| Index: source/libvpx/vp9/encoder/vp9_firstpass.c
|
| ===================================================================
|
| --- source/libvpx/vp9/encoder/vp9_firstpass.c (revision 251189)
|
| +++ source/libvpx/vp9/encoder/vp9_firstpass.c (working copy)
|
| @@ -49,6 +49,10 @@
|
|
|
| #define DOUBLE_DIVIDE_CHECK(x) ((x) < 0 ? (x) - 0.000001 : (x) + 0.000001)
|
|
|
| +#define MIN_KF_BOOST 300
|
| +
|
| +#define DISABLE_RC_LONG_TERM_MEM 0
|
| +
|
| static void swap_yv12(YV12_BUFFER_CONFIG *a, YV12_BUFFER_CONFIG *b) {
|
| YV12_BUFFER_CONFIG temp = *a;
|
| *a = *b;
|
| @@ -129,9 +133,9 @@
|
| return 1;
|
| }
|
|
|
| -static void output_stats(const VP9_COMP *cpi,
|
| +static void output_stats(const VP9_COMP *cpi,
|
| struct vpx_codec_pkt_list *pktlist,
|
| - FIRSTPASS_STATS *stats) {
|
| + FIRSTPASS_STATS *stats) {
|
| struct vpx_codec_cx_pkt pkt;
|
| pkt.kind = VPX_CODEC_STATS_PKT;
|
| pkt.data.twopass_stats.buf = stats;
|
| @@ -262,9 +266,9 @@
|
|
|
| // Calculate a modified Error used in distributing bits between easier and
|
| // harder frames.
|
| -static double calculate_modified_err(VP9_COMP *cpi,
|
| - FIRSTPASS_STATS *this_frame) {
|
| - struct twopass_rc *const twopass = &cpi->twopass;
|
| +static double calculate_modified_err(const VP9_COMP *cpi,
|
| + const FIRSTPASS_STATS *this_frame) {
|
| + const struct twopass_rc *const twopass = &cpi->twopass;
|
| const FIRSTPASS_STATS *const stats = &twopass->total_stats;
|
| const double av_err = stats->ssim_weighted_pred_err / stats->count;
|
| double modified_error = av_err * pow(this_frame->ssim_weighted_pred_err /
|
| @@ -333,7 +337,7 @@
|
| }
|
|
|
| // This function returns the maximum target rate per frame.
|
| -static int frame_max_bits(VP9_COMP *cpi) {
|
| +static int frame_max_bits(const VP9_COMP *cpi) {
|
| int64_t max_bits =
|
| ((int64_t)cpi->rc.av_per_frame_bandwidth *
|
| (int64_t)cpi->oxcf.two_pass_vbrmax_section) / 100;
|
| @@ -465,7 +469,7 @@
|
| TileInfo tile;
|
| struct macroblock_plane *const p = x->plane;
|
| struct macroblockd_plane *const pd = xd->plane;
|
| - PICK_MODE_CONTEXT *ctx = &x->sb64_context;
|
| + const PICK_MODE_CONTEXT *ctx = &x->sb64_context;
|
| int i;
|
|
|
| int recon_yoffset, recon_uvoffset;
|
| @@ -491,11 +495,8 @@
|
| int sum_in_vectors = 0;
|
| uint32_t lastmv_as_int = 0;
|
| struct twopass_rc *const twopass = &cpi->twopass;
|
| + const MV zero_mv = {0, 0};
|
|
|
| - int_mv zero_ref_mv;
|
| -
|
| - zero_ref_mv.as_int = 0;
|
| -
|
| vp9_clear_system_state(); // __asm emms;
|
|
|
| vp9_setup_src_planes(x, cpi->Source, 0, 0);
|
| @@ -503,10 +504,9 @@
|
| setup_dst_planes(xd, new_yv12, 0, 0);
|
|
|
| xd->mi_8x8 = cm->mi_grid_visible;
|
| - // required for vp9_frame_init_quantizer
|
| - xd->mi_8x8[0] = cm->mi;
|
| + xd->mi_8x8[0] = cm->mi; // required for vp9_frame_init_quantizer
|
|
|
| - setup_block_dptrs(&x->e_mbd, cm->subsampling_x, cm->subsampling_y);
|
| + vp9_setup_block_planes(&x->e_mbd, cm->subsampling_x, cm->subsampling_y);
|
|
|
| vp9_frame_init_quantizer(cpi);
|
|
|
| @@ -518,15 +518,9 @@
|
| }
|
| x->skip_recode = 0;
|
|
|
| + vp9_init_mv_probs(cm);
|
| + vp9_initialize_rd_consts(cpi);
|
|
|
| - // Initialise the MV cost table to the defaults
|
| - // if( cm->current_video_frame == 0)
|
| - // if ( 0 )
|
| - {
|
| - vp9_init_mv_probs(cm);
|
| - vp9_initialize_rd_consts(cpi);
|
| - }
|
| -
|
| // tiling is ignored in the first pass
|
| vp9_tile_init(&tile, cm, 0, 0);
|
|
|
| @@ -550,7 +544,7 @@
|
| // for each macroblock col in image
|
| for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) {
|
| int this_error;
|
| - int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row);
|
| + const int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row);
|
| double error_weight = 1.0;
|
| const BLOCK_SIZE bsize = get_bsize(cm, mb_row, mb_col);
|
|
|
| @@ -568,7 +562,7 @@
|
| cm->mi_rows, cm->mi_cols);
|
|
|
| if (cpi->oxcf.aq_mode == VARIANCE_AQ) {
|
| - int energy = vp9_block_energy(cpi, x, bsize);
|
| + const int energy = vp9_block_energy(cpi, x, bsize);
|
| error_weight = vp9_vaq_inv_q_ratio(energy);
|
| }
|
|
|
| @@ -594,8 +588,7 @@
|
| // Set up limit values for motion vectors to prevent them extending
|
| // outside the UMV borders.
|
| x->mv_col_min = -((mb_col * 16) + BORDER_MV_PIXELS_B16);
|
| - x->mv_col_max = ((cm->mb_cols - 1 - mb_col) * 16)
|
| - + BORDER_MV_PIXELS_B16;
|
| + x->mv_col_max = ((cm->mb_cols - 1 - mb_col) * 16) + BORDER_MV_PIXELS_B16;
|
|
|
| // Other than for the first frame do a motion search
|
| if (cm->current_video_frame > 0) {
|
| @@ -620,7 +613,7 @@
|
| // based search as well.
