Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(213)

Side by Side Diff: third_party/WebKit/Source/core/dom/shadow/FlatTreeTraversal.cpp

Issue 1675163002: Rename ComposedTree to FlatTree (Closed) Base URL: https://chromium.googlesource.com/chromium/src.git@master
Patch Set: wip Created 4 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
1 /* 1 /*
2 * Copyright (C) 2012 Google Inc. All rights reserved. 2 * Copyright (C) 2012 Google Inc. All rights reserved.
3 * 3 *
4 * Redistribution and use in source and binary forms, with or without 4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions are 5 * modification, are permitted provided that the following conditions are
6 * met: 6 * met:
7 * 7 *
8 * * Redistributions of source code must retain the above copyright 8 * * Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer. 9 * notice, this list of conditions and the following disclaimer.
10 * * Neither the name of Google Inc. nor the names of its 10 * * Neither the name of Google Inc. nor the names of its
11 * contributors may be used to endorse or promote products derived from 11 * contributors may be used to endorse or promote products derived from
12 * this software without specific prior written permission. 12 * this software without specific prior written permission.
13 * 13 *
14 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 14 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
15 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 15 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
16 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 16 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
17 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 17 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
18 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 18 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 19 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
20 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 20 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
24 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 24 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */ 25 */
26 26
27 #include "core/dom/shadow/ComposedTreeTraversal.h" 27 #include "core/dom/shadow/FlatTreeTraversal.h"
28 28
29 #include "core/dom/Element.h" 29 #include "core/dom/Element.h"
30 #include "core/dom/shadow/ElementShadow.h" 30 #include "core/dom/shadow/ElementShadow.h"
31 #include "core/html/HTMLShadowElement.h" 31 #include "core/html/HTMLShadowElement.h"
32 #include "core/html/HTMLSlotElement.h" 32 #include "core/html/HTMLSlotElement.h"
33 33
34 namespace blink { 34 namespace blink {
35 35
36 static inline ElementShadow* shadowFor(const Node& node) 36 static inline ElementShadow* shadowFor(const Node& node)
37 { 37 {
38 return node.isElementNode() ? toElement(node).shadow() : nullptr; 38 return node.isElementNode() ? toElement(node).shadow() : nullptr;
39 } 39 }
40 40
41 static inline bool canBeDistributedToInsertionPoint(const Node& node) 41 static inline bool canBeDistributedToInsertionPoint(const Node& node)
42 { 42 {
43 return node.isInV0ShadowTree() || node.isChildOfV0ShadowHost(); 43 return node.isInV0ShadowTree() || node.isChildOfV0ShadowHost();
44 } 44 }
45 45
46 Node* ComposedTreeTraversal::traverseChild(const Node& node, TraversalDirection direction) 46 Node* FlatTreeTraversal::traverseChild(const Node& node, TraversalDirection dire ction)
47 { 47 {
48 ElementShadow* shadow = shadowFor(node); 48 ElementShadow* shadow = shadowFor(node);
49 if (shadow) { 49 if (shadow) {
50 ShadowRoot& shadowRoot = shadow->youngestShadowRoot(); 50 ShadowRoot& shadowRoot = shadow->youngestShadowRoot();
51 return resolveDistributionStartingAt(direction == TraversalDirectionForw ard ? shadowRoot.firstChild() : shadowRoot.lastChild(), direction); 51 return resolveDistributionStartingAt(direction == TraversalDirectionForw ard ? shadowRoot.firstChild() : shadowRoot.lastChild(), direction);
52 } 52 }
