Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(448)

Unified Diff: runtime/vm/redundancy_elimination.cc

Issue 1679853002: VM: Move redundancy elimination phases into a separate file. (Closed) Base URL: git@github.com:dart-lang/sdk.git@master
Patch Set: fixed indentation Created 4 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « runtime/vm/redundancy_elimination.h ('k') | runtime/vm/vm_sources.gypi » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: runtime/vm/redundancy_elimination.cc
diff --git a/runtime/vm/redundancy_elimination.cc b/runtime/vm/redundancy_elimination.cc
new file mode 100644
index 0000000000000000000000000000000000000000..fd71008cb26ae13ef5a2fec31938ee4f8adda79c
--- /dev/null
+++ b/runtime/vm/redundancy_elimination.cc
@@ -0,0 +1,3471 @@
+// Copyright (c) 2016, the Dart project authors. Please see the AUTHORS file
+// for details. All rights reserved. Use of this source code is governed by a
+// BSD-style license that can be found in the LICENSE file.
+
+#include "vm/redundancy_elimination.h"
+
+#include "vm/bit_vector.h"
+#include "vm/flow_graph.h"
+#include "vm/hash_map.h"
+#include "vm/il_printer.h"
+#include "vm/intermediate_language.h"
+#include "vm/stack_frame.h"
+
+namespace dart {
+
+
+DEFINE_FLAG(bool, dead_store_elimination, true, "Eliminate dead stores");
+DEFINE_FLAG(bool, load_cse, true, "Use redundant load elimination.");
+DEFINE_FLAG(bool, trace_load_optimization, false,
+ "Print live sets for load optimization pass.");
+
+DECLARE_FLAG(bool, fields_may_be_reset);
+DECLARE_FLAG(bool, precompilation);
+DECLARE_FLAG(bool, trace_optimization);
+
+// Quick access to the current zone.
+#define Z (zone())
+
+
+class CSEInstructionMap : public ValueObject {
+ public:
+ // Right now CSE and LICM track a single effect: possible externalization of
+ // strings.
+ // Other effects like modifications of fields are tracked in a separate load
+ // forwarding pass via Alias structure.
+ COMPILE_ASSERT(EffectSet::kLastEffect == 1);
+
+ CSEInstructionMap() : independent_(), dependent_() { }
+ explicit CSEInstructionMap(const CSEInstructionMap& other)
+ : ValueObject(),
+ independent_(other.independent_),
+ dependent_(other.dependent_) {
+ }
+
+ void RemoveAffected(EffectSet effects) {
+ if (!effects.IsNone()) {
+ dependent_.Clear();
+ }
+ }
+
+ Instruction* Lookup(Instruction* other) const {
+ return GetMapFor(other)->Lookup(other);
+ }
+
+ void Insert(Instruction* instr) {
+ return GetMapFor(instr)->Insert(instr);
+ }
+
+ private:
+ typedef DirectChainedHashMap<PointerKeyValueTrait<Instruction> > Map;
+
+ Map* GetMapFor(Instruction* instr) {
+ return instr->Dependencies().IsNone() ? &independent_ : &dependent_;
+ }
+
+ const Map* GetMapFor(Instruction* instr) const {
+ return instr->Dependencies().IsNone() ? &independent_ : &dependent_;
+ }
+
+ // All computations that are not affected by any side-effect.
+ // Majority of computations are not affected by anything and will be in
+ // this map.
+ Map independent_;
+
+ // All computations that are affected by side effect.
+ Map dependent_;
+};
+
+
+// Place describes an abstract location (e.g. field) that IR can load
+// from or store to.
+//
+// Places are also used to describe wild-card locations also known as aliases,
+// that essentially represent sets of places that alias each other. Places A
+// and B are said to alias each other if store into A can affect load from B.
+//
+// We distinguish the following aliases:
+//
+// - for fields
+// - *.f, *.@offs - field inside some object;
+// - X.f, X.@offs - field inside an allocated object X;
+// - for indexed accesses
+// - *[*] - non-constant index inside some object;
+// - *[C] - constant index inside some object;
+// - X[*] - non-constant index inside an allocated object X;
+// - X[C] - constant index inside an allocated object X.
+//
+// Constant indexed places are divided into two subcategories:
+//
+// - Access to homogeneous array-like objects: Array, ImmutableArray,
+// OneByteString, TwoByteString. These objects can only be accessed
+// on element by element basis with all elements having the same size.
+// This means X[C] aliases X[K] if and only if C === K.
+// - TypedData accesses. TypedData allow to read one of the primitive
+// data types at the given byte offset. When TypedData is accessed through
+// index operator on a typed array or a typed array view it is guaranteed
+// that the byte offset is always aligned by the element size. We write
+// these accesses as X[C|S], where C is constant byte offset and S is size
+// of the data type. Obviously X[C|S] and X[K|U] alias if and only if either
+// C = RoundDown(K, S) or K = RoundDown(C, U).
+// Note that not all accesses to typed data are aligned: e.g. ByteData
+// allows unanaligned access through it's get*/set* methods.
+// Check in Place::SetIndex ensures that we never create a place X[C|S]
+// such that C is not aligned by S.
+//
+// Separating allocations from other objects improves precision of the
+// load forwarding pass because of the following two properties:
+//
+// - if X can be proven to have no aliases itself (i.e. there is no other SSA
+// variable that points to X) then no place inside X can be aliased with any
+// wildcard dependent place (*.f, *.@offs, *[*], *[C]);
+// - given allocations X and Y no place inside X can be aliased with any place
+// inside Y even if any of them or both escape.
+//
+// It important to realize that single place can belong to multiple aliases.
+// For example place X.f with aliased allocation X belongs both to X.f and *.f
+// aliases. Likewise X[C] with non-aliased allocation X belongs to X[C] and X[*]
+// aliases.
+//
+class Place : public ValueObject {
+ public:
+ enum Kind {
+ kNone,
+
+ // Field location. For instance fields is represented as a pair of a Field
+ // object and an instance (SSA definition) that is being accessed.
+ // For static fields instance is NULL.
+ kField,
+
+ // VMField location. Represented as a pair of an instance (SSA definition)
+ // being accessed and offset to the field.
+ kVMField,
+
+ // Indexed location with a non-constant index.
+ kIndexed,
+
+ // Indexed location with a constant index.
+ kConstantIndexed,
+ };
+
+ // Size of the element accessed by constant index. Size is only important
+ // for TypedData because those accesses can alias even when constant indexes
+ // are not the same: X[0|4] aliases X[0|2] and X[2|2].
+ enum ElementSize {
+ // If indexed access is not a TypedData access then element size is not
+ // important because there is only a single possible access size depending
+ // on the receiver - X[C] aliases X[K] if and only if C == K.
+ // This is the size set for Array, ImmutableArray, OneByteString and
+ // TwoByteString accesses.
+ kNoSize,
+
+ // 1 byte (Int8List, Uint8List, Uint8ClampedList).
+ kInt8,
+
+ // 2 bytes (Int16List, Uint16List).
+ kInt16,
+
+ // 4 bytes (Int32List, Uint32List, Float32List).
+ kInt32,
+
+ // 8 bytes (Int64List, Uint64List, Float64List).
+ kInt64,
+
+ // 16 bytes (Int32x4List, Float32x4List, Float64x2List).
+ kInt128,
+
+ kLargestElementSize = kInt128,
+ };
+
+ Place(const Place& other)
+ : ValueObject(),
+ flags_(other.flags_),
+ instance_(other.instance_),
+ raw_selector_(other.raw_selector_),
+ id_(other.id_) {
+ }
+
+ // Construct a place from instruction if instruction accesses any place.
+ // Otherwise constructs kNone place.
+ Place(Instruction* instr, bool* is_load, bool* is_store)
+ : flags_(0),
+ instance_(NULL),
+ raw_selector_(0),
+ id_(0) {
+ switch (instr->tag()) {
+ case Instruction::kLoadField: {
+ LoadFieldInstr* load_field = instr->AsLoadField();
+ set_representation(load_field->representation());
+ instance_ = load_field->instance()->definition()->OriginalDefinition();
+ if (load_field->field() != NULL) {
+ set_kind(kField);
+ field_ = load_field->field();
+ } else {
+ set_kind(kVMField);
+ offset_in_bytes_ = load_field->offset_in_bytes();
+ }
+ *is_load = true;
+ break;
+ }
+
+ case Instruction::kStoreInstanceField: {
+ StoreInstanceFieldInstr* store =
+ instr->AsStoreInstanceField();
+ set_representation(store->RequiredInputRepresentation(
+ StoreInstanceFieldInstr::kValuePos));
+ instance_ = store->instance()->definition()->OriginalDefinition();
+ if (!store->field().IsNull()) {
+ set_kind(kField);
+ field_ = &store->field();
+ } else {
+ set_kind(kVMField);
+ offset_in_bytes_ = store->offset_in_bytes();
+ }
+ *is_store = true;
+ break;
+ }
+
+ case Instruction::kLoadStaticField:
+ set_kind(kField);
+ set_representation(instr->AsLoadStaticField()->representation());
+ field_ = &instr->AsLoadStaticField()->StaticField();
+ *is_load = true;
+ break;
+
+ case Instruction::kStoreStaticField:
+ set_kind(kField);
+ set_representation(instr->AsStoreStaticField()->
+ RequiredInputRepresentation(StoreStaticFieldInstr::kValuePos));
+ field_ = &instr->AsStoreStaticField()->field();
+ *is_store = true;
+ break;
+
+ case Instruction::kLoadIndexed: {
+ LoadIndexedInstr* load_indexed = instr->AsLoadIndexed();
+ set_representation(load_indexed->representation());
+ instance_ = load_indexed->array()->definition()->OriginalDefinition();
+ SetIndex(load_indexed->index()->definition(),
+ load_indexed->index_scale(),
+ load_indexed->class_id());
+ *is_load = true;
+ break;
+ }
+
+ case Instruction::kStoreIndexed: {
+ StoreIndexedInstr* store_indexed = instr->AsStoreIndexed();
+ set_representation(store_indexed->
+ RequiredInputRepresentation(StoreIndexedInstr::kValuePos));
+ instance_ = store_indexed->array()->definition()->OriginalDefinition();
+ SetIndex(store_indexed->index()->definition(),
+ store_indexed->index_scale(),
+ store_indexed->class_id());
+ *is_store = true;
+ break;
+ }
+
+ default:
+ break;
+ }
+ }
+
+ // Create object representing *[*] alias.
+ static Place* CreateAnyInstanceAnyIndexAlias(Zone* zone,
+ intptr_t id) {
+ return Wrap(zone, Place(
+ EncodeFlags(kIndexed, kNoRepresentation, kNoSize),
+ NULL,
+ 0), id);
+ }
+
+ // Return least generic alias for this place. Given that aliases are
+ // essentially sets of places we define least generic alias as a smallest
+ // alias that contains this place.
+ //
+ // We obtain such alias by a simple transformation:
+ //
+ // - for places that depend on an instance X.f, X.@offs, X[i], X[C]
+ // we drop X if X is not an allocation because in this case X does not
+ // posess an identity obtaining aliases *.f, *.@offs, *[i] and *[C]
+ // respectively;
+ // - for non-constant indexed places X[i] we drop information about the
+ // index obtaining alias X[*].
+ // - we drop information about representation, but keep element size
+ // if any.
+ //
+ Place ToAlias() const {
+ return Place(
+ RepresentationBits::update(kNoRepresentation, flags_),
+ (DependsOnInstance() && IsAllocation(instance())) ? instance() : NULL,
+ (kind() == kIndexed) ? 0 : raw_selector_);
+ }
+
+ bool DependsOnInstance() const {
+ switch (kind()) {
+ case kField:
+ case kVMField:
+ case kIndexed:
+ case kConstantIndexed:
+ return true;
+
+ case kNone:
+ return false;
+ }
+
+ UNREACHABLE();
+ return false;
+ }
+
+ // Given instance dependent alias X.f, X.@offs, X[C], X[*] return
+ // wild-card dependent alias *.f, *.@offs, *[C] or *[*] respectively.
+ Place CopyWithoutInstance() const {
+ ASSERT(DependsOnInstance());
+ return Place(flags_, NULL, raw_selector_);
+ }
+
+ // Given alias X[C] or *[C] return X[*] and *[*] respectively.
+ Place CopyWithoutIndex() const {
+ ASSERT(kind() == kConstantIndexed);
+ return Place(EncodeFlags(kIndexed, kNoRepresentation, kNoSize),
+ instance_,
+ 0);
+ }
+
+ // Given alias X[ByteOffs|S] and a larger element size S', return
+ // alias X[RoundDown(ByteOffs, S')|S'] - this is the byte offset of a larger
+ // typed array element that contains this typed array element.
+ // In other words this method computes the only possible place with the given
+ // size that can alias this place (due to alignment restrictions).
+ // For example for X[9|kInt8] and target size kInt32 we would return
+ // X[8|kInt32].
+ Place ToLargerElement(ElementSize to) const {
+ ASSERT(kind() == kConstantIndexed);
+ ASSERT(element_size() != kNoSize);
+ ASSERT(element_size() < to);
+ return Place(ElementSizeBits::update(to, flags_),
+ instance_,
+ RoundByteOffset(to, index_constant_));
+ }
+
+
+ intptr_t id() const { return id_; }
+
+ Kind kind() const { return KindBits::decode(flags_); }
+
+ Representation representation() const {
+ return RepresentationBits::decode(flags_);
+ }
+
+ Definition* instance() const {
+ ASSERT(DependsOnInstance());
+ return instance_;
+ }
+
+ void set_instance(Definition* def) {
+ ASSERT(DependsOnInstance());
+ instance_ = def->OriginalDefinition();
+ }
+
+ const Field& field() const {
+ ASSERT(kind() == kField);
+ return *field_;
+ }
+
+ intptr_t offset_in_bytes() const {
+ ASSERT(kind() == kVMField);
+ return offset_in_bytes_;
+ }
+
+ Definition* index() const {
+ ASSERT(kind() == kIndexed);
+ return index_;
+ }
+
+ ElementSize element_size() const {
+ return ElementSizeBits::decode(flags_);
+ }
+
+ intptr_t index_constant() const {
+ ASSERT(kind() == kConstantIndexed);
+ return index_constant_;
+ }
+
+ static const char* DefinitionName(Definition* def) {
+ if (def == NULL) {
+ return "*";
+ } else {
+ return Thread::Current()->zone()->PrintToString(
+ "v%" Pd, def->ssa_temp_index());
+ }
+ }
+
+ const char* ToCString() const {
+ switch (kind()) {
+ case kNone:
+ return "<none>";
+
+ case kField: {
+ const char* field_name = String::Handle(field().name()).ToCString();
+ if (field().is_static()) {
+ return Thread::Current()->zone()->PrintToString(
+ "<%s>", field_name);
+ } else {
+ return Thread::Current()->zone()->PrintToString(
+ "<%s.%s>", DefinitionName(instance()), field_name);
+ }
+ }
+
+ case kVMField:
+ return Thread::Current()->zone()->PrintToString(
+ "<%s.@%" Pd ">",
+ DefinitionName(instance()),
+ offset_in_bytes());
+
+ case kIndexed:
+ return Thread::Current()->zone()->PrintToString(
+ "<%s[%s]>",
+ DefinitionName(instance()),
+ DefinitionName(index()));
+
+ case kConstantIndexed:
+ if (element_size() == kNoSize) {
+ return Thread::Current()->zone()->PrintToString(
+ "<%s[%" Pd "]>",
+ DefinitionName(instance()),
+ index_constant());
+ } else {
+ return Thread::Current()->zone()->PrintToString(
+ "<%s[%" Pd "|%" Pd "]>",
+ DefinitionName(instance()),
+ index_constant(),
+ ElementSizeMultiplier(element_size()));
+ }
+ }
+ UNREACHABLE();
+ return "<?>";
+ }
+
+ // Fields that are considered immutable by load optimization.