|
| if (best_ref_mv.as_int) {
|
| tmp_err = INT_MAX;
|
| - first_pass_motion_search(cpi, x, &zero_ref_mv.as_mv, &tmp_mv.as_mv,
|
| + first_pass_motion_search(cpi, x, &zero_mv, &tmp_mv.as_mv,
|
| &tmp_err);
|
| if (cpi->oxcf.aq_mode == VARIANCE_AQ) {
|
| vp9_clear_system_state(); // __asm emms;
|
| @@ -641,17 +634,15 @@
|
| xd->plane[0].pre[0].buf = gld_yv12->y_buffer + recon_yoffset;
|
| gf_motion_error = zz_motion_search(cpi, x);
|
|
|
| - first_pass_motion_search(cpi, x, &zero_ref_mv.as_mv, &tmp_mv.as_mv,
|
| + first_pass_motion_search(cpi, x, &zero_mv, &tmp_mv.as_mv,
|
| &gf_motion_error);
|
| if (cpi->oxcf.aq_mode == VARIANCE_AQ) {
|
| vp9_clear_system_state(); // __asm emms;
|
| gf_motion_error *= error_weight;
|
| }
|
|
|
| - if ((gf_motion_error < motion_error) &&
|
| - (gf_motion_error < this_error)) {
|
| + if (gf_motion_error < motion_error && gf_motion_error < this_error)
|
| second_ref_count++;
|
| - }
|
|
|
| // Reset to last frame as reference buffer
|
| xd->plane[0].pre[0].buf = lst_yv12->y_buffer + recon_yoffset;
|
| @@ -779,13 +770,11 @@
|
| fps.mvr_abs = (double)sum_mvr_abs / mvcount;
|
| fps.MVc = (double)sum_mvc / mvcount;
|
| fps.mvc_abs = (double)sum_mvc_abs / mvcount;
|
| - fps.MVrv = ((double)sum_mvrs - (fps.MVr * fps.MVr / mvcount)) /
|
| - mvcount;
|
| - fps.MVcv = ((double)sum_mvcs - (fps.MVc * fps.MVc / mvcount)) /
|
| - mvcount;
|
| + fps.MVrv = ((double)sum_mvrs - (fps.MVr * fps.MVr / mvcount)) / mvcount;
|
| + fps.MVcv = ((double)sum_mvcs - (fps.MVc * fps.MVc / mvcount)) / mvcount;
|
| fps.mv_in_out_count = (double)sum_in_vectors / (mvcount * 2);
|
| fps.new_mv_count = new_mv_count;
|
| - fps.pcnt_motion = (double)mvcount / cpi->common.MBs;
|
| + fps.pcnt_motion = (double)mvcount / cm->MBs;
|
| } else {
|
| fps.MVr = 0.0;
|
| fps.mvr_abs = 0.0;
|
| @@ -913,13 +902,12 @@
|
| return fclamp(pow(error_term, power_term), 0.05, 5.0);
|
| }
|
|
|
| -static int estimate_max_q(VP9_COMP *cpi,
|
| - FIRSTPASS_STATS *fpstats,
|
| - int section_target_bandwitdh) {
|
| +int vp9_twopass_worst_quality(VP9_COMP *cpi, FIRSTPASS_STATS *fpstats,
|
| + int section_target_bandwitdh) {
|
| int q;
|
| const int num_mbs = cpi->common.MBs;
|
| int target_norm_bits_per_mb;
|
| - RATE_CONTROL *const rc = &cpi->rc;
|
| + const RATE_CONTROL *const rc = &cpi->rc;
|
|
|
| const double section_err = fpstats->coded_error / fpstats->count;
|
| const double err_per_mb = section_err / num_mbs;
|
| @@ -949,58 +937,6 @@
|
| return q;
|
| }
|
|
|
| -// For cq mode estimate a cq level that matches the observed
|
| -// complexity and data rate.
|
| -static int estimate_cq(VP9_COMP *cpi,
|
| - FIRSTPASS_STATS *fpstats,
|
| - int section_target_bandwitdh) {
|
| - int q;
|
| - int num_mbs = cpi->common.MBs;
|
| - int target_norm_bits_per_mb;
|
| -
|
| - double section_err = (fpstats->coded_error / fpstats->count);
|
| - double err_per_mb = section_err / num_mbs;
|
| - double err_correction_factor;
|
| - double clip_iiratio;
|
| - double clip_iifactor;
|
| -
|
| - target_norm_bits_per_mb = (section_target_bandwitdh < (1 << 20))
|
| - ? (512 * section_target_bandwitdh) / num_mbs
|
| - : 512 * (section_target_bandwitdh / num_mbs);
|
| -
|
| -
|
| - // II ratio correction factor for clip as a whole
|
| - clip_iiratio = cpi->twopass.total_stats.intra_error /
|
| - DOUBLE_DIVIDE_CHECK(cpi->twopass.total_stats.coded_error);
|
| - clip_iifactor = 1.0 - ((clip_iiratio - 10.0) * 0.025);
|
| - if (clip_iifactor < 0.80)
|
| - clip_iifactor = 0.80;
|
| -
|
| - // Try and pick a Q that can encode the content at the given rate.
|
| - for (q = 0; q < MAXQ; q++) {
|
| - int bits_per_mb_at_this_q;
|
| -
|
| - // Error per MB based correction factor
|
| - err_correction_factor =
|
| - calc_correction_factor(err_per_mb, 100.0, 0.5, 0.90, q) * clip_iifactor;
|
| -
|
| - bits_per_mb_at_this_q =
|
| - vp9_rc_bits_per_mb(INTER_FRAME, q, err_correction_factor);
|
| -
|
| - if (bits_per_mb_at_this_q <= target_norm_bits_per_mb)
|
| - break;
|
| - }
|
| -
|
| - // Clip value to range "best allowed to (worst allowed - 1)"
|
| - q = select_cq_level(q);
|
| - if (q >= cpi->rc.worst_quality)
|
| - q = cpi->rc.worst_quality - 1;
|
| - if (q < cpi->rc.best_quality)
|
| - q = cpi->rc.best_quality;
|
| -
|
| - return q;
|
| -}
|
| -
|
| extern void vp9_new_framerate(VP9_COMP *cpi, double framerate);
|
|
|
| void vp9_init_second_pass(VP9_COMP *cpi) {
|
| @@ -1088,12 +1024,12 @@
|
|
|
| // This function gives and estimate of how badly we believe
|
| // the prediction quality is decaying from frame to frame.
|
| -static double get_prediction_decay_rate(VP9_COMP *cpi,
|
| - FIRSTPASS_STATS *next_frame) {
|
| +static double get_prediction_decay_rate(const VP9_COMMON *cm,
|
| + const FIRSTPASS_STATS *next_frame) {
|
| // Look at the observed drop in prediction quality between the last frame
|
| // and the GF buffer (which contains an older frame).
