OLD | NEW |
| (Empty) |
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 #include "base/message_loop/message_pump_win.h" | |
6 | |
7 #include <math.h> | |
8 | |
9 #include "base/debug/trace_event.h" | |
10 #include "base/message_loop/message_loop.h" | |
11 #include "base/metrics/histogram.h" | |
12 #include "base/process_util.h" | |
13 #include "base/stringprintf.h" | |
14 #include "base/win/wrapped_window_proc.h" | |
15 | |
16 namespace base { | |
17 | |
18 namespace { | |
19 | |
20 enum MessageLoopProblems { | |
21 MESSAGE_POST_ERROR, | |
22 COMPLETION_POST_ERROR, | |
23 SET_TIMER_ERROR, | |
24 MESSAGE_LOOP_PROBLEM_MAX, | |
25 }; | |
26 | |
27 } // namespace | |
28 | |
29 static const wchar_t kWndClassFormat[] = L"Chrome_MessagePumpWindow_%p"; | |
30 | |
31 // Message sent to get an additional time slice for pumping (processing) another | |
32 // task (a series of such messages creates a continuous task pump). | |
33 static const int kMsgHaveWork = WM_USER + 1; | |
34 | |
35 //----------------------------------------------------------------------------- | |
36 // MessagePumpWin public: | |
37 | |
38 void MessagePumpWin::AddObserver(MessagePumpObserver* observer) { | |
39 observers_.AddObserver(observer); | |
40 } | |
41 | |
42 void MessagePumpWin::RemoveObserver(MessagePumpObserver* observer) { | |
43 observers_.RemoveObserver(observer); | |
44 } | |
45 | |
46 void MessagePumpWin::WillProcessMessage(const MSG& msg) { | |
47 FOR_EACH_OBSERVER(MessagePumpObserver, observers_, WillProcessEvent(msg)); | |
48 } | |
49 | |
50 void MessagePumpWin::DidProcessMessage(const MSG& msg) { | |
51 FOR_EACH_OBSERVER(MessagePumpObserver, observers_, DidProcessEvent(msg)); | |
52 } | |
53 | |
54 void MessagePumpWin::RunWithDispatcher( | |
55 Delegate* delegate, MessagePumpDispatcher* dispatcher) { | |
56 RunState s; | |
57 s.delegate = delegate; | |
58 s.dispatcher = dispatcher; | |
59 s.should_quit = false; | |
60 s.run_depth = state_ ? state_->run_depth + 1 : 1; | |
61 | |
62 RunState* previous_state = state_; | |
63 state_ = &s; | |
64 | |
65 DoRunLoop(); | |
66 | |
67 state_ = previous_state; | |
68 } | |
69 | |
70 void MessagePumpWin::Quit() { | |
71 DCHECK(state_); | |
72 state_->should_quit = true; | |
73 } | |
74 | |
75 //----------------------------------------------------------------------------- | |
76 // MessagePumpWin protected: | |
77 | |
78 int MessagePumpWin::GetCurrentDelay() const { | |
79 if (delayed_work_time_.is_null()) | |
80 return -1; | |
81 | |
82 // Be careful here. TimeDelta has a precision of microseconds, but we want a | |
83 // value in milliseconds. If there are 5.5ms left, should the delay be 5 or | |
84 // 6? It should be 6 to avoid executing delayed work too early. | |
85 double timeout = | |
86 ceil((delayed_work_time_ - TimeTicks::Now()).InMillisecondsF()); | |
87 | |
88 // If this value is negative, then we need to run delayed work soon. | |
89 int delay = static_cast<int>(timeout); | |
90 if (delay < 0) | |
91 delay = 0; | |
92 | |
93 return delay; | |
94 } | |
95 | |
96 //----------------------------------------------------------------------------- | |
97 // MessagePumpForUI public: | |
98 | |
99 MessagePumpForUI::MessagePumpForUI() | |
100 : atom_(0), | |
101 message_filter_(new MessageFilter) { | |
102 InitMessageWnd(); | |
103 } | |
104 | |
105 MessagePumpForUI::~MessagePumpForUI() { | |
106 DestroyWindow(message_hwnd_); | |
107 UnregisterClass(MAKEINTATOM(atom_), | |
