Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(312)

Side by Side Diff: src/IceTargetLoweringX86Base.h

Issue 1676123002: Subzero: Use a proper RegNumT type instead of int32_t/SizeT. (Closed) Base URL: https://chromium.googlesource.com/native_client/pnacl-subzero.git@master
Patch Set: Make it possible to do "auto NewReg = RegNumT::NoRegister;" Created 4 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « src/IceTargetLoweringX8664Traits.h ('k') | src/IceTargetLoweringX86BaseImpl.h » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
1 //===- subzero/src/IceTargetLoweringX86Base.h - x86 lowering ----*- C++ -*-===// 1 //===- subzero/src/IceTargetLoweringX86Base.h - x86 lowering ----*- C++ -*-===//
2 // 2 //
3 // The Subzero Code Generator 3 // The Subzero Code Generator
4 // 4 //
5 // This file is distributed under the University of Illinois Open Source 5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details. 6 // License. See LICENSE.TXT for details.
7 // 7 //
8 //===----------------------------------------------------------------------===// 8 //===----------------------------------------------------------------------===//
9 /// 9 ///
10 /// \file 10 /// \file
(...skipping 76 matching lines...) Expand 10 before | Expand all | Expand 10 after
87 bool needSandboxing() const { return NeedSandboxing; } 87 bool needSandboxing() const { return NeedSandboxing; }
88 88
89 void translateOm1() override; 89 void translateOm1() override;
90 void translateO2() override; 90 void translateO2() override;
91 void doLoadOpt(); 91 void doLoadOpt();
92 bool doBranchOpt(Inst *I, const CfgNode *NextNode) override; 92 bool doBranchOpt(Inst *I, const CfgNode *NextNode) override;
93 93
94 SizeT getNumRegisters() const override { 94 SizeT getNumRegisters() const override {
95 return Traits::RegisterSet::Reg_NUM; 95 return Traits::RegisterSet::Reg_NUM;
96 } 96 }
97 Variable *getPhysicalRegister(SizeT RegNum, Type Ty = IceType_void) override; 97 Variable *getPhysicalRegister(RegNumT RegNum,
98 IceString getRegName(SizeT RegNum, Type Ty) const override; 98 Type Ty = IceType_void) override;
99 IceString getRegName(RegNumT RegNum, Type Ty) const override;
99 static IceString getRegClassName(RegClass C) { 100 static IceString getRegClassName(RegClass C) {
100 auto ClassNum = static_cast<RegClassX86>(C); 101 auto ClassNum = static_cast<RegClassX86>(C);
101 assert(ClassNum < RCX86_NUM); 102 assert(ClassNum < RCX86_NUM);
102 switch (ClassNum) { 103 switch (ClassNum) {
103 default: 104 default:
104 assert(C < RC_Target); 105 assert(C < RC_Target);
105 return regClassString(C); 106 return regClassString(C);
106 case RCX86_Is64To8: 107 case RCX86_Is64To8:
107 return "i64to8"; // 64-bit GPR truncable to i8 108 return "i64to8"; // 64-bit GPR truncable to i8
108 case RCX86_Is32To8: 109 case RCX86_Is32To8:
(...skipping 15 matching lines...) Expand all
124 return TypeToRegisterSet[RC]; 125 return TypeToRegisterSet[RC];
125 } 126 }
126 127
127 const llvm::SmallBitVector & 128 const llvm::SmallBitVector &
128 getAllRegistersForVariable(const Variable *Var) const override { 129 getAllRegistersForVariable(const Variable *Var) const override {
129 RegClass RC = Var->getRegClass(); 130 RegClass RC = Var->getRegClass();
130 assert(static_cast<RegClassX86>(RC) < RCX86_NUM); 131 assert(static_cast<RegClassX86>(RC) < RCX86_NUM);
131 return TypeToRegisterSetUnfiltered[RC]; 132 return TypeToRegisterSetUnfiltered[RC];
132 } 133 }
133 134
134 const llvm::SmallBitVector &getAliasesForRegister(SizeT Reg) const override { 135 const llvm::SmallBitVector &
135 assert(Reg < Traits::RegisterSet::Reg_NUM); 136 getAliasesForRegister(RegNumT Reg) const override {
137 Reg.assertIsValid();
136 return RegisterAliases[Reg]; 138 return RegisterAliases[Reg];
137 } 139 }
138 140
139 bool hasFramePointer() const override { return IsEbpBasedFrame; } 141 bool hasFramePointer() const override { return IsEbpBasedFrame; }
140 void setHasFramePointer() override { IsEbpBasedFrame = true; } 142 void setHasFramePointer() override { IsEbpBasedFrame = true; }
141 SizeT getStackReg() const override { return Traits::StackPtr; } 143 RegNumT getStackReg() const override { return Traits::StackPtr; }
142 SizeT getFrameReg() const override { return Traits::FramePtr; } 144 RegNumT getFrameReg() const override { return Traits::FramePtr; }
143 SizeT getFrameOrStackReg() const override { 145 RegNumT getFrameOrStackReg() const override {
144 return IsEbpBasedFrame ? getFrameReg() : getStackReg(); 146 return IsEbpBasedFrame ? getFrameReg() : getStackReg();
145 } 147 }
146 size_t typeWidthInBytesOnStack(Type Ty) const override { 148 size_t typeWidthInBytesOnStack(Type Ty) const override {
147 // Round up to the next multiple of WordType bytes. 149 // Round up to the next multiple of WordType bytes.