+ // Handle static finals as non-final with precompilation because
+ // they may be reset to uninitialized after compilation.
+ bool IsImmutableField() const {
+ return (kind() == kField)
+ && field().is_final()
+ && (!field().is_static() || !FLAG_fields_may_be_reset);
+ }
+
+ intptr_t Hashcode() const {
+ return (flags_ * 63 + reinterpret_cast<intptr_t>(instance_)) * 31 +
+ FieldHashcode();
+ }
+
+ bool Equals(const Place* other) const {
+ return (flags_ == other->flags_) &&
+ (instance_ == other->instance_) &&
+ SameField(other);
+ }
+
+ // Create a zone allocated copy of this place and assign given id to it.
+ static Place* Wrap(Zone* zone, const Place& place, intptr_t id);
+
+ static bool IsAllocation(Definition* defn) {
+ return (defn != NULL) &&
+ (defn->IsAllocateObject() ||
+ defn->IsCreateArray() ||
+ defn->IsAllocateUninitializedContext() ||
+ (defn->IsStaticCall() &&
+ defn->AsStaticCall()->IsRecognizedFactory()));
+ }
+
+ private:
+ Place(uword flags, Definition* instance, intptr_t selector)
+ : flags_(flags),
+ instance_(instance),
+ raw_selector_(selector),
+ id_(0) {
+ }
+
+ bool SameField(const Place* other) const {
+ return (kind() == kField) ? (field().raw() == other->field().raw())
+ : (offset_in_bytes_ == other->offset_in_bytes_);
+ }
+
+ intptr_t FieldHashcode() const {
+ return (kind() == kField) ? reinterpret_cast<intptr_t>(field().raw())
+ : offset_in_bytes_;
+ }
+
+ void set_representation(Representation rep) {
+ flags_ = RepresentationBits::update(rep, flags_);
+ }
+
+ void set_kind(Kind kind) {
+ flags_ = KindBits::update(kind, flags_);
+ }
+
+ void set_element_size(ElementSize scale) {
+ flags_ = ElementSizeBits::update(scale, flags_);
+ }
+
+ void SetIndex(Definition* index, intptr_t scale, intptr_t class_id) {
+ ConstantInstr* index_constant = index->AsConstant();
+ if ((index_constant != NULL) && index_constant->value().IsSmi()) {
+ const intptr_t index_value = Smi::Cast(index_constant->value()).Value();
+ const ElementSize size = ElementSizeFor(class_id);
+ const bool is_typed_data = (size != kNoSize);
+
+ // If we are writing into the typed data scale the index to
+ // get byte offset. Otherwise ignore the scale.
+ if (!is_typed_data) {
+ scale = 1;
+ }
+
+ // Guard against potential multiplication overflow and negative indices.
+ if ((0 <= index_value) && (index_value < (kMaxInt32 / scale))) {
+ const intptr_t scaled_index = index_value * scale;
+
+ // Guard against unaligned byte offsets.
+ if (!is_typed_data ||
+ Utils::IsAligned(scaled_index, ElementSizeMultiplier(size))) {
+ set_kind(kConstantIndexed);
+ set_element_size(size);
+ index_constant_ = scaled_index;
+ return;
+ }
+ }
+
+ // Fallthrough: create generic _[*] place.
+ }
+
+ set_kind(kIndexed);
+ index_ = index;
+ }
+
+ static uword EncodeFlags(Kind kind, Representation rep, ElementSize scale) {
+ ASSERT((kind == kConstantIndexed) || (scale == kNoSize));
+ return KindBits::encode(kind) |
+ RepresentationBits::encode(rep) |
+ ElementSizeBits::encode(scale);
+ }
+
+ static ElementSize ElementSizeFor(intptr_t class_id) {
+ switch (class_id) {
+ case kArrayCid:
+ case kImmutableArrayCid:
+ case kOneByteStringCid:
+ case kTwoByteStringCid:
+ // Object arrays and strings do not allow accessing them through
+ // different types. No need to attach scale.
+ return kNoSize;
+
+ case kTypedDataInt8ArrayCid:
+ case kTypedDataUint8ArrayCid:
+ case kTypedDataUint8ClampedArrayCid:
+ case kExternalTypedDataUint8ArrayCid:
+ case kExternalTypedDataUint8ClampedArrayCid:
+ return kInt8;
+
+ case kTypedDataInt16ArrayCid:
+ case kTypedDataUint16ArrayCid:
+ return kInt16;
+
+ case kTypedDataInt32ArrayCid:
+ case kTypedDataUint32ArrayCid:
+ case kTypedDataFloat32ArrayCid:
+ return kInt32;
+
+ case kTypedDataInt64ArrayCid:
+ case kTypedDataUint64ArrayCid:
+ case kTypedDataFloat64ArrayCid:
+ return kInt64;
+
+ case kTypedDataInt32x4ArrayCid:
+ case kTypedDataFloat32x4ArrayCid:
+ case kTypedDataFloat64x2ArrayCid:
+ return kInt128;
+
+ default:
+ UNREACHABLE();
+ return kNoSize;
+ }
+ }
+
+ static intptr_t ElementSizeMultiplier(ElementSize size) {
+ return 1 << (static_cast<intptr_t>(size) - static_cast<intptr_t>(kInt8));
+ }
+
+ static intptr_t RoundByteOffset(ElementSize size, intptr_t offset) {
+ return offset & ~(ElementSizeMultiplier(size) - 1);
+ }
+
+ class KindBits : public BitField<uword, Kind, 0, 3> {};
+ class RepresentationBits :
+ public BitField<uword, Representation, KindBits::kNextBit, 11> {};
+ class ElementSizeBits :
+ public BitField<uword, ElementSize, RepresentationBits::kNextBit, 3> {};
+
+ uword flags_;
+ Definition* instance_;
+ union {
+ intptr_t raw_selector_;
+ const Field* field_;
+ intptr_t offset_in_bytes_;
+ intptr_t index_constant_;
+ Definition* index_;
+ };
+
+ intptr_t id_;
+};
+
+
+class ZonePlace : public ZoneAllocated {
+ public:
+ explicit ZonePlace(const Place& place) : place_(place) { }
+
+ Place* place() { return &place_; }
+
+ private:
+ Place place_;
+};
+
+
+Place* Place::Wrap(Zone* zone, const Place& place, intptr_t id) {
+ Place* wrapped = (new(zone) ZonePlace(place))->place();
+ wrapped->id_ = id;
+ return wrapped;
+}
+
+
+// Correspondence between places connected through outgoing phi moves on the
+// edge that targets join.
+class PhiPlaceMoves : public ZoneAllocated {
+ public:
+ // Record a move from the place with id |from| to the place with id |to| at
+ // the given block.
+ void CreateOutgoingMove(Zone* zone,
+ BlockEntryInstr* block, intptr_t from, intptr_t to) {
+ const intptr_t block_num = block->preorder_number();
+ while (moves_.length() <= block_num) {
+ moves_.Add(NULL);
+ }
+
+ if (moves_[block_num] == NULL) {
+ moves_[block_num] = new(zone) ZoneGrowableArray<Move>(5);
+ }
+
+ moves_[block_num]->Add(Move(from, to));
+ }
+
+ class Move {
+ public:
+ Move(intptr_t from, intptr_t to) : from_(from), to_(to) { }
+
+ intptr_t from() const { return from_; }
+ intptr_t to() const { return to_; }
+
+ private:
+ intptr_t from_;
+ intptr_t to_;
+ };
+
+ typedef const ZoneGrowableArray<Move>* MovesList;
+
+ MovesList GetOutgoingMoves(BlockEntryInstr* block) const {
+ const intptr_t block_num = block->preorder_number();
+ return (block_num < moves_.length()) ?
+ moves_[block_num] : NULL;
+ }
+
+ private:
+ GrowableArray<ZoneGrowableArray<Move>* > moves_;
+};
+
+
+// A map from aliases to a set of places sharing the alias. Additionally
+// carries a set of places that can be aliased by side-effects, essentially
+// those that are affected by calls.
+class AliasedSet : public ZoneAllocated {
+ public:
+ AliasedSet(Zone* zone,
+ DirectChainedHashMap<PointerKeyValueTrait<Place> >* places_map,
+ ZoneGrowableArray<Place*>* places,
+ PhiPlaceMoves* phi_moves)
+ : zone_(zone),
+ places_map_(places_map),
+ places_(*places),
+ phi_moves_(phi_moves),
+ aliases_(5),
+ aliases_map_(),
+ typed_data_access_sizes_(),
+ representatives_(),
+ killed_(),
+ aliased_by_effects_(new(zone) BitVector(zone, places->length())) {
+ InsertAlias(Place::CreateAnyInstanceAnyIndexAlias(zone_,
+ kAnyInstanceAnyIndexAlias));
+ for (intptr_t i = 0; i < places_.length(); i++) {
+ AddRepresentative(places_[i]);
+ }
+ ComputeKillSets();
+ }
+
+ intptr_t LookupAliasId(const Place& alias) {
+ const Place* result = aliases_map_.Lookup(&alias);
+ return (result != NULL) ? result->id() : static_cast<intptr_t>(kNoAlias);
+ }
+
+ BitVector* GetKilledSet(intptr_t alias) {
+ return (alias < killed_.length()) ? killed_[alias] : NULL;
+ }
+
+ intptr_t max_place_id() const { return places().length(); }
+ bool IsEmpty() const { return max_place_id() == 0; }
+
+ BitVector* aliased_by_effects() const { return aliased_by_effects_; }
+
+ const ZoneGrowableArray<Place*>& places() const {
+ return places_;
+ }
+
+ Place* LookupCanonical(Place* place) const {
+ return places_map_->Lookup(place);
+ }
+
+ void PrintSet(BitVector* set) {
+ bool comma = false;
+ for (BitVector::Iterator it(set);
+ !it.Done();
+ it.Advance()) {
+ if (comma) {
+ THR_Print(", ");
+ }
+ THR_Print("%s", places_[it.Current()]->ToCString());
+ comma = true;
+ }
+ }
+
+ const PhiPlaceMoves* phi_moves() const { return phi_moves_; }
+
+ void RollbackAliasedIdentites() {
+ for (intptr_t i = 0; i < identity_rollback_.length(); ++i) {
+ identity_rollback_[i]->SetIdentity(AliasIdentity::Unknown());
+ }
+ }
+
+ // Returns false if the result of an allocation instruction can't be aliased
+ // by another SSA variable and true otherwise.
+ bool CanBeAliased(Definition* alloc) {
+ if (!Place::IsAllocation(alloc)) {
+ return true;
+ }
+
+ if (alloc->Identity().IsUnknown()) {
+ ComputeAliasing(alloc);
+ }
+
+ return !alloc->Identity().IsNotAliased();
+ }
+
+ enum {
+ kNoAlias = 0
+ };
+
+ private:
+ enum {
+ // Artificial alias that is used to collect all representatives of the
+ // *[C], X[C] aliases for arbitrary C.
+ kAnyConstantIndexedAlias = 1,
+
+ // Artificial alias that is used to collect all representatives of
+ // *[C] alias for arbitrary C.
+ kUnknownInstanceConstantIndexedAlias = 2,
+
+ // Artificial alias that is used to collect all representatives of
+ // X[*] alias for all X.
+ kAnyAllocationIndexedAlias = 3,
+
+ // *[*] alias.
+ kAnyInstanceAnyIndexAlias = 4
+ };
+
+ // Compute least generic alias for the place and assign alias id to it.
+ void AddRepresentative(Place* place) {
+ if (!place->IsImmutableField()) {
+ const Place* alias = CanonicalizeAlias(place->ToAlias());
+ EnsureSet(&representatives_, alias->id())->Add(place->id());
+
+ // Update cumulative representative sets that are used during
+ // killed sets computation.
+ if (alias->kind() == Place::kConstantIndexed) {
+ if (CanBeAliased(alias->instance())) {
+ EnsureSet(&representatives_, kAnyConstantIndexedAlias)->
+ Add(place->id());
+ }
+
+ if (alias->instance() == NULL) {
+ EnsureSet(&representatives_, kUnknownInstanceConstantIndexedAlias)->
+ Add(place->id());
+ }
+
+ // Collect all element sizes used to access TypedData arrays in
+ // the function. This is used to skip sizes without representatives
+ // when computing kill sets.
+ if (alias->element_size() != Place::kNoSize) {
+ typed_data_access_sizes_.Add(alias->element_size());
+ }
+ } else if ((alias->kind() == Place::kIndexed) &&
+ CanBeAliased(place->instance())) {
+ EnsureSet(&representatives_, kAnyAllocationIndexedAlias)->
+ Add(place->id());
+ }
+
+ if (!IsIndependentFromEffects(place)) {
+ aliased_by_effects_->Add(place->id());
+ }
+ }
+ }
+
+ void ComputeKillSets() {
+ for (intptr_t i = 0; i < aliases_.length(); ++i) {
+ const Place* alias = aliases_[i];
+ // Add all representatives to the kill set.
+ AddAllRepresentatives(alias->id(), alias->id());
+ ComputeKillSet(alias);
+ }
+
+ if (FLAG_trace_load_optimization) {
+ THR_Print("Aliases KILL sets:\n");
+ for (intptr_t i = 0; i < aliases_.length(); ++i) {
+ const Place* alias = aliases_[i];
+ BitVector* kill = GetKilledSet(alias->id());
+
+ THR_Print("%s: ", alias->ToCString());
+ if (kill != NULL) {
+ PrintSet(kill);
+ }
+ THR_Print("\n");
+ }
+ }
+ }
+
+ void InsertAlias(const Place* alias) {
+ aliases_map_.Insert(alias);
+ aliases_.Add(alias);
+ }
+
+ const Place* CanonicalizeAlias(const Place& alias) {
+ const Place* canonical = aliases_map_.Lookup(&alias);
+ if (canonical == NULL) {
+ canonical = Place::Wrap(zone_,
+ alias,
+ kAnyInstanceAnyIndexAlias + aliases_.length());
+ InsertAlias(canonical);
+ }
+ ASSERT(aliases_map_.Lookup(&alias) == canonical);
+ return canonical;
+ }
+
+ BitVector* GetRepresentativesSet(intptr_t alias) {
+ return (alias < representatives_.length()) ? representatives_[alias] : NULL;
+ }
+
+ BitVector* EnsureSet(GrowableArray<BitVector*>* sets,
+ intptr_t alias) {
+ while (sets->length() <= alias) {
+ sets->Add(NULL);
+ }
+
+ BitVector* set = (*sets)[alias];
+ if (set == NULL) {
+ (*sets)[alias] = set = new(zone_) BitVector(zone_, max_place_id());
+ }
+ return set;
+ }
+
+ void AddAllRepresentatives(const Place* to, intptr_t from) {
+ AddAllRepresentatives(to->id(), from);
+ }
+
+ void AddAllRepresentatives(intptr_t to, intptr_t from) {
+ BitVector* from_set = GetRepresentativesSet(from);
+ if (from_set != NULL) {
+ EnsureSet(&killed_, to)->AddAll(from_set);
+ }
+ }
+
+ void CrossAlias(const Place* to, const Place& from) {
+ const intptr_t from_id = LookupAliasId(from);
+ if (from_id == kNoAlias) {
+ return;
+ }
+ CrossAlias(to, from_id);
+ }
+
+ void CrossAlias(const Place* to, intptr_t from) {
+ AddAllRepresentatives(to->id(), from);
+ AddAllRepresentatives(from, to->id());
+ }
+
+ // When computing kill sets we let less generic alias insert its
+ // representatives into more generic alias'es kill set. For example
+ // when visiting alias X[*] instead of searching for all aliases X[C]
+ // and inserting their representatives into kill set for X[*] we update
+ // kill set for X[*] each time we visit new X[C] for some C.
+ // There is an exception however: if both aliases are parametric like *[C]
+ // and X[*] which cross alias when X is an aliased allocation then we use
+ // artificial aliases that contain all possible representatives for the given
+ // alias for any value of the parameter to compute resulting kill set.
