForIO() {
 | 
| -  port_.Set(CreateIoCompletionPort(INVALID_HANDLE_VALUE, NULL, NULL, 1));
 | 
| -  DCHECK(port_.IsValid());
 | 
| -}
 | 
| -
 | 
| -void MessagePumpForIO::ScheduleWork() {
 | 
| -  if (InterlockedExchange(&have_work_, 1))
 | 
| -    return;  // Someone else continued the pumping.
 | 
| -
 | 
| -  // Make sure the MessagePump does some work for us.
 | 
| -  BOOL ret = PostQueuedCompletionStatus(port_, 0,
 | 
| -                                        reinterpret_cast<ULONG_PTR>(this),
 | 
| -                                        reinterpret_cast<OVERLAPPED*>(this));
 | 
| -  if (ret)
 | 
| -    return;  // Post worked perfectly.
 | 
| -
 | 
| -  // See comment in MessagePumpForUI::ScheduleWork() for this error recovery.
 | 
| -  InterlockedExchange(&have_work_, 0);  // Clarify that we didn't succeed.
 | 
| -  UMA_HISTOGRAM_ENUMERATION("Chrome.MessageLoopProblem", COMPLETION_POST_ERROR,
 | 
| -                            MESSAGE_LOOP_PROBLEM_MAX);
 | 
| -}
 | 
| -
 | 
| -void MessagePumpForIO::ScheduleDelayedWork(const TimeTicks& delayed_work_time) {
 | 
| -  // We know that we can't be blocked right now since this method can only be
 | 
| -  // called on the same thread as Run, so we only need to update our record of
 | 
| -  // how long to sleep when we do sleep.
 | 
| -  delayed_work_time_ = delayed_work_time;
 | 
| -}
 | 
| -
 | 
| -void MessagePumpForIO::RegisterIOHandler(HANDLE file_handle,
 | 
| -                                         IOHandler* handler) {
 | 
| -  ULONG_PTR key = HandlerToKey(handler, true);
 | 
| -  HANDLE port = CreateIoCompletionPort(file_handle, port_, key, 1);
 | 
| -  DPCHECK(port);
 | 
| -}
 | 
| -
 | 
| -bool MessagePumpForIO::RegisterJobObject(HANDLE job_handle,
 | 
| -                                         IOHandler* handler) {
 | 
| -  // Job object notifications use the OVERLAPPED pointer to carry the message
 | 
| -  // data. Mark the completion key correspondingly, so we will not try to
 | 
| -  // convert OVERLAPPED* to IOContext*.
 | 
| -  ULONG_PTR key = HandlerToKey(handler, false);
 | 
| -  JOBOBJECT_ASSOCIATE_COMPLETION_PORT info;
 | 
| -  info.CompletionKey = reinterpret_cast<void*>(key);
 | 
| -  info.CompletionPort = port_;
 | 
| -  return SetInformationJobObject(job_handle,
 | 
| -                                 JobObjectAssociateCompletionPortInformation,
 | 
| -                                 &info,
 | 
| -                                 sizeof(info)) != FALSE;
 | 
| -}
 | 
| -
 | 
| -//-----------------------------------------------------------------------------
 | 
| -// MessagePumpForIO private:
 | 
| -
 | 
| -void MessagePumpForIO::DoRunLoop() {
 | 
| -  for (;;) {
 | 
| -    // If we do any work, we may create more messages etc., and more work may
 | 
| -    // possibly be waiting in another task group.  When we (for example)
 | 
| -    // WaitForIOCompletion(), there is a good chance there are still more
 | 
| -    // messages waiting.  On the other hand, when any of these methods return
 | 
| -    // having done no work, then it is pretty unlikely that calling them
 | 
| -    // again quickly will find any work to do.  Finally, if they all say they
 | 
| -    // had no work, then it is a good time to consider sleeping (waiting) for
 | 
| -    // more work.