148 const uint32_t WordSizeInBytes = typeWidthInBytes(Traits::WordType); 150 const uint32_t WordSizeInBytes = typeWidthInBytes(Traits::WordType);
149 return Utils::applyAlignment(typeWidthInBytes(Ty), WordSizeInBytes); 151 return Utils::applyAlignment(typeWidthInBytes(Ty), WordSizeInBytes);
150 } 152 }
151 uint32_t getStackAlignment() const override { 153 uint32_t getStackAlignment() const override {
152 return Traits::X86_STACK_ALIGNMENT_BYTES; 154 return Traits::X86_STACK_ALIGNMENT_BYTES;
153 } 155 }
(...skipping 57 matching lines...) Expand 10 before | Expand all | Expand 10 after
211 } 213 }
212 214
213 void addProlog(CfgNode *Node) override; 215 void addProlog(CfgNode *Node) override;
214 void finishArgumentLowering(Variable *Arg, Variable *FramePtr, 216 void finishArgumentLowering(Variable *Arg, Variable *FramePtr,
215 size_t BasicFrameOffset, size_t StackAdjBytes, 217 size_t BasicFrameOffset, size_t StackAdjBytes,
216 size_t &InArgsSizeBytes); 218 size_t &InArgsSizeBytes);
217 void addEpilog(CfgNode *Node) override; 219 void addEpilog(CfgNode *Node) override;
218 X86Address stackVarToAsmOperand(const Variable *Var) const; 220 X86Address stackVarToAsmOperand(const Variable *Var) const;
219 221
220 InstructionSetEnum getInstructionSet() const { return InstructionSet; } 222 InstructionSetEnum getInstructionSet() const { return InstructionSet; }
221 Operand *legalizeUndef(Operand *From, int32_t RegNum = Variable::NoRegister); 223 Operand *legalizeUndef(Operand *From, RegNumT RegNum = RegNumT::NoRegister);
222 224
223 protected: 225 protected:
224 const bool NeedSandboxing; 226 const bool NeedSandboxing;
225 227
226 explicit TargetX86Base(Cfg *Func); 228 explicit TargetX86Base(Cfg *Func);
227 229
228 void postLower() override; 230 void postLower() override;
229 231
230 /// Initializes the RebasePtr member variable -- if so required by 232 /// Initializes the RebasePtr member variable -- if so required by
231 /// SandboxingType for the concrete Target. 233 /// SandboxingType for the concrete Target.
(...skipping 148 matching lines...) Expand 10 before | Expand all | Expand 10 after
380 Legal_Reg = 1 << 0, // physical register, not stack location 382 Legal_Reg = 1 << 0, // physical register, not stack location
381 Legal_Imm = 1 << 1, 383 Legal_Imm = 1 << 1,
382 Legal_Mem = 1 << 2, // includes [eax+4*ecx] as well as [esp+12] 384 Legal_Mem = 1 << 2, // includes [eax+4*ecx] as well as [esp+12]
383 Legal_Rematerializable = 1 << 3, 385 Legal_Rematerializable = 1 << 3,
384 Legal_AddrAbs = 1 << 4, // ConstantRelocatable doesn't have to add RebasePtr 386 Legal_AddrAbs = 1 << 4, // ConstantRelocatable doesn't have to add RebasePtr
385 Legal_Default = ~(Legal_Rematerializable | Legal_AddrAbs) 387 Legal_Default = ~(Legal_Rematerializable | Legal_AddrAbs)
386 // TODO(stichnot): Figure out whether this default works for x86-64. 388 // TODO(stichnot): Figure out whether this default works for x86-64.
