Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(71)

Side by Side Diff: src/IceTargetLoweringARM32.cpp

Issue 1676123002: Subzero: Use a proper RegNumT type instead of int32_t/SizeT. (Closed) Base URL: https://chromium.googlesource.com/native_client/pnacl-subzero.git@master
Patch Set: Fix int32_t ==> int for the result of BitVector find_first() and find_next() Created 4 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
1 //===- subzero/src/IceTargetLoweringARM32.cpp - ARM32 lowering ------------===// 1 //===- subzero/src/IceTargetLoweringARM32.cpp - ARM32 lowering ------------===//
2 // 2 //
3 // The Subzero Code Generator 3 // The Subzero Code Generator
4 // 4 //
5 // This file is distributed under the University of Illinois Open Source 5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details. 6 // License. See LICENSE.TXT for details.
7 // 7 //
8 //===----------------------------------------------------------------------===// 8 //===----------------------------------------------------------------------===//
9 /// 9 ///
10 /// \file 10 /// \file
(...skipping 328 matching lines...) Expand 10 before | Expand all | Expand 10 after
339 TypeToRegisterSet[IceType_v16i8] = VectorRegisters; 339 TypeToRegisterSet[IceType_v16i8] = VectorRegisters;
340 TypeToRegisterSet[IceType_v8i16] = VectorRegisters; 340 TypeToRegisterSet[IceType_v8i16] = VectorRegisters;
341 TypeToRegisterSet[IceType_v4i32] = VectorRegisters; 341 TypeToRegisterSet[IceType_v4i32] = VectorRegisters;
342 TypeToRegisterSet[IceType_v4f32] = VectorRegisters; 342 TypeToRegisterSet[IceType_v4f32] = VectorRegisters;
343 343
344 for (size_t i = 0; i < llvm::array_lengthof(TypeToRegisterSet); ++i) 344 for (size_t i = 0; i < llvm::array_lengthof(TypeToRegisterSet); ++i)
345 TypeToRegisterSetUnfiltered[i] = TypeToRegisterSet[i]; 345 TypeToRegisterSetUnfiltered[i] = TypeToRegisterSet[i];
346 346
347 filterTypeToRegisterSet( 347 filterTypeToRegisterSet(
348 Ctx, RegARM32::Reg_NUM, TypeToRegisterSet, 348 Ctx, RegARM32::Reg_NUM, TypeToRegisterSet,
349 llvm::array_lengthof(TypeToRegisterSet), [](int32_t RegNum) -> IceString { 349 llvm::array_lengthof(TypeToRegisterSet), [](RegNumT RegNum) -> IceString {
350 // This function simply removes ", " from the register name. 350 // This function simply removes ", " from the register name.
351 IceString Name = RegARM32::getRegName(RegNum); 351 IceString Name = RegARM32::getRegName(RegNum);
352 constexpr const char RegSeparator[] = ", "; 352 constexpr const char RegSeparator[] = ", ";
353 constexpr size_t RegSeparatorWidth = 353 constexpr size_t RegSeparatorWidth =
354 llvm::array_lengthof(RegSeparator) - 1; 354 llvm::array_lengthof(RegSeparator) - 1;
355 for (size_t Pos = Name.find(RegSeparator); Pos != std::string::npos; 355 for (size_t Pos = Name.find(RegSeparator); Pos != std::string::npos;
356 Pos = Name.find(RegSeparator)) { 356 Pos = Name.find(RegSeparator)) {
357 Name.replace(Pos, RegSeparatorWidth, ""); 357 Name.replace(Pos, RegSeparatorWidth, "");
358 } 358 }
359 return Name; 359 return Name;
(...skipping 15 matching lines...) Expand all
375 SizeT FirstReg = RegARM32::getI64PairFirstGPRNum(Var->getRegNum()); 375 SizeT FirstReg = RegARM32::getI64PairFirstGPRNum(Var->getRegNum());
376 // This assumes little endian. 376 // This assumes little endian.
377 Variable *Lo = Var64->getLo(); 377 Variable *Lo = Var64->getLo();
378 Variable *Hi = Var64->getHi(); 378 Variable *Hi = Var64->getHi();
379 assert(Lo->hasReg() == Hi->hasReg()); 379 assert(Lo->hasReg() == Hi->hasReg());
380 if (Lo->hasReg()) { 380 if (Lo->hasReg()) {
381 continue; 381 continue;
382 } 382 }
383 Lo->setRegNum(FirstReg); 383 Lo->setRegNum(FirstReg);
384 Lo->setMustHaveReg(); 384 Lo->setMustHaveReg();
385 Hi->setRegNum(FirstReg + 1); 385 Hi->setRegNum(RegNumT::fixme(FirstReg + 1));
386 Hi->setMustHaveReg(); 386 Hi->setMustHaveReg();
387 } 387 }
388 } 388 }
389 } // end of anonymous namespace 389 } // end of anonymous namespace
390 390
391 uint32_t TargetARM32::getCallStackArgumentsSizeBytes(const InstCall *Call) { 391 uint32_t TargetARM32::getCallStackArgumentsSizeBytes(const InstCall *Call) {
392 TargetARM32::CallingConv CC; 392 TargetARM32::CallingConv CC;
393 int32_t DummyReg; 393 RegNumT DummyReg;
394 size_t OutArgsSizeBytes = 0; 394 size_t OutArgsSizeBytes = 0;
395 for (SizeT i = 0, NumArgs = Call->getNumArgs(); i < NumArgs; ++i) { 395 for (SizeT i = 0, NumArgs = Call->getNumArgs(); i < NumArgs; ++i) {
396 Operand *Arg = legalizeUndef(Call->getArg(i)); 396 Operand *Arg = legalizeUndef(Call->getArg(i));
397 const Type Ty = Arg->getType(); 397 const Type Ty = Arg->getType();
398 if (isScalarIntegerType(Ty)) { 398 if (isScalarIntegerType(Ty)) {
399 if (CC.argInGPR(Ty, &DummyReg)) { 399 if (CC.argInGPR(Ty, &DummyReg)) {
400 continue; 400 continue;
401 } 401 }
402 } else { 402 } else {
403 if (CC.argInVFP(Ty, &DummyReg)) { 403 if (CC.argInVFP(Ty, &DummyReg)) {
(...skipping 491 matching lines...) Expand 10 before | Expand all | Expand 10 after