 | 
| -
 | 
| -    bool more_work_is_plausible = state_->delegate->DoWork();
 | 
| -    if (state_->should_quit)
 | 
| -      break;
 | 
| -
 | 
| -    more_work_is_plausible |= WaitForIOCompletion(0, NULL);
 | 
| -    if (state_->should_quit)
 | 
| -      break;
 | 
| -
 | 
| -    more_work_is_plausible |=
 | 
| -        state_->delegate->DoDelayedWork(&delayed_work_time_);
 | 
| -    if (state_->should_quit)
 | 
| -      break;
 | 
| -
 | 
| -    if (more_work_is_plausible)
 | 
| -      continue;
 | 
| -
 | 
| -    more_work_is_plausible = state_->delegate->DoIdleWork();
 | 
| -    if (state_->should_quit)
 | 
| -      break;
 | 
| -
 | 
| -    if (more_work_is_plausible)
 | 
| -      continue;
 | 
| -
 | 
| -    WaitForWork();  // Wait (sleep) until we have work to do again.
 | 
| -  }
 | 
| -}
 | 
| -
 | 
| -// Wait until IO completes, up to the time needed by the timer manager to fire
 | 
| -// the next set of timers.
 | 
| -void MessagePumpForIO::WaitForWork() {
 | 
| -  // We do not support nested IO message loops. This is to avoid messy
 | 
| -  // recursion problems.
 | 
| -  DCHECK_EQ(1, state_->run_depth) << "Cannot nest an IO message loop!";
 | 
| -
 | 
| -  int timeout = GetCurrentDelay();
 | 
| -  if (timeout < 0)  // Negative value means no timers waiting.
 | 
| -    timeout = INFINITE;
 | 
| -
 | 
| -  WaitForIOCompletion(timeout, NULL);
 | 
| -}
 | 
| -
 | 
| -bool MessagePumpForIO::WaitForIOCompletion(DWORD timeout, IOHandler* filter) {
 | 
| -  IOItem item;
 | 
| -  if (completed_io_.empty() || !MatchCompletedIOItem(filter, &item)) {
 | 
| -    // We have to ask the system for another IO completion.
 | 
| -    if (!GetIOItem(timeout, &item))
 | 
| -      return false;
 | 
| -
 | 
| -    if (ProcessInternalIOItem(item))
 | 
| -      return true;
 | 
| -  }
 | 
| -
 | 
| -  // If |item.has_valid_io_context| is false then |item.context| does not point
 | 
| -  // to a context structure, and so should not be dereferenced, although it may
 | 
| -  // still hold valid non-pointer data.
 | 
| -  if (!item.has_valid_io_context || item.context->handler) {
 | 
| -    if (filter && item.handler != filter) {
 | 
| -      // Save this item for later
 | 
| -      completed_io_.push_back(item);
 | 
| -    } else {
 | 
| -      DCHECK(!item.has_valid_io_context ||
 | 
| -             (item.context->handler == item.handler));
 | 
| -      WillProcessIOEvent();
 | 
| -      item.handler->OnIOCompleted(item.context, item.bytes_transfered,
 | 
| -                                  item.error);
 | 
| -      DidProcessIOEvent();
 | 
| -    }
 | 
| -  } else {
 | 
| -    // The handler must be gone by now, just cleanup the mess.
 | 
| -    delete item.context;
 | 
| -  }
 | 
| -  return true;
 | 
| -}
 | 
| -
 | 
| -// Asks the OS for another IO completion result.
 | 
| -bool MessagePumpForIO::GetIOItem(DWORD timeout, IOItem* item) {
 | 
| -  memset(item, 0, sizeof(*item));
 | 
| -  ULONG_PTR key = NULL;
 | 
| -  OVERLAPPED* overlapped = NULL;
 | 
| -  if (!GetQueuedCompletionStatus(port_.Get(), &item->bytes_transfered, &key,
 | 
| -                                 &overlapped, timeout)) {
 | 
| -    if (!overlapped)
 | 
| -      return false;  // Nothing in the queue.