53 return resolveDistributionStartingAt(direction == TraversalDirectionForward ? node.firstChild() : node.lastChild(), direction); 53 return resolveDistributionStartingAt(direction == TraversalDirectionForward ? node.firstChild() : node.lastChild(), direction);
54 } 54 }
55 55
56 Node* ComposedTreeTraversal::resolveDistributionStartingAt(const Node* node, Tra versalDirection direction) 56 Node* FlatTreeTraversal::resolveDistributionStartingAt(const Node* node, Travers alDirection direction)
57 { 57 {
58 if (!node) 58 if (!node)
59 return nullptr; 59 return nullptr;
60 for (const Node* sibling = node; sibling; sibling = (direction == TraversalD irectionForward ? sibling->nextSibling() : sibling->previousSibling())) { 60 for (const Node* sibling = node; sibling; sibling = (direction == TraversalD irectionForward ? sibling->nextSibling() : sibling->previousSibling())) {
61 if (isHTMLSlotElement(*sibling)) { 61 if (isHTMLSlotElement(*sibling)) {
62 const HTMLSlotElement& slot = toHTMLSlotElement(*sibling); 62 const HTMLSlotElement& slot = toHTMLSlotElement(*sibling);
63 if (Node* found = (direction == TraversalDirectionForward ? slot.fir stDistributedNode() : slot.lastDistributedNode())) 63 if (Node* found = (direction == TraversalDirectionForward ? slot.fir stDistributedNode() : slot.lastDistributedNode()))
64 return found; 64 return found;
65 continue; 65 continue;
66 } 66 }
67 if (node->isInV0ShadowTree()) 67 if (node->isInV0ShadowTree())
68 return v0ResolveDistributionStartingAt(*sibling, direction); 68 return v0ResolveDistributionStartingAt(*sibling, direction);
69 return const_cast<Node*>(sibling); 69 return const_cast<Node*>(sibling);
70 } 70 }
71 return nullptr; 71 return nullptr;
72 } 72 }
73 73
74 Node* ComposedTreeTraversal::v0ResolveDistributionStartingAt(const Node& node, T raversalDirection direction) 74 Node* FlatTreeTraversal::v0ResolveDistributionStartingAt(const Node& node, Trave rsalDirection direction)
75 { 75 {
76 ASSERT(!isHTMLSlotElement(node)); 76 ASSERT(!isHTMLSlotElement(node));
77 for (const Node* sibling = &node; sibling; sibling = (direction == Traversal DirectionForward ? sibling->nextSibling() : sibling->previousSibling())) { 77 for (const Node* sibling = &node; sibling; sibling = (direction == Traversal DirectionForward ? sibling->nextSibling() : sibling->previousSibling())) {
78 if (!isActiveInsertionPoint(*sibling)) 78 if (!isActiveInsertionPoint(*sibling))
79 return const_cast<Node*>(sibling); 79 return const_cast<Node*>(sibling);
80 const InsertionPoint& insertionPoint = toInsertionPoint(*sibling); 80 const InsertionPoint& insertionPoint = toInsertionPoint(*sibling);
81 if (Node* found = (direction == TraversalDirectionForward ? insertionPoi nt.firstDistributedNode() : insertionPoint.lastDistributedNode())) 81 if (Node* found = (direction == TraversalDirectionForward ? insertionPoi nt.firstDistributedNode() : insertionPoint.lastDistributedNode()))
82 return found; 82 return found;
83 ASSERT(isHTMLShadowElement(insertionPoint) || (isHTMLContentElement(inse rtionPoint) && !insertionPoint.hasChildren())); 83 ASSERT(isHTMLShadowElement(insertionPoint) || (isHTMLContentElement(inse rtionPoint) && !insertionPoint.hasChildren()));
84 } 84 }
85 return nullptr; 85 return nullptr;
86 } 86 }
87 87
88 static HTMLSlotElement* finalDestinationSlotFor(const Node& node) 88 static HTMLSlotElement* finalDestinationSlotFor(const Node& node)
89 { 89 {
90 HTMLSlotElement* slot = node.assignedSlot(); 90 HTMLSlotElement* slot = node.assignedSlot();
91 if (!slot) 91 if (!slot)
92 return nullptr; 92 return nullptr;
93 for (HTMLSlotElement* next = slot->assignedSlot(); next; next = next->assign edSlot()) { 93 for (HTMLSlotElement* next = slot->assignedSlot(); next; next = next->assign edSlot()) {
94 slot = next; 94 slot = next;
95 } 95 }
96 return slot; 96 return slot;
97 } 97 }
98 98
99 // TODO(hayato): This may return a wrong result for a node which is not in a 99 // TODO(hayato): This may return a wrong result for a node which is not in a
100 // document composed tree. See ComposedTreeTraversalTest's redistribution test for details. 100 // document flat tree. See FlatTreeTraversalTest's redistribution test for deta ils.