108 GetModuleFromAddress(&WndProcThunk)); | |
109 } | |
110 | |
111 void MessagePumpForUI::ScheduleWork() { | |
112 if (InterlockedExchange(&have_work_, 1)) | |
113 return; // Someone else continued the pumping. | |
114 | |
115 // Make sure the MessagePump does some work for us. | |
116 BOOL ret = PostMessage(message_hwnd_, kMsgHaveWork, | |
117 reinterpret_cast<WPARAM>(this), 0); | |
118 if (ret) | |
119 return; // There was room in the Window Message queue. | |
120 | |
121 // We have failed to insert a have-work message, so there is a chance that we | |
122 // will starve tasks/timers while sitting in a nested message loop. Nested | |
123 // loops only look at Windows Message queues, and don't look at *our* task | |
124 // queues, etc., so we might not get a time slice in such. :-( | |
125 // We could abort here, but the fear is that this failure mode is plausibly | |
126 // common (queue is full, of about 2000 messages), so we'll do a near-graceful | |
127 // recovery. Nested loops are pretty transient (we think), so this will | |
128 // probably be recoverable. | |
129 InterlockedExchange(&have_work_, 0); // Clarify that we didn't really insert. | |
130 UMA_HISTOGRAM_ENUMERATION("Chrome.MessageLoopProblem", MESSAGE_POST_ERROR, | |
131 MESSAGE_LOOP_PROBLEM_MAX); | |
132 } | |
133 | |
134 void MessagePumpForUI::ScheduleDelayedWork(const TimeTicks& delayed_work_time) { | |
135 // | |
136 // We would *like* to provide high resolution timers. Windows timers using | |
137 // SetTimer() have a 10ms granularity. We have to use WM_TIMER as a wakeup | |
138 // mechanism because the application can enter modal windows loops where it | |
139 // is not running our MessageLoop; the only way to have our timers fire in | |
140 // these cases is to post messages there. | |
141 // | |
142 // To provide sub-10ms timers, we process timers directly from our run loop. | |
143 // For the common case, timers will be processed there as the run loop does | |
144 // its normal work. However, we *also* set the system timer so that WM_TIMER | |
145 // events fire. This mops up the case of timers not being able to work in | |
146 // modal message loops. It is possible for the SetTimer to pop and have no | |
147 // pending timers, because they could have already been processed by the | |
148 // run loop itself. | |
149 // | |
150 // We use a single SetTimer corresponding to the timer that will expire | |
151 // soonest. As new timers are created and destroyed, we update SetTimer. | |
152 // Getting a spurrious SetTimer event firing is benign, as we'll just be | |
153 // processing an empty timer queue. | |
154 // | |
155 delayed_work_time_ = delayed_work_time; | |
156 | |
157 int delay_msec = GetCurrentDelay(); | |
158 DCHECK_GE(delay_msec, 0); | |
159 if (delay_msec < USER_TIMER_MINIMUM) | |
160 delay_msec = USER_TIMER_MINIMUM; | |
161 | |
162 // Create a WM_TIMER event that will wake us up to check for any pending | |
163 // timers (in case we are running within a nested, external sub-pump). | |
164 BOOL ret = SetTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this), | |
165 delay_msec, NULL); | |
166 if (ret) | |
167 return; | |
168 // If we can't set timers, we are in big trouble... but cross our fingers for | |
169 // now. | |
170 // TODO(jar): If we don't see this error, use a CHECK() here instead. | |
171 UMA_HISTOGRAM_ENUMERATION("Chrome.MessageLoopProblem", SET_TIMER_ERROR, | |
172 MESSAGE_LOOP_PROBLEM_MAX); | |
173 } | |
174 | |