895 return ARM32_STACK_ALIGNMENT_BYTES; 895 return ARM32_STACK_ALIGNMENT_BYTES;
896 } 896 }
897 897
898 bool TargetARM32::doBranchOpt(Inst *I, const CfgNode *NextNode) { 898 bool TargetARM32::doBranchOpt(Inst *I, const CfgNode *NextNode) {
899 if (auto *Br = llvm::dyn_cast<InstARM32Br>(I)) { 899 if (auto *Br = llvm::dyn_cast<InstARM32Br>(I)) {
900 return Br->optimizeBranch(NextNode); 900 return Br->optimizeBranch(NextNode);
901 } 901 }
902 return false; 902 return false;
903 } 903 }
904 904
905 IceString TargetARM32::getRegName(SizeT RegNum, Type Ty) const { 905 IceString TargetARM32::getRegName(RegNumT RegNum, Type Ty) const {
906 assert(RegNum < RegARM32::Reg_NUM);
907 (void)Ty; 906 (void)Ty;
908 return RegARM32::getRegName(RegNum); 907 return RegARM32::getRegName(RegNum);
909 } 908 }
910 909
911 Variable *TargetARM32::getPhysicalRegister(SizeT RegNum, Type Ty) { 910 Variable *TargetARM32::getPhysicalRegister(RegNumT RegNum, Type Ty) {
912 static const Type DefaultType[] = { 911 static const Type DefaultType[] = {
913 #define X(val, encode, name, cc_arg, scratch, preserved, stackptr, frameptr, \ 912 #define X(val, encode, name, cc_arg, scratch, preserved, stackptr, frameptr, \
914 isGPR, isInt, isI64Pair, isFP32, isFP64, isVec128, alias_init) \ 913 isGPR, isInt, isI64Pair, isFP32, isFP64, isVec128, alias_init) \
915 (isFP32) \ 914 (isFP32) \
916 ? IceType_f32 \ 915 ? IceType_f32 \
917 : ((isFP64) ? IceType_f64 : ((isVec128 ? IceType_v4i32 : IceType_i32))), 916 : ((isFP64) ? IceType_f64 : ((isVec128 ? IceType_v4i32 : IceType_i32))),
918 REGARM32_TABLE 917 REGARM32_TABLE
919 #undef X 918 #undef X
920 }; 919 };
921 920
922 assert(RegNum < RegARM32::Reg_NUM); 921 assert(unsigned(RegNum) < RegARM32::Reg_NUM);
923 if (Ty == IceType_void) { 922 if (Ty == IceType_void) {
924 assert(RegNum < llvm::array_lengthof(DefaultType)); 923 assert(unsigned(RegNum) < llvm::array_lengthof(DefaultType));
925 Ty = DefaultType[RegNum]; 924 Ty = DefaultType[RegNum];
926 } 925 }
927 if (PhysicalRegisters[Ty].empty()) 926 if (PhysicalRegisters[Ty].empty())
928 PhysicalRegisters[Ty].resize(RegARM32::Reg_NUM); 927 PhysicalRegisters[Ty].resize(RegARM32::Reg_NUM);
929 assert(RegNum < PhysicalRegisters[Ty].size()); 928 assert(unsigned(RegNum) < PhysicalRegisters[Ty].size());
930 Variable *Reg = PhysicalRegisters[Ty][RegNum]; 929 Variable *Reg = PhysicalRegisters[Ty][RegNum];
931 if (Reg == nullptr) { 930 if (Reg == nullptr) {
932 Reg = Func->makeVariable(Ty); 931 Reg = Func->makeVariable(Ty);
933 Reg->setRegNum(RegNum); 932 Reg->setRegNum(RegNum);
934 PhysicalRegisters[Ty][RegNum] = Reg; 933 PhysicalRegisters[Ty][RegNum] = Reg;
935 // Specially mark a named physical register as an "argument" so that it is 934 // Specially mark a named physical register as an "argument" so that it is
936 // considered live upon function entry. Otherwise it's possible to get 935 // considered live upon function entry. Otherwise it's possible to get
937 // liveness validation errors for saving callee-save registers. 936 // liveness validation errors for saving callee-save registers.
938 Func->addImplicitArg(Reg); 937 Func->addImplicitArg(Reg);
939 // Don't bother tracking the live range of a named physical register. 938 // Don't bother tracking the live range of a named physical register.
(...skipping 16 matching lines...) Expand all
956 Str << getRegName(Var->getRegNum(), Var->getType()); 955 Str << getRegName(Var->getRegNum(), Var->getType());
957 return; 956 return;
958 } 957 }
959 if (Var->mustHaveReg()) { 958 if (Var->mustHaveReg()) {
960 llvm::report_fatal_error("Infinite-weight Variable (" + Var->getName(Func) + 959 llvm::report_fatal_error("Infinite-weight Variable (" + Var->getName(Func) +
961 ") has no register assigned - function " + 960 ") has no register assigned - function " +
962 Func->getFunctionName()); 961 Func->getFunctionName());
963 } 962 }
964 assert(!Var->isRematerializable()); 963 assert(!Var->isRematerializable());
965 int32_t Offset = Var->getStackOffset(); 964 int32_t Offset = Var->getStackOffset();
966 int32_t BaseRegNum = Var->getBaseRegNum(); 965 RegNumT BaseRegNum = Var->getBaseRegNum();
967 if (BaseRegNum == Variable::NoRegister) { 966 if (BaseRegNum == RegNumT::NoRegister) {
968 BaseRegNum = getFrameOrStackReg(); 967 BaseRegNum = getFrameOrStackReg();
969 } 968 }
970 const Type VarTy = Var->getType(); 969 const Type VarTy = Var->getType();
971 Str << "[" << getRegName(BaseRegNum, VarTy); 970 Str << "[" << getRegName(BaseRegNum, VarTy);
972 if (Offset != 0) { 971 if (Offset != 0) {
973 Str << ", #" << Offset; 972 Str << ", #" << Offset;
974 } 973 }
975 Str << "]"; 974 Str << "]";
976 } 975 }
977 976
978 TargetARM32::CallingConv::CallingConv() 977 TargetARM32::CallingConv::CallingConv()
979 : GPRegsUsed(RegARM32::Reg_NUM), 978 : GPRegsUsed(RegARM32::Reg_NUM),
980 GPRArgs(GPRArgInitializer.rbegin(), GPRArgInitializer.rend()), 979 GPRArgs(GPRArgInitializer.rbegin(), GPRArgInitializer.rend()),
