Index: src/core/SkHalf.h |
diff --git a/src/core/SkHalf.h b/src/core/SkHalf.h |
index 3937343b6c6d708191c0caa169069a9f6bbb1c66..a42f57d56b60054ee6a524fd59d353c2ca0bfdd9 100644 |
--- a/src/core/SkHalf.h |
+++ b/src/core/SkHalf.h |
@@ -37,23 +37,30 @@ static inline uint64_t SkFloatToHalf_01(const Sk4f&); |
// TODO: NEON versions |
static inline Sk4f SkHalfToFloat_01(uint64_t hs) { |
#if !defined(SKNX_NO_SIMD) && SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2 |
- // Load our 16-bit floats into the bottom 16 bits of each 32-bit lane, with zeroes on top. |
- __m128i h = _mm_unpacklo_epi16(_mm_loadl_epi64((const __m128i*)&hs), _mm_setzero_si128()); |
- |
- // Fork into two paths, depending on whether the 16-bit float is denormalized. |
- __m128 is_denorm = _mm_castsi128_ps(_mm_cmplt_epi32(h, _mm_set1_epi32(0x0400))); |
+ // If our input is a normal 16-bit float, things are pretty easy: |
+ // - shift left by 13 to put the mantissa in the right place; |
+ // - the exponent is wrong, but it just needs to be rebiased; |
+ // - re-bias the exponent from 15-bias to 127-bias by adding (127-15). |
+ |
+ // If our input is denormalized, we're going to do the same steps, plus a few more fix ups: |
+ // - the input is h = K*2^-14, for some 10-bit fixed point K in [0,1); |
+ // - by shifting left 13 and adding (127-15) to the exponent, we constructed the float value |
+ // 2^-15*(1+K); |
+ // - we'd need to subtract 2^-15 and multiply by 2 to get back to K*2^-14, or equivallently |
+ // multiply by 2 then subtract 2^-14. |
+ // |
+ // - We'll work that multiply by 2 into the rebias, by adding 1 more to the exponent. |
+ // - Conveniently, this leaves that rebias constant 2^-14, exactly what we want to subtract. |
- // TODO: figure out, explain |
- const __m128 half = _mm_set1_ps(0.5f); |
- __m128 denorm = _mm_sub_ps(_mm_or_ps(_mm_castsi128_ps(h), half), half); |
+ __m128i h = _mm_unpacklo_epi16(_mm_loadl_epi64((const __m128i*)&hs), _mm_setzero_si128()); |
+ const __m128i is_denorm = _mm_cmplt_epi32(h, _mm_set1_epi32(1<<10)); |
- // If we're normalized, just shift ourselves so the exponent/mantissa dividing line |
- // is correct, then re-bias the exponent from 15 to 127. |
- __m128 norm = _mm_castsi128_ps(_mm_add_epi32(_mm_slli_epi32(h, 13), |
- _mm_set1_epi32((127-15) << 23))); |
+ __m128i rebias = _mm_set1_epi32((127-15) << 23); |
+ rebias = _mm_add_epi32(rebias, _mm_and_si128(is_denorm, _mm_set1_epi32(1<<23))); |
- return _mm_or_ps(_mm_and_ps (is_denorm, denorm), |
- _mm_andnot_ps(is_denorm, norm)); |
+ __m128i f = _mm_add_epi32(_mm_slli_epi32(h, 13), rebias); |
+ return _mm_sub_ps(_mm_castsi128_ps(f), |
+ _mm_castsi128_ps(_mm_and_si128(is_denorm, rebias))); |
#else |
float fs[4]; |
for (int i = 0; i < 4; i++) { |
@@ -68,8 +75,8 @@ static inline uint64_t SkFloatToHalf_01(const Sk4f& fs) { |
// Scale our floats down by a tiny power of 2 to pull up our mantissa bits, |
// then shift back down to 16-bit float layout. This doesn't round, so can be 1 bit small. |
// TODO: understand better. Why this scale factor? |
- const __m128 scale = _mm_castsi128_ps(_mm_set1_epi32(15 << 23)); |
- __m128i h = _mm_srli_epi32(_mm_castps_si128(_mm_mul_ps(fs.fVec, scale)), 13); |
+ const __m128 rebias = _mm_castsi128_ps(_mm_set1_epi32((127 - (127 - 15)) << 23)); |
+ __m128i h = _mm_srli_epi32(_mm_castps_si128(_mm_mul_ps(fs.fVec, rebias)), 13); |
uint64_t r; |
_mm_storel_epi64((__m128i*)&r, _mm_packs_epi32(h,h)); |