|
| const double mb_sr_err_diff = (next_frame->sr_coded_error -
|
| - next_frame->coded_error) / cpi->common.MBs;
|
| + next_frame->coded_error) / cm->MBs;
|
| const double second_ref_decay = mb_sr_err_diff <= 512.0
|
| ? fclamp(pow(1.0 - (mb_sr_err_diff / 512.0), 0.5), 0.85, 1.0)
|
| : 0.85;
|
| @@ -1104,12 +1040,10 @@
|
| // Function to test for a condition where a complex transition is followed
|
| // by a static section. For example in slide shows where there is a fade
|
| // between slides. This is to help with more optimal kf and gf positioning.
|
| -static int detect_transition_to_still(
|
| - VP9_COMP *cpi,
|
| - int frame_interval,
|
| - int still_interval,
|
| - double loop_decay_rate,
|
| - double last_decay_rate) {
|
| +static int detect_transition_to_still(VP9_COMP *cpi, int frame_interval,
|
| + int still_interval,
|
| + double loop_decay_rate,
|
| + double last_decay_rate) {
|
| int trans_to_still = 0;
|
|
|
| // Break clause to detect very still sections after motion
|
| @@ -1121,7 +1055,6 @@
|
| int j;
|
| FIRSTPASS_STATS *position = cpi->twopass.stats_in;
|
| FIRSTPASS_STATS tmp_next_frame;
|
| - double zz_inter;
|
|
|
| // Look ahead a few frames to see if static condition
|
| // persists...
|
| @@ -1129,11 +1062,10 @@
|
| if (EOF == input_stats(&cpi->twopass, &tmp_next_frame))
|
| break;
|
|
|
| - zz_inter = (tmp_next_frame.pcnt_inter - tmp_next_frame.pcnt_motion);
|
| - if (zz_inter < 0.999)
|
| + if (tmp_next_frame.pcnt_inter - tmp_next_frame.pcnt_motion < 0.999)
|
| break;
|
| }
|
| - // Reset file position
|
| +
|
| reset_fpf_position(&cpi->twopass, position);
|
|
|
| // Only if it does do we signal a transition to still
|
| @@ -1147,14 +1079,14 @@
|
| // This function detects a flash through the high relative pcnt_second_ref
|
| // score in the frame following a flash frame. The offset passed in should
|
| // reflect this
|
| -static int detect_flash(VP9_COMP *cpi, int offset) {
|
| +static int detect_flash(const struct twopass_rc *twopass, int offset) {
|
| FIRSTPASS_STATS next_frame;
|
|
|
| int flash_detected = 0;
|
|
|
| // Read the frame data.
|
| // The return is FALSE (no flash detected) if not a valid frame
|
| - if (read_frame_stats(&cpi->twopass, &next_frame, offset) != EOF) {
|
| + if (read_frame_stats(twopass, &next_frame, offset) != EOF) {
|
| // What we are looking for here is a situation where there is a
|
| // brief break in prediction (such as a flash) but subsequent frames
|
| // are reasonably well predicted by an earlier (pre flash) frame.
|
| @@ -1183,16 +1115,15 @@
|
| // Accumulate Motion In/Out of frame stats
|
| *this_frame_mv_in_out = this_frame->mv_in_out_count * motion_pct;
|
| *mv_in_out_accumulator += this_frame->mv_in_out_count * motion_pct;
|
| - *abs_mv_in_out_accumulator +=
|
| - fabs(this_frame->mv_in_out_count * motion_pct);
|
| + *abs_mv_in_out_accumulator += fabs(this_frame->mv_in_out_count * motion_pct);
|
|
|
| // Accumulate a measure of how uniform (or conversely how random)
|
| // the motion field is. (A ratio of absmv / mv)
|
| if (motion_pct > 0.05) {
|
| - double this_frame_mvr_ratio = fabs(this_frame->mvr_abs) /
|
| + const double this_frame_mvr_ratio = fabs(this_frame->mvr_abs) /
|
| DOUBLE_DIVIDE_CHECK(fabs(this_frame->MVr));
|
|
|
| - double this_frame_mvc_ratio = fabs(this_frame->mvc_abs) /
|
| + const double this_frame_mvc_ratio = fabs(this_frame->mvc_abs) /
|
| DOUBLE_DIVIDE_CHECK(fabs(this_frame->MVc));
|
|
|
| *mv_ratio_accumulator += (this_frame_mvr_ratio < this_frame->mvr_abs)
|
| @@ -1235,7 +1166,7 @@
|
| int f_frames, int b_frames,
|
| int *f_boost, int *b_boost) {
|
| FIRSTPASS_STATS this_frame;
|
| -
|
| + struct twopass_rc *const twopass = &cpi->twopass;
|
| int i;
|
| double boost_score = 0.0;
|
| double mv_ratio_accumulator = 0.0;
|
| @@ -1248,7 +1179,7 @@
|
|
|
| // Search forward from the proposed arf/next gf position
|
| for (i = 0; i < f_frames; i++) {
|
| - if (read_frame_stats(&cpi->twopass, &this_frame, (i + offset)) == EOF)
|
| + if (read_frame_stats(twopass, &this_frame, (i + offset)) == EOF)
|
| break;
|
|
|
| // Update the motion related elements to the boost calculation
|
| @@ -1259,12 +1190,12 @@
|
|
|
| // We want to discount the flash frame itself and the recovery
|
| // frame that follows as both will have poor scores.
|
| - flash_detected = detect_flash(cpi, (i + offset)) ||
|
| - detect_flash(cpi, (i + offset + 1));
|
| + flash_detected = detect_flash(twopass, i + offset) ||
|
| + detect_flash(twopass, i + offset + 1);
|
|
|
| // Cumulative effect of prediction quality decay
|
| if (!flash_detected) {
|
| - decay_accumulator *= get_prediction_decay_rate(cpi, &this_frame);
|
| + decay_accumulator *= get_prediction_decay_rate(&cpi->common, &this_frame);
|
| decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR
|
| ? MIN_DECAY_FACTOR : decay_accumulator;
|
| }
|
| @@ -1285,7 +1216,7 @@
|
|
|
| // Search backward towards last gf position
|
| for (i = -1; i >= -b_frames; i--) {
|
| - if (read_frame_stats(&cpi->twopass, &this_frame, (i + offset)) == EOF)
|
| + if (read_frame_stats(twopass, &this_frame, (i + offset)) == EOF)
|
| break;
|
|
|
| // Update the motion related elements to the boost calculation
|
| @@ -1296,12 +1227,12 @@
|
|
|
| // We want to discount the the flash frame itself and the recovery
|
| // frame that follows as both will have poor scores.