+ void ComputeKillSet(const Place* alias) {
+ switch (alias->kind()) {
+ case Place::kIndexed: // Either *[*] or X[*] alias.
+ if (alias->instance() == NULL) {
+ // *[*] aliases with X[*], X[C], *[C].
+ AddAllRepresentatives(alias, kAnyConstantIndexedAlias);
+ AddAllRepresentatives(alias, kAnyAllocationIndexedAlias);
+ } else if (CanBeAliased(alias->instance())) {
+ // X[*] aliases with X[C].
+ // If X can be aliased then X[*] also aliases with *[C], *[*].
+ CrossAlias(alias, kAnyInstanceAnyIndexAlias);
+ AddAllRepresentatives(alias, kUnknownInstanceConstantIndexedAlias);
+ }
+ break;
+
+ case Place::kConstantIndexed: // Either X[C] or *[C] alias.
+ if (alias->element_size() != Place::kNoSize) {
+ const bool has_aliased_instance =
+ (alias->instance() != NULL) && CanBeAliased(alias->instance());
+
+ // If this is a TypedData access then X[C|S] aliases larger elements
+ // covering this one X[RoundDown(C, S')|S'] for all S' > S and
+ // all smaller elements being covered by this one X[C'|S'] for
+ // some S' < S and all C' such that C = RoundDown(C', S).
+ // In the loop below it's enough to only propagate aliasing to
+ // larger aliases because propagation is symmetric: smaller aliases
+ // (if there are any) would update kill set for this alias when they
+ // are visited.
+ for (intptr_t i = static_cast<intptr_t>(alias->element_size()) + 1;
+ i <= Place::kLargestElementSize;
+ i++) {
+ // Skip element sizes that a guaranteed to have no representatives.
+ if (!typed_data_access_sizes_.Contains(alias->element_size())) {
+ continue;
+ }
+
+ // X[C|S] aliases with X[RoundDown(C, S')|S'] and likewise
+ // *[C|S] aliases with *[RoundDown(C, S')|S'].
+ const Place larger_alias =
+ alias->ToLargerElement(static_cast<Place::ElementSize>(i));
+ CrossAlias(alias, larger_alias);
+ if (has_aliased_instance) {
+ // If X is an aliased instance then X[C|S] aliases
+ // with *[RoundDown(C, S')|S'].
+ CrossAlias(alias, larger_alias.CopyWithoutInstance());
+ }
+ }
+ }
+
+ if (alias->instance() == NULL) {
+ // *[C] aliases with X[C], X[*], *[*].
+ AddAllRepresentatives(alias, kAnyAllocationIndexedAlias);
+ CrossAlias(alias, kAnyInstanceAnyIndexAlias);
+ } else {
+ // X[C] aliases with X[*].
+ // If X can be aliased then X[C] also aliases with *[C], *[*].
+ CrossAlias(alias, alias->CopyWithoutIndex());
+ if (CanBeAliased(alias->instance())) {
+ CrossAlias(alias, alias->CopyWithoutInstance());
+ CrossAlias(alias, kAnyInstanceAnyIndexAlias);
+ }
+ }
+ break;
+
+ case Place::kField:
+ case Place::kVMField:
+ if (CanBeAliased(alias->instance())) {
+ // X.f or X.@offs alias with *.f and *.@offs respectively.
+ CrossAlias(alias, alias->CopyWithoutInstance());
+ }
+ break;
+
+ case Place::kNone:
+ UNREACHABLE();
+ }
+ }
+
+ // Returns true if the given load is unaffected by external side-effects.
+ // This essentially means that no stores to the same location can
+ // occur in other functions.
+ bool IsIndependentFromEffects(Place* place) {
+ if (place->IsImmutableField()) {
+ // Note that we can't use LoadField's is_immutable attribute here because
+ // some VM-fields (those that have no corresponding Field object and
+ // accessed through offset alone) can share offset but have different
+ // immutability properties.
+ // One example is the length property of growable and fixed size list. If
+ // loads of these two properties occur in the same function for the same
+ // receiver then they will get the same expression number. However
+ // immutability of the length of fixed size list does not mean that
+ // growable list also has immutable property. Thus we will make a
+ // conservative assumption for the VM-properties.
+ // TODO(vegorov): disambiguate immutable and non-immutable VM-fields with
+ // the same offset e.g. through recognized kind.
+ return true;
+ }
+
+ return ((place->kind() == Place::kField) ||
+ (place->kind() == Place::kVMField)) &&
+ !CanBeAliased(place->instance());
+ }
+
+ // Returns true if there are direct loads from the given place.
+ bool HasLoadsFromPlace(Definition* defn, const Place* place) {
+ ASSERT((place->kind() == Place::kField) ||
+ (place->kind() == Place::kVMField));
+
+ for (Value* use = defn->input_use_list();
+ use != NULL;
+ use = use->next_use()) {
+ Instruction* instr = use->instruction();
+ if ((instr->IsRedefinition() ||
+ instr->IsAssertAssignable()) &&
+ HasLoadsFromPlace(instr->AsDefinition(), place)) {
+ return true;
+ }
+ bool is_load = false, is_store;
+ Place load_place(instr, &is_load, &is_store);
+
+ if (is_load && load_place.Equals(place)) {
+ return true;
+ }
+ }
+
+ return false;
+ }
+
+ // Check if any use of the definition can create an alias.
+ // Can add more objects into aliasing_worklist_.
+ bool AnyUseCreatesAlias(Definition* defn) {
+ for (Value* use = defn->input_use_list();
+ use != NULL;
+ use = use->next_use()) {
+ Instruction* instr = use->instruction();
+ if (instr->IsPushArgument() ||
+ (instr->IsStoreIndexed()
+ && (use->use_index() == StoreIndexedInstr::kValuePos)) ||
+ instr->IsStoreStaticField() ||
+ instr->IsPhi()) {
+ return true;
+ } else if ((instr->IsAssertAssignable() || instr->IsRedefinition()) &&
+ AnyUseCreatesAlias(instr->AsDefinition())) {
+ return true;
+ } else if ((instr->IsStoreInstanceField()
+ && (use->use_index() != StoreInstanceFieldInstr::kInstancePos))) {
+ ASSERT(use->use_index() == StoreInstanceFieldInstr::kValuePos);
+ // If we store this value into an object that is not aliased itself
+ // and we never load again then the store does not create an alias.
+ StoreInstanceFieldInstr* store = instr->AsStoreInstanceField();
+ Definition* instance =
+ store->instance()->definition()->OriginalDefinition();
+ if (Place::IsAllocation(instance) &&
+ !instance->Identity().IsAliased()) {
+ bool is_load, is_store;
+ Place store_place(instr, &is_load, &is_store);
+
+ if (!HasLoadsFromPlace(instance, &store_place)) {
+ // No loads found that match this store. If it is yet unknown if
+ // the object is not aliased then optimistically assume this but
+ // add it to the worklist to check its uses transitively.
+ if (instance->Identity().IsUnknown()) {
+ instance->SetIdentity(AliasIdentity::NotAliased());
+ aliasing_worklist_.Add(instance);
+ }
+ continue;
+ }
+ }
+ return true;
+ }
+ }
+ return false;
+ }
+
+ // Mark any value stored into the given object as potentially aliased.
+ void MarkStoredValuesEscaping(Definition* defn) {
+ // Find all stores into this object.
+ for (Value* use = defn->input_use_list();
+ use != NULL;
+ use = use->next_use()) {
+ if (use->instruction()->IsRedefinition() ||
+ use->instruction()->IsAssertAssignable()) {
+ MarkStoredValuesEscaping(use->instruction()->AsDefinition());
+ continue;
+ }
+ if ((use->use_index() == StoreInstanceFieldInstr::kInstancePos) &&
+ use->instruction()->IsStoreInstanceField()) {
+ StoreInstanceFieldInstr* store =
+ use->instruction()->AsStoreInstanceField();
+ Definition* value = store->value()->definition()->OriginalDefinition();
+ if (value->Identity().IsNotAliased()) {
+ value->SetIdentity(AliasIdentity::Aliased());
+ identity_rollback_.Add(value);
+
+ // Add to worklist to propagate the mark transitively.
+ aliasing_worklist_.Add(value);
+ }
+ }
+ }
+ }
+
+ // Determine if the given definition can't be aliased.
+ void ComputeAliasing(Definition* alloc) {
+ ASSERT(Place::IsAllocation(alloc));
+ ASSERT(alloc->Identity().IsUnknown());
+ ASSERT(aliasing_worklist_.is_empty());
+
+ alloc->SetIdentity(AliasIdentity::NotAliased());
+ aliasing_worklist_.Add(alloc);
+
+ while (!aliasing_worklist_.is_empty()) {
+ Definition* defn = aliasing_worklist_.RemoveLast();
+ ASSERT(Place::IsAllocation(defn));
+ // If the definition in the worklist was optimistically marked as
+ // not-aliased check that optimistic assumption still holds: check if
+ // any of its uses can create an alias.
+ if (!defn->Identity().IsAliased() && AnyUseCreatesAlias(defn)) {
+ defn->SetIdentity(AliasIdentity::Aliased());
+ identity_rollback_.Add(defn);
+ }
+
+ // If the allocation site is marked as aliased conservatively mark
+ // any values stored into the object aliased too.
+ if (defn->Identity().IsAliased()) {
+ MarkStoredValuesEscaping(defn);
+ }
+ }
+ }
+
+ Zone* zone_;
+
+ DirectChainedHashMap<PointerKeyValueTrait<Place> >* places_map_;
+
+ const ZoneGrowableArray<Place*>& places_;
+
+ const PhiPlaceMoves* phi_moves_;
+
+ // A list of all seen aliases and a map that allows looking up canonical
+ // alias object.
+ GrowableArray<const Place*> aliases_;
+ DirectChainedHashMap<PointerKeyValueTrait<const Place> > aliases_map_;
+
+ SmallSet<Place::ElementSize> typed_data_access_sizes_;
+
+ // Maps alias id to set of ids of places representing the alias.
+ // Place represents an alias if this alias is least generic alias for
+ // the place.
+ // (see ToAlias for the definition of least generic alias).
+ GrowableArray<BitVector*> representatives_;
+
+ // Maps alias id to set of ids of places aliased.
+ GrowableArray<BitVector*> killed_;
+
+ // Set of ids of places that can be affected by side-effects other than
+ // explicit stores (i.e. through calls).
+ BitVector* aliased_by_effects_;
+
+ // Worklist used during alias analysis.
+ GrowableArray<Definition*> aliasing_worklist_;
+
+ // List of definitions that had their identity set to Aliased. At the end
+ // of load optimization their identity will be rolled back to Unknown to
+ // avoid treating them as Aliased at later stages without checking first
+ // as optimizations can potentially eliminate instructions leading to
+ // aliasing.
+ GrowableArray<Definition*> identity_rollback_;
+};
+
+
+static Definition* GetStoredValue(Instruction* instr) {
+ if (instr->IsStoreIndexed()) {
+ return instr->AsStoreIndexed()->value()->definition();
+ }
+
+ StoreInstanceFieldInstr* store_instance_field = instr->AsStoreInstanceField();
+ if (store_instance_field != NULL) {
+ return store_instance_field->value()->definition();
+ }
+
+ StoreStaticFieldInstr* store_static_field = instr->AsStoreStaticField();
+ if (store_static_field != NULL) {
+ return store_static_field->value()->definition();
+ }
+
+ UNREACHABLE(); // Should only be called for supported store instructions.
+ return NULL;
+}
+
+
+static bool IsPhiDependentPlace(Place* place) {
+ return ((place->kind() == Place::kField) ||
+ (place->kind() == Place::kVMField)) &&
+ (place->instance() != NULL) &&
+ place->instance()->IsPhi();
+}
+
+
+// For each place that depends on a phi ensure that equivalent places
+// corresponding to phi input are numbered and record outgoing phi moves
+// for each block which establish correspondence between phi dependent place
+// and phi input's place that is flowing in.
+static PhiPlaceMoves* ComputePhiMoves(
+ DirectChainedHashMap<PointerKeyValueTrait<Place> >* map,
+ ZoneGrowableArray<Place*>* places) {
+ Thread* thread = Thread::Current();
+ Zone* zone = thread->zone();
+ PhiPlaceMoves* phi_moves = new(zone) PhiPlaceMoves();
+
+ for (intptr_t i = 0; i < places->length(); i++) {
+ Place* place = (*places)[i];
+
+ if (IsPhiDependentPlace(place)) {
+ PhiInstr* phi = place->instance()->AsPhi();
+ BlockEntryInstr* block = phi->GetBlock();
+
+ if (FLAG_trace_optimization) {
+ THR_Print("phi dependent place %s\n", place->ToCString());
+ }
+
+ Place input_place(*place);
+ for (intptr_t j = 0; j < phi->InputCount(); j++) {
+ input_place.set_instance(phi->InputAt(j)->definition());
+
+ Place* result = map->Lookup(&input_place);
+ if (result == NULL) {
+ result = Place::Wrap(zone, input_place, places->length());
+ map->Insert(result);
+ places->Add(result);
+ if (FLAG_trace_optimization) {
+ THR_Print(" adding place %s as %" Pd "\n",
+ result->ToCString(),
+ result->id());
+ }
+ }
+ phi_moves->CreateOutgoingMove(zone,
+ block->PredecessorAt(j),
+ result->id(),
+ place->id());
+ }
+ }
+ }
+
+ return phi_moves;
+}
+
+
+enum CSEMode {
+ kOptimizeLoads,
+ kOptimizeStores
+};
+
+
+static AliasedSet* NumberPlaces(
+ FlowGraph* graph,
+ DirectChainedHashMap<PointerKeyValueTrait<Place> >* map,
+ CSEMode mode) {
+ // Loads representing different expression ids will be collected and
+ // used to build per offset kill sets.
+ Zone* zone = graph->zone();
+ ZoneGrowableArray<Place*>* places =
+ new(zone) ZoneGrowableArray<Place*>(10);
+
+ bool has_loads = false;
+ bool has_stores = false;
+ for (BlockIterator it = graph->reverse_postorder_iterator();
+ !it.Done();
+ it.Advance()) {
+ BlockEntryInstr* block = it.Current();
+
+ for (ForwardInstructionIterator instr_it(block);
+ !instr_it.Done();
+ instr_it.Advance()) {
+ Instruction* instr = instr_it.Current();
+ Place place(instr, &has_loads, &has_stores);
+ if (place.kind() == Place::kNone) {
+ continue;
+ }
+
+ Place* result = map->Lookup(&place);
+ if (result == NULL) {
+ result = Place::Wrap(zone, place, places->length());
+ map->Insert(result);
+ places->Add(result);
+
+ if (FLAG_trace_optimization) {
+ THR_Print("numbering %s as %" Pd "\n",
+ result->ToCString(),
+ result->id());
+ }
+ }
+
+ instr->set_place_id(result->id());
+ }
+ }
+
+ if ((mode == kOptimizeLoads) && !has_loads) {
+ return NULL;
+ }
+ if ((mode == kOptimizeStores) && !has_stores) {
+ return NULL;
+ }
+
+ PhiPlaceMoves* phi_moves = ComputePhiMoves(map, places);
+
+ // Build aliasing sets mapping aliases to loads.
+ return new(zone) AliasedSet(zone, map, places, phi_moves);
+}
+
+
+// Load instructions handled by load elimination.