981 I64Args(I64ArgInitializer.rbegin(), I64ArgInitializer.rend()), 980 I64Args(I64ArgInitializer.rbegin(), I64ArgInitializer.rend()),
982 VFPRegsUsed(RegARM32::Reg_NUM), 981 VFPRegsUsed(RegARM32::Reg_NUM),
983 FP32Args(FP32ArgInitializer.rbegin(), FP32ArgInitializer.rend()), 982 FP32Args(FP32ArgInitializer.rbegin(), FP32ArgInitializer.rend()),
984 FP64Args(FP64ArgInitializer.rbegin(), FP64ArgInitializer.rend()), 983 FP64Args(FP64ArgInitializer.rbegin(), FP64ArgInitializer.rend()),
985 Vec128Args(Vec128ArgInitializer.rbegin(), Vec128ArgInitializer.rend()) {} 984 Vec128Args(Vec128ArgInitializer.rbegin(), Vec128ArgInitializer.rend()) {}
986 985
987 bool TargetARM32::CallingConv::argInGPR(Type Ty, int32_t *Reg) { 986 bool TargetARM32::CallingConv::argInGPR(Type Ty, RegNumT *Reg) {
988 CfgVector<SizeT> *Source; 987 CfgVector<SizeT> *Source;
989 988
990 switch (Ty) { 989 switch (Ty) {
991 default: { 990 default: {
992 assert(isScalarIntegerType(Ty)); 991 assert(isScalarIntegerType(Ty));
993 Source = &GPRArgs; 992 Source = &GPRArgs;
994 } break; 993 } break;
995 case IceType_i64: { 994 case IceType_i64: {
996 Source = &I64Args; 995 Source = &I64Args;
997 } break; 996 } break;
(...skipping 21 matching lines...) Expand all
1019 // we remove all of its aliases from the pool of available GPRs. This has the 1018 // we remove all of its aliases from the pool of available GPRs. This has the
1020 // effect of computing the "closure" on the GPR registers. 1019 // effect of computing the "closure" on the GPR registers.
1021 void TargetARM32::CallingConv::discardUnavailableGPRsAndTheirAliases( 1020 void TargetARM32::CallingConv::discardUnavailableGPRsAndTheirAliases(
1022 CfgVector<SizeT> *Regs) { 1021 CfgVector<SizeT> *Regs) {
1023 while (!Regs->empty() && GPRegsUsed[Regs->back()]) { 1022 while (!Regs->empty() && GPRegsUsed[Regs->back()]) {
1024 GPRegsUsed |= RegisterAliases[Regs->back()]; 1023 GPRegsUsed |= RegisterAliases[Regs->back()];
1025 Regs->pop_back(); 1024 Regs->pop_back();
1026 } 1025 }
1027 } 1026 }
1028 1027
1029 bool TargetARM32::CallingConv::argInVFP(Type Ty, int32_t *Reg) { 1028 bool TargetARM32::CallingConv::argInVFP(Type Ty, RegNumT *Reg) {
1030 CfgVector<SizeT> *Source; 1029 CfgVector<SizeT> *Source;
1031 1030
1032 switch (Ty) { 1031 switch (Ty) {
1033 default: { 1032 default: {
1034 assert(isVectorType(Ty)); 1033 assert(isVectorType(Ty));
1035 Source = &Vec128Args; 1034 Source = &Vec128Args;
1036 } break; 1035 } break;
1037 case IceType_f32: { 1036 case IceType_f32: {
1038 Source = &FP32Args; 1037 Source = &FP32Args;
1039 } break; 1038 } break;
(...skipping 29 matching lines...) Expand all
1069 1068
1070 // For each register argument, replace Arg in the argument list with the home 1069 // For each register argument, replace Arg in the argument list with the home
1071 // register. Then generate an instruction in the prolog to copy the home 1070 // register. Then generate an instruction in the prolog to copy the home
1072 // register to the assigned location of Arg. 1071 // register to the assigned location of Arg.
1073 Context.init(Func->getEntryNode()); 1072 Context.init(Func->getEntryNode());
1074 Context.setInsertPoint(Context.getCur()); 1073 Context.setInsertPoint(Context.getCur());
1075 1074
1076 for (SizeT I = 0, E = Args.size(); I < E; ++I) { 1075 for (SizeT I = 0, E = Args.size(); I < E; ++I) {
1077 Variable *Arg = Args[I]; 1076 Variable *Arg = Args[I];
1078 Type Ty = Arg->getType(); 1077 Type Ty = Arg->getType();
1079 int RegNum; 1078 RegNumT RegNum;
1080 if (isScalarIntegerType(Ty)) { 1079 if (isScalarIntegerType(Ty)) {
1081 if (!CC.argInGPR(Ty, &RegNum)) { 1080 if (!CC.argInGPR(Ty, &RegNum)) {
1082 continue; 1081 continue;
1083 } 1082 }
1084 } else { 1083 } else {
1085 if (!CC.argInVFP(Ty, &RegNum)) { 1084 if (!CC.argInVFP(Ty, &RegNum)) {
1086 continue; 1085 continue;
1087 } 1086 }
1088 } 1087 }
1089 1088
(...skipping 265 matching lines...) Expand 10 before | Expand all | Expand 10 after
1355 // Arg[0] is closest to the stack/frame pointer. 1354 // Arg[0] is closest to the stack/frame pointer.
1356 Variable *FramePtr = getPhysicalRegister(getFrameOrStackReg()); 1355 Variable *FramePtr = getPhysicalRegister(getFrameOrStackReg());
1357 size_t BasicFrameOffset = PreservedRegsSizeBytes; 1356 size_t BasicFrameOffset = PreservedRegsSizeBytes;
1358 if (!UsesFramePointer) 1357 if (!UsesFramePointer)
1359 BasicFrameOffset += SpillAreaSizeBytes; 1358 BasicFrameOffset += SpillAreaSizeBytes;
1360 1359
1361 const VarList &Args = Func->getArgs(); 1360 const VarList &Args = Func->getArgs();
1362 size_t InArgsSizeBytes = 0; 1361 size_t InArgsSizeBytes = 0;
1363 TargetARM32::CallingConv CC; 1362 TargetARM32::CallingConv CC;
1364 for (Variable *Arg : Args) { 1363 for (Variable *Arg : Args) {
1365 int32_t DummyReg; 1364 RegNumT DummyReg;
1366 const Type Ty = Arg->getType(); 1365 const Type Ty = Arg->getType();
1367 1366
1368 // Skip arguments passed in registers. 1367 // Skip arguments passed in registers.