175 void MessagePumpForUI::PumpOutPendingPaintMessages() { | |
176 // If we are being called outside of the context of Run, then don't try to do | |
177 // any work. | |
178 if (!state_) | |
179 return; | |
180 | |
181 // Create a mini-message-pump to force immediate processing of only Windows | |
182 // WM_PAINT messages. Don't provide an infinite loop, but do enough peeking | |
183 // to get the job done. Actual common max is 4 peeks, but we'll be a little | |
184 // safe here. | |
185 const int kMaxPeekCount = 20; | |
186 int peek_count; | |
187 for (peek_count = 0; peek_count < kMaxPeekCount; ++peek_count) { | |
188 MSG msg; | |
189 if (!PeekMessage(&msg, NULL, 0, 0, PM_REMOVE | PM_QS_PAINT)) | |
190 break; | |
191 ProcessMessageHelper(msg); | |
192 if (state_->should_quit) // Handle WM_QUIT. | |
193 break; | |
194 } | |
195 // Histogram what was really being used, to help to adjust kMaxPeekCount. | |
196 DHISTOGRAM_COUNTS("Loop.PumpOutPendingPaintMessages Peeks", peek_count); | |
197 } | |
198 | |
199 //----------------------------------------------------------------------------- | |
200 // MessagePumpForUI private: | |
201 | |
202 // static | |
203 LRESULT CALLBACK MessagePumpForUI::WndProcThunk( | |
204 HWND hwnd, UINT message, WPARAM wparam, LPARAM lparam) { | |
205 switch (message) { | |
206 case kMsgHaveWork: | |
207 reinterpret_cast<MessagePumpForUI*>(wparam)->HandleWorkMessage(); | |
208 break; | |
209 case WM_TIMER: | |
210 reinterpret_cast<MessagePumpForUI*>(wparam)->HandleTimerMessage(); | |
211 break; | |
212 } | |
213 return DefWindowProc(hwnd, message, wparam, lparam); | |
214 } | |
215 | |
216 void MessagePumpForUI::DoRunLoop() { | |
217 // IF this was just a simple PeekMessage() loop (servicing all possible work | |
218 // queues), then Windows would try to achieve the following order according | |
219 // to MSDN documentation about PeekMessage with no filter): | |
220 // * Sent messages | |
221 // * Posted messages | |
222 // * Sent messages (again) | |
223 // * WM_PAINT messages | |
224 // * WM_TIMER messages | |
225 // | |
226 // Summary: none of the above classes is starved, and sent messages has twice | |
227 // the chance of being processed (i.e., reduced service time). | |
228 | |
229 for (;;) { | |
230 // If we do any work, we may create more messages etc., and more work may | |
231 // possibly be waiting in another task group. When we (for example) | |
232 // ProcessNextWindowsMessage(), there is a good chance there are still more | |
233 // messages waiting. On the other hand, when any of these methods return | |
234 // having done no work, then it is pretty unlikely that calling them again | |
235 // quickly will find any work to do. Finally, if they all say they had no | |
236 // work, then it is a good time to consider sleeping (waiting) for more | |
237 // work. | |
238 | |
239 bool more_work_is_plausible = ProcessNextWindowsMessage(); | |
240 if (state_->should_quit) | |
241 break; | |
242 | |
243 more_work_is_plausible |= state_->delegate->DoWork(); | |
244 if (state_->should_quit) | |
245 break; | |
246 | |
247 more_work_is_plausible |= | |
248 state_->delegate->DoDelayedWork(&delayed_work_time_); | |
249 // If we did not process any delayed work, then we can assume that our | |
250 // existing WM_TIMER if any will fire when delayed work should run. We | |
251 // don't want to disturb that timer if it is already in flight. However, | |
252 // if we did do all remaining delayed work, then lets kill the WM_TIMER. | |