 | 
| -    item->error = GetLastError();
 | 
| -    item->bytes_transfered = 0;
 | 
| -  }
 | 
| -
 | 
| -  item->handler = KeyToHandler(key, &item->has_valid_io_context);
 | 
| -  item->context = reinterpret_cast<IOContext*>(overlapped);
 | 
| -  return true;
 | 
| -}
 | 
| -
 | 
| -bool MessagePumpForIO::ProcessInternalIOItem(const IOItem& item) {
 | 
| -  if (this == reinterpret_cast<MessagePumpForIO*>(item.context) &&
 | 
| -      this == reinterpret_cast<MessagePumpForIO*>(item.handler)) {
 | 
| -    // This is our internal completion.
 | 
| -    DCHECK(!item.bytes_transfered);
 | 
| -    InterlockedExchange(&have_work_, 0);
 | 
| -    return true;
 | 
| -  }
 | 
| -  return false;
 | 
| -}
 | 
| -
 | 
| -// Returns a completion item that was previously received.
 | 
| -bool MessagePumpForIO::MatchCompletedIOItem(IOHandler* filter, IOItem* item) {
 | 
| -  DCHECK(!completed_io_.empty());
 | 
| -  for (std::list<IOItem>::iterator it = completed_io_.begin();
 | 
| -       it != completed_io_.end(); ++it) {
 | 
| -    if (!filter || it->handler == filter) {
 | 
| -      *item = *it;
 | 
| -      completed_io_.erase(it);
 | 
| -      return true;
 | 
| -    }
 | 
| -  }
 | 
| -  return false;
 | 
| -}
 | 
| -
 | 
| -void MessagePumpForIO::AddIOObserver(IOObserver *obs) {
 | 
| -  io_observers_.AddObserver(obs);
 | 
| -}
 | 
| -
 | 
| -void MessagePumpForIO::RemoveIOObserver(IOObserver *obs) {
 | 
| -  io_observers_.RemoveObserver(obs);
 | 
| -}
 | 
| -
 | 
| -void MessagePumpForIO::WillProcessIOEvent() {
 | 
| -  FOR_EACH_OBSERVER(IOObserver, io_observers_, WillProcessIOEvent());
 | 
| -}
 | 
| -
 | 
| -void MessagePumpForIO::DidProcessIOEvent() {
 | 
| -  FOR_EACH_OBSERVER(IOObserver, io_observers_, DidProcessIOEvent());
 | 
| -}
 | 
| -
 | 
| -// static
 | 
| -ULONG_PTR MessagePumpForIO::HandlerToKey(IOHandler* handler,
 | 
| -                                         bool has_valid_io_context) {
 | 
| -  ULONG_PTR key = reinterpret_cast<ULONG_PTR>(handler);
 | 
| -
 | 
| -  // |IOHandler| is at least pointer-size aligned, so the lowest two bits are
 | 
| -  // always cleared. We use the lowest bit to distinguish completion keys with
 | 
| -  // and without the associated |IOContext|.
 | 
| -  DCHECK((key & 1) == 0);
 | 
| -
 | 
| -  // Mark the completion key as context-less.
 | 
| -  if (!has_valid_io_context)
 | 
| -    key = key | 1;
 | 
| -  return key;
 | 
| -}
 | 
| -
 | 
| -// static
 | 
| -MessagePumpForIO::IOHandler* MessagePumpForIO::KeyToHandler(
 | 
| -    ULONG_PTR key,
 | 
| -    bool* has_valid_io_context) {
 | 
| -  *has_valid_io_context = ((key & 1) == 0);
 | 
| -  return reinterpret_cast<IOHandler*>(key & ~static_cast<ULONG_PTR>(1));
 | 
| -}
 | 
| -
 | 
| -}  // namespace base
 | 
| 
 |