1369 if (isScalarIntegerType(Ty)) { 1368 if (isScalarIntegerType(Ty)) {
1370 if (CC.argInGPR(Ty, &DummyReg)) { 1369 if (CC.argInGPR(Ty, &DummyReg)) {
1371 continue; 1370 continue;
1372 } 1371 }
1373 } else { 1372 } else {
1374 if (CC.argInVFP(Ty, &DummyReg)) { 1373 if (CC.argInVFP(Ty, &DummyReg)) {
1375 continue; 1374 continue;
(...skipping 98 matching lines...) Expand 10 before | Expand all | Expand 10 after
1474 1473
1475 RI->setDeleted(); 1474 RI->setDeleted();
1476 } 1475 }
1477 1476
1478 bool TargetARM32::isLegalMemOffset(Type Ty, int32_t Offset) const { 1477 bool TargetARM32::isLegalMemOffset(Type Ty, int32_t Offset) const {
1479 constexpr bool ZeroExt = false; 1478 constexpr bool ZeroExt = false;
1480 return OperandARM32Mem::canHoldOffset(Ty, ZeroExt, Offset); 1479 return OperandARM32Mem::canHoldOffset(Ty, ZeroExt, Offset);
1481 } 1480 }
1482 1481
1483 Variable *TargetARM32::PostLoweringLegalizer::newBaseRegister( 1482 Variable *TargetARM32::PostLoweringLegalizer::newBaseRegister(
1484 Variable *Base, int32_t Offset, int32_t ScratchRegNum) { 1483 Variable *Base, int32_t Offset, RegNumT ScratchRegNum) {
1485 // Legalize will likely need a movw/movt combination, but if the top bits are 1484 // Legalize will likely need a movw/movt combination, but if the top bits are
1486 // all 0 from negating the offset and subtracting, we could use that instead. 1485 // all 0 from negating the offset and subtracting, we could use that instead.
1487 const bool ShouldSub = Offset != 0 && (-Offset & 0xFFFF0000) == 0; 1486 const bool ShouldSub = Offset != 0 && (-Offset & 0xFFFF0000) == 0;
1488 Variable *ScratchReg = Target->makeReg(IceType_i32, ScratchRegNum); 1487 Variable *ScratchReg = Target->makeReg(IceType_i32, ScratchRegNum);
1489 if (ShouldSub) { 1488 if (ShouldSub) {
1490 Operand *OffsetVal = 1489 Operand *OffsetVal =
1491 Target->legalize(Target->Ctx->getConstantInt32(-Offset), 1490 Target->legalize(Target->Ctx->getConstantInt32(-Offset),
1492 Legal_Reg | Legal_Flex, ScratchRegNum); 1491 Legal_Reg | Legal_Flex, ScratchRegNum);
1493 Target->_sub(ScratchReg, Base, OffsetVal); 1492 Target->_sub(ScratchReg, Base, OffsetVal);
1494 } else { 1493 } else {
1495 Operand *OffsetVal = 1494 Operand *OffsetVal =
1496 Target->legalize(Target->Ctx->getConstantInt32(Offset), 1495 Target->legalize(Target->Ctx->getConstantInt32(Offset),
1497 Legal_Reg | Legal_Flex, ScratchRegNum); 1496 Legal_Reg | Legal_Flex, ScratchRegNum);
1498 Target->_add(ScratchReg, Base, OffsetVal); 1497 Target->_add(ScratchReg, Base, OffsetVal);
1499 } 1498 }
1500 1499
1501 if (ScratchRegNum == Target->getReservedTmpReg()) { 1500 if (ScratchRegNum == Target->getReservedTmpReg()) {
1502 const bool BaseIsStackOrFramePtr = 1501 const bool BaseIsStackOrFramePtr =
1503 Base->getRegNum() == static_cast<int32_t>(Target->getFrameOrStackReg()); 1502 Base->getRegNum() == Target->getFrameOrStackReg();
1504 // There is currently no code path that would trigger this assertion, so we 1503 // There is currently no code path that would trigger this assertion, so we
1505 // leave this assertion here in case it is ever violated. This is not a 1504 // leave this assertion here in case it is ever violated. This is not a
1506 // fatal error (thus the use of assert() and not llvm::report_fatal_error) 1505 // fatal error (thus the use of assert() and not llvm::report_fatal_error)
1507 // as the program compiled by subzero will still work correctly. 1506 // as the program compiled by subzero will still work correctly.
1508 assert(BaseIsStackOrFramePtr); 1507 assert(BaseIsStackOrFramePtr);
1509 // Side-effect: updates TempBase to reflect the new Temporary. 1508 // Side-effect: updates TempBase to reflect the new Temporary.
1510 if (BaseIsStackOrFramePtr) { 1509 if (BaseIsStackOrFramePtr) {
1511 TempBaseReg = ScratchReg; 1510 TempBaseReg = ScratchReg;
1512 TempBaseOffset = Offset; 1511 TempBaseOffset = Offset;
1513 } else { 1512 } else {
(...skipping 86 matching lines...) Expand 10 before | Expand all | Expand 10 after
1600 MovInstr->getPredicate()); 1599 MovInstr->getPredicate());
1601 // _str() does not have a Dest, so we add a fake-def(Dest). 1600 // _str() does not have a Dest, so we add a fake-def(Dest).
1602 Target->Context.insert<InstFakeDef>(Dest); 1601 Target->Context.insert<InstFakeDef>(Dest);
1603 Legalized = true; 1602 Legalized = true;
1604 } else if (auto *Var = llvm::dyn_cast<Variable>(Src)) { 1603 } else if (auto *Var = llvm::dyn_cast<Variable>(Src)) {
1605 if (Var->isRematerializable()) { 1604 if (Var->isRematerializable()) {
1606 // This is equivalent to an x86 _lea(RematOffset(%esp/%ebp), Variable). 1605 // This is equivalent to an x86 _lea(RematOffset(%esp/%ebp), Variable).