+static bool IsLoadEliminationCandidate(Instruction* instr) {
+ return instr->IsLoadField()
+ || instr->IsLoadIndexed()
+ || instr->IsLoadStaticField();
+}
+
+
+static bool IsLoopInvariantLoad(ZoneGrowableArray<BitVector*>* sets,
+ intptr_t loop_header_index,
+ Instruction* instr) {
+ return IsLoadEliminationCandidate(instr) &&
+ (sets != NULL) &&
+ instr->HasPlaceId() &&
+ ((*sets)[loop_header_index] != NULL) &&
+ (*sets)[loop_header_index]->Contains(instr->place_id());
+}
+
+
+LICM::LICM(FlowGraph* flow_graph) : flow_graph_(flow_graph) {
+ ASSERT(flow_graph->is_licm_allowed());
+}
+
+
+void LICM::Hoist(ForwardInstructionIterator* it,
+ BlockEntryInstr* pre_header,
+ Instruction* current) {
+ if (current->IsCheckClass()) {
+ current->AsCheckClass()->set_licm_hoisted(true);
+ } else if (current->IsCheckSmi()) {
+ current->AsCheckSmi()->set_licm_hoisted(true);
+ } else if (current->IsCheckEitherNonSmi()) {
+ current->AsCheckEitherNonSmi()->set_licm_hoisted(true);
+ } else if (current->IsCheckArrayBound()) {
+ current->AsCheckArrayBound()->set_licm_hoisted(true);
+ }
+ if (FLAG_trace_optimization) {
+ THR_Print("Hoisting instruction %s:%" Pd " from B%" Pd " to B%" Pd "\n",
+ current->DebugName(),
+ current->GetDeoptId(),
+ current->GetBlock()->block_id(),
+ pre_header->block_id());
+ }
+ // Move the instruction out of the loop.
+ current->RemoveEnvironment();
+ if (it != NULL) {
+ it->RemoveCurrentFromGraph();
+ } else {
+ current->RemoveFromGraph();
+ }
+ GotoInstr* last = pre_header->last_instruction()->AsGoto();
+ // Using kind kEffect will not assign a fresh ssa temporary index.
+ flow_graph()->InsertBefore(last, current, last->env(), FlowGraph::kEffect);
+ current->CopyDeoptIdFrom(*last);
+}
+
+
+void LICM::TrySpecializeSmiPhi(PhiInstr* phi,
+ BlockEntryInstr* header,
+ BlockEntryInstr* pre_header) {
+ if (phi->Type()->ToCid() == kSmiCid) {
+ return;
+ }
+
+ // Check if there is only a single kDynamicCid input to the phi that
+ // comes from the pre-header.
+ const intptr_t kNotFound = -1;
+ intptr_t non_smi_input = kNotFound;
+ for (intptr_t i = 0; i < phi->InputCount(); ++i) {
+ Value* input = phi->InputAt(i);
+ if (input->Type()->ToCid() != kSmiCid) {
+ if ((non_smi_input != kNotFound) ||
+ (input->Type()->ToCid() != kDynamicCid)) {
+ // There are multiple kDynamicCid inputs or there is an input that is
+ // known to be non-smi.
+ return;
+ } else {
+ non_smi_input = i;
+ }
+ }
+ }
+
+ if ((non_smi_input == kNotFound) ||
+ (phi->block()->PredecessorAt(non_smi_input) != pre_header)) {
+ return;
+ }
+
+ CheckSmiInstr* check = NULL;
+ for (Value* use = phi->input_use_list();
+ (use != NULL) && (check == NULL);
+ use = use->next_use()) {
+ check = use->instruction()->AsCheckSmi();
+ }
+
+ if (check == NULL) {
+ return;
+ }
+
+ // Host CheckSmi instruction and make this phi smi one.
+ Hoist(NULL, pre_header, check);
+
+ // Replace value we are checking with phi's input.
+ check->value()->BindTo(phi->InputAt(non_smi_input)->definition());
+
+ phi->UpdateType(CompileType::FromCid(kSmiCid));
+}
+
+
+void LICM::OptimisticallySpecializeSmiPhis() {
+ if (!flow_graph()->function().allows_hoisting_check_class() ||
+ FLAG_precompilation) {
+ // Do not hoist any: Either deoptimized on a hoisted check,
+ // or compiling precompiled code where we can't do optimistic
+ // hoisting of checks.
+ return;
+ }
+
+ const ZoneGrowableArray<BlockEntryInstr*>& loop_headers =
+ flow_graph()->LoopHeaders();
+
+ for (intptr_t i = 0; i < loop_headers.length(); ++i) {
+ JoinEntryInstr* header = loop_headers[i]->AsJoinEntry();
+ // Skip loop that don't have a pre-header block.
+ BlockEntryInstr* pre_header = header->ImmediateDominator();
+ if (pre_header == NULL) continue;
+
+ for (PhiIterator it(header); !it.Done(); it.Advance()) {
+ TrySpecializeSmiPhi(it.Current(), header, pre_header);
+ }
+ }
+}
+
+
+void LICM::Optimize() {
+ if (!flow_graph()->function().allows_hoisting_check_class()) {
+ // Do not hoist any.
+ return;
+ }
+
+ const ZoneGrowableArray<BlockEntryInstr*>& loop_headers =
+ flow_graph()->LoopHeaders();
+
+ ZoneGrowableArray<BitVector*>* loop_invariant_loads =
+ flow_graph()->loop_invariant_loads();
+
+ BlockEffects* block_effects = flow_graph()->block_effects();
+
+ for (intptr_t i = 0; i < loop_headers.length(); ++i) {
+ BlockEntryInstr* header = loop_headers[i];
+ // Skip loop that don't have a pre-header block.
+ BlockEntryInstr* pre_header = header->ImmediateDominator();
+ if (pre_header == NULL) continue;
+
+ for (BitVector::Iterator loop_it(header->loop_info());
+ !loop_it.Done();
+ loop_it.Advance()) {
+ BlockEntryInstr* block = flow_graph()->preorder()[loop_it.Current()];
+ for (ForwardInstructionIterator it(block);
+ !it.Done();
+ it.Advance()) {
+ Instruction* current = it.Current();
+ if ((current->AllowsCSE() &&
+ block_effects->CanBeMovedTo(current, pre_header)) ||
+ IsLoopInvariantLoad(loop_invariant_loads, i, current)) {
+ bool inputs_loop_invariant = true;
+ for (int i = 0; i < current->InputCount(); ++i) {
+ Definition* input_def = current->InputAt(i)->definition();
+ if (!input_def->GetBlock()->Dominates(pre_header)) {
+ inputs_loop_invariant = false;
+ break;
+ }
+ }
+ if (inputs_loop_invariant &&
+ !current->IsAssertAssignable() &&
+ !current->IsAssertBoolean()) {
+ // TODO(fschneider): Enable hoisting of Assert-instructions
+ // if it safe to do.
+ Hoist(&it, pre_header, current);
+ }
+ }
+ }
+ }
+ }
+}
+
+
+class LoadOptimizer : public ValueObject {
+ public:
+ LoadOptimizer(FlowGraph* graph, AliasedSet* aliased_set)
+ : graph_(graph),
+ aliased_set_(aliased_set),
+ in_(graph_->preorder().length()),
+ out_(graph_->preorder().length()),
+ gen_(graph_->preorder().length()),
+ kill_(graph_->preorder().length()),
+ exposed_values_(graph_->preorder().length()),
+ out_values_(graph_->preorder().length()),
+ phis_(5),
+ worklist_(5),
+ congruency_worklist_(6),
+ in_worklist_(NULL),
+ forwarded_(false) {
+ const intptr_t num_blocks = graph_->preorder().length();
+ for (intptr_t i = 0; i < num_blocks; i++) {
+ out_.Add(NULL);
+ gen_.Add(new(Z) BitVector(Z, aliased_set_->max_place_id()));
+ kill_.Add(new(Z) BitVector(Z, aliased_set_->max_place_id()));
+ in_.Add(new(Z) BitVector(Z, aliased_set_->max_place_id()));
+
+ exposed_values_.Add(NULL);
+ out_values_.Add(NULL);
+ }
+ }
+
+ ~LoadOptimizer() {
+ aliased_set_->RollbackAliasedIdentites();
+ }
+
+ Isolate* isolate() const { return graph_->isolate(); }
+ Zone* zone() const { return graph_->zone(); }
+
+ static bool OptimizeGraph(FlowGraph* graph) {
+ ASSERT(FLAG_load_cse);
+ if (FLAG_trace_load_optimization) {
+ FlowGraphPrinter::PrintGraph("Before LoadOptimizer", graph);
+ }
+
+ DirectChainedHashMap<PointerKeyValueTrait<Place> > map;
+ AliasedSet* aliased_set = NumberPlaces(graph, &map, kOptimizeLoads);
+ if ((aliased_set != NULL) && !aliased_set->IsEmpty()) {
+ // If any loads were forwarded return true from Optimize to run load
+ // forwarding again. This will allow to forward chains of loads.
+ // This is especially important for context variables as they are built
+ // as loads from loaded context.
+ // TODO(vegorov): renumber newly discovered congruences during the
+ // forwarding to forward chains without running whole pass twice.
+ LoadOptimizer load_optimizer(graph, aliased_set);
+ return load_optimizer.Optimize();
+ }
+ return false;
+ }
+
+ private:
+ bool Optimize() {
+ ComputeInitialSets();
+ ComputeOutSets();
+ ComputeOutValues();
+ if (graph_->is_licm_allowed()) {
+ MarkLoopInvariantLoads();
+ }
+ ForwardLoads();
+ EmitPhis();
+
+ if (FLAG_trace_load_optimization) {
+ FlowGraphPrinter::PrintGraph("After LoadOptimizer", graph_);
+ }
+
+ return forwarded_;
+ }
+
+ // Compute sets of loads generated and killed by each block.
+ // Additionally compute upwards exposed and generated loads for each block.
+ // Exposed loads are those that can be replaced if a corresponding
+ // reaching load will be found.
+ // Loads that are locally redundant will be replaced as we go through
+ // instructions.
+ void ComputeInitialSets() {
+ for (BlockIterator block_it = graph_->reverse_postorder_iterator();
+ !block_it.Done();
+ block_it.Advance()) {
+ BlockEntryInstr* block = block_it.Current();
+ const intptr_t preorder_number = block->preorder_number();
+
+ BitVector* kill = kill_[preorder_number];
+ BitVector* gen = gen_[preorder_number];
+
+ ZoneGrowableArray<Definition*>* exposed_values = NULL;
+ ZoneGrowableArray<Definition*>* out_values = NULL;
+
+ for (ForwardInstructionIterator instr_it(block);
+ !instr_it.Done();
+ instr_it.Advance()) {
+ Instruction* instr = instr_it.Current();
+
+ bool is_load = false, is_store = false;
+ Place place(instr, &is_load, &is_store);
+
+ BitVector* killed = NULL;
+ if (is_store) {
+ const intptr_t alias_id =
+ aliased_set_->LookupAliasId(place.ToAlias());
+ if (alias_id != AliasedSet::kNoAlias) {
+ killed = aliased_set_->GetKilledSet(alias_id);
+ } else if (!place.IsImmutableField()) {
+ // We encountered unknown alias: this means intrablock load
+ // forwarding refined parameter of this store, for example
+ //
+ // o <- alloc()
+ // a.f <- o
+ // u <- a.f
+ // u.x <- null ;; this store alias is *.x
+ //
+ // after intrablock load forwarding
+ //
+ // o <- alloc()
+ // a.f <- o
+ // o.x <- null ;; this store alias is o.x
+ //
+ // In this case we fallback to using place id recorded in the
+ // instruction that still points to the old place with a more
+ // generic alias.
+ const intptr_t old_alias_id = aliased_set_->LookupAliasId(
+ aliased_set_->places()[instr->place_id()]->ToAlias());
+ killed = aliased_set_->GetKilledSet(old_alias_id);
+ }
+
+ if (killed != NULL) {
+ kill->AddAll(killed);
+ // There is no need to clear out_values when clearing GEN set
+ // because only those values that are in the GEN set
+ // will ever be used.
+ gen->RemoveAll(killed);
+ }
+
+ // Only forward stores to normal arrays, float64, and simd arrays
+ // to loads because other array stores (intXX/uintXX/float32)
+ // may implicitly convert the value stored.
+ StoreIndexedInstr* array_store = instr->AsStoreIndexed();
+ if ((array_store == NULL) ||
+ (array_store->class_id() == kArrayCid) ||
+ (array_store->class_id() == kTypedDataFloat64ArrayCid) ||
+ (array_store->class_id() == kTypedDataFloat32ArrayCid) ||
+ (array_store->class_id() == kTypedDataFloat32x4ArrayCid)) {
+ Place* canonical_place = aliased_set_->LookupCanonical(&place);
+ if (canonical_place != NULL) {
+ // Store has a corresponding numbered place that might have a
+ // load. Try forwarding stored value to it.
+ gen->Add(canonical_place->id());
+ if (out_values == NULL) out_values = CreateBlockOutValues();
+ (*out_values)[canonical_place->id()] = GetStoredValue(instr);
+ }
+ }
+
+ ASSERT(!instr->IsDefinition() ||
+ !IsLoadEliminationCandidate(instr->AsDefinition()));
+ continue;
+ } else if (is_load) {
+ // Check if this load needs renumbering because of the intrablock
+ // load forwarding.
+ const Place* canonical = aliased_set_->LookupCanonical(&place);
+ if ((canonical != NULL) &&
+ (canonical->id() != instr->AsDefinition()->place_id())) {
+ instr->AsDefinition()->set_place_id(canonical->id());
+ }
+ }
+
+ // If instruction has effects then kill all loads affected.
+ if (!instr->Effects().IsNone()) {
+ kill->AddAll(aliased_set_->aliased_by_effects());
+ // There is no need to clear out_values when removing values from GEN
+ // set because only those values that are in the GEN set
+ // will ever be used.
+ gen->RemoveAll(aliased_set_->aliased_by_effects());
+ continue;
+ }
+
+ Definition* defn = instr->AsDefinition();
+ if (defn == NULL) {
+ continue;
+ }
+
+ // For object allocation forward initial values of the fields to
+ // subsequent loads. For skip final fields. Final fields are
+ // initialized in constructor that potentially can be not inlined into
+ // the function that we are currently optimizing. However at the same
+ // time we assume that values of the final fields can be forwarded
+ // across side-effects. If we add 'null' as known values for these
+ // fields here we will incorrectly propagate this null across
+ // constructor invocation.
+ AllocateObjectInstr* alloc = instr->AsAllocateObject();
+ if ((alloc != NULL)) {
+ for (Value* use = alloc->input_use_list();
+ use != NULL;
+ use = use->next_use()) {
+ // Look for all immediate loads from this object.
+ if (use->use_index() != 0) {
+ continue;
+ }
+
+ LoadFieldInstr* load = use->instruction()->AsLoadField();
+ if (load != NULL) {
+ // Found a load. Initialize current value of the field to null for
+ // normal fields, or with type arguments.
+
+ // Forward for all fields for non-escaping objects and only
+ // non-final fields and type arguments for escaping ones.
+ if (aliased_set_->CanBeAliased(alloc) &&
+ (load->field() != NULL) &&
+ load->field()->is_final()) {
+ continue;
+ }
+
+ Definition* forward_def = graph_->constant_null();
+ if (alloc->ArgumentCount() > 0) {
+ ASSERT(alloc->ArgumentCount() == 1);
+ intptr_t type_args_offset =
+ alloc->cls().type_arguments_field_offset();
+ if (load->offset_in_bytes() == type_args_offset) {
+ forward_def = alloc->PushArgumentAt(0)->value()->definition();
+ }
+ }
+ gen->Add(load->place_id());
+ if (out_values == NULL) out_values = CreateBlockOutValues();
+ (*out_values)[load->place_id()] = forward_def;
+ }
+ }
+ continue;
+ }
+
+ if (!IsLoadEliminationCandidate(defn)) {
+ continue;
+ }
+
+ const intptr_t place_id = defn->place_id();
+ if (gen->Contains(place_id)) {
+ // This is a locally redundant load.