253 if (more_work_is_plausible && delayed_work_time_.is_null()) | |
254 KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this)); | |
255 if (state_->should_quit) | |
256 break; | |
257 | |
258 if (more_work_is_plausible) | |
259 continue; | |
260 | |
261 more_work_is_plausible = state_->delegate->DoIdleWork(); | |
262 if (state_->should_quit) | |
263 break; | |
264 | |
265 if (more_work_is_plausible) | |
266 continue; | |
267 | |
268 WaitForWork(); // Wait (sleep) until we have work to do again. | |
269 } | |
270 } | |
271 | |
272 void MessagePumpForUI::InitMessageWnd() { | |
273 // Generate a unique window class name. | |
274 string16 class_name = StringPrintf(kWndClassFormat, this); | |
275 | |
276 HINSTANCE instance = GetModuleFromAddress(&WndProcThunk); | |
277 WNDCLASSEX wc = {0}; | |
278 wc.cbSize = sizeof(wc); | |
279 wc.lpfnWndProc = base::win::WrappedWindowProc<WndProcThunk>; | |
280 wc.hInstance = instance; | |
281 wc.lpszClassName = class_name.c_str(); | |
282 atom_ = RegisterClassEx(&wc); | |
283 DCHECK(atom_); | |
284 | |
285 message_hwnd_ = CreateWindow(MAKEINTATOM(atom_), 0, 0, 0, 0, 0, 0, | |
286 HWND_MESSAGE, 0, instance, 0); | |
287 DCHECK(message_hwnd_); | |
288 } | |
289 | |
290 void MessagePumpForUI::WaitForWork() { | |
291 // Wait until a message is available, up to the time needed by the timer | |
292 // manager to fire the next set of timers. | |
293 int delay = GetCurrentDelay(); | |
294 if (delay < 0) // Negative value means no timers waiting. | |
295 delay = INFINITE; | |
296 | |
297 DWORD result; | |
298 result = MsgWaitForMultipleObjectsEx(0, NULL, delay, QS_ALLINPUT, | |
299 MWMO_INPUTAVAILABLE); | |
300 | |
301 if (WAIT_OBJECT_0 == result) { | |
302 // A WM_* message is available. | |
303 // If a parent child relationship exists between windows across threads | |
304 // then their thread inputs are implicitly attached. | |
305 // This causes the MsgWaitForMultipleObjectsEx API to return indicating | |
306 // that messages are ready for processing (Specifically, mouse messages | |
307 // intended for the child window may appear if the child window has | |
308 // capture). | |
309 // The subsequent PeekMessages call may fail to return any messages thus | |
310 // causing us to enter a tight loop at times. | |
311 // The WaitMessage call below is a workaround to give the child window | |
312 // some time to process its input messages. | |
313 MSG msg = {0}; | |
314 DWORD queue_status = GetQueueStatus(QS_MOUSE); | |
315 if (HIWORD(queue_status) & QS_MOUSE && | |
316 !PeekMessage(&msg, NULL, WM_MOUSEFIRST, WM_MOUSELAST, PM_NOREMOVE)) { | |
317 WaitMessage(); | |
318 } | |
319 return; | |
320 } | |
321 | |
322 DCHECK_NE(WAIT_FAILED, result) << GetLastError(); | |
323 } | |
324 | |
325 void MessagePumpForUI::HandleWorkMessage() { | |
326 // If we are being called outside of the context of Run, then don't try to do | |
327 // any work. This could correspond to a MessageBox call or something of that | |
328 // sort. | |
329 if (!state_) { | |
330 // Since we handled a kMsgHaveWork message, we must still update this flag. | |
331 InterlockedExchange(&have_work_, 0); | |
332 return; | |
333 } | |
334 | |
335 // Let whatever would have run had we not been putting messages in the queue | |
336 // run now. This is an attempt to make our dummy message not starve other | |
337 // messages that may be in the Windows message queue. | |
338 ProcessPumpReplacementMessage(); | |
339 | |