1607 1606
1608 // ExtraOffset is only needed for frame-pointer based frames as we have 1607 // ExtraOffset is only needed for frame-pointer based frames as we have
1609 // to account for spill storage. 1608 // to account for spill storage.
1610 const int32_t ExtraOffset = 1609 const int32_t ExtraOffset = (Var->getRegNum() == Target->getFrameReg())
1611 (static_cast<SizeT>(Var->getRegNum()) == Target->getFrameReg()) 1610 ? Target->getFrameFixedAllocaOffset()
1612 ? Target->getFrameFixedAllocaOffset() 1611 : 0;
1613 : 0;
1614 1612
1615 const int32_t Offset = Var->getStackOffset() + ExtraOffset; 1613 const int32_t Offset = Var->getStackOffset() + ExtraOffset;
1616 Variable *Base = Target->getPhysicalRegister(Var->getRegNum()); 1614 Variable *Base = Target->getPhysicalRegister(Var->getRegNum());
1617 Variable *T = newBaseRegister(Base, Offset, Dest->getRegNum()); 1615 Variable *T = newBaseRegister(Base, Offset, Dest->getRegNum());
1618 Target->_mov(Dest, T); 1616 Target->_mov(Dest, T);
1619 Legalized = true; 1617 Legalized = true;
1620 } else { 1618 } else {
1621 if (!Var->hasReg()) { 1619 if (!Var->hasReg()) {
1622 // This is a _mov(Variable, Mem()), i.e., a load. 1620 // This is a _mov(Variable, Mem()), i.e., a load.
1623 const int32_t Offset = Var->getStackOffset(); 1621 const int32_t Offset = Var->getStackOffset();
(...skipping 47 matching lines...) Expand 10 before | Expand all | Expand 10 after
1671 bool AllowOffsets) { 1669 bool AllowOffsets) {
1672 assert(!Mem->isRegReg() || !Mem->getIndex()->isRematerializable()); 1670 assert(!Mem->isRegReg() || !Mem->getIndex()->isRematerializable());
1673 assert( 1671 assert(
1674 Mem->isRegReg() || 1672 Mem->isRegReg() ||
1675 Target->isLegalMemOffset(Mem->getType(), Mem->getOffset()->getValue())); 1673 Target->isLegalMemOffset(Mem->getType(), Mem->getOffset()->getValue()));
1676 1674
1677 bool Legalized = false; 1675 bool Legalized = false;
1678 Variable *Base = Mem->getBase(); 1676 Variable *Base = Mem->getBase();
1679 int32_t Offset = Mem->isRegReg() ? 0 : Mem->getOffset()->getValue(); 1677 int32_t Offset = Mem->isRegReg() ? 0 : Mem->getOffset()->getValue();
1680 if (Base->isRematerializable()) { 1678 if (Base->isRematerializable()) {
1681 const int32_t ExtraOffset = 1679 const int32_t ExtraOffset = (Base->getRegNum() == Target->getFrameReg())
1682 (static_cast<SizeT>(Base->getRegNum()) == Target->getFrameReg()) 1680 ? Target->getFrameFixedAllocaOffset()
1683 ? Target->getFrameFixedAllocaOffset() 1681 : 0;
1684 : 0;
1685 Offset += Base->getStackOffset() + ExtraOffset; 1682 Offset += Base->getStackOffset() + ExtraOffset;
1686 Base = Target->getPhysicalRegister(Base->getRegNum()); 1683 Base = Target->getPhysicalRegister(Base->getRegNum());
1687 assert(!Base->isRematerializable()); 1684 assert(!Base->isRematerializable());
1688 Legalized = true; 1685 Legalized = true;
1689 } 1686 }
1690 1687
1691 if (!Legalized && !Target->NeedSandboxing) { 1688 if (!Legalized && !Target->NeedSandboxing) {
1692 return nullptr; 1689 return nullptr;
1693 } 1690 }
1694 1691
(...skipping 199 matching lines...) Expand 10 before | Expand all | Expand 10 after
1894 } 1891 }
1895 } 1892 }
1896 llvm::report_fatal_error("Unsupported operand type"); 1893 llvm::report_fatal_error("Unsupported operand type");
1897 return nullptr; 1894 return nullptr;
1898 } 1895 }
1899 1896
1900 llvm::SmallBitVector TargetARM32::getRegisterSet(RegSetMask Include, 1897 llvm::SmallBitVector TargetARM32::getRegisterSet(RegSetMask Include,
1901 RegSetMask Exclude) const { 1898 RegSetMask Exclude) const {
1902 llvm::SmallBitVector Registers(RegARM32::Reg_NUM); 1899 llvm::SmallBitVector Registers(RegARM32::Reg_NUM);
1903 1900
1904 for (int32_t i = 0; i < RegARM32::Reg_NUM; ++i) { 1901 for (uint32_t i = 0; i < RegARM32::Reg_NUM; ++i) {
Eric Holk 2016/02/08 19:37:10 Would something like a Register iterator make sens
Jim Stichnoth 2016/02/09 19:33:39 Good idea for future work. :) I had thought about
Eric Holk 2016/02/10 01:11:30 Cool :)
1905 const auto &Entry = RegARM32::RegTable[i]; 1902 const auto &Entry = RegARM32::RegTable[i];
1906 if (Entry.Scratch && (Include & RegSet_CallerSave)) 1903 if (Entry.Scratch && (Include & RegSet_CallerSave))
1907 Registers[i] = true; 1904 Registers[i] = true;
1908 if (Entry.Preserved && (Include & RegSet_CalleeSave)) 1905 if (Entry.Preserved && (Include & RegSet_CalleeSave))
1909 Registers[i] = true; 1906 Registers[i] = true;
1910 if (Entry.StackPtr && (Include & RegSet_StackPointer)) 1907 if (Entry.StackPtr && (Include & RegSet_StackPointer))
1911 Registers[i] = true; 1908 Registers[i] = true;
1912 if (Entry.FramePtr && (Include & RegSet_FramePointer)) 1909 if (Entry.FramePtr && (Include & RegSet_FramePointer))
1913 Registers[i] = true; 1910 Registers[i] = true;
1914 if (Entry.Scratch && (Exclude & RegSet_CallerSave)) 1911 if (Entry.Scratch && (Exclude & RegSet_CallerSave))
(...skipping 1439 matching lines...) Expand 10 before | Expand all | Expand 10 after
3354 if (TargetHelperPreamble != ARM32HelpersPreamble.end()) { 3351 if (TargetHelperPreamble != ARM32HelpersPreamble.end()) {
3355 (this->*TargetHelperPreamble->second)(Instr); 3352 (this->*TargetHelperPreamble->second)(Instr);
3356 } 3353 }
3357 } 3354 }
3358 MaybeLeafFunc = false; 3355 MaybeLeafFunc = false;
3359 NeedsStackAlignment = true; 3356 NeedsStackAlignment = true;
3360 3357
3361 // Assign arguments to registers and stack. Also reserve stack. 3358 // Assign arguments to registers and stack. Also reserve stack.