+ ASSERT((out_values != NULL) && ((*out_values)[place_id] != NULL));
+
+ Definition* replacement = (*out_values)[place_id];
+ graph_->EnsureSSATempIndex(defn, replacement);
+ if (FLAG_trace_optimization) {
+ THR_Print("Replacing load v%" Pd " with v%" Pd "\n",
+ defn->ssa_temp_index(),
+ replacement->ssa_temp_index());
+ }
+
+ defn->ReplaceUsesWith(replacement);
+ instr_it.RemoveCurrentFromGraph();
+ forwarded_ = true;
+ continue;
+ } else if (!kill->Contains(place_id)) {
+ // This is an exposed load: it is the first representative of a
+ // given expression id and it is not killed on the path from
+ // the block entry.
+ if (exposed_values == NULL) {
+ static const intptr_t kMaxExposedValuesInitialSize = 5;
+ exposed_values = new(Z) ZoneGrowableArray<Definition*>(
+ Utils::Minimum(kMaxExposedValuesInitialSize,
+ aliased_set_->max_place_id()));
+ }
+
+ exposed_values->Add(defn);
+ }
+
+ gen->Add(place_id);
+
+ if (out_values == NULL) out_values = CreateBlockOutValues();
+ (*out_values)[place_id] = defn;
+ }
+
+ exposed_values_[preorder_number] = exposed_values;
+ out_values_[preorder_number] = out_values;
+ }
+ }
+
+ static void PerformPhiMoves(PhiPlaceMoves::MovesList phi_moves,
+ BitVector* out,
+ BitVector* forwarded_loads) {
+ forwarded_loads->Clear();
+
+ for (intptr_t i = 0; i < phi_moves->length(); i++) {
+ const intptr_t from = (*phi_moves)[i].from();
+ const intptr_t to = (*phi_moves)[i].to();
+ if (from == to) continue;
+
+ if (out->Contains(from)) {
+ forwarded_loads->Add(to);
+ }
+ }
+
+ for (intptr_t i = 0; i < phi_moves->length(); i++) {
+ const intptr_t from = (*phi_moves)[i].from();
+ const intptr_t to = (*phi_moves)[i].to();
+ if (from == to) continue;
+
+ out->Remove(to);
+ }
+
+ out->AddAll(forwarded_loads);
+ }
+
+ // Compute OUT sets by propagating them iteratively until fix point
+ // is reached.
+ void ComputeOutSets() {
+ BitVector* temp = new(Z) BitVector(Z, aliased_set_->max_place_id());
+ BitVector* forwarded_loads =
+ new(Z) BitVector(Z, aliased_set_->max_place_id());
+ BitVector* temp_out = new(Z) BitVector(Z, aliased_set_->max_place_id());
+
+ bool changed = true;
+ while (changed) {
+ changed = false;
+
+ for (BlockIterator block_it = graph_->reverse_postorder_iterator();
+ !block_it.Done();
+ block_it.Advance()) {
+ BlockEntryInstr* block = block_it.Current();
+
+ const intptr_t preorder_number = block->preorder_number();
+
+ BitVector* block_in = in_[preorder_number];
+ BitVector* block_out = out_[preorder_number];
+ BitVector* block_kill = kill_[preorder_number];
+ BitVector* block_gen = gen_[preorder_number];
+
+ // Compute block_in as the intersection of all out(p) where p
+ // is a predecessor of the current block.
+ if (block->IsGraphEntry()) {
+ temp->Clear();
+ } else {
+ temp->SetAll();
+ ASSERT(block->PredecessorCount() > 0);
+ for (intptr_t i = 0; i < block->PredecessorCount(); i++) {
+ BlockEntryInstr* pred = block->PredecessorAt(i);
+ BitVector* pred_out = out_[pred->preorder_number()];
+ if (pred_out == NULL) continue;
+ PhiPlaceMoves::MovesList phi_moves =
+ aliased_set_->phi_moves()->GetOutgoingMoves(pred);
+ if (phi_moves != NULL) {
+ // If there are phi moves, perform intersection with
+ // a copy of pred_out where the phi moves are applied.
+ temp_out->CopyFrom(pred_out);
+ PerformPhiMoves(phi_moves, temp_out, forwarded_loads);
+ pred_out = temp_out;
+ }
+ temp->Intersect(pred_out);
+ }
+ }
+
+ if (!temp->Equals(*block_in) || (block_out == NULL)) {
+ // If IN set has changed propagate the change to OUT set.
+ block_in->CopyFrom(temp);
+
+ temp->RemoveAll(block_kill);
+ temp->AddAll(block_gen);
+
+ if ((block_out == NULL) || !block_out->Equals(*temp)) {
+ if (block_out == NULL) {
+ block_out = out_[preorder_number] =
+ new(Z) BitVector(Z, aliased_set_->max_place_id());
+ }
+ block_out->CopyFrom(temp);
+ changed = true;
+ }
+ }
+ }
+ }
+ }
+
+ // Compute out_values mappings by propagating them in reverse postorder once
+ // through the graph. Generate phis on back edges where eager merge is
+ // impossible.
+ // No replacement is done at this point and thus any out_value[place_id] is
+ // changed at most once: from NULL to an actual value.
+ // When merging incoming loads we might need to create a phi.
+ // These phis are not inserted at the graph immediately because some of them
+ // might become redundant after load forwarding is done.
+ void ComputeOutValues() {
+ GrowableArray<PhiInstr*> pending_phis(5);
+ ZoneGrowableArray<Definition*>* temp_forwarded_values = NULL;
+
+ for (BlockIterator block_it = graph_->reverse_postorder_iterator();
+ !block_it.Done();
+ block_it.Advance()) {
+ BlockEntryInstr* block = block_it.Current();
+
+ const bool can_merge_eagerly = CanMergeEagerly(block);
+
+ const intptr_t preorder_number = block->preorder_number();
+
+ ZoneGrowableArray<Definition*>* block_out_values =
+ out_values_[preorder_number];
+
+
+ // If OUT set has changed then we have new values available out of
+ // the block. Compute these values creating phi where necessary.
+ for (BitVector::Iterator it(out_[preorder_number]);
+ !it.Done();
+ it.Advance()) {
+ const intptr_t place_id = it.Current();
+
+ if (block_out_values == NULL) {
+ out_values_[preorder_number] = block_out_values =
+ CreateBlockOutValues();
+ }
+
+ if ((*block_out_values)[place_id] == NULL) {
+ ASSERT(block->PredecessorCount() > 0);
+ Definition* in_value = can_merge_eagerly ?
+ MergeIncomingValues(block, place_id) : NULL;
+ if ((in_value == NULL) &&
+ (in_[preorder_number]->Contains(place_id))) {
+ PhiInstr* phi = new(Z) PhiInstr(block->AsJoinEntry(),
+ block->PredecessorCount());
+ phi->set_place_id(place_id);
+ pending_phis.Add(phi);
+ in_value = phi;
+ }
+ (*block_out_values)[place_id] = in_value;
+ }
+ }
+
+ // If the block has outgoing phi moves perform them. Use temporary list
+ // of values to ensure that cyclic moves are performed correctly.
+ PhiPlaceMoves::MovesList phi_moves =
+ aliased_set_->phi_moves()->GetOutgoingMoves(block);
+ if ((phi_moves != NULL) && (block_out_values != NULL)) {
+ if (temp_forwarded_values == NULL) {
+ temp_forwarded_values = CreateBlockOutValues();
+ }
+
+ for (intptr_t i = 0; i < phi_moves->length(); i++) {
+ const intptr_t from = (*phi_moves)[i].from();
+ const intptr_t to = (*phi_moves)[i].to();
+ if (from == to) continue;
+
+ (*temp_forwarded_values)[to] = (*block_out_values)[from];
+ }
+
+ for (intptr_t i = 0; i < phi_moves->length(); i++) {
+ const intptr_t from = (*phi_moves)[i].from();
+ const intptr_t to = (*phi_moves)[i].to();
+ if (from == to) continue;
+
+ (*block_out_values)[to] = (*temp_forwarded_values)[to];
+ }
+ }
+
+ if (FLAG_trace_load_optimization) {
+ THR_Print("B%" Pd "\n", block->block_id());
+ THR_Print(" IN: ");
+ aliased_set_->PrintSet(in_[preorder_number]);
+ THR_Print("\n");
+
+ THR_Print(" KILL: ");
+ aliased_set_->PrintSet(kill_[preorder_number]);
+ THR_Print("\n");
+
+ THR_Print(" OUT: ");
+ aliased_set_->PrintSet(out_[preorder_number]);
+ THR_Print("\n");
+ }
+ }
+
+ // All blocks were visited. Fill pending phis with inputs
+ // that flow on back edges.
+ for (intptr_t i = 0; i < pending_phis.length(); i++) {
+ FillPhiInputs(pending_phis[i]);
+ }
+ }
+
+ bool CanMergeEagerly(BlockEntryInstr* block) {
+ for (intptr_t i = 0; i < block->PredecessorCount(); i++) {
+ BlockEntryInstr* pred = block->PredecessorAt(i);
+ if (pred->postorder_number() < block->postorder_number()) {
+ return false;
+ }
+ }
+ return true;
+ }
+
+ void MarkLoopInvariantLoads() {
+ const ZoneGrowableArray<BlockEntryInstr*>& loop_headers =
+ graph_->LoopHeaders();
+
+ ZoneGrowableArray<BitVector*>* invariant_loads =
+ new(Z) ZoneGrowableArray<BitVector*>(loop_headers.length());
+
+ for (intptr_t i = 0; i < loop_headers.length(); i++) {
+ BlockEntryInstr* header = loop_headers[i];
+ BlockEntryInstr* pre_header = header->ImmediateDominator();
+ if (pre_header == NULL) {
+ invariant_loads->Add(NULL);
+ continue;
+ }
+
+ BitVector* loop_gen = new(Z) BitVector(Z, aliased_set_->max_place_id());
+ for (BitVector::Iterator loop_it(header->loop_info());
+ !loop_it.Done();
+ loop_it.Advance()) {
+ const intptr_t preorder_number = loop_it.Current();
+ loop_gen->AddAll(gen_[preorder_number]);
+ }
+
+ for (BitVector::Iterator loop_it(header->loop_info());
+ !loop_it.Done();
+ loop_it.Advance()) {
+ const intptr_t preorder_number = loop_it.Current();
+ loop_gen->RemoveAll(kill_[preorder_number]);
+ }
+
+ if (FLAG_trace_optimization) {
+ for (BitVector::Iterator it(loop_gen); !it.Done(); it.Advance()) {
+ THR_Print("place %s is loop invariant for B%" Pd "\n",
+ aliased_set_->places()[it.Current()]->ToCString(),
+ header->block_id());
+ }
+ }
+
+ invariant_loads->Add(loop_gen);
+ }
+
+ graph_->set_loop_invariant_loads(invariant_loads);
+ }
+
+ // Compute incoming value for the given expression id.
+ // Will create a phi if different values are incoming from multiple
+ // predecessors.
+ Definition* MergeIncomingValues(BlockEntryInstr* block, intptr_t place_id) {
+ // First check if the same value is coming in from all predecessors.
+ static Definition* const kDifferentValuesMarker =
+ reinterpret_cast<Definition*>(-1);
+ Definition* incoming = NULL;
+ for (intptr_t i = 0; i < block->PredecessorCount(); i++) {
+ BlockEntryInstr* pred = block->PredecessorAt(i);
+ ZoneGrowableArray<Definition*>* pred_out_values =
+ out_values_[pred->preorder_number()];
+ if ((pred_out_values == NULL) || ((*pred_out_values)[place_id] == NULL)) {
+ return NULL;
+ } else if (incoming == NULL) {
+ incoming = (*pred_out_values)[place_id];
+ } else if (incoming != (*pred_out_values)[place_id]) {
+ incoming = kDifferentValuesMarker;
+ }
+ }
+
+ if (incoming != kDifferentValuesMarker) {
+ ASSERT(incoming != NULL);
+ return incoming;
+ }
+
+ // Incoming values are different. Phi is required to merge.
+ PhiInstr* phi = new(Z) PhiInstr(
+ block->AsJoinEntry(), block->PredecessorCount());
+ phi->set_place_id(place_id);
+ FillPhiInputs(phi);
+ return phi;
+ }
+
+ void FillPhiInputs(PhiInstr* phi) {
+ BlockEntryInstr* block = phi->GetBlock();
+ const intptr_t place_id = phi->place_id();
+
+ for (intptr_t i = 0; i < block->PredecessorCount(); i++) {
+ BlockEntryInstr* pred = block->PredecessorAt(i);
+ ZoneGrowableArray<Definition*>* pred_out_values =
+ out_values_[pred->preorder_number()];
+ ASSERT((*pred_out_values)[place_id] != NULL);
+
+ // Sets of outgoing values are not linked into use lists so
+ // they might contain values that were replaced and removed
+ // from the graph by this iteration.
+ // To prevent using them we additionally mark definitions themselves
+ // as replaced and store a pointer to the replacement.
+ Definition* replacement = (*pred_out_values)[place_id]->Replacement();
+ Value* input = new(Z) Value(replacement);
+ phi->SetInputAt(i, input);
+ replacement->AddInputUse(input);
+ }
+
+ graph_->AllocateSSAIndexes(phi);
+ phis_.Add(phi); // Postpone phi insertion until after load forwarding.
+
+ if (FLAG_trace_load_optimization) {
+ THR_Print("created pending phi %s for %s at B%" Pd "\n",
+ phi->ToCString(),
+ aliased_set_->places()[place_id]->ToCString(),
+ block->block_id());
+ }
+ }
+
+ // Iterate over basic blocks and replace exposed loads with incoming
+ // values.
+ void ForwardLoads() {
+ for (BlockIterator block_it = graph_->reverse_postorder_iterator();
+ !block_it.Done();
+ block_it.Advance()) {
+ BlockEntryInstr* block = block_it.Current();
+
+ ZoneGrowableArray<Definition*>* loads =
+ exposed_values_[block->preorder_number()];
+ if (loads == NULL) continue; // No exposed loads.
+
+ BitVector* in = in_[block->preorder_number()];
+
+ for (intptr_t i = 0; i < loads->length(); i++) {
+ Definition* load = (*loads)[i];
+ if (!in->Contains(load->place_id())) continue; // No incoming value.
+
+ Definition* replacement = MergeIncomingValues(block, load->place_id());
+ ASSERT(replacement != NULL);
+
+ // Sets of outgoing values are not linked into use lists so
+ // they might contain values that were replace and removed
+ // from the graph by this iteration.
+ // To prevent using them we additionally mark definitions themselves
+ // as replaced and store a pointer to the replacement.
+ replacement = replacement->Replacement();
+
+ if (load != replacement) {
+ graph_->EnsureSSATempIndex(load, replacement);
+
+ if (FLAG_trace_optimization) {
+ THR_Print("Replacing load v%" Pd " with v%" Pd "\n",
+ load->ssa_temp_index(),
+ replacement->ssa_temp_index());
+ }
+
+ load->ReplaceUsesWith(replacement);
+ load->RemoveFromGraph();
+ load->SetReplacement(replacement);
+ forwarded_ = true;
+ }
+ }
+ }
+ }
+
+ // Check if the given phi take the same value on all code paths.
+ // Eliminate it as redundant if this is the case.
+ // When analyzing phi operands assumes that only generated during
+ // this load phase can be redundant. They can be distinguished because
+ // they are not marked alive.
+ // TODO(vegorov): move this into a separate phase over all phis.
+ bool EliminateRedundantPhi(PhiInstr* phi) {
+ Definition* value = NULL; // Possible value of this phi.
+
+ worklist_.Clear();
+ if (in_worklist_ == NULL) {
+ in_worklist_ = new(Z) BitVector(Z, graph_->current_ssa_temp_index());
+ } else {
+ in_worklist_->Clear();
+ }
+
+ worklist_.Add(phi);
+ in_worklist_->Add(phi->ssa_temp_index());
+
+ for (intptr_t i = 0; i < worklist_.length(); i++) {
+ PhiInstr* phi = worklist_[i];
+
+ for (intptr_t i = 0; i < phi->InputCount(); i++) {
+ Definition* input = phi->InputAt(i)->definition();
+ if (input == phi) continue;
+
+ PhiInstr* phi_input = input->AsPhi();
+ if ((phi_input != NULL) && !phi_input->is_alive()) {
+ if (!in_worklist_->Contains(phi_input->ssa_temp_index())) {
+ worklist_.Add(phi_input);
+ in_worklist_->Add(phi_input->ssa_temp_index());
+ }
+ continue;
+ }
+
+ if (value == NULL) {
+ value = input;
+ } else if (value != input) {
+ return false; // This phi is not redundant.