|
| - flash_detected = detect_flash(cpi, (i + offset)) ||
|
| - detect_flash(cpi, (i + offset + 1));
|
| + flash_detected = detect_flash(twopass, i + offset) ||
|
| + detect_flash(twopass, i + offset + 1);
|
|
|
| // Cumulative effect of prediction quality decay
|
| if (!flash_detected) {
|
| - decay_accumulator *= get_prediction_decay_rate(cpi, &this_frame);
|
| + decay_accumulator *= get_prediction_decay_rate(&cpi->common, &this_frame);
|
| decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR
|
| ? MIN_DECAY_FACTOR : decay_accumulator;
|
| }
|
| @@ -1461,6 +1392,7 @@
|
| static void define_gf_group(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
|
| FIRSTPASS_STATS next_frame = { 0 };
|
| FIRSTPASS_STATS *start_pos;
|
| + struct twopass_rc *const twopass = &cpi->twopass;
|
| int i;
|
| double boost_score = 0.0;
|
| double old_boost_score = 0.0;
|
| @@ -1479,10 +1411,10 @@
|
| double mv_in_out_accumulator = 0.0;
|
| double abs_mv_in_out_accumulator = 0.0;
|
| double mv_ratio_accumulator_thresh;
|
| - int max_bits = frame_max_bits(cpi); // Max for a single frame
|
| + const int max_bits = frame_max_bits(cpi); // Max for a single frame
|
|
|
| - unsigned int allow_alt_ref =
|
| - cpi->oxcf.play_alternate && cpi->oxcf.lag_in_frames;
|
| + unsigned int allow_alt_ref = cpi->oxcf.play_alternate &&
|
| + cpi->oxcf.lag_in_frames;
|
|
|
| int f_boost = 0;
|
| int b_boost = 0;
|
| @@ -1490,11 +1422,11 @@
|
| int active_max_gf_interval;
|
| RATE_CONTROL *const rc = &cpi->rc;
|
|
|
| - cpi->twopass.gf_group_bits = 0;
|
| + twopass->gf_group_bits = 0;
|
|
|
| vp9_clear_system_state(); // __asm emms;
|
|
|
| - start_pos = cpi->twopass.stats_in;
|
| + start_pos = twopass->stats_in;
|
|
|
| // Load stats for the current frame.
|
| mod_frame_err = calculate_modified_err(cpi, this_frame);
|
| @@ -1525,20 +1457,19 @@
|
| active_max_gf_interval = rc->max_gf_interval;
|
|
|
| i = 0;
|
| - while ((i < cpi->twopass.static_scene_max_gf_interval) &&
|
| - (i < rc->frames_to_key)) {
|
| + while (i < twopass->static_scene_max_gf_interval && i < rc->frames_to_key) {
|
| i++; // Increment the loop counter
|
|
|
| // Accumulate error score of frames in this gf group
|
| mod_frame_err = calculate_modified_err(cpi, this_frame);
|
| gf_group_err += mod_frame_err;
|
|
|
| - if (EOF == input_stats(&cpi->twopass, &next_frame))
|
| + if (EOF == input_stats(twopass, &next_frame))
|
| break;
|
|
|
| // Test for the case where there is a brief flash but the prediction
|
| // quality back to an earlier frame is then restored.
|
| - flash_detected = detect_flash(cpi, 0);
|
| + flash_detected = detect_flash(twopass, 0);
|
|
|
| // Update the motion related elements to the boost calculation
|
| accumulate_frame_motion_stats(&next_frame,
|
| @@ -1549,14 +1480,14 @@
|
| // Cumulative effect of prediction quality decay
|
| if (!flash_detected) {
|
| last_loop_decay_rate = loop_decay_rate;
|
| - loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame);
|
| + loop_decay_rate = get_prediction_decay_rate(&cpi->common, &next_frame);
|
| decay_accumulator = decay_accumulator * loop_decay_rate;
|
|
|
| // Monitor for static sections.
|
| if ((next_frame.pcnt_inter - next_frame.pcnt_motion) <
|
| zero_motion_accumulator) {
|
| - zero_motion_accumulator =
|
| - (next_frame.pcnt_inter - next_frame.pcnt_motion);
|
| + zero_motion_accumulator = next_frame.pcnt_inter -
|
| + next_frame.pcnt_motion;
|
| }
|
|
|
| // Break clause to detect very still sections after motion
|
| @@ -1594,14 +1525,14 @@
|
| old_boost_score = boost_score;
|
| }
|
|
|
| - cpi->twopass.gf_zeromotion_pct = (int)(zero_motion_accumulator * 1000.0);
|
| + twopass->gf_zeromotion_pct = (int)(zero_motion_accumulator * 1000.0);
|
|
|
| // Don't allow a gf too near the next kf
|
| if ((rc->frames_to_key - i) < MIN_GF_INTERVAL) {
|
| while (i < (rc->frames_to_key + !rc->next_key_frame_forced)) {
|
| i++;
|
|
|
| - if (EOF == input_stats(&cpi->twopass, this_frame))
|
| + if (EOF == input_stats(twopass, this_frame))
|
| break;
|
|
|
| if (i < rc->frames_to_key) {
|
| @@ -1635,13 +1566,7 @@
|
| (i >= MIN_GF_INTERVAL) &&
|
| // for real scene cuts (not forced kfs) dont allow arf very near kf.
|
| (rc->next_key_frame_forced ||
|
| - (i <= (rc->frames_to_key - MIN_GF_INTERVAL))) &&
|
| - ((next_frame.pcnt_inter > 0.75) ||
|
| - (next_frame.pcnt_second_ref > 0.5)) &&
|
| - ((mv_in_out_accumulator / (double)i > -0.2) ||
|
| - (mv_in_out_accumulator > -2.0)) &&
|
| - (boost_score > 100)) {
|
| -
|
| + (i <= (rc->frames_to_key - MIN_GF_INTERVAL)))) {
|
| // Alternative boost calculation for alt ref
|
| rc->gfu_boost = calc_arf_boost(cpi, 0, (i - 1), (i - 1), &f_boost,
|
| &b_boost);
|
| @@ -1705,27 +1630,23 @@
|
| #endif
|
|
|
| // Calculate the bits to be allocated to the group as a whole
|
| - if ((cpi->twopass.kf_group_bits > 0) &&
|
| - (cpi->twopass.kf_group_error_left > 0)) {
|
| - cpi->twopass.gf_group_bits =
|
| - (int64_t)(cpi->twopass.kf_group_bits *
|
| + if (twopass->kf_group_bits > 0 && twopass->kf_group_error_left > 0) {
|
| + twopass->gf_group_bits = (int64_t)(cpi->twopass.kf_group_bits *
|
| (gf_group_err / cpi->twopass.kf_group_error_left));
|
| } else {
|
| - cpi->twopass.gf_group_bits = 0;
|
| + twopass->gf_group_bits = 0;
|
| }
|
| - cpi->twopass.gf_group_bits =
|
| - (cpi->twopass.gf_group_bits < 0)
|
| - ? 0
|
| - : (cpi->twopass.gf_group_bits > cpi->twopass.kf_group_bits)
|
| - ? cpi->twopass.kf_group_bits : cpi->twopass.gf_group_bits;
|
| + twopass->gf_group_bits = (twopass->gf_group_bits < 0) ?