3362 TargetARM32::CallingConv CC; 3359 TargetARM32::CallingConv CC;
3363 // Pair of Arg Operand -> GPR number assignments. 3360 // Pair of Arg Operand -> GPR number assignments.
3364 llvm::SmallVector<std::pair<Operand *, int32_t>, NumGPRArgs> GPRArgs; 3361 llvm::SmallVector<std::pair<Operand *, RegNumT>, NumGPRArgs> GPRArgs;
3365 llvm::SmallVector<std::pair<Operand *, int32_t>, NumFP32Args> FPArgs; 3362 llvm::SmallVector<std::pair<Operand *, RegNumT>, NumFP32Args> FPArgs;
3366 // Pair of Arg Operand -> stack offset. 3363 // Pair of Arg Operand -> stack offset.
3367 llvm::SmallVector<std::pair<Operand *, int32_t>, 8> StackArgs; 3364 llvm::SmallVector<std::pair<Operand *, int32_t>, 8> StackArgs;
3368 size_t ParameterAreaSizeBytes = 0; 3365 size_t ParameterAreaSizeBytes = 0;
3369 3366
3370 // Classify each argument operand according to the location where the 3367 // Classify each argument operand according to the location where the
3371 // argument is passed. 3368 // argument is passed.
3372 for (SizeT i = 0, NumArgs = Instr->getNumArgs(); i < NumArgs; ++i) { 3369 for (SizeT i = 0, NumArgs = Instr->getNumArgs(); i < NumArgs; ++i) {
3373 Operand *Arg = legalizeUndef(Instr->getArg(i)); 3370 Operand *Arg = legalizeUndef(Instr->getArg(i));
3374 const Type Ty = Arg->getType(); 3371 const Type Ty = Arg->getType();
3375 bool InReg = false; 3372 bool InReg = false;
3376 int32_t Reg; 3373 RegNumT Reg;
3377 if (isScalarIntegerType(Ty)) { 3374 if (isScalarIntegerType(Ty)) {
3378 InReg = CC.argInGPR(Ty, &Reg); 3375 InReg = CC.argInGPR(Ty, &Reg);
3379 } else { 3376 } else {
3380 InReg = CC.argInVFP(Ty, &Reg); 3377 InReg = CC.argInVFP(Ty, &Reg);
3381 } 3378 }
3382 3379
3383 if (!InReg) { 3380 if (!InReg) {
3384 ParameterAreaSizeBytes = 3381 ParameterAreaSizeBytes =
3385 applyStackAlignmentTy(ParameterAreaSizeBytes, Ty); 3382 applyStackAlignmentTy(ParameterAreaSizeBytes, Ty);
3386 StackArgs.push_back(std::make_pair(Arg, ParameterAreaSizeBytes)); 3383 StackArgs.push_back(std::make_pair(Arg, ParameterAreaSizeBytes));
(...skipping 2063 matching lines...) Expand 10 before | Expand all | Expand 10 after
5450 } 5447 }
5451 5448
5452 void TargetARM32::lowerUnreachable(const InstUnreachable * /*Instr*/) { 5449 void TargetARM32::lowerUnreachable(const InstUnreachable * /*Instr*/) {
5453 _trap(); 5450 _trap();
5454 } 5451 }
5455 5452
5456 void TargetARM32::prelowerPhis() { 5453 void TargetARM32::prelowerPhis() {
5457 PhiLowering::prelowerPhis32Bit<TargetARM32>(this, Context.getNode(), Func); 5454 PhiLowering::prelowerPhis32Bit<TargetARM32>(this, Context.getNode(), Func);
5458 } 5455 }
5459 5456
5460 Variable *TargetARM32::makeVectorOfZeros(Type Ty, int32_t RegNum) { 5457 Variable *TargetARM32::makeVectorOfZeros(Type Ty, RegNumT RegNum) {
5461 Variable *Reg = makeReg(Ty, RegNum); 5458 Variable *Reg = makeReg(Ty, RegNum);
5462 Context.insert<InstFakeDef>(Reg); 5459 Context.insert<InstFakeDef>(Reg);
5463 UnimplementedError(Func->getContext()->getFlags()); 5460 UnimplementedError(Func->getContext()->getFlags());
5464 return Reg; 5461 return Reg;
5465 } 5462 }
5466 5463
5467 // Helper for legalize() to emit the right code to lower an operand to a 5464 // Helper for legalize() to emit the right code to lower an operand to a
5468 // register of the appropriate type. 5465 // register of the appropriate type.
5469 Variable *TargetARM32::copyToReg(Operand *Src, int32_t RegNum) { 5466 Variable *TargetARM32::copyToReg(Operand *Src, RegNumT RegNum) {
5470 Type Ty = Src->getType(); 5467 Type Ty = Src->getType();
5471 Variable *Reg = makeReg(Ty, RegNum); 5468 Variable *Reg = makeReg(Ty, RegNum);
5472 if (auto *Mem = llvm::dyn_cast<OperandARM32Mem>(Src)) { 5469 if (auto *Mem = llvm::dyn_cast<OperandARM32Mem>(Src)) {
5473 _ldr(Reg, Mem); 5470 _ldr(Reg, Mem);
5474 } else { 5471 } else {
5475 _mov(Reg, Src); 5472 _mov(Reg, Src);
5476 } 5473 }
5477 return Reg; 5474 return Reg;
5478 } 5475 }
5479 5476
5480 // TODO(jpp): remove unneeded else clauses in legalize. 5477 // TODO(jpp): remove unneeded else clauses in legalize.