+ }
+ }
+ }
+
+ // All phis in the worklist are redundant and have the same computed
+ // value on all code paths.
+ ASSERT(value != NULL);
+ for (intptr_t i = 0; i < worklist_.length(); i++) {
+ worklist_[i]->ReplaceUsesWith(value);
+ }
+
+ return true;
+ }
+
+ // Returns true if definitions are congruent assuming their inputs
+ // are congruent.
+ bool CanBeCongruent(Definition* a, Definition* b) {
+ return (a->tag() == b->tag()) &&
+ ((a->IsPhi() && (a->GetBlock() == b->GetBlock())) ||
+ (a->AllowsCSE() && a->Dependencies().IsNone() &&
+ a->AttributesEqual(b)));
+ }
+
+ // Given two definitions check if they are congruent under assumption that
+ // their inputs will be proven congruent. If they are - add them to the
+ // worklist to check their inputs' congruency.
+ // Returns true if pair was added to the worklist or is already in the
+ // worklist and false if a and b are not congruent.
+ bool AddPairToCongruencyWorklist(Definition* a, Definition* b) {
+ if (!CanBeCongruent(a, b)) {
+ return false;
+ }
+
+ // If a is already in the worklist check if it is being compared to b.
+ // Give up if it is not.
+ if (in_worklist_->Contains(a->ssa_temp_index())) {
+ for (intptr_t i = 0; i < congruency_worklist_.length(); i += 2) {
+ if (a == congruency_worklist_[i]) {
+ return (b == congruency_worklist_[i + 1]);
+ }
+ }
+ UNREACHABLE();
+ } else if (in_worklist_->Contains(b->ssa_temp_index())) {
+ return AddPairToCongruencyWorklist(b, a);
+ }
+
+ congruency_worklist_.Add(a);
+ congruency_worklist_.Add(b);
+ in_worklist_->Add(a->ssa_temp_index());
+ return true;
+ }
+
+ bool AreInputsCongruent(Definition* a, Definition* b) {
+ ASSERT(a->tag() == b->tag());
+ ASSERT(a->InputCount() == b->InputCount());
+ for (intptr_t j = 0; j < a->InputCount(); j++) {
+ Definition* inputA = a->InputAt(j)->definition();
+ Definition* inputB = b->InputAt(j)->definition();
+
+ if (inputA != inputB) {
+ if (!AddPairToCongruencyWorklist(inputA, inputB)) {
+ return false;
+ }
+ }
+ }
+ return true;
+ }
+
+ // Returns true if instruction dom dominates instruction other.
+ static bool Dominates(Instruction* dom, Instruction* other) {
+ BlockEntryInstr* dom_block = dom->GetBlock();
+ BlockEntryInstr* other_block = other->GetBlock();
+
+ if (dom_block == other_block) {
+ for (Instruction* current = dom->next();
+ current != NULL;
+ current = current->next()) {
+ if (current == other) {
+ return true;
+ }
+ }
+ return false;
+ }
+
+ return dom_block->Dominates(other_block);
+ }
+
+ // Replace the given phi with another if they are congruent.
+ // Returns true if succeeds.
+ bool ReplacePhiWith(PhiInstr* phi, PhiInstr* replacement) {
+ ASSERT(phi->InputCount() == replacement->InputCount());
+ ASSERT(phi->block() == replacement->block());
+
+ congruency_worklist_.Clear();
+ if (in_worklist_ == NULL) {
+ in_worklist_ = new(Z) BitVector(Z, graph_->current_ssa_temp_index());
+ } else {
+ in_worklist_->Clear();
+ }
+
+ // During the comparison worklist contains pairs of definitions to be
+ // compared.
+ if (!AddPairToCongruencyWorklist(phi, replacement)) {
+ return false;
+ }
+
+ // Process the worklist. It might grow during each comparison step.
+ for (intptr_t i = 0; i < congruency_worklist_.length(); i += 2) {
+ if (!AreInputsCongruent(congruency_worklist_[i],
+ congruency_worklist_[i + 1])) {
+ return false;
+ }
+ }
+
+ // At this point worklist contains pairs of congruent definitions.
+ // Replace the one member of the pair with another maintaining proper
+ // domination relation between definitions and uses.
+ for (intptr_t i = 0; i < congruency_worklist_.length(); i += 2) {
+ Definition* a = congruency_worklist_[i];
+ Definition* b = congruency_worklist_[i + 1];
+
+ // If these definitions are not phis then we need to pick up one
+ // that dominates another as the replacement: if a dominates b swap them.
+ // Note: both a and b are used as a phi input at the same block B which
+ // means a dominates B and b dominates B, which guarantees that either
+ // a dominates b or b dominates a.
+ if (!a->IsPhi()) {
+ if (Dominates(a, b)) {
+ Definition* t = a;
+ a = b;
+ b = t;
+ }
+ ASSERT(Dominates(b, a));
+ }
+
+ if (FLAG_trace_load_optimization) {
+ THR_Print("Replacing %s with congruent %s\n",
+ a->ToCString(),
+ b->ToCString());
+ }
+
+ a->ReplaceUsesWith(b);
+ if (a->IsPhi()) {
+ // We might be replacing a phi introduced by the load forwarding
+ // that is not inserted in the graph yet.
+ ASSERT(b->IsPhi());
+ PhiInstr* phi_a = a->AsPhi();
+ if (phi_a->is_alive()) {
+ phi_a->mark_dead();
+ phi_a->block()->RemovePhi(phi_a);
+ phi_a->UnuseAllInputs();
+ }
+ } else {
+ a->RemoveFromGraph();
+ }
+ }
+
+ return true;
+ }
+
+ // Insert the given phi into the graph. Attempt to find an equal one in the
+ // target block first.
+ // Returns true if the phi was inserted and false if it was replaced.
+ bool EmitPhi(PhiInstr* phi) {
+ for (PhiIterator it(phi->block()); !it.Done(); it.Advance()) {
+ if (ReplacePhiWith(phi, it.Current())) {
+ return false;
+ }
+ }
+
+ phi->mark_alive();
+ phi->block()->InsertPhi(phi);
+ return true;
+ }
+
+ // Phis have not yet been inserted into the graph but they have uses of
+ // their inputs. Insert the non-redundant ones and clear the input uses
+ // of the redundant ones.
+ void EmitPhis() {
+ // First eliminate all redundant phis.
+ for (intptr_t i = 0; i < phis_.length(); i++) {
+ PhiInstr* phi = phis_[i];
+ if (!phi->HasUses() || EliminateRedundantPhi(phi)) {
+ phi->UnuseAllInputs();
+ phis_[i] = NULL;
+ }
+ }
+
+ // Now emit phis or replace them with equal phis already present in the
+ // graph.
+ for (intptr_t i = 0; i < phis_.length(); i++) {
+ PhiInstr* phi = phis_[i];
+ if ((phi != NULL) && (!phi->HasUses() || !EmitPhi(phi))) {
+ phi->UnuseAllInputs();
+ }
+ }
+ }
+
+ ZoneGrowableArray<Definition*>* CreateBlockOutValues() {
+ ZoneGrowableArray<Definition*>* out =
+ new(Z) ZoneGrowableArray<Definition*>(aliased_set_->max_place_id());
+ for (intptr_t i = 0; i < aliased_set_->max_place_id(); i++) {
+ out->Add(NULL);
+ }
+ return out;
+ }
+
+ FlowGraph* graph_;
+ DirectChainedHashMap<PointerKeyValueTrait<Place> >* map_;
+
+ // Mapping between field offsets in words and expression ids of loads from
+ // that offset.
+ AliasedSet* aliased_set_;
+
+ // Per block sets of expression ids for loads that are: incoming (available
+ // on the entry), outgoing (available on the exit), generated and killed.
+ GrowableArray<BitVector*> in_;
+ GrowableArray<BitVector*> out_;
+ GrowableArray<BitVector*> gen_;
+ GrowableArray<BitVector*> kill_;
+
+ // Per block list of upwards exposed loads.
+ GrowableArray<ZoneGrowableArray<Definition*>*> exposed_values_;
+
+ // Per block mappings between expression ids and outgoing definitions that
+ // represent those ids.
+ GrowableArray<ZoneGrowableArray<Definition*>*> out_values_;
+
+ // List of phis generated during ComputeOutValues and ForwardLoads.
+ // Some of these phis might be redundant and thus a separate pass is
+ // needed to emit only non-redundant ones.
+ GrowableArray<PhiInstr*> phis_;
+
+ // Auxiliary worklist used by redundant phi elimination.
+ GrowableArray<PhiInstr*> worklist_;
+ GrowableArray<Definition*> congruency_worklist_;
+ BitVector* in_worklist_;
+
+
+ // True if any load was eliminated.
+ bool forwarded_;
+
+ DISALLOW_COPY_AND_ASSIGN(LoadOptimizer);
+};
+
+
+bool DominatorBasedCSE::Optimize(FlowGraph* graph) {
+ bool changed = false;
+ if (FLAG_load_cse) {
+ changed = LoadOptimizer::OptimizeGraph(graph) || changed;
+ }
+
+ CSEInstructionMap map;
+ changed = OptimizeRecursive(graph, graph->graph_entry(), &map) || changed;
+
+ return changed;
+}
+
+
+bool DominatorBasedCSE::OptimizeRecursive(
+ FlowGraph* graph,
+ BlockEntryInstr* block,
+ CSEInstructionMap* map) {
+ bool changed = false;
+ for (ForwardInstructionIterator it(block); !it.Done(); it.Advance()) {
+ Instruction* current = it.Current();
+ if (current->AllowsCSE()) {
+ Instruction* replacement = map->Lookup(current);
+ if ((replacement != NULL) &&
+ graph->block_effects()->IsAvailableAt(replacement, block)) {
+ // Replace current with lookup result.
+ graph->ReplaceCurrentInstruction(&it, current, replacement);
+ changed = true;
+ continue;
+ }
+
+ // For simplicity we assume that instruction either does not depend on
+ // anything or does not affect anything. If this is not the case then
+ // we should first remove affected instructions from the map and
+ // then add instruction to the map so that it does not kill itself.
+ ASSERT(current->Effects().IsNone() || current->Dependencies().IsNone());
+ map->Insert(current);
+ }
+
+ map->RemoveAffected(current->Effects());
+ }
+
+ // Process children in the dominator tree recursively.
+ intptr_t num_children = block->dominated_blocks().length();
+ for (intptr_t i = 0; i < num_children; ++i) {
+ BlockEntryInstr* child = block->dominated_blocks()[i];
+ if (i < num_children - 1) {
+ // Copy map.
+ CSEInstructionMap child_map(*map);
+ changed = OptimizeRecursive(graph, child, &child_map) || changed;
+ } else {
+ // Reuse map for the last child.
+ changed = OptimizeRecursive(graph, child, map) || changed;
+ }
+ }
+ return changed;
+}
+
+
+class StoreOptimizer : public LivenessAnalysis {
+ public:
+ StoreOptimizer(FlowGraph* graph,
+ AliasedSet* aliased_set,
+ DirectChainedHashMap<PointerKeyValueTrait<Place> >* map)
+ : LivenessAnalysis(aliased_set->max_place_id(), graph->postorder()),
+ graph_(graph),
+ map_(map),
+ aliased_set_(aliased_set),
+ exposed_stores_(graph_->postorder().length()) {
+ const intptr_t num_blocks = graph_->postorder().length();
+ for (intptr_t i = 0; i < num_blocks; i++) {
+ exposed_stores_.Add(NULL);
+ }
+ }
+
+ static void OptimizeGraph(FlowGraph* graph) {
+ ASSERT(FLAG_load_cse);
+ if (FLAG_trace_load_optimization) {
+ FlowGraphPrinter::PrintGraph("Before StoreOptimizer", graph);
+ }
+
+ DirectChainedHashMap<PointerKeyValueTrait<Place> > map;
+ AliasedSet* aliased_set = NumberPlaces(graph, &map, kOptimizeStores);
+ if ((aliased_set != NULL) && !aliased_set->IsEmpty()) {
+ StoreOptimizer store_optimizer(graph, aliased_set, &map);
+ store_optimizer.Optimize();
+ }
+ }
+
+ private:
+ void Optimize() {
+ Analyze();
+ if (FLAG_trace_load_optimization) {
+ Dump();
+ }
+ EliminateDeadStores();
+ if (FLAG_trace_load_optimization) {
+ FlowGraphPrinter::PrintGraph("After StoreOptimizer", graph_);
+ }
+ }
+
+ bool CanEliminateStore(Instruction* instr) {
+ switch (instr->tag()) {
+ case Instruction::kStoreInstanceField: {
+ StoreInstanceFieldInstr* store_instance = instr->AsStoreInstanceField();
+ // Can't eliminate stores that initialize fields.
+ return !(store_instance->is_potential_unboxed_initialization() ||
+ store_instance->is_object_reference_initialization());
+ }
+ case Instruction::kStoreIndexed:
+ case Instruction::kStoreStaticField:
+ return true;
+ default:
+ UNREACHABLE();
+ return false;
+ }
+ }
+
+ virtual void ComputeInitialSets() {
+ Zone* zone = graph_->zone();
+ BitVector* all_places = new(zone) BitVector(zone,
+ aliased_set_->max_place_id());
+ all_places->SetAll();
+ for (BlockIterator block_it = graph_->postorder_iterator();
+ !block_it.Done();
+ block_it.Advance()) {
+ BlockEntryInstr* block = block_it.Current();
+ const intptr_t postorder_number = block->postorder_number();
+
+ BitVector* kill = kill_[postorder_number];
+ BitVector* live_in = live_in_[postorder_number];
+ BitVector* live_out = live_out_[postorder_number];
+
+ ZoneGrowableArray<Instruction*>* exposed_stores = NULL;
+
+ // Iterate backwards starting at the last instruction.
+ for (BackwardInstructionIterator instr_it(block);
+ !instr_it.Done();
+ instr_it.Advance()) {
+ Instruction* instr = instr_it.Current();
+
+ bool is_load = false;
+ bool is_store = false;
+ Place place(instr, &is_load, &is_store);
+ if (place.IsImmutableField()) {
+ // Loads/stores of final fields do not participate.
+ continue;
+ }
+
+ // Handle stores.
+ if (is_store) {
+ if (kill->Contains(instr->place_id())) {
+ if (!live_in->Contains(instr->place_id()) &&
+ CanEliminateStore(instr)) {
+ if (FLAG_trace_optimization) {
+ THR_Print(
+ "Removing dead store to place %" Pd " in block B%" Pd "\n",
+ instr->place_id(), block->block_id());
+ }
+ instr_it.RemoveCurrentFromGraph();
+ }
+ } else if (!live_in->Contains(instr->place_id())) {
+ // Mark this store as down-ward exposed: They are the only
+ // candidates for the global store elimination.
+ if (exposed_stores == NULL) {
+ const intptr_t kMaxExposedStoresInitialSize = 5;
+ exposed_stores = new(zone) ZoneGrowableArray<Instruction*>(
+ Utils::Minimum(kMaxExposedStoresInitialSize,
+ aliased_set_->max_place_id()));
+ }
+ exposed_stores->Add(instr);
+ }
+ // Interfering stores kill only loads from the same place.
+ kill->Add(instr->place_id());
+ live_in->Remove(instr->place_id());
+ continue;
+ }
+
+ // Handle side effects, deoptimization and function return.