|
| + 0 : (twopass->gf_group_bits > twopass->kf_group_bits) ?
|
| + twopass->kf_group_bits : twopass->gf_group_bits;
|
|
|
| // Clip cpi->twopass.gf_group_bits based on user supplied data rate
|
| // variability limit (cpi->oxcf.two_pass_vbrmax_section)
|
| - if (cpi->twopass.gf_group_bits > (int64_t)max_bits * rc->baseline_gf_interval)
|
| - cpi->twopass.gf_group_bits = (int64_t)max_bits * rc->baseline_gf_interval;
|
| + if (twopass->gf_group_bits > (int64_t)max_bits * rc->baseline_gf_interval)
|
| + twopass->gf_group_bits = (int64_t)max_bits * rc->baseline_gf_interval;
|
|
|
| // Reset the file position
|
| - reset_fpf_position(&cpi->twopass, start_pos);
|
| + reset_fpf_position(twopass, start_pos);
|
|
|
| // Assign bits to the arf or gf.
|
| for (i = 0; i <= (rc->source_alt_ref_pending &&
|
| @@ -1753,17 +1674,17 @@
|
|
|
| // Calculate the number of bits to be spent on the gf or arf based on
|
| // the boost number
|
| - gf_bits = (int)((double)boost * (cpi->twopass.gf_group_bits /
|
| - (double)allocation_chunks));
|
| + gf_bits = (int)((double)boost * (twopass->gf_group_bits /
|
| + (double)allocation_chunks));
|
|
|
| // If the frame that is to be boosted is simpler than the average for
|
| // the gf/arf group then use an alternative calculation
|
| // based on the error score of the frame itself
|
| if (rc->baseline_gf_interval < 1 ||
|
| mod_frame_err < gf_group_err / (double)rc->baseline_gf_interval) {
|
| - double alt_gf_grp_bits = (double)cpi->twopass.kf_group_bits *
|
| + double alt_gf_grp_bits = (double)twopass->kf_group_bits *
|
| (mod_frame_err * (double)rc->baseline_gf_interval) /
|
| - DOUBLE_DIVIDE_CHECK(cpi->twopass.kf_group_error_left);
|
| + DOUBLE_DIVIDE_CHECK(twopass->kf_group_error_left);
|
|
|
| int alt_gf_bits = (int)((double)boost * (alt_gf_grp_bits /
|
| (double)allocation_chunks));
|
| @@ -1774,9 +1695,9 @@
|
| // If it is harder than other frames in the group make sure it at
|
| // least receives an allocation in keeping with its relative error
|
| // score, otherwise it may be worse off than an "un-boosted" frame.
|
| - int alt_gf_bits = (int)((double)cpi->twopass.kf_group_bits *
|
| + int alt_gf_bits = (int)((double)twopass->kf_group_bits *
|
| mod_frame_err /
|
| - DOUBLE_DIVIDE_CHECK(cpi->twopass.kf_group_error_left));
|
| + DOUBLE_DIVIDE_CHECK(twopass->kf_group_error_left));
|
|
|
| if (alt_gf_bits > gf_bits)
|
| gf_bits = alt_gf_bits;
|
| @@ -1787,23 +1708,23 @@
|
| gf_bits = 0;
|
|
|
| if (i == 0) {
|
| - cpi->twopass.gf_bits = gf_bits;
|
| + twopass->gf_bits = gf_bits;
|
| }
|
| if (i == 1 ||
|
| (!rc->source_alt_ref_pending &&
|
| - (cpi->common.frame_type != KEY_FRAME))) {
|
| + cpi->common.frame_type != KEY_FRAME)) {
|
| // Per frame bit target for this frame
|
| - rc->per_frame_bandwidth = gf_bits;
|
| + vp9_rc_set_frame_target(cpi, gf_bits);
|
| }
|
| }
|
|
|
| {
|
| // Adjust KF group bits and error remaining
|
| - cpi->twopass.kf_group_error_left -= (int64_t)gf_group_err;
|
| - cpi->twopass.kf_group_bits -= cpi->twopass.gf_group_bits;
|
| + twopass->kf_group_error_left -= (int64_t)gf_group_err;
|
| + twopass->kf_group_bits -= twopass->gf_group_bits;
|
|
|
| - if (cpi->twopass.kf_group_bits < 0)
|
| - cpi->twopass.kf_group_bits = 0;
|
| + if (twopass->kf_group_bits < 0)
|
| + twopass->kf_group_bits = 0;
|
|
|
| // If this is an arf update we want to remove the score for the
|
| // overlay frame at the end which will usually be very cheap to code.
|
| @@ -1812,18 +1733,18 @@
|
| // For normal GFs remove the score for the GF itself unless this is
|
| // also a key frame in which case it has already been accounted for.