387 }; 389 };
388 using LegalMask = uint32_t; 390 using LegalMask = uint32_t;
389 Operand *legalize(Operand *From, LegalMask Allowed = Legal_Default, 391 Operand *legalize(Operand *From, LegalMask Allowed = Legal_Default,
390 int32_t RegNum = Variable::NoRegister); 392 RegNumT RegNum = RegNumT::NoRegister);
391 Variable *legalizeToReg(Operand *From, int32_t RegNum = Variable::NoRegister); 393 Variable *legalizeToReg(Operand *From, RegNumT RegNum = RegNumT::NoRegister);
392 /// Legalize the first source operand for use in the cmp instruction. 394 /// Legalize the first source operand for use in the cmp instruction.
393 Operand *legalizeSrc0ForCmp(Operand *Src0, Operand *Src1); 395 Operand *legalizeSrc0ForCmp(Operand *Src0, Operand *Src1);
394 /// Turn a pointer operand into a memory operand that can be used by a real 396 /// Turn a pointer operand into a memory operand that can be used by a real
395 /// load/store operation. Legalizes the operand as well. This is a nop if the 397 /// load/store operation. Legalizes the operand as well. This is a nop if the
396 /// operand is already a legal memory operand. 398 /// operand is already a legal memory operand.
397 X86OperandMem *formMemoryOperand(Operand *Ptr, Type Ty, 399 X86OperandMem *formMemoryOperand(Operand *Ptr, Type Ty,
398 bool DoLegalize = true); 400 bool DoLegalize = true);
399 401
400 Variable *makeReg(Type Ty, int32_t RegNum = Variable::NoRegister); 402 Variable *makeReg(Type Ty, RegNumT RegNum = RegNumT::NoRegister);
401 static Type stackSlotType(); 403 static Type stackSlotType();
402 404
403 static constexpr uint32_t NoSizeLimit = 0; 405 static constexpr uint32_t NoSizeLimit = 0;
404 static const Type TypeForSize[]; 406 static const Type TypeForSize[];
405 /// Returns the largest type which is equal to or larger than Size bytes. The 407 /// Returns the largest type which is equal to or larger than Size bytes. The
406 /// type is suitable for copying memory i.e. a load and store will be a single 408 /// type is suitable for copying memory i.e. a load and store will be a single
407 /// instruction (for example x86 will get f64 not i64). 409 /// instruction (for example x86 will get f64 not i64).
408 static Type largestTypeInSize(uint32_t Size, uint32_t MaxSize = NoSizeLimit); 410 static Type largestTypeInSize(uint32_t Size, uint32_t MaxSize = NoSizeLimit);
409 /// Returns the smallest type which is equal to or larger than Size bytes. If 411 /// Returns the smallest type which is equal to or larger than Size bytes. If
410 /// one doesn't exist then the largest type smaller than Size bytes is 412 /// one doesn't exist then the largest type smaller than Size bytes is
411 /// returned. The type is suitable for memory copies as described at 413 /// returned. The type is suitable for memory copies as described at
412 /// largestTypeInSize. 414 /// largestTypeInSize.
413 static Type firstTypeThatFitsSize(uint32_t Size, 415 static Type firstTypeThatFitsSize(uint32_t Size,
414 uint32_t MaxSize = NoSizeLimit); 416 uint32_t MaxSize = NoSizeLimit);
415 417
416 Variable *copyToReg8(Operand *Src, int32_t RegNum = Variable::NoRegister); 418 Variable *copyToReg8(Operand *Src, RegNumT RegNum = RegNumT::NoRegister);
417 Variable *copyToReg(Operand *Src, int32_t RegNum = Variable::NoRegister); 419 Variable *copyToReg(Operand *Src, RegNumT RegNum = RegNumT::NoRegister);
418 420
419 /// Returns a register containing all zeros, without affecting the FLAGS 421 /// Returns a register containing all zeros, without affecting the FLAGS
420 /// register, using the best instruction for the type. 422 /// register, using the best instruction for the type.
421 Variable *makeZeroedRegister(Type Ty, int32_t RegNum = Variable::NoRegister); 423 Variable *makeZeroedRegister(Type Ty, RegNumT RegNum = RegNumT::NoRegister);
422 424
423 /// \name Returns a vector in a register with the given constant entries. 425 /// \name Returns a vector in a register with the given constant entries.