+ if (!instr->Effects().IsNone() ||
+ instr->CanDeoptimize() ||
+ instr->IsThrow() ||
+ instr->IsReThrow() ||
+ instr->IsReturn()) {
+ // Instructions that return from the function, instructions with side
+ // effects and instructions that can deoptimize are considered as
+ // loads from all places.
+ live_in->CopyFrom(all_places);
+ if (instr->IsThrow() || instr->IsReThrow() || instr->IsReturn()) {
+ // Initialize live-out for exit blocks since it won't be computed
+ // otherwise during the fixed point iteration.
+ live_out->CopyFrom(all_places);
+ }
+ continue;
+ }
+
+ // Handle loads.
+ Definition* defn = instr->AsDefinition();
+ if ((defn != NULL) && IsLoadEliminationCandidate(defn)) {
+ const intptr_t alias = aliased_set_->LookupAliasId(place.ToAlias());
+ live_in->AddAll(aliased_set_->GetKilledSet(alias));
+ continue;
+ }
+ }
+ exposed_stores_[postorder_number] = exposed_stores;
+ }
+ if (FLAG_trace_load_optimization) {
+ Dump();
+ THR_Print("---\n");
+ }
+ }
+
+ void EliminateDeadStores() {
+ // Iteration order does not matter here.
+ for (BlockIterator block_it = graph_->postorder_iterator();
+ !block_it.Done();
+ block_it.Advance()) {
+ BlockEntryInstr* block = block_it.Current();
+ const intptr_t postorder_number = block->postorder_number();
+
+ BitVector* live_out = live_out_[postorder_number];
+
+ ZoneGrowableArray<Instruction*>* exposed_stores =
+ exposed_stores_[postorder_number];
+ if (exposed_stores == NULL) continue; // No exposed stores.
+
+ // Iterate over candidate stores.
+ for (intptr_t i = 0; i < exposed_stores->length(); ++i) {
+ Instruction* instr = (*exposed_stores)[i];
+ bool is_load = false;
+ bool is_store = false;
+ Place place(instr, &is_load, &is_store);
+ ASSERT(!is_load && is_store);
+ if (place.IsImmutableField()) {
+ // Final field do not participate in dead store elimination.
+ continue;
+ }
+ // Eliminate a downward exposed store if the corresponding place is not
+ // in live-out.
+ if (!live_out->Contains(instr->place_id()) &&
+ CanEliminateStore(instr)) {
+ if (FLAG_trace_optimization) {
+ THR_Print("Removing dead store to place %" Pd " block B%" Pd "\n",
+ instr->place_id(), block->block_id());
+ }
+ instr->RemoveFromGraph(/* ignored */ false);
+ }
+ }
+ }
+ }
+
+ FlowGraph* graph_;
+ DirectChainedHashMap<PointerKeyValueTrait<Place> >* map_;
+
+ // Mapping between field offsets in words and expression ids of loads from
+ // that offset.
+ AliasedSet* aliased_set_;
+
+ // Per block list of downward exposed stores.
+ GrowableArray<ZoneGrowableArray<Instruction*>*> exposed_stores_;
+
+ DISALLOW_COPY_AND_ASSIGN(StoreOptimizer);
+};
+
+
+void DeadStoreElimination::Optimize(FlowGraph* graph) {
+ if (FLAG_dead_store_elimination) {
+ StoreOptimizer::OptimizeGraph(graph);
+ }
+}
+
+
+enum SafeUseCheck { kOptimisticCheck, kStrictCheck };
+
+// Check if the use is safe for allocation sinking. Allocation sinking
+// candidates can only be used at store instructions:
+//
+// - any store into the allocation candidate itself is unconditionally safe
+// as it just changes the rematerialization state of this candidate;
+// - store into another object is only safe if another object is allocation
+// candidate.
+//
+// We use a simple fix-point algorithm to discover the set of valid candidates
+// (see CollectCandidates method), that's why this IsSafeUse can operate in two
+// modes:
+//
+// - optimistic, when every allocation is assumed to be an allocation
+// sinking candidate;
+// - strict, when only marked allocations are assumed to be allocation
+// sinking candidates.
+//
+// Fix-point algorithm in CollectCandiates first collects a set of allocations
+// optimistically and then checks each collected candidate strictly and unmarks
+// invalid candidates transitively until only strictly valid ones remain.
+static bool IsSafeUse(Value* use, SafeUseCheck check_type) {
+ if (use->instruction()->IsMaterializeObject()) {
+ return true;
+ }
+
+ StoreInstanceFieldInstr* store = use->instruction()->AsStoreInstanceField();
+ if (store != NULL) {
+ if (use == store->value()) {
+ Definition* instance = store->instance()->definition();
+ return instance->IsAllocateObject() &&
+ ((check_type == kOptimisticCheck) ||
+ instance->Identity().IsAllocationSinkingCandidate());
+ }
+ return true;
+ }
+
+ return false;
+}
+
+
+// Right now we are attempting to sink allocation only into
+// deoptimization exit. So candidate should only be used in StoreInstanceField
+// instructions that write into fields of the allocated object.
+// We do not support materialization of the object that has type arguments.
+static bool IsAllocationSinkingCandidate(Definition* alloc,
+ SafeUseCheck check_type) {
+ for (Value* use = alloc->input_use_list();
+ use != NULL;
+ use = use->next_use()) {
+ if (!IsSafeUse(use, check_type)) {
+ if (FLAG_trace_optimization) {
+ THR_Print("use of %s at %s is unsafe for allocation sinking\n",
+ alloc->ToCString(),
+ use->instruction()->ToCString());
+ }
+ return false;
+ }
+ }
+
+ return true;
+}
+
+
+// If the given use is a store into an object then return an object we are
+// storing into.
+static Definition* StoreInto(Value* use) {
+ StoreInstanceFieldInstr* store = use->instruction()->AsStoreInstanceField();
+ if (store != NULL) {
+ return store->instance()->definition();
+ }
+
+ return NULL;
+}
+
+
+// Remove the given allocation from the graph. It is not observable.
+// If deoptimization occurs the object will be materialized.
+void AllocationSinking::EliminateAllocation(Definition* alloc) {
+ ASSERT(IsAllocationSinkingCandidate(alloc, kStrictCheck));
+
+ if (FLAG_trace_optimization) {
+ THR_Print("removing allocation from the graph: v%" Pd "\n",
+ alloc->ssa_temp_index());
+ }
+
+ // As an allocation sinking candidate it is only used in stores to its own
+ // fields. Remove these stores.
+ for (Value* use = alloc->input_use_list();
+ use != NULL;
+ use = alloc->input_use_list()) {
+ use->instruction()->RemoveFromGraph();
+ }
+
+ // There should be no environment uses. The pass replaced them with
+ // MaterializeObject instructions.
+#ifdef DEBUG
+ for (Value* use = alloc->env_use_list();
+ use != NULL;
+ use = use->next_use()) {
+ ASSERT(use->instruction()->IsMaterializeObject());
+ }
+#endif
+ ASSERT(alloc->input_use_list() == NULL);
+ alloc->RemoveFromGraph();
+ if (alloc->ArgumentCount() > 0) {
+ ASSERT(alloc->ArgumentCount() == 1);
+ for (intptr_t i = 0; i < alloc->ArgumentCount(); ++i) {
+ alloc->PushArgumentAt(i)->RemoveFromGraph();
+ }
+ }
+}
+
+
+// Find allocation instructions that can be potentially eliminated and
+// rematerialized at deoptimization exits if needed. See IsSafeUse
+// for the description of algorithm used below.
+void AllocationSinking::CollectCandidates() {
+ // Optimistically collect all potential candidates.
+ for (BlockIterator block_it = flow_graph_->reverse_postorder_iterator();
+ !block_it.Done();
+ block_it.Advance()) {
+ BlockEntryInstr* block = block_it.Current();
+ for (ForwardInstructionIterator it(block); !it.Done(); it.Advance()) {
+ { AllocateObjectInstr* alloc = it.Current()->AsAllocateObject();
+ if ((alloc != NULL) &&
+ IsAllocationSinkingCandidate(alloc, kOptimisticCheck)) {
+ alloc->SetIdentity(AliasIdentity::AllocationSinkingCandidate());
+ candidates_.Add(alloc);
+ }
+ }
+ { AllocateUninitializedContextInstr* alloc =
+ it.Current()->AsAllocateUninitializedContext();
+ if ((alloc != NULL) &&
+ IsAllocationSinkingCandidate(alloc, kOptimisticCheck)) {
+ alloc->SetIdentity(AliasIdentity::AllocationSinkingCandidate());
+ candidates_.Add(alloc);
+ }
+ }
+ }
+ }
+
+ // Transitively unmark all candidates that are not strictly valid.
+ bool changed;
+ do {
+ changed = false;
+ for (intptr_t i = 0; i < candidates_.length(); i++) {
+ Definition* alloc = candidates_[i];
+ if (alloc->Identity().IsAllocationSinkingCandidate()) {
+ if (!IsAllocationSinkingCandidate(alloc, kStrictCheck)) {
+ alloc->SetIdentity(AliasIdentity::Unknown());
+ changed = true;
+ }
+ }
+ }
+ } while (changed);
+
+ // Shrink the list of candidates removing all unmarked ones.
+ intptr_t j = 0;
+ for (intptr_t i = 0; i < candidates_.length(); i++) {
+ Definition* alloc = candidates_[i];
+ if (alloc->Identity().IsAllocationSinkingCandidate()) {
+ if (FLAG_trace_optimization) {
+ THR_Print("discovered allocation sinking candidate: v%" Pd "\n",
+ alloc->ssa_temp_index());
+ }
+
+ if (j != i) {
+ candidates_[j] = alloc;
+ }
+ j++;
+ }
+ }
+ candidates_.TruncateTo(j);
+}
+
+
+// If materialization references an allocation sinking candidate then replace
+// this reference with a materialization which should have been computed for
+// this side-exit. CollectAllExits should have collected this exit.
+void AllocationSinking::NormalizeMaterializations() {
+ for (intptr_t i = 0; i < candidates_.length(); i++) {
+ Definition* alloc = candidates_[i];
+
+ Value* next_use;
+ for (Value* use = alloc->input_use_list();
+ use != NULL;
+ use = next_use) {
+ next_use = use->next_use();
+ if (use->instruction()->IsMaterializeObject()) {
+ use->BindTo(MaterializationFor(alloc, use->instruction()));
+ }
+ }
+ }
+}
+
+
+// We transitively insert materializations at each deoptimization exit that
+// might see the given allocation (see ExitsCollector). Some of this
+// materializations are not actually used and some fail to compute because
+// they are inserted in the block that is not dominated by the allocation.
+// Remove them unused materializations from the graph.
+void AllocationSinking::RemoveUnusedMaterializations() {
+ intptr_t j = 0;
+ for (intptr_t i = 0; i < materializations_.length(); i++) {
+ MaterializeObjectInstr* mat = materializations_[i];
+ if ((mat->input_use_list() == NULL) && (mat->env_use_list() == NULL)) {
+ // Check if this materialization failed to compute and remove any
+ // unforwarded loads. There were no loads from any allocation sinking
+ // candidate in the beggining so it is safe to assume that any encountered
+ // load was inserted by CreateMaterializationAt.
+ for (intptr_t i = 0; i < mat->InputCount(); i++) {
+ LoadFieldInstr* load = mat->InputAt(i)->definition()->AsLoadField();
+ if ((load != NULL) &&
+ (load->instance()->definition() == mat->allocation())) {
+ load->ReplaceUsesWith(flow_graph_->constant_null());
+ load->RemoveFromGraph();
+ }
+ }
+ mat->RemoveFromGraph();
+ } else {
+ if (j != i) {
+ materializations_[j] = mat;
+ }
+ j++;
+ }
+ }
+ materializations_.TruncateTo(j);
+}
+
+
+// Some candidates might stop being eligible for allocation sinking after
+// the load forwarding because they flow into phis that load forwarding
+// inserts. Discover such allocations and remove them from the list
+// of allocation sinking candidates undoing all changes that we did
+// in preparation for sinking these allocations.
+void AllocationSinking::DiscoverFailedCandidates() {
+ // Transitively unmark all candidates that are not strictly valid.
+ bool changed;
+ do {
+ changed = false;
+ for (intptr_t i = 0; i < candidates_.length(); i++) {
+ Definition* alloc = candidates_[i];
+ if (alloc->Identity().IsAllocationSinkingCandidate()) {
+ if (!IsAllocationSinkingCandidate(alloc, kStrictCheck)) {
+ alloc->SetIdentity(AliasIdentity::Unknown());
+ changed = true;
+ }
+ }
+ }
+ } while (changed);
+
+ // Remove all failed candidates from the candidates list.
+ intptr_t j = 0;
+ for (intptr_t i = 0; i < candidates_.length(); i++) {
+ Definition* alloc = candidates_[i];
+ if (!alloc->Identity().IsAllocationSinkingCandidate()) {
+ if (FLAG_trace_optimization) {
+ THR_Print("allocation v%" Pd " can't be eliminated\n",
+ alloc->ssa_temp_index());
+ }
+
+#ifdef DEBUG
+ for (Value* use = alloc->env_use_list();
+ use != NULL;
+ use = use->next_use()) {
+ ASSERT(use->instruction()->IsMaterializeObject());
+ }
+#endif
+
+ // All materializations will be removed from the graph. Remove inserted
+ // loads first and detach materializations from allocation's environment
+ // use list: we will reconstruct it when we start removing
+ // materializations.
+ alloc->set_env_use_list(NULL);
+ for (Value* use = alloc->input_use_list();
+ use != NULL;
+ use = use->next_use()) {
+ if (use->instruction()->IsLoadField()) {
+ LoadFieldInstr* load = use->instruction()->AsLoadField();
+ load->ReplaceUsesWith(flow_graph_->constant_null());
+ load->RemoveFromGraph();
+ } else {
+ ASSERT(use->instruction()->IsMaterializeObject() ||
+ use->instruction()->IsPhi() ||
+ use->instruction()->IsStoreInstanceField());
+ }
+ }
+ } else {
+ if (j != i) {
+ candidates_[j] = alloc;
+ }
+ j++;
+ }
+ }
+
+ if (j != candidates_.length()) { // Something was removed from candidates.
+ intptr_t k = 0;
+ for (intptr_t i = 0; i < materializations_.length(); i++) {
+ MaterializeObjectInstr* mat = materializations_[i];
+ if (!mat->allocation()->Identity().IsAllocationSinkingCandidate()) {
+ // Restore environment uses of the allocation that were replaced
+ // by this materialization and drop materialization.
+ mat->ReplaceUsesWith(mat->allocation());
+ mat->RemoveFromGraph();
+ } else {
+ if (k != i) {
+ materializations_[k] = mat;
+ }
+ k++;
+ }
+ }
+ materializations_.TruncateTo(k);
+ }
+
+ candidates_.TruncateTo(j);
+}
+
+
+void AllocationSinking::Optimize() {
+ CollectCandidates();
+
+ // Insert MaterializeObject instructions that will describe the state of the
+ // object at all deoptimization points. Each inserted materialization looks
+ // like this (where v_0 is allocation that we are going to eliminate):
+ // v_1 <- LoadField(v_0, field_1)
+ // ...
+ // v_N <- LoadField(v_0, field_N)
+ // v_{N+1} <- MaterializeObject(field_1 = v_1, ..., field_N = v_{N})
+ for (intptr_t i = 0; i < candidates_.length(); i++) {
+ InsertMaterializations(candidates_[i]);
+ }
+
+ // Run load forwarding to eliminate LoadField instructions inserted above.
+ // All loads will be successfully eliminated because:
+ // a) they use fields (not offsets) and thus provide precise aliasing
+ // information
+ // b) candidate does not escape and thus its fields is not affected by
+ // external effects from calls.
+ LoadOptimizer::OptimizeGraph(flow_graph_);
+
+ NormalizeMaterializations();
+
+ RemoveUnusedMaterializations();
+
+ // If any candidates are no longer eligible for allocation sinking abort
+ // the optimization for them and undo any changes we did in preparation.