|
| if (rc->source_alt_ref_pending) {
|
| - cpi->twopass.gf_group_error_left = (int64_t)gf_group_err - mod_frame_err;
|
| + twopass->gf_group_error_left = (int64_t)gf_group_err - mod_frame_err;
|
| } else if (cpi->common.frame_type != KEY_FRAME) {
|
| - cpi->twopass.gf_group_error_left = (int64_t)(gf_group_err
|
| + twopass->gf_group_error_left = (int64_t)(gf_group_err
|
| - gf_first_frame_err);
|
| } else {
|
| - cpi->twopass.gf_group_error_left = (int64_t)gf_group_err;
|
| + twopass->gf_group_error_left = (int64_t)gf_group_err;
|
| }
|
|
|
| - cpi->twopass.gf_group_bits -= cpi->twopass.gf_bits;
|
| + twopass->gf_group_bits -= twopass->gf_bits;
|
|
|
| - if (cpi->twopass.gf_group_bits < 0)
|
| - cpi->twopass.gf_group_bits = 0;
|
| + if (twopass->gf_group_bits < 0)
|
| + twopass->gf_group_bits = 0;
|
|
|
| // This condition could fail if there are two kfs very close together
|
| // despite (MIN_GF_INTERVAL) and would cause a divide by 0 in the
|
| @@ -1832,12 +1753,10 @@
|
| const int boost = rc->source_alt_ref_pending ? b_boost : rc->gfu_boost;
|
|
|
| if (boost >= 150) {
|
| - int alt_extra_bits;
|
| - int pct_extra = (boost - 100) / 50;
|
| - pct_extra = (pct_extra > 20) ? 20 : pct_extra;
|
| -
|
| - alt_extra_bits = (int)((cpi->twopass.gf_group_bits * pct_extra) / 100);
|
| - cpi->twopass.gf_group_bits -= alt_extra_bits;
|
| + const int pct_extra = MIN(20, (boost - 100) / 50);
|
| + const int alt_extra_bits = (int)((twopass->gf_group_bits * pct_extra) /
|
| + 100);
|
| + twopass->gf_group_bits -= alt_extra_bits;
|
| }
|
| }
|
| }
|
| @@ -1846,20 +1765,20 @@
|
| FIRSTPASS_STATS sectionstats;
|
|
|
| zero_stats(§ionstats);
|
| - reset_fpf_position(&cpi->twopass, start_pos);
|
| + reset_fpf_position(twopass, start_pos);
|
|
|
| for (i = 0; i < rc->baseline_gf_interval; i++) {
|
| - input_stats(&cpi->twopass, &next_frame);
|
| + input_stats(twopass, &next_frame);
|
| accumulate_stats(§ionstats, &next_frame);
|
| }
|
|
|
| avg_stats(§ionstats);
|
|
|
| - cpi->twopass.section_intra_rating = (int)
|
| + twopass->section_intra_rating = (int)
|
| (sectionstats.intra_error /
|
| DOUBLE_DIVIDE_CHECK(sectionstats.coded_error));
|
|
|
| - reset_fpf_position(&cpi->twopass, start_pos);
|
| + reset_fpf_position(twopass, start_pos);
|
| }
|
| }
|
|
|
| @@ -1895,18 +1814,13 @@
|
| cpi->twopass.gf_group_bits = 0;
|
|
|
| // Per frame bit target for this frame.
|
| - cpi->rc.per_frame_bandwidth = target_frame_size;
|
| + vp9_rc_set_frame_target(cpi, target_frame_size);
|
| }
|
|
|
| -static int test_for_kf_one_pass(VP9_COMP *cpi) {
|
| - // Placeholder function for auto key frame
|
| - return 0;
|
| -}
|
| -
|
| static int test_candidate_kf(VP9_COMP *cpi,
|
| - FIRSTPASS_STATS *last_frame,
|
| - FIRSTPASS_STATS *this_frame,
|
| - FIRSTPASS_STATS *next_frame) {
|
| + const FIRSTPASS_STATS *last_frame,
|
| + const FIRSTPASS_STATS *this_frame,
|
| + const FIRSTPASS_STATS *next_frame) {
|
| int is_viable_kf = 0;
|
|
|
| // Does the frame satisfy the primary criteria of a key frame
|
| @@ -2006,8 +1920,6 @@
|
|
|
| double kf_mod_err = 0.0;
|
| double kf_group_err = 0.0;
|
| - double kf_group_intra_err = 0.0;
|
| - double kf_group_coded_err = 0.0;
|
| double recent_loop_decay[8] = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0};
|
|
|
| RATE_CONTROL *const rc = &cpi->rc;
|
| @@ -2045,12 +1957,6 @@
|
| // Accumulate kf group error
|
| kf_group_err += calculate_modified_err(cpi, this_frame);
|
|
|
| - // These figures keep intra and coded error counts for all frames including
|
| - // key frames in the group. The effect of the key frame itself can be
|
| - // subtracted out using the first_frame data collected above.
|
| - kf_group_intra_err += this_frame->intra_error;
|
| - kf_group_coded_err += this_frame->coded_error;
|
| -
|
| // load a the next frame's stats
|
| last_frame = *this_frame;
|
| input_stats(twopass, this_frame);
|
| @@ -2064,7 +1970,7 @@
|
|
|
|
|
| // How fast is prediction quality decaying
|
| - loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame);
|
| + loop_decay_rate = get_prediction_decay_rate(&cpi->common, &next_frame);
|
|
|
| // We want to know something about the recent past... rather than
|
| // as used elsewhere where we are concened with decay in prediction
|
| @@ -2110,17 +2016,13 @@
|
| reset_fpf_position(twopass, start_position);
|
|
|
| kf_group_err = 0;
|
| - kf_group_intra_err = 0;
|
| - kf_group_coded_err = 0;
|
|
|
| // Rescan to get the correct error data for the forced kf group
|
| for (i = 0; i < rc->frames_to_key; i++) {
|
| // Accumulate kf group errors
|
| kf_group_err += calculate_modified_err(cpi, &tmp_frame);
|
| - kf_group_intra_err += tmp_frame.intra_error;
|
| - kf_group_coded_err += tmp_frame.coded_error;
|
|
|
| - // Load a the next frame's stats
|
| + // Load the next frame's stats.
|
| input_stats(twopass, &tmp_frame);
|
| }
|
| rc->next_key_frame_forced = 1;
|
| @@ -2134,12 +2036,6 @@
|
| if (twopass->stats_in >= twopass->stats_in_end) {
|
| // Accumulate kf group error
|
| kf_group_err += calculate_modified_err(cpi, this_frame);
|
| -
|
| - // These figures keep intra and coded error counts for all frames including
|
| - // key frames in the group. The effect of the key frame itself can be
|
| - // subtracted out using the first_frame data collected above.
|
| - kf_group_intra_err += this_frame->intra_error;
|
| - kf_group_coded_err += this_frame->coded_error;
|
| }
|
|
|
| // Calculate the number of bits that should be assigned to the kf group.
|
| @@ -2169,7 +2065,6 @@
|
| // frames use inter blocks.
|
| decay_accumulator = 1.0;
|
| boost_score = 0.0;
|
| - loop_decay_rate = 1.00; // Starting decay rate
|
|
|
| // Scan through the kf group collating various stats.
|
| for (i = 0; i < rc->frames_to_key; i++) {
|
| @@ -2198,8 +2093,8 @@
|
| r = RMAX;
|
|
|
| // How fast is prediction quality decaying
|
| - if (!detect_flash(cpi, 0)) {
|
| - loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame);
|
| + if (!detect_flash(twopass, 0)) {
|
| + loop_decay_rate = get_prediction_decay_rate(&cpi->common, &next_frame);
|
| decay_accumulator *= loop_decay_rate;
|
| decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR
|
| ? MIN_DECAY_FACTOR : decay_accumulator;
|
| @@ -2238,8 +2133,8 @@
|
| if (kf_boost < (rc->frames_to_key * 3))
|
| kf_boost = (rc->frames_to_key * 3);
|
|
|
| - if (kf_boost < 300) // Min KF boost
|
| - kf_boost = 300;
|
| + if (kf_boost < MIN_KF_BOOST)
|
| + kf_boost = MIN_KF_BOOST;
|
|
|
| // Make a note of baseline boost and the zero motion
|
| // accumulator value for use elsewhere.