340 // Now give the delegate a chance to do some work. He'll let us know if he | |
341 // needs to do more work. | |
342 if (state_->delegate->DoWork()) | |
343 ScheduleWork(); | |
344 } | |
345 | |
346 void MessagePumpForUI::HandleTimerMessage() { | |
347 KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this)); | |
348 | |
349 // If we are being called outside of the context of Run, then don't do | |
350 // anything. This could correspond to a MessageBox call or something of | |
351 // that sort. | |
352 if (!state_) | |
353 return; | |
354 | |
355 state_->delegate->DoDelayedWork(&delayed_work_time_); | |
356 if (!delayed_work_time_.is_null()) { | |
357 // A bit gratuitous to set delayed_work_time_ again, but oh well. | |
358 ScheduleDelayedWork(delayed_work_time_); | |
359 } | |
360 } | |
361 | |
362 bool MessagePumpForUI::ProcessNextWindowsMessage() { | |
363 // If there are sent messages in the queue then PeekMessage internally | |
364 // dispatches the message and returns false. We return true in this | |
365 // case to ensure that the message loop peeks again instead of calling | |
366 // MsgWaitForMultipleObjectsEx again. | |
367 bool sent_messages_in_queue = false; | |
368 DWORD queue_status = GetQueueStatus(QS_SENDMESSAGE); | |
369 if (HIWORD(queue_status) & QS_SENDMESSAGE) | |
370 sent_messages_in_queue = true; | |
371 | |
372 MSG msg; | |
373 if (message_filter_->DoPeekMessage(&msg, NULL, 0, 0, PM_REMOVE)) | |
374 return ProcessMessageHelper(msg); | |
375 | |
376 return sent_messages_in_queue; | |
377 } | |
378 | |
379 bool MessagePumpForUI::ProcessMessageHelper(const MSG& msg) { | |
380 TRACE_EVENT1("base", "MessagePumpForUI::ProcessMessageHelper", | |
381 "message", msg.message); | |
382 if (WM_QUIT == msg.message) { | |
383 // Repost the QUIT message so that it will be retrieved by the primary | |
384 // GetMessage() loop. | |
385 state_->should_quit = true; | |
386 PostQuitMessage(static_cast<int>(msg.wParam)); | |
387 return false; | |
388 } | |
389 | |
390 // While running our main message pump, we discard kMsgHaveWork messages. | |
391 if (msg.message == kMsgHaveWork && msg.hwnd == message_hwnd_) | |
392 return ProcessPumpReplacementMessage(); | |
393 | |
394 if (CallMsgFilter(const_cast<MSG*>(&msg), kMessageFilterCode)) | |
395 return true; | |
396 | |
397 WillProcessMessage(msg); | |
398 | |
399 if (!message_filter_->ProcessMessage(msg)) { | |
400 if (state_->dispatcher) { | |
401 if (!state_->dispatcher->Dispatch(msg)) | |
402 state_->should_quit = true; | |
403 } else { | |
404 TranslateMessage(&msg); | |
405 DispatchMessage(&msg); | |
406 } | |
407 } | |
408 | |
409 DidProcessMessage(msg); | |
410 return true; | |
411 } | |
412 | |
413 bool MessagePumpForUI::ProcessPumpReplacementMessage() { | |
414 // When we encounter a kMsgHaveWork message, this method is called to peek | |
415 // and process a replacement message, such as a WM_PAINT or WM_TIMER. The | |
416 // goal is to make the kMsgHaveWork as non-intrusive as possible, even though | |
417 // a continuous stream of such messages are posted. This method carefully | |
418 // peeks a message while there is no chance for a kMsgHaveWork to be pending, | |
419 // then resets the have_work_ flag (allowing a replacement kMsgHaveWork to | |
420 // possibly be posted), and finally dispatches that peeked replacement. Note | |
421 // that the re-post of kMsgHaveWork may be asynchronous to this thread!! | |
422 | |
423 bool have_message = false; | |
424 MSG msg; | |