101 Node* ComposedTreeTraversal::traverseSiblings(const Node& node, TraversalDirecti on direction) 101 Node* FlatTreeTraversal::traverseSiblings(const Node& node, TraversalDirection d irection)
102 { 102 {
103 if (node.isChildOfV1ShadowHost()) 103 if (node.isChildOfV1ShadowHost())
104 return traverseSiblingsForV1HostChild(node, direction); 104 return traverseSiblingsForV1HostChild(node, direction);
105 105
106 if (shadowWhereNodeCanBeDistributed(node)) 106 if (shadowWhereNodeCanBeDistributed(node))
107 return traverseSiblingsForV0Distribution(node, direction); 107 return traverseSiblingsForV0Distribution(node, direction);
108 108
109 if (Node* found = resolveDistributionStartingAt(direction == TraversalDirect ionForward ? node.nextSibling() : node.previousSibling(), direction)) 109 if (Node* found = resolveDistributionStartingAt(direction == TraversalDirect ionForward ? node.nextSibling() : node.previousSibling(), direction))
110 return found; 110 return found;
111 111
112 if (!node.isInV0ShadowTree()) 112 if (!node.isInV0ShadowTree())
113 return nullptr; 113 return nullptr;
114 114
115 // For v0 older shadow tree 115 // For v0 older shadow tree
116 if (node.parentNode() && node.parentNode()->isShadowRoot()) { 116 if (node.parentNode() && node.parentNode()->isShadowRoot()) {
117 ShadowRoot* parentShadowRoot = toShadowRoot(node.parentNode()); 117 ShadowRoot* parentShadowRoot = toShadowRoot(node.parentNode());
118 if (!parentShadowRoot->isYoungest()) { 118 if (!parentShadowRoot->isYoungest()) {
119 HTMLShadowElement* assignedInsertionPoint = parentShadowRoot->shadow InsertionPointOfYoungerShadowRoot(); 119 HTMLShadowElement* assignedInsertionPoint = parentShadowRoot->shadow InsertionPointOfYoungerShadowRoot();
120 ASSERT(assignedInsertionPoint); 120 ASSERT(assignedInsertionPoint);
121 return traverseSiblings(*assignedInsertionPoint, direction); 121 return traverseSiblings(*assignedInsertionPoint, direction);
122 } 122 }
123 } 123 }
124 return nullptr; 124 return nullptr;
125 } 125 }
126 126
127 Node* ComposedTreeTraversal::traverseSiblingsForV1HostChild(const Node& node, Tr aversalDirection direction) 127 Node* FlatTreeTraversal::traverseSiblingsForV1HostChild(const Node& node, Traver salDirection direction)
128 { 128 {
129 HTMLSlotElement* slot = finalDestinationSlotFor(node); 129 HTMLSlotElement* slot = finalDestinationSlotFor(node);
130 if (!slot) 130 if (!slot)
131 return nullptr; 131 return nullptr;
132 if (Node* siblingInDistributedNodes = (direction == TraversalDirectionForwar d ? slot->distributedNodeNextTo(node) : slot->distributedNodePreviousTo(node))) 132 if (Node* siblingInDistributedNodes = (direction == TraversalDirectionForwar d ? slot->distributedNodeNextTo(node) : slot->distributedNodePreviousTo(node)))
133 return siblingInDistributedNodes; 133 return siblingInDistributedNodes;
134 return traverseSiblings(*slot, direction); 134 return traverseSiblings(*slot, direction);
135 } 135 }
136 136
137 Node* ComposedTreeTraversal::traverseSiblingsForV0Distribution(const Node& node, TraversalDirection direction) 137 Node* FlatTreeTraversal::traverseSiblingsForV0Distribution(const Node& node, Tra versalDirection direction)
138 { 138 {
139 const InsertionPoint* finalDestination = resolveReprojection(&node); 139 const InsertionPoint* finalDestination = resolveReprojection(&node);
140 if (!finalDestination) 140 if (!finalDestination)
141 return nullptr; 141 return nullptr;
142 if (Node* found = (direction == TraversalDirectionForward ? finalDestination ->distributedNodeNextTo(&node) : finalDestination->distributedNodePreviousTo(&no de))) 142 if (Node* found = (direction == TraversalDirectionForward ? finalDestination ->distributedNodeNextTo(&node) : finalDestination->distributedNodePreviousTo(&no de)))
143 return found; 143 return found;
144 return traverseSiblings(*finalDestination, direction); 144 return traverseSiblings(*finalDestination, direction);
145 145
146 } 146 }
147 147
148 ContainerNode* ComposedTreeTraversal::traverseParent(const Node& node, ParentTra versalDetails* details) 148 ContainerNode* FlatTreeTraversal::traverseParent(const Node& node, ParentTravers alDetails* details)
149 { 149 {
150 // TODO(hayato): Stop this hack for a pseudo element because a pseudo elemen t is not a child of its parentOrShadowHostNode() in a composed tree. 150 // TODO(hayato): Stop this hack for a pseudo element because a pseudo elemen t is not a child of its parentOrShadowHostNode() in a flat tree.