|
| @@ -2248,7 +2143,7 @@
|
|
|
| // We do three calculations for kf size.
|
| // The first is based on the error score for the whole kf group.
|
| - // The second (optionaly) on the key frames own error if this is
|
| + // The second (optionally) on the key frames own error if this is
|
| // smaller than the average for the group.
|
| // The final one insures that the frame receives at least the
|
| // allocation it would have received based on its own error score vs
|
| @@ -2279,8 +2174,8 @@
|
| ((double)twopass->kf_group_bits / allocation_chunks));
|
|
|
| // If the key frame is actually easier than the average for the
|
| - // kf group (which does sometimes happen... eg a blank intro frame)
|
| - // Then use an alternate calculation based on the kf error score
|
| + // kf group (which does sometimes happen, e.g. a blank intro frame)
|
| + // then use an alternate calculation based on the kf error score
|
| // which should give a smaller key frame.
|
| if (kf_mod_err < kf_group_err / rc->frames_to_key) {
|
| double alt_kf_grp_bits = ((double)twopass->bits_left *
|
| @@ -2303,13 +2198,9 @@
|
| twopass->kf_bits = alt_kf_bits;
|
| }
|
| }
|
| -
|
| twopass->kf_group_bits -= twopass->kf_bits;
|
| -
|
| - // Peer frame bit target for this frame
|
| - rc->per_frame_bandwidth = twopass->kf_bits;
|
| - // Convert to a per second bitrate
|
| - cpi->target_bandwidth = (int)(twopass->kf_bits * cpi->output_framerate);
|
| + // Per frame bit target for this frame.
|
| + vp9_rc_set_frame_target(cpi, twopass->kf_bits);
|
| }
|
|
|
| // Note the total error score of the kf group minus the key frame itself
|
| @@ -2321,64 +2212,10 @@
|
| twopass->modified_error_left -= kf_group_err;
|
| }
|
|
|
| -void vp9_get_svc_params(VP9_COMP *cpi) {
|
| +void vp9_rc_get_first_pass_params(VP9_COMP *cpi) {
|
| VP9_COMMON *const cm = &cpi->common;
|
| - if ((cm->current_video_frame == 0) ||
|
| - (cm->frame_flags & FRAMEFLAGS_KEY) ||
|
| - (cpi->oxcf.auto_key && (cpi->rc.frames_since_key %
|
| - cpi->key_frame_frequency == 0))) {
|
| - cm->frame_type = KEY_FRAME;
|
| - } else {
|
| - cm->frame_type = INTER_FRAME;
|
| - }
|
| - cpi->rc.frames_till_gf_update_due = INT_MAX;
|
| - cpi->rc.baseline_gf_interval = INT_MAX;
|
| -}
|
| -
|
| -void vp9_get_one_pass_params(VP9_COMP *cpi) {
|
| - VP9_COMMON *const cm = &cpi->common;
|
| if (!cpi->refresh_alt_ref_frame &&
|
| (cm->current_video_frame == 0 ||
|
| - cm->frame_flags & FRAMEFLAGS_KEY ||
|
| - cpi->rc.frames_to_key == 0 ||
|
| - (cpi->oxcf.auto_key && test_for_kf_one_pass(cpi)))) {
|
| - cm->frame_type = KEY_FRAME;
|
| - cpi->rc.this_key_frame_forced = cm->current_video_frame != 0 &&
|
| - cpi->rc.frames_to_key == 0;
|
| - cpi->rc.frames_to_key = cpi->key_frame_frequency;
|
| - cpi->rc.kf_boost = 300;
|
| - } else {
|
| - cm->frame_type = INTER_FRAME;
|
| - }
|
| - if (cpi->rc.frames_till_gf_update_due == 0) {
|
| - cpi->rc.frames_till_gf_update_due = cpi->rc.baseline_gf_interval;
|
| - cpi->refresh_golden_frame = 1;
|
| - }
|
| -}
|
| -
|
| -void vp9_get_one_pass_cbr_params(VP9_COMP *cpi) {
|
| - VP9_COMMON *const cm = &cpi->common;
|
| - if ((cm->current_video_frame == 0 ||
|
| - cm->frame_flags & FRAMEFLAGS_KEY ||
|
| - cpi->rc.frames_to_key == 0 ||
|
| - (cpi->oxcf.auto_key && test_for_kf_one_pass(cpi)))) {
|
| - cm->frame_type = KEY_FRAME;
|
| - cpi->rc.this_key_frame_forced = cm->current_video_frame != 0 &&
|
| - cpi->rc.frames_to_key == 0;
|
| - cpi->rc.frames_to_key = cpi->key_frame_frequency;
|
| - cpi->rc.kf_boost = 300;
|
| - } else {
|
| - cm->frame_type = INTER_FRAME;
|
| - }
|
| - // Don't use gf_update by default in CBR mode.
|
| - cpi->rc.frames_till_gf_update_due = INT_MAX;
|
| - cpi->rc.baseline_gf_interval = INT_MAX;
|
| -}
|
| -
|
| -void vp9_get_first_pass_params(VP9_COMP *cpi) {
|
| - VP9_COMMON *const cm = &cpi->common;
|
| - if (!cpi->refresh_alt_ref_frame &&
|
| - (cm->current_video_frame == 0 ||
|
| cm->frame_flags & FRAMEFLAGS_KEY)) {
|
| cm->frame_type = KEY_FRAME;
|
| } else {
|
| @@ -2388,38 +2225,39 @@
|
| cpi->rc.frames_to_key = INT_MAX;
|
| }
|
|
|
| -void vp9_get_second_pass_params(VP9_COMP *cpi) {
|
| - int tmp_q;
|
| - int frames_left = (int)(cpi->twopass.total_stats.count -
|
| - cpi->common.current_video_frame);
|
| -
|
| +void vp9_rc_get_second_pass_params(VP9_COMP *cpi) {
|
| + VP9_COMMON *const cm = &cpi->common;
|
| + RATE_CONTROL *const rc = &cpi->rc;
|
| + struct twopass_rc *const twopass = &cpi->twopass;
|
| + const int frames_left = (int)(twopass->total_stats.count -
|
| + cm->current_video_frame);
|
| FIRSTPASS_STATS this_frame;
|
| FIRSTPASS_STATS this_frame_copy;
|
| - RATE_CONTROL *rc = &cpi->rc;
|
|
|
| double this_frame_intra_error;
|
| double this_frame_coded_error;
|
| + int target;
|
|
|
| + if (!twopass->stats_in)
|
| + return;
|
| +
|
| if (cpi->refresh_alt_ref_frame) {
|
| - cpi->common.frame_type = INTER_FRAME;
|
| + cm->frame_type = INTER_FRAME;
|
| + vp9_rc_set_frame_target(cpi, twopass->gf_bits);
|
| return;
|
| }
|
| - if (!cpi->twopass.stats_in)
|
| - return;
|
|
|
| vp9_clear_system_state();
|
|
|
| if (cpi->oxcf.end_usage == USAGE_CONSTANT_QUALITY) {
|
| - rc->active_worst_quality = cpi->oxcf.cq_level;
|
| - } else if (cpi->common.current_video_frame == 0) {
|
| + twopass->active_worst_quality = cpi->oxcf.cq_level;
|
| + } else if (cm->current_video_frame == 0) {
|
| // Special case code for first frame.