425 // We should not process all window messages if we are in the context of an | |
426 // OS modal loop, i.e. in the context of a windows API call like MessageBox. | |
427 // This is to ensure that these messages are peeked out by the OS modal loop. | |
428 if (MessageLoop::current()->os_modal_loop()) { | |
429 // We only peek out WM_PAINT and WM_TIMER here for reasons mentioned above. | |
430 have_message = PeekMessage(&msg, NULL, WM_PAINT, WM_PAINT, PM_REMOVE) || | |
431 PeekMessage(&msg, NULL, WM_TIMER, WM_TIMER, PM_REMOVE); | |
432 } else { | |
433 have_message = !!message_filter_->DoPeekMessage(&msg, NULL, 0, 0, | |
434 PM_REMOVE); | |
435 } | |
436 | |
437 DCHECK(!have_message || kMsgHaveWork != msg.message || | |
438 msg.hwnd != message_hwnd_); | |
439 | |
440 // Since we discarded a kMsgHaveWork message, we must update the flag. | |
441 int old_have_work = InterlockedExchange(&have_work_, 0); | |
442 DCHECK(old_have_work); | |
443 | |
444 // We don't need a special time slice if we didn't have_message to process. | |
445 if (!have_message) | |
446 return false; | |
447 | |
448 // Guarantee we'll get another time slice in the case where we go into native | |
449 // windows code. This ScheduleWork() may hurt performance a tiny bit when | |
450 // tasks appear very infrequently, but when the event queue is busy, the | |
451 // kMsgHaveWork events get (percentage wise) rarer and rarer. | |
452 ScheduleWork(); | |
453 return ProcessMessageHelper(msg); | |
454 } | |
455 | |
456 void MessagePumpForUI::SetMessageFilter( | |
457 scoped_ptr<MessageFilter> message_filter) { | |
458 message_filter_ = message_filter.Pass(); | |
459 } | |
460 | |
461 //----------------------------------------------------------------------------- | |
462 // MessagePumpForIO public: | |
463 | |
464 MessagePumpForIO::MessagePumpForIO() { | |
465 port_.Set(CreateIoCompletionPort(INVALID_HANDLE_VALUE, NULL, NULL, 1)); | |
466 DCHECK(port_.IsValid()); | |
467 } | |
468 | |
469 void MessagePumpForIO::ScheduleWork() { | |
470 if (InterlockedExchange(&have_work_, 1)) | |
471 return; // Someone else continued the pumping. | |
472 | |
473 // Make sure the MessagePump does some work for us. | |
474 BOOL ret = PostQueuedCompletionStatus(port_, 0, | |
475 reinterpret_cast<ULONG_PTR>(this), | |
476 reinterpret_cast<OVERLAPPED*>(this)); | |
477 if (ret) | |
478 return; // Post worked perfectly. | |
479 | |
480 // See comment in MessagePumpForUI::ScheduleWork() for this error recovery. | |
481 InterlockedExchange(&have_work_, 0); // Clarify that we didn't succeed. | |
482 UMA_HISTOGRAM_ENUMERATION("Chrome.MessageLoopProblem", COMPLETION_POST_ERROR, | |
483 MESSAGE_LOOP_PROBLEM_MAX); | |
484 } | |
485 | |
486 void MessagePumpForIO::ScheduleDelayedWork(const TimeTicks& delayed_work_time) { | |
487 // We know that we can't be blocked right now since this method can only be | |
488 // called on the same thread as Run, so we only need to update our record of | |
489 // how long to sleep when we do sleep. | |
490 delayed_work_time_ = delayed_work_time; | |
491 } | |
492 | |
493 void MessagePumpForIO::RegisterIOHandler(HANDLE file_handle, | |
494 IOHandler* handler) { | |
495 ULONG_PTR key = HandlerToKey(handler, true); | |
496 HANDLE port = CreateIoCompletionPort(file_handle, port_, key, 1); | |
497 DPCHECK(port); | |
498 } | |
499 | |
500 bool MessagePumpForIO::RegisterJobObject(HANDLE job_handle, | |
501 IOHandler* handler) { | |