151 if (node.isPseudoElement()) 151 if (node.isPseudoElement())
152 return node.parentOrShadowHostNode(); 152 return node.parentOrShadowHostNode();
153 153
154 if (node.isChildOfV1ShadowHost()) { 154 if (node.isChildOfV1ShadowHost()) {
155 HTMLSlotElement* slot = finalDestinationSlotFor(node); 155 HTMLSlotElement* slot = finalDestinationSlotFor(node);
156 if (!slot) 156 if (!slot)
157 return nullptr; 157 return nullptr;
158 return traverseParent(*slot); 158 return traverseParent(*slot);
159 } 159 }
160 160
161 Element* parent = node.parentElement(); 161 Element* parent = node.parentElement();
162 if (parent && isHTMLSlotElement(parent)) { 162 if (parent && isHTMLSlotElement(parent)) {
163 HTMLSlotElement& slot = toHTMLSlotElement(*parent); 163 HTMLSlotElement& slot = toHTMLSlotElement(*parent);
164 if (!slot.getAssignedNodes().isEmpty()) 164 if (!slot.getAssignedNodes().isEmpty())
165 return nullptr; 165 return nullptr;
166 return traverseParent(slot, details); 166 return traverseParent(slot, details);
167 } 167 }
168 168
169 if (canBeDistributedToInsertionPoint(node)) 169 if (canBeDistributedToInsertionPoint(node))
170 return traverseParentForV0(node, details); 170 return traverseParentForV0(node, details);
171 171
172 ASSERT(!shadowWhereNodeCanBeDistributed(node)); 172 ASSERT(!shadowWhereNodeCanBeDistributed(node));
173 return traverseParentOrHost(node); 173 return traverseParentOrHost(node);
174 } 174 }
175 175
176 ContainerNode* ComposedTreeTraversal::traverseParentForV0(const Node& node, Pare ntTraversalDetails* details) 176 ContainerNode* FlatTreeTraversal::traverseParentForV0(const Node& node, ParentTr aversalDetails* details)
177 { 177 {
178 if (shadowWhereNodeCanBeDistributed(node)) { 178 if (shadowWhereNodeCanBeDistributed(node)) {
179 if (const InsertionPoint* insertionPoint = resolveReprojection(&node)) { 179 if (const InsertionPoint* insertionPoint = resolveReprojection(&node)) {
180 if (details) 180 if (details)
181 details->didTraverseInsertionPoint(insertionPoint); 181 details->didTraverseInsertionPoint(insertionPoint);
182 // The node is distributed. But the distribution was stopped at this insertion point. 182 // The node is distributed. But the distribution was stopped at this insertion point.
183 if (shadowWhereNodeCanBeDistributed(*insertionPoint)) 183 if (shadowWhereNodeCanBeDistributed(*insertionPoint))
184 return nullptr; 184 return nullptr;
185 return traverseParent(*insertionPoint); 185 return traverseParent(*insertionPoint);
186 } 186 }
187 return nullptr; 187 return nullptr;
188 } 188 }
189 ContainerNode* parent = traverseParentOrHost(node); 189 ContainerNode* parent = traverseParentOrHost(node);
190 if (isActiveInsertionPoint(*parent)) 190 if (isActiveInsertionPoint(*parent))
191 return nullptr; 191 return nullptr;
192 return parent; 192 return parent;
193 } 193 }
194 194
195 ContainerNode* ComposedTreeTraversal::traverseParentOrHost(const Node& node) 195 ContainerNode* FlatTreeTraversal::traverseParentOrHost(const Node& node)
196 { 196 {
197 ContainerNode* parent = node.parentNode(); 197 ContainerNode* parent = node.parentNode();
198 if (!parent) 198 if (!parent)
199 return nullptr; 199 return nullptr;
200 if (!parent->isShadowRoot()) 200 if (!parent->isShadowRoot())
201 return parent; 201 return parent;
202 ShadowRoot* shadowRoot = toShadowRoot(parent); 202 ShadowRoot* shadowRoot = toShadowRoot(parent);
203 ASSERT(!shadowRoot->shadowInsertionPointOfYoungerShadowRoot()); 203 ASSERT(!shadowRoot->shadowInsertionPointOfYoungerShadowRoot());
204 if (!shadowRoot->isYoungest()) 204 if (!shadowRoot->isYoungest())
205 return nullptr; 205 return nullptr;
206 return shadowRoot->host(); 206 return shadowRoot->host();
207 } 207 }
208 208
209 Node* ComposedTreeTraversal::childAt(const Node& node, unsigned index) 209 Node* FlatTreeTraversal::childAt(const Node& node, unsigned index)
210 { 210 {
211 assertPrecondition(node); 211 assertPrecondition(node);
212 Node* child = traverseFirstChild(node); 212 Node* child = traverseFirstChild(node);
213 while (child && index--) 213 while (child && index--)
214 child = nextSibling(*child); 214 child = nextSibling(*child);
215 assertPostcondition(child); 215 assertPostcondition(child);
216 return child; 216 return child;
217 } 217 }
218 218
219 Node* ComposedTreeTraversal::nextSkippingChildren(const Node& node) 219 Node* FlatTreeTraversal::nextSkippingChildren(const Node& node)
220 { 220 {
221 if (Node* nextSibling = traverseNextSibling(node)) 221 if (Node* nextSibling = traverseNextSibling(node))
222 return nextSibling; 222 return nextSibling;
223 return traverseNextAncestorSibling(node); 223 return traverseNextAncestorSibling(node);
224 } 224 }
225 225
226 bool ComposedTreeTraversal::containsIncludingPseudoElement(const ContainerNode& container, const Node& node) 226 bool FlatTreeTraversal::containsIncludingPseudoElement(const ContainerNode& cont ainer, const Node& node)
227 { 227 {
228 assertPrecondition(container); 228 assertPrecondition(container);
229 assertPrecondition(node); 229 assertPrecondition(node);
230 // This can be slower than ComposedTreeTraversal::contains() because we 230 // This can be slower than FlatTreeTraversal::contains() because we
231 // can't early exit even when container doesn't have children. 231 // can't early exit even when container doesn't have children.