+ DiscoverFailedCandidates();
+
+ // At this point we have computed the state of object at each deoptimization
+ // point and we can eliminate it. Loads inserted above were forwarded so there
+ // are no uses of the allocation just as in the begging of the pass.
+ for (intptr_t i = 0; i < candidates_.length(); i++) {
+ EliminateAllocation(candidates_[i]);
+ }
+
+ // Process materializations and unbox their arguments: materializations
+ // are part of the environment and can materialize boxes for double/mint/simd
+ // values when needed.
+ // TODO(vegorov): handle all box types here.
+ for (intptr_t i = 0; i < materializations_.length(); i++) {
+ MaterializeObjectInstr* mat = materializations_[i];
+ for (intptr_t j = 0; j < mat->InputCount(); j++) {
+ Definition* defn = mat->InputAt(j)->definition();
+ if (defn->IsBox()) {
+ mat->InputAt(j)->BindTo(defn->InputAt(0)->definition());
+ }
+ }
+ }
+}
+
+
+// Remove materializations from the graph. Register allocator will treat them
+// as part of the environment not as a real instruction.
+void AllocationSinking::DetachMaterializations() {
+ for (intptr_t i = 0; i < materializations_.length(); i++) {
+ materializations_[i]->previous()->LinkTo(materializations_[i]->next());
+ }
+}
+
+
+// Add a field/offset to the list of fields if it is not yet present there.
+static bool AddSlot(ZoneGrowableArray<const Object*>* slots,
+ const Object& slot) {
+ for (intptr_t i = 0; i < slots->length(); i++) {
+ if ((*slots)[i]->raw() == slot.raw()) {
+ return false;
+ }
+ }
+ slots->Add(&slot);
+ return true;
+}
+
+
+// Find deoptimization exit for the given materialization assuming that all
+// materializations are emitted right before the instruction which is a
+// deoptimization exit.
+static Instruction* ExitForMaterialization(MaterializeObjectInstr* mat) {
+ while (mat->next()->IsMaterializeObject()) {
+ mat = mat->next()->AsMaterializeObject();
+ }
+ return mat->next();
+}
+
+
+// Given the deoptimization exit find first materialization that was inserted
+// before it.
+static Instruction* FirstMaterializationAt(Instruction* exit) {
+ while (exit->previous()->IsMaterializeObject()) {
+ exit = exit->previous();
+ }
+ return exit;
+}
+
+
+// Given the allocation and deoptimization exit try to find MaterializeObject
+// instruction corresponding to this allocation at this exit.
+MaterializeObjectInstr* AllocationSinking::MaterializationFor(
+ Definition* alloc, Instruction* exit) {
+ if (exit->IsMaterializeObject()) {
+ exit = ExitForMaterialization(exit->AsMaterializeObject());
+ }
+
+ for (MaterializeObjectInstr* mat = exit->previous()->AsMaterializeObject();
+ mat != NULL;
+ mat = mat->previous()->AsMaterializeObject()) {
+ if (mat->allocation() == alloc) {
+ return mat;
+ }
+ }
+
+ return NULL;
+}
+
+
+// Insert MaterializeObject instruction for the given allocation before
+// the given instruction that can deoptimize.
+void AllocationSinking::CreateMaterializationAt(
+ Instruction* exit,
+ Definition* alloc,
+ const ZoneGrowableArray<const Object*>& slots) {
+ ZoneGrowableArray<Value*>* values =
+ new(Z) ZoneGrowableArray<Value*>(slots.length());
+
+ // All loads should be inserted before the first materialization so that
+ // IR follows the following pattern: loads, materializations, deoptimizing
+ // instruction.
+ Instruction* load_point = FirstMaterializationAt(exit);
+
+ // Insert load instruction for every field.
+ for (intptr_t i = 0; i < slots.length(); i++) {
+ LoadFieldInstr* load = slots[i]->IsField()
+ ? new(Z) LoadFieldInstr(
+ new(Z) Value(alloc),
+ &Field::Cast(*slots[i]),
+ AbstractType::ZoneHandle(Z),
+ alloc->token_pos())
+ : new(Z) LoadFieldInstr(
+ new(Z) Value(alloc),
+ Smi::Cast(*slots[i]).Value(),
+ AbstractType::ZoneHandle(Z),
+ alloc->token_pos());
+ flow_graph_->InsertBefore(
+ load_point, load, NULL, FlowGraph::kValue);
+ values->Add(new(Z) Value(load));
+ }
+
+ MaterializeObjectInstr* mat = NULL;
+ if (alloc->IsAllocateObject()) {
+ mat = new(Z) MaterializeObjectInstr(
+ alloc->AsAllocateObject(), slots, values);
+ } else {
+ ASSERT(alloc->IsAllocateUninitializedContext());
+ mat = new(Z) MaterializeObjectInstr(
+ alloc->AsAllocateUninitializedContext(), slots, values);
+ }
+
+ flow_graph_->InsertBefore(exit, mat, NULL, FlowGraph::kValue);
+
+ // Replace all mentions of this allocation with a newly inserted
+ // MaterializeObject instruction.
+ // We must preserve the identity: all mentions are replaced by the same
+ // materialization.
+ for (Environment::DeepIterator env_it(exit->env());
+ !env_it.Done();
+ env_it.Advance()) {
+ Value* use = env_it.CurrentValue();
+ if (use->definition() == alloc) {
+ use->RemoveFromUseList();
+ use->set_definition(mat);
+ mat->AddEnvUse(use);
+ }
+ }
+
+ // Mark MaterializeObject as an environment use of this allocation.
+ // This will allow us to discover it when we are looking for deoptimization
+ // exits for another allocation that potentially flows into this one.
+ Value* val = new(Z) Value(alloc);
+ val->set_instruction(mat);
+ alloc->AddEnvUse(val);
+
+ // Record inserted materialization.
+ materializations_.Add(mat);
+}
+
+
+// Add given instruction to the list of the instructions if it is not yet
+// present there.
+template<typename T>
+void AddInstruction(GrowableArray<T*>* list, T* value) {
+ ASSERT(!value->IsGraphEntry());
+ for (intptr_t i = 0; i < list->length(); i++) {
+ if ((*list)[i] == value) {
+ return;
+ }
+ }
+ list->Add(value);
+}
+
+
+// Transitively collect all deoptimization exits that might need this allocation
+// rematerialized. It is not enough to collect only environment uses of this
+// allocation because it can flow into other objects that will be
+// dematerialized and that are referenced by deopt environments that
+// don't contain this allocation explicitly.
+void AllocationSinking::ExitsCollector::Collect(Definition* alloc) {
+ for (Value* use = alloc->env_use_list();
+ use != NULL;
+ use = use->next_use()) {
+ if (use->instruction()->IsMaterializeObject()) {
+ AddInstruction(&exits_, ExitForMaterialization(
+ use->instruction()->AsMaterializeObject()));
+ } else {
+ AddInstruction(&exits_, use->instruction());
+ }
+ }
+
+ // Check if this allocation is stored into any other allocation sinking
+ // candidate and put it on worklist so that we conservatively collect all
+ // exits for that candidate as well because they potentially might see
+ // this object.
+ for (Value* use = alloc->input_use_list();
+ use != NULL;
+ use = use->next_use()) {
+ Definition* obj = StoreInto(use);
+ if ((obj != NULL) && (obj != alloc)) {
+ AddInstruction(&worklist_, obj);
+ }
+ }
+}
+
+
+void AllocationSinking::ExitsCollector::CollectTransitively(Definition* alloc) {
+ exits_.TruncateTo(0);
+ worklist_.TruncateTo(0);
+
+ worklist_.Add(alloc);
+
+ // Note: worklist potentially will grow while we are iterating over it.
+ // We are not removing allocations from the worklist not to waste space on
+ // the side maintaining BitVector of already processed allocations: worklist
+ // is expected to be very small thus linear search in it is just as effecient
+ // as a bitvector.
+ for (intptr_t i = 0; i < worklist_.length(); i++) {
+ Collect(worklist_[i]);
+ }
+}
+
+
+void AllocationSinking::InsertMaterializations(Definition* alloc) {
+ // Collect all fields that are written for this instance.
+ ZoneGrowableArray<const Object*>* slots =
+ new(Z) ZoneGrowableArray<const Object*>(5);
+
+ for (Value* use = alloc->input_use_list();
+ use != NULL;
+ use = use->next_use()) {
+ StoreInstanceFieldInstr* store = use->instruction()->AsStoreInstanceField();
+ if ((store != NULL) && (store->instance()->definition() == alloc)) {
+ if (!store->field().IsNull()) {
+ AddSlot(slots, store->field());
+ } else {
+ AddSlot(slots, Smi::ZoneHandle(Z, Smi::New(store->offset_in_bytes())));
+ }
+ }
+ }
+
+ if (alloc->ArgumentCount() > 0) {
+ AllocateObjectInstr* alloc_object = alloc->AsAllocateObject();
+ ASSERT(alloc_object->ArgumentCount() == 1);
+ intptr_t type_args_offset =
+ alloc_object->cls().type_arguments_field_offset();
+ AddSlot(slots, Smi::ZoneHandle(Z, Smi::New(type_args_offset)));
+ }
+
+ // Collect all instructions that mention this object in the environment.
+ exits_collector_.CollectTransitively(alloc);
+
+ // Insert materializations at environment uses.
+ for (intptr_t i = 0; i < exits_collector_.exits().length(); i++) {
+ CreateMaterializationAt(
+ exits_collector_.exits()[i], alloc, *slots);
+ }
+}
+
+
+void TryCatchAnalyzer::Optimize(FlowGraph* flow_graph) {
+ // For every catch-block: Iterate over all call instructions inside the
+ // corresponding try-block and figure out for each environment value if it
+ // is the same constant at all calls. If yes, replace the initial definition
+ // at the catch-entry with this constant.
+ const GrowableArray<CatchBlockEntryInstr*>& catch_entries =
+ flow_graph->graph_entry()->catch_entries();
+ intptr_t base = kFirstLocalSlotFromFp + flow_graph->num_non_copied_params();
+ for (intptr_t catch_idx = 0;
+ catch_idx < catch_entries.length();
+ ++catch_idx) {
+ CatchBlockEntryInstr* catch_entry = catch_entries[catch_idx];
+
+ // Initialize cdefs with the original initial definitions (ParameterInstr).
+ // The following representation is used:
+ // ParameterInstr => unknown
+ // ConstantInstr => known constant
+ // NULL => non-constant
+ GrowableArray<Definition*>* idefs = catch_entry->initial_definitions();
+ GrowableArray<Definition*> cdefs(idefs->length());
+ cdefs.AddArray(*idefs);
+
+ // exception_var and stacktrace_var are never constant.
+ intptr_t ex_idx = base - catch_entry->exception_var().index();
+ intptr_t st_idx = base - catch_entry->stacktrace_var().index();
+ cdefs[ex_idx] = cdefs[st_idx] = NULL;
+
+ for (BlockIterator block_it = flow_graph->reverse_postorder_iterator();
+ !block_it.Done();
+ block_it.Advance()) {
+ BlockEntryInstr* block = block_it.Current();
+ if (block->try_index() == catch_entry->catch_try_index()) {
+ for (ForwardInstructionIterator instr_it(block);
+ !instr_it.Done();
+ instr_it.Advance()) {
+ Instruction* current = instr_it.Current();
+ if (current->MayThrow()) {
+ Environment* env = current->env()->Outermost();
+ ASSERT(env != NULL);
+ for (intptr_t env_idx = 0; env_idx < cdefs.length(); ++env_idx) {
+ if (cdefs[env_idx] != NULL &&
+ env->ValueAt(env_idx)->BindsToConstant()) {
+ cdefs[env_idx] = env->ValueAt(env_idx)->definition();
+ }
+ if (cdefs[env_idx] != env->ValueAt(env_idx)->definition()) {
+ cdefs[env_idx] = NULL;
+ }
+ }
+ }
+ }
+ }
+ }
+ for (intptr_t j = 0; j < idefs->length(); ++j) {
+ if (cdefs[j] != NULL && cdefs[j]->IsConstant()) {
+ // TODO(fschneider): Use constants from the constant pool.
+ Definition* old = (*idefs)[j];
+ ConstantInstr* orig = cdefs[j]->AsConstant();
+ ConstantInstr* copy =
+ new(flow_graph->zone()) ConstantInstr(orig->value());
+ copy->set_ssa_temp_index(flow_graph->alloc_ssa_temp_index());
+ old->ReplaceUsesWith(copy);
+ (*idefs)[j] = copy;
+ }
+ }
+ }
+}
+
+
+// Returns true iff this definition is used in a non-phi instruction.
+static bool HasRealUse(Definition* def) {
+ // Environment uses are real (non-phi) uses.
+ if (def->env_use_list() != NULL) return true;
+
+ for (Value::Iterator it(def->input_use_list());
+ !it.Done();
+ it.Advance()) {
+ if (!it.Current()->instruction()->IsPhi()) return true;
+ }
+ return false;
+}
+
+
+void DeadCodeElimination::EliminateDeadPhis(FlowGraph* flow_graph) {
+ GrowableArray<PhiInstr*> live_phis;
+ for (BlockIterator b = flow_graph->postorder_iterator();
+ !b.Done();
+ b.Advance()) {
+ JoinEntryInstr* join = b.Current()->AsJoinEntry();
+ if (join != NULL) {
+ for (PhiIterator it(join); !it.Done(); it.Advance()) {
+ PhiInstr* phi = it.Current();
+ // Phis that have uses and phis inside try blocks are
+ // marked as live.
+ if (HasRealUse(phi) || join->InsideTryBlock()) {
+ live_phis.Add(phi);
+ phi->mark_alive();
+ } else {
+ phi->mark_dead();
+ }
+ }
+ }
+ }
+
+ while (!live_phis.is_empty()) {
+ PhiInstr* phi = live_phis.RemoveLast();
+ for (intptr_t i = 0; i < phi->InputCount(); i++) {
+ Value* val = phi->InputAt(i);
+ PhiInstr* used_phi = val->definition()->AsPhi();
+ if ((used_phi != NULL) && !used_phi->is_alive()) {
+ used_phi->mark_alive();
+ live_phis.Add(used_phi);
+ }
+ }
+ }
+
+ for (BlockIterator it(flow_graph->postorder_iterator());
+ !it.Done();
+ it.Advance()) {
+ JoinEntryInstr* join = it.Current()->AsJoinEntry();
+ if (join != NULL) {
+ if (join->phis_ == NULL) continue;
+
+ // Eliminate dead phis and compact the phis_ array of the block.
+ intptr_t to_index = 0;
+ for (intptr_t i = 0; i < join->phis_->length(); ++i) {
+ PhiInstr* phi = (*join->phis_)[i];
+ if (phi != NULL) {
+ if (!phi->is_alive()) {
+ phi->ReplaceUsesWith(flow_graph->constant_null());
+ phi->UnuseAllInputs();
+ (*join->phis_)[i] = NULL;
+ if (FLAG_trace_optimization) {
+ THR_Print("Removing dead phi v%" Pd "\n", phi->ssa_temp_index());
+ }
+ } else if (phi->IsRedundant()) {
+ phi->ReplaceUsesWith(phi->InputAt(0)->definition());
+ phi->UnuseAllInputs();
+ (*join->phis_)[i] = NULL;
+ if (FLAG_trace_optimization) {
+ THR_Print("Removing redundant phi v%" Pd "\n",
+ phi->ssa_temp_index());
+ }
+ } else {
+ (*join->phis_)[to_index++] = phi;
+ }
+ }
+ }
+ if (to_index == 0) {
+ join->phis_ = NULL;
+ } else {
+ join->phis_->TruncateTo(to_index);
+ }
+ }
+ }
+}
+
+
+} // namespace dart
« no previous file with comments | « runtime/vm/redundancy_elimination.h ('k') | runtime/vm/vm_sources.gypi » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698