502 // Job object notifications use the OVERLAPPED pointer to carry the message | |
503 // data. Mark the completion key correspondingly, so we will not try to | |
504 // convert OVERLAPPED* to IOContext*. | |
505 ULONG_PTR key = HandlerToKey(handler, false); | |
506 JOBOBJECT_ASSOCIATE_COMPLETION_PORT info; | |
507 info.CompletionKey = reinterpret_cast<void*>(key); | |
508 info.CompletionPort = port_; | |
509 return SetInformationJobObject(job_handle, | |
510 JobObjectAssociateCompletionPortInformation, | |
511 &info, | |
512 sizeof(info)) != FALSE; | |
513 } | |
514 | |
515 //----------------------------------------------------------------------------- | |
516 // MessagePumpForIO private: | |
517 | |
518 void MessagePumpForIO::DoRunLoop() { | |
519 for (;;) { | |
520 // If we do any work, we may create more messages etc., and more work may | |
521 // possibly be waiting in another task group. When we (for example) | |
522 // WaitForIOCompletion(), there is a good chance there are still more | |
523 // messages waiting. On the other hand, when any of these methods return | |
524 // having done no work, then it is pretty unlikely that calling them | |
525 // again quickly will find any work to do. Finally, if they all say they | |
526 // had no work, then it is a good time to consider sleeping (waiting) for | |
527 // more work. | |
528 | |
529 bool more_work_is_plausible = state_->delegate->DoWork(); | |
530 if (state_->should_quit) | |
531 break; | |
532 | |
533 more_work_is_plausible |= WaitForIOCompletion(0, NULL); | |
534 if (state_->should_quit) | |
535 break; | |
536 | |
537 more_work_is_plausible |= | |
538 state_->delegate->DoDelayedWork(&delayed_work_time_); | |
539 if (state_->should_quit) | |
540 break; | |
541 | |
542 if (more_work_is_plausible) | |
543 continue; | |
544 | |
545 more_work_is_plausible = state_->delegate->DoIdleWork(); | |
546 if (state_->should_quit) | |
547 break; | |
548 | |
549 if (more_work_is_plausible) | |
550 continue; | |
551 | |
552 WaitForWork(); // Wait (sleep) until we have work to do again. | |
553 } | |
554 } | |
555 | |
556 // Wait until IO completes, up to the time needed by the timer manager to fire | |
557 // the next set of timers. | |
558 void MessagePumpForIO::WaitForWork() { | |
559 // We do not support nested IO message loops. This is to avoid messy | |
560 // recursion problems. | |
561 DCHECK_EQ(1, state_->run_depth) << "Cannot nest an IO message loop!"; | |
562 | |
563 int timeout = GetCurrentDelay(); | |
564 if (timeout < 0) // Negative value means no timers waiting. | |
565 timeout = INFINITE; | |
566 | |
567 WaitForIOCompletion(timeout, NULL); | |
568 } | |
569 | |
570 bool MessagePumpForIO::WaitForIOCompletion(DWORD timeout, IOHandler* filter) { | |
571 IOItem item; | |
572 if (completed_io_.empty() || !MatchCompletedIOItem(filter, &item)) { | |
573 // We have to ask the system for another IO completion. | |
574 if (!GetIOItem(timeout, &item)) | |
575 return false; | |
576 | |
577 if (ProcessInternalIOItem(item)) | |
578 return true; | |
579 } | |
580 | |
581 // If |item.has_valid_io_context| is false then |item.context| does not point | |
582 // to a context structure, and so should not be dereferenced, although it may | |
583 // still hold valid non-pointer data. | |
584 if (!item.has_valid_io_context || item.context->handler) { | |
585 if (filter && item.handler != filter) { | |
586 // Save this item for later | |
587 completed_io_.push_back(item); | |
588 } else { | |