|
| - int section_target_bandwidth =
|
| - (int)(cpi->twopass.bits_left / frames_left);
|
| -
|
| - tmp_q = estimate_max_q(cpi, &cpi->twopass.total_left_stats,
|
| - section_target_bandwidth);
|
| -
|
| - rc->active_worst_quality = tmp_q;
|
| + const int section_target_bandwidth = (int)(twopass->bits_left /
|
| + frames_left);
|
| + const int tmp_q = vp9_twopass_worst_quality(cpi, &twopass->total_left_stats,
|
| + section_target_bandwidth);
|
| + twopass->active_worst_quality = tmp_q;
|
| rc->ni_av_qi = tmp_q;
|
| rc->avg_q = vp9_convert_qindex_to_q(tmp_q);
|
|
|
| @@ -2431,7 +2269,7 @@
|
| // adjust_maxq_qrange(cpi);
|
| }
|
| vp9_zero(this_frame);
|
| - if (EOF == input_stats(&cpi->twopass, &this_frame))
|
| + if (EOF == input_stats(twopass, &this_frame))
|
| return;
|
|
|
| this_frame_intra_error = this_frame.intra_error;
|
| @@ -2439,12 +2277,12 @@
|
|
|
| // keyframe and section processing !
|
| if (rc->frames_to_key == 0 ||
|
| - (cpi->common.frame_flags & FRAMEFLAGS_KEY)) {
|
| + (cm->frame_flags & FRAMEFLAGS_KEY)) {
|
| // Define next KF group and assign bits to it
|
| this_frame_copy = this_frame;
|
| find_next_key_frame(cpi, &this_frame_copy);
|
| } else {
|
| - cpi->common.frame_type = INTER_FRAME;
|
| + cm->frame_type = INTER_FRAME;
|
| }
|
|
|
| // Is this a GF / ARF (Note that a KF is always also a GF)
|
| @@ -2462,13 +2300,13 @@
|
| }
|
| #endif
|
|
|
| - if (cpi->twopass.gf_zeromotion_pct > 995) {
|
| + if (twopass->gf_zeromotion_pct > 995) {
|
| // As long as max_thresh for encode breakout is small enough, it is ok
|
| - // to enable it for no-show frame, i.e. set enable_encode_breakout to 2.
|
| - if (!cpi->common.show_frame)
|
| - cpi->enable_encode_breakout = 0;
|
| + // to enable it for show frame, i.e. set allow_encode_breakout to 2.
|
| + if (!cm->show_frame)
|
| + cpi->allow_encode_breakout = ENCODE_BREAKOUT_DISABLED;
|
| else
|
| - cpi->enable_encode_breakout = 2;
|
| + cpi->allow_encode_breakout = ENCODE_BREAKOUT_LIMITED;
|
| }
|
|
|
| rc->frames_till_gf_update_due = rc->baseline_gf_interval;
|
| @@ -2481,24 +2319,24 @@
|
| }
|
|
|
| // Keep a globally available copy of this and the next frame's iiratio.
|
| - cpi->twopass.this_iiratio = (int)(this_frame_intra_error /
|
| + twopass->this_iiratio = (int)(this_frame_intra_error /
|
| DOUBLE_DIVIDE_CHECK(this_frame_coded_error));
|
| {
|
| FIRSTPASS_STATS next_frame;
|
| - if (lookup_next_frame_stats(&cpi->twopass, &next_frame) != EOF) {
|
| - cpi->twopass.next_iiratio = (int)(next_frame.intra_error /
|
| - DOUBLE_DIVIDE_CHECK(next_frame.coded_error));
|
| + if (lookup_next_frame_stats(twopass, &next_frame) != EOF) {
|
| + twopass->next_iiratio = (int)(next_frame.intra_error /
|
| + DOUBLE_DIVIDE_CHECK(next_frame.coded_error));
|
| }
|
| }
|
|
|
| - // Set nominal per second bandwidth for this frame
|
| - cpi->target_bandwidth = (int)(rc->per_frame_bandwidth *
|
| - cpi->output_framerate);
|
| - if (cpi->target_bandwidth < 0)
|
| - cpi->target_bandwidth = 0;
|
| + if (cpi->common.frame_type == KEY_FRAME)
|
| + target = vp9_rc_clamp_iframe_target_size(cpi, rc->this_frame_target);
|
| + else
|
| + target = vp9_rc_clamp_pframe_target_size(cpi, rc->this_frame_target);
|
| + vp9_rc_set_frame_target(cpi, target);
|
|
|
| // Update the total stats remaining structure
|
| - subtract_stats(&cpi->twopass.total_left_stats, &this_frame);
|
| + subtract_stats(&twopass->total_left_stats, &this_frame);
|
| }
|
|
|
| void vp9_twopass_postencode_update(VP9_COMP *cpi, uint64_t bytes_used) {
|
| @@ -2506,5 +2344,18 @@
|
| cpi->twopass.bits_left -= cpi->rc.this_frame_target;
|
| #else
|
| cpi->twopass.bits_left -= 8 * bytes_used;
|
| + // Update bits left to the kf and gf groups to account for overshoot or
|
| + // undershoot on these frames
|
| + if (cm->frame_type == KEY_FRAME) {
|
| + cpi->twopass.kf_group_bits += cpi->rc.this_frame_target -
|
| + cpi->rc.projected_frame_size;
|
| +
|
| + cpi->twopass.kf_group_bits = MAX(cpi->twopass.kf_group_bits, 0);
|
| + } else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame) {
|
| + cpi->twopass.gf_group_bits += cpi->rc.this_frame_target -
|
| + cpi->rc.projected_frame_size;
|
| +
|
| + cpi->twopass.gf_group_bits = MAX(cpi->twopass.gf_group_bits, 0);
|
| + }
|
| #endif
|
| }
|
|
|