424 /// @{ 426 /// @{
425 Variable *makeVectorOfZeros(Type Ty, int32_t RegNum = Variable::NoRegister); 427 Variable *makeVectorOfZeros(Type Ty, RegNumT RegNum = RegNumT::NoRegister);
426 Variable *makeVectorOfOnes(Type Ty, int32_t RegNum = Variable::NoRegister); 428 Variable *makeVectorOfOnes(Type Ty, RegNumT RegNum = RegNumT::NoRegister);
427 Variable *makeVectorOfMinusOnes(Type Ty, 429 Variable *makeVectorOfMinusOnes(Type Ty,
428 int32_t RegNum = Variable::NoRegister); 430 RegNumT RegNum = RegNumT::NoRegister);
429 Variable *makeVectorOfHighOrderBits(Type Ty, 431 Variable *makeVectorOfHighOrderBits(Type Ty,
430 int32_t RegNum = Variable::NoRegister); 432 RegNumT RegNum = RegNumT::NoRegister);
431 Variable *makeVectorOfFabsMask(Type Ty, 433 Variable *makeVectorOfFabsMask(Type Ty, RegNumT RegNum = RegNumT::NoRegister);
432 int32_t RegNum = Variable::NoRegister);
433 /// @} 434 /// @}
434 435
435 /// Return a memory operand corresponding to a stack allocated Variable. 436 /// Return a memory operand corresponding to a stack allocated Variable.
436 X86OperandMem *getMemoryOperandForStackSlot(Type Ty, Variable *Slot, 437 X86OperandMem *getMemoryOperandForStackSlot(Type Ty, Variable *Slot,
437 uint32_t Offset = 0); 438 uint32_t Offset = 0);
438 439
439 void 440 void
440 makeRandomRegisterPermutation(llvm::SmallVectorImpl<int32_t> &Permutation, 441 makeRandomRegisterPermutation(llvm::SmallVectorImpl<RegNumT> &Permutation,
441 const llvm::SmallBitVector &ExcludeRegisters, 442 const llvm::SmallBitVector &ExcludeRegisters,
442 uint64_t Salt) const override; 443 uint64_t Salt) const override;
443 444
444 /// AutoMemorySandboxer emits a bundle-lock/bundle-unlock pair if the 445 /// AutoMemorySandboxer emits a bundle-lock/bundle-unlock pair if the
445 /// instruction's operand is a memory reference. This is only needed for 446 /// instruction's operand is a memory reference. This is only needed for
446 /// x86-64 NaCl sandbox. 447 /// x86-64 NaCl sandbox.
447 template <InstBundleLock::Option BundleLockOpt = InstBundleLock::Opt_None> 448 template <InstBundleLock::Option BundleLockOpt = InstBundleLock::Opt_None>
448 class AutoMemorySandboxer { 449 class AutoMemorySandboxer {
449 AutoMemorySandboxer() = delete; 450 AutoMemorySandboxer() = delete;
450 AutoMemorySandboxer(const AutoMemorySandboxer &) = delete; 451 AutoMemorySandboxer(const AutoMemorySandboxer &) = delete;
(...skipping 217 matching lines...) Expand 10 before | Expand all | Expand 10 after
668 /// Moves can be used to redefine registers, creating "partial kills" for 669 /// Moves can be used to redefine registers, creating "partial kills" for
669 /// liveness. Mark where moves are used in this way. 670 /// liveness. Mark where moves are used in this way.
670 void _redefined(Inst *MovInst, bool IsRedefinition = true) { 671 void _redefined(Inst *MovInst, bool IsRedefinition = true) {
671 if (IsRedefinition) 672 if (IsRedefinition)
672 MovInst->setDestRedefined(); 673 MovInst->setDestRedefined();
673 } 674 }
674 /// If Dest=nullptr is passed in, then a new variable is created, marked as 675 /// If Dest=nullptr is passed in, then a new variable is created, marked as
675 /// infinite register allocation weight, and returned through the in/out Dest 676 /// infinite register allocation weight, and returned through the in/out Dest
676 /// argument. 677 /// argument.