5481 Operand *TargetARM32::legalize(Operand *From, LegalMask Allowed, 5478 Operand *TargetARM32::legalize(Operand *From, LegalMask Allowed,
5482 int32_t RegNum) { 5479 RegNumT RegNum) {
5483 Type Ty = From->getType(); 5480 Type Ty = From->getType();
5484 // Assert that a physical register is allowed. To date, all calls to 5481 // Assert that a physical register is allowed. To date, all calls to
5485 // legalize() allow a physical register. Legal_Flex converts registers to the 5482 // legalize() allow a physical register. Legal_Flex converts registers to the
5486 // right type OperandARM32FlexReg as needed. 5483 // right type OperandARM32FlexReg as needed.
5487 assert(Allowed & Legal_Reg); 5484 assert(Allowed & Legal_Reg);
5488 5485
5489 // Copied ipsis literis from TargetX86Base<Machine>. 5486 // Copied ipsis literis from TargetX86Base<Machine>.
5490 if (RegNum == Variable::NoRegister) { 5487 if (RegNum == RegNumT::NoRegister) {
5491 if (Variable *Subst = getContext().availabilityGet(From)) { 5488 if (Variable *Subst = getContext().availabilityGet(From)) {
5492 // At this point we know there is a potential substitution available. 5489 // At this point we know there is a potential substitution available.
5493 if (!Subst->isRematerializable() && Subst->mustHaveReg() && 5490 if (!Subst->isRematerializable() && Subst->mustHaveReg() &&
5494 !Subst->hasReg()) { 5491 !Subst->hasReg()) {
5495 // At this point we know the substitution will have a register. 5492 // At this point we know the substitution will have a register.
5496 if (From->getType() == Subst->getType()) { 5493 if (From->getType() == Subst->getType()) {
5497 // At this point we know the substitution's register is compatible. 5494 // At this point we know the substitution's register is compatible.
5498 return Subst; 5495 return Subst;
5499 } 5496 }
5500 } 5497 }
(...skipping 163 matching lines...) Expand 10 before | Expand all | Expand 10 after
5664 } 5661 }
5665 // Check if the variable is guaranteed a physical register. This can happen 5662 // Check if the variable is guaranteed a physical register. This can happen
5666 // either when the variable is pre-colored or when it is assigned infinite 5663 // either when the variable is pre-colored or when it is assigned infinite
5667 // weight. 5664 // weight.
5668 bool MustHaveRegister = (Var->hasReg() || Var->mustHaveReg()); 5665 bool MustHaveRegister = (Var->hasReg() || Var->mustHaveReg());
5669 // We need a new physical register for the operand if: 5666 // We need a new physical register for the operand if:
5670 // Mem is not allowed and Var isn't guaranteed a physical 5667 // Mem is not allowed and Var isn't guaranteed a physical
5671 // register, or 5668 // register, or
5672 // RegNum is required and Var->getRegNum() doesn't match. 5669 // RegNum is required and Var->getRegNum() doesn't match.
5673 if ((!(Allowed & Legal_Mem) && !MustHaveRegister) || 5670 if ((!(Allowed & Legal_Mem) && !MustHaveRegister) ||
5674 (RegNum != Variable::NoRegister && RegNum != Var->getRegNum())) { 5671 (RegNum != RegNumT::NoRegister && RegNum != Var->getRegNum())) {
5675 From = copyToReg(From, RegNum); 5672 From = copyToReg(From, RegNum);
5676 } 5673 }
5677 return From; 5674 return From;
5678 } 5675 }
5679 llvm::report_fatal_error("Unhandled operand kind in legalize()"); 5676 llvm::report_fatal_error("Unhandled operand kind in legalize()");
5680 5677
5681 return From; 5678 return From;
5682 } 5679 }
5683 5680
5684 /// Provide a trivial wrapper to legalize() for this common usage. 5681 /// Provide a trivial wrapper to legalize() for this common usage.
5685 Variable *TargetARM32::legalizeToReg(Operand *From, int32_t RegNum) { 5682 Variable *TargetARM32::legalizeToReg(Operand *From, RegNumT RegNum) {
5686 return llvm::cast<Variable>(legalize(From, Legal_Reg, RegNum)); 5683 return llvm::cast<Variable>(legalize(From, Legal_Reg, RegNum));
5687 } 5684 }
5688 5685
5689 /// Legalize undef values to concrete values. 5686 /// Legalize undef values to concrete values.
5690 Operand *TargetARM32::legalizeUndef(Operand *From, int32_t RegNum) { 5687 Operand *TargetARM32::legalizeUndef(Operand *From, RegNumT RegNum) {
5691 Type Ty = From->getType(); 5688 Type Ty = From->getType();
5692 if (llvm::isa<ConstantUndef>(From)) { 5689 if (llvm::isa<ConstantUndef>(From)) {
5693 // Lower undefs to zero. Another option is to lower undefs to an 5690 // Lower undefs to zero. Another option is to lower undefs to an
5694 // uninitialized register; however, using an uninitialized register results 5691 // uninitialized register; however, using an uninitialized register results
5695 // in less predictable code. 5692 // in less predictable code.
5696 // 5693 //
5697 // If in the future the implementation is changed to lower undef values to 5694 // If in the future the implementation is changed to lower undef values to
5698 // uninitialized registers, a FakeDef will be needed: 5695 // uninitialized registers, a FakeDef will be needed:
5699 // Context.insert(InstFakeDef::create(Func, Reg)); This is in order to 5696 // Context.insert(InstFakeDef::create(Func, Reg)); This is in order to
5700 // ensure that the live range of Reg is not overestimated. If the constant 5697 // ensure that the live range of Reg is not overestimated. If the constant
(...skipping 27 matching lines...) Expand all
5728 Variable64On32 *TargetARM32::makeI64RegPair() { 5725 Variable64On32 *TargetARM32::makeI64RegPair() {
5729 Variable64On32 *Reg = 5726 Variable64On32 *Reg =
5730 llvm::cast<Variable64On32>(Func->makeVariable(IceType_i64)); 5727 llvm::cast<Variable64On32>(Func->makeVariable(IceType_i64));
5731 Reg->setMustHaveReg(); 5728 Reg->setMustHaveReg();
5732 Reg->initHiLo(Func); 5729 Reg->initHiLo(Func);
5733 Reg->getLo()->setMustNotHaveReg(); 5730 Reg->getLo()->setMustNotHaveReg();
5734 Reg->getHi()->setMustNotHaveReg(); 5731 Reg->getHi()->setMustNotHaveReg();
5735 return Reg; 5732 return Reg;
5736 } 5733 }
5737 5734
5738 Variable *TargetARM32::makeReg(Type Type, int32_t RegNum) { 5735 Variable *TargetARM32::makeReg(Type Type, RegNumT RegNum) {
5739 // There aren't any 64-bit integer registers for ARM32. 5736 // There aren't any 64-bit integer registers for ARM32.