589 DCHECK(!item.has_valid_io_context || | |
590 (item.context->handler == item.handler)); | |
591 WillProcessIOEvent(); | |
592 item.handler->OnIOCompleted(item.context, item.bytes_transfered, | |
593 item.error); | |
594 DidProcessIOEvent(); | |
595 } | |
596 } else { | |
597 // The handler must be gone by now, just cleanup the mess. | |
598 delete item.context; | |
599 } | |
600 return true; | |
601 } | |
602 | |
603 // Asks the OS for another IO completion result. | |
604 bool MessagePumpForIO::GetIOItem(DWORD timeout, IOItem* item) { | |
605 memset(item, 0, sizeof(*item)); | |
606 ULONG_PTR key = NULL; | |
607 OVERLAPPED* overlapped = NULL; | |
608 if (!GetQueuedCompletionStatus(port_.Get(), &item->bytes_transfered, &key, | |
609 &overlapped, timeout)) { | |
610 if (!overlapped) | |
611 return false; // Nothing in the queue. | |
612 item->error = GetLastError(); | |
613 item->bytes_transfered = 0; | |
614 } | |
615 | |
616 item->handler = KeyToHandler(key, &item->has_valid_io_context); | |
617 item->context = reinterpret_cast<IOContext*>(overlapped); | |
618 return true; | |
619 } | |
620 | |
621 bool MessagePumpForIO::ProcessInternalIOItem(const IOItem& item) { | |
622 if (this == reinterpret_cast<MessagePumpForIO*>(item.context) && | |
623 this == reinterpret_cast<MessagePumpForIO*>(item.handler)) { | |
624 // This is our internal completion. | |
625 DCHECK(!item.bytes_transfered); | |
626 InterlockedExchange(&have_work_, 0); | |
627 return true; | |
628 } | |
629 return false; | |
630 } | |
631 | |
632 // Returns a completion item that was previously received. | |
633 bool MessagePumpForIO::MatchCompletedIOItem(IOHandler* filter, IOItem* item) { | |
634 DCHECK(!completed_io_.empty()); | |
635 for (std::list<IOItem>::iterator it = completed_io_.begin(); | |
636 it != completed_io_.end(); ++it) { | |
637 if (!filter || it->handler == filter) { | |
638 *item = *it; | |
639 completed_io_.erase(it); | |
640 return true; | |
641 } | |
642 } | |
643 return false; | |
644 } | |
645 | |
646 void MessagePumpForIO::AddIOObserver(IOObserver *obs) { | |
647 io_observers_.AddObserver(obs); | |
648 } | |
649 | |
650 void MessagePumpForIO::RemoveIOObserver(IOObserver *obs) { | |
651 io_observers_.RemoveObserver(obs); | |
652 } | |
653 | |
654 void MessagePumpForIO::WillProcessIOEvent() { | |
655 FOR_EACH_OBSERVER(IOObserver, io_observers_, WillProcessIOEvent()); | |
656 } | |
657 | |
658 void MessagePumpForIO::DidProcessIOEvent() { | |
659 FOR_EACH_OBSERVER(IOObserver, io_observers_, DidProcessIOEvent()); | |
660 } | |
661 | |
662 // static | |
663 ULONG_PTR MessagePumpForIO::HandlerToKey(IOHandler* handler, | |
664 bool has_valid_io_context) { | |
665 ULONG_PTR key = reinterpret_cast<ULONG_PTR>(handler); | |
666 | |
667 // |IOHandler| is at least pointer-size aligned, so the lowest two bits are | |
668 // always cleared. We use the lowest bit to distinguish completion keys with | |
669 // and without the associated |IOContext|. | |
670 DCHECK((key & 1) == 0); | |
671 | |
672 // Mark the completion key as context-less. | |
673 if (!has_valid_io_context) | |
674 key = key | 1; | |
675 return key; | |
676 } | |
677 | |
678 // static | |
679 MessagePumpForIO::IOHandler* MessagePumpForIO::KeyToHandler( | |
680 ULONG_PTR key, | |
681 bool* has_valid_io_context) { | |
682 *has_valid_io_context = ((key & 1) == 0); | |
683 return reinterpret_cast<IOHandler*>(key & ~static_cast<ULONG_PTR>(1)); | |
684 } | |
685 | |
686 } // namespace base | |
OLD | NEW |