677 typename Traits::Insts::Mov *_mov(Variable *&Dest, Operand *Src0, 678 typename Traits::Insts::Mov *_mov(Variable *&Dest, Operand *Src0,
678 int32_t RegNum = Variable::NoRegister) { 679 RegNumT RegNum = RegNumT::NoRegister) {
679 if (Dest == nullptr) 680 if (Dest == nullptr)
680 Dest = makeReg(Src0->getType(), RegNum); 681 Dest = makeReg(Src0->getType(), RegNum);
681 AutoMemorySandboxer<> _(this, &Dest, &Src0); 682 AutoMemorySandboxer<> _(this, &Dest, &Src0);
682 return Context.insert<typename Traits::Insts::Mov>(Dest, Src0); 683 return Context.insert<typename Traits::Insts::Mov>(Dest, Src0);
683 } 684 }
684 void _mov_sp(Operand *NewValue) { 685 void _mov_sp(Operand *NewValue) {
685 dispatchToConcrete(&Traits::ConcreteTarget::_mov_sp, std::move(NewValue)); 686 dispatchToConcrete(&Traits::ConcreteTarget::_mov_sp, std::move(NewValue));
686 } 687 }
687 typename Traits::Insts::Movp *_movp(Variable *Dest, Operand *Src0) { 688 typename Traits::Insts::Movp *_movp(Variable *Dest, Operand *Src0) {
688 AutoMemorySandboxer<> _(this, &Dest, &Src0); 689 AutoMemorySandboxer<> _(this, &Dest, &Src0);
(...skipping 303 matching lines...) Expand 10 before | Expand all | Expand 10 after
992 static std::array<llvm::SmallBitVector, Traits::RegisterSet::Reg_NUM> 993 static std::array<llvm::SmallBitVector, Traits::RegisterSet::Reg_NUM>
993 RegisterAliases; 994 RegisterAliases;
994 llvm::SmallBitVector RegsUsed; 995 llvm::SmallBitVector RegsUsed;
995 std::array<VarList, IceType_NUM> PhysicalRegisters; 996 std::array<VarList, IceType_NUM> PhysicalRegisters;
996 // RebasePtr is a Variable that holds the Rebasing pointer (if any) for the 997 // RebasePtr is a Variable that holds the Rebasing pointer (if any) for the
997 // current sandboxing type. 998 // current sandboxing type.
998 Variable *RebasePtr = nullptr; 999 Variable *RebasePtr = nullptr;
999 1000
1000 /// Randomize a given immediate operand 1001 /// Randomize a given immediate operand
1001 Operand *randomizeOrPoolImmediate(Constant *Immediate, 1002 Operand *randomizeOrPoolImmediate(Constant *Immediate,
1002 int32_t RegNum = Variable::NoRegister); 1003 RegNumT RegNum = RegNumT::NoRegister);
1003 X86OperandMem * 1004 X86OperandMem *randomizeOrPoolImmediate(X86OperandMem *MemOperand,
1004 randomizeOrPoolImmediate(X86OperandMem *MemOperand, 1005 RegNumT RegNum = RegNumT::NoRegister);
1005 int32_t RegNum = Variable::NoRegister);
1006 bool RandomizationPoolingPaused = false; 1006 bool RandomizationPoolingPaused = false;
1007 1007
1008 private: 1008 private:
1009 /// dispatchToConcrete is the template voodoo that allows TargetX86Base to 1009 /// dispatchToConcrete is the template voodoo that allows TargetX86Base to
1010 /// invoke methods in Machine (which inherits from TargetX86Base) without 1010 /// invoke methods in Machine (which inherits from TargetX86Base) without
1011 /// having to rely on virtual method calls. There are two overloads, one for 1011 /// having to rely on virtual method calls. There are two overloads, one for
1012 /// non-void types, and one for void types. We need this becase, for non-void 1012 /// non-void types, and one for void types. We need this becase, for non-void
1013 /// types, we need to return the method result, where as for void, we don't. 1013 /// types, we need to return the method result, where as for void, we don't.
1014 /// While it is true that the code compiles without the void "version", there 1014 /// While it is true that the code compiles without the void "version", there
1015 /// used to be a time when compilers would reject such code. 1015 /// used to be a time when compilers would reject such code.
(...skipping 109 matching lines...) Expand 10 before | Expand all | Expand 10 after
1125 1125
1126 explicit TargetHeaderX86(GlobalContext *Ctx) : TargetHeaderLowering(Ctx) {} 1126 explicit TargetHeaderX86(GlobalContext *Ctx) : TargetHeaderLowering(Ctx) {}
1127 }; 1127 };
1128 1128
1129 } // end of namespace X86NAMESPACE 1129 } // end of namespace X86NAMESPACE
1130 } // end of namespace Ice 1130 } // end of namespace Ice
1131 1131
1132 #include "IceTargetLoweringX86BaseImpl.h" 1132 #include "IceTargetLoweringX86BaseImpl.h"
1133 1133
1134 #endif // SUBZERO_SRC_ICETARGETLOWERINGX86BASE_H 1134 #endif // SUBZERO_SRC_ICETARGETLOWERINGX86BASE_H
OLDNEW
« no previous file with comments | « src/IceTargetLoweringX8664Traits.h ('k') | src/IceTargetLoweringX86BaseImpl.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698