5740 assert(Type != IceType_i64); 5737 assert(Type != IceType_i64);
5741 assert(AllowTemporaryWithNoReg || RegNum != Variable::NoRegister); 5738 assert(AllowTemporaryWithNoReg || RegNum != RegNumT::NoRegister);
5742 Variable *Reg = Func->makeVariable(Type); 5739 Variable *Reg = Func->makeVariable(Type);
5743 if (RegNum == Variable::NoRegister) 5740 if (RegNum == RegNumT::NoRegister)
5744 Reg->setMustHaveReg(); 5741 Reg->setMustHaveReg();
5745 else 5742 else
5746 Reg->setRegNum(RegNum); 5743 Reg->setRegNum(RegNum);
5747 return Reg; 5744 return Reg;
5748 } 5745 }
5749 5746
5750 void TargetARM32::alignRegisterPow2(Variable *Reg, uint32_t Align, 5747 void TargetARM32::alignRegisterPow2(Variable *Reg, uint32_t Align,
5751 int32_t TmpRegNum) { 5748 RegNumT TmpRegNum) {
5752 assert(llvm::isPowerOf2_32(Align)); 5749 assert(llvm::isPowerOf2_32(Align));
5753 uint32_t RotateAmt; 5750 uint32_t RotateAmt;
5754 uint32_t Immed_8; 5751 uint32_t Immed_8;
5755 Operand *Mask; 5752 Operand *Mask;
5756 // Use AND or BIC to mask off the bits, depending on which immediate fits (if 5753 // Use AND or BIC to mask off the bits, depending on which immediate fits (if
5757 // it fits at all). Assume Align is usually small, in which case BIC works 5754 // it fits at all). Assume Align is usually small, in which case BIC works
5758 // better. Thus, this rounds down to the alignment. 5755 // better. Thus, this rounds down to the alignment.
5759 if (OperandARM32FlexImm::canHoldImm(Align - 1, &RotateAmt, &Immed_8)) { 5756 if (OperandARM32FlexImm::canHoldImm(Align - 1, &RotateAmt, &Immed_8)) {
5760 Mask = legalize(Ctx->getConstantInt32(Align - 1), Legal_Reg | Legal_Flex, 5757 Mask = legalize(Ctx->getConstantInt32(Align - 1), Legal_Reg | Legal_Flex,
5761 TmpRegNum); 5758 TmpRegNum);
5762 _bic(Reg, Reg, Mask); 5759 _bic(Reg, Reg, Mask);
5763 } else { 5760 } else {
5764 Mask = legalize(Ctx->getConstantInt32(-Align), Legal_Reg | Legal_Flex, 5761 Mask = legalize(Ctx->getConstantInt32(-Align), Legal_Reg | Legal_Flex,
5765 TmpRegNum); 5762 TmpRegNum);
5766 _and(Reg, Reg, Mask); 5763 _and(Reg, Reg, Mask);
5767 } 5764 }
5768 } 5765 }
5769 5766
5770 void TargetARM32::postLower() { 5767 void TargetARM32::postLower() {
5771 if (Ctx->getFlags().getOptLevel() == Opt_m1) 5768 if (Ctx->getFlags().getOptLevel() == Opt_m1)
5772 return; 5769 return;
5773 markRedefinitions(); 5770 markRedefinitions();
5774 Context.availabilityUpdate(); 5771 Context.availabilityUpdate();
5775 } 5772 }
5776 5773
5777 void TargetARM32::makeRandomRegisterPermutation( 5774 void TargetARM32::makeRandomRegisterPermutation(
5778 llvm::SmallVectorImpl<int32_t> &Permutation, 5775 llvm::SmallVectorImpl<RegNumT> &Permutation,
5779 const llvm::SmallBitVector &ExcludeRegisters, uint64_t Salt) const { 5776 const llvm::SmallBitVector &ExcludeRegisters, uint64_t Salt) const {
5780 (void)Permutation; 5777 (void)Permutation;
5781 (void)ExcludeRegisters; 5778 (void)ExcludeRegisters;
5782 (void)Salt; 5779 (void)Salt;
5783 UnimplementedError(Func->getContext()->getFlags()); 5780 UnimplementedError(Func->getContext()->getFlags());
5784 } 5781 }
5785 5782
5786 void TargetARM32::emit(const ConstantInteger32 *C) const { 5783 void TargetARM32::emit(const ConstantInteger32 *C) const {
5787 if (!BuildDefs::dump()) 5784 if (!BuildDefs::dump())
5788 return; 5785 return;
(...skipping 734 matching lines...) Expand 10 before | Expand all | Expand 10 after
6523 Str << ".eabi_attribute 14, 3 @ Tag_ABI_PCS_R9_use: Not used\n"; 6520 Str << ".eabi_attribute 14, 3 @ Tag_ABI_PCS_R9_use: Not used\n";
6524 } 6521 }
6525 6522
6526 llvm::SmallBitVector TargetARM32::TypeToRegisterSet[RegARM32::RCARM32_NUM]; 6523 llvm::SmallBitVector TargetARM32::TypeToRegisterSet[RegARM32::RCARM32_NUM];
6527 llvm::SmallBitVector 6524 llvm::SmallBitVector
6528 TargetARM32::TypeToRegisterSetUnfiltered[RegARM32::RCARM32_NUM]; 6525 TargetARM32::TypeToRegisterSetUnfiltered[RegARM32::RCARM32_NUM];
6529 llvm::SmallBitVector TargetARM32::RegisterAliases[RegARM32::Reg_NUM]; 6526 llvm::SmallBitVector TargetARM32::RegisterAliases[RegARM32::Reg_NUM];
6530 6527
6531 } // end of namespace ARM32 6528 } // end of namespace ARM32
6532 } // end of namespace Ice 6529 } // end of namespace Ice
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698