232 for (const Node* current = &node; current; current = traverseParent(*current )) { 232 for (const Node* current = &node; current; current = traverseParent(*current )) {
233 if (current == &container) 233 if (current == &container)
234 return true; 234 return true;
235 } 235 }
236 return false; 236 return false;
237 } 237 }
238 238
239 Node* ComposedTreeTraversal::previousSkippingChildren(const Node& node) 239 Node* FlatTreeTraversal::previousSkippingChildren(const Node& node)
240 { 240 {
241 if (Node* previousSibling = traversePreviousSibling(node)) 241 if (Node* previousSibling = traversePreviousSibling(node))
242 return previousSibling; 242 return previousSibling;
243 return traversePreviousAncestorSibling(node); 243 return traversePreviousAncestorSibling(node);
244 } 244 }
245 245
246 static Node* previousAncestorSiblingPostOrder(const Node& current, const Node* s tayWithin) 246 static Node* previousAncestorSiblingPostOrder(const Node& current, const Node* s tayWithin)
247 { 247 {
248 ASSERT(!ComposedTreeTraversal::previousSibling(current)); 248 ASSERT(!FlatTreeTraversal::previousSibling(current));
249 for (Node* parent = ComposedTreeTraversal::parent(current); parent; parent = ComposedTreeTraversal::parent(*parent)) { 249 for (Node* parent = FlatTreeTraversal::parent(current); parent; parent = Fla tTreeTraversal::parent(*parent)) {
250 if (parent == stayWithin) 250 if (parent == stayWithin)
251 return nullptr; 251 return nullptr;
252 if (Node* previousSibling = ComposedTreeTraversal::previousSibling(*pare nt)) 252 if (Node* previousSibling = FlatTreeTraversal::previousSibling(*parent))
253 return previousSibling; 253 return previousSibling;
254 } 254 }
255 return nullptr; 255 return nullptr;
256 } 256 }
257 257
258 // TODO(yosin) We should consider introducing template class to share code 258 // TODO(yosin) We should consider introducing template class to share code
259 // between DOM tree traversal and composed tree tarversal. 259 // between DOM tree traversal and flat tree tarversal.
260 Node* ComposedTreeTraversal::previousPostOrder(const Node& current, const Node* stayWithin) 260 Node* FlatTreeTraversal::previousPostOrder(const Node& current, const Node* stay Within)
261 { 261 {
262 assertPrecondition(current); 262 assertPrecondition(current);
263 if (stayWithin) 263 if (stayWithin)
264 assertPrecondition(*stayWithin); 264 assertPrecondition(*stayWithin);
265 if (Node* lastChild = traverseLastChild(current)) { 265 if (Node* lastChild = traverseLastChild(current)) {
266 assertPostcondition(lastChild); 266 assertPostcondition(lastChild);
267 return lastChild; 267 return lastChild;
268 } 268 }
269 if (current == stayWithin) 269 if (current == stayWithin)
270 return nullptr; 270 return nullptr;
271 if (Node* previousSibling = traversePreviousSibling(current)) { 271 if (Node* previousSibling = traversePreviousSibling(current)) {
272 assertPostcondition(previousSibling); 272 assertPostcondition(previousSibling);
273 return previousSibling; 273 return previousSibling;
274 } 274 }
275 return previousAncestorSiblingPostOrder(current, stayWithin); 275 return previousAncestorSiblingPostOrder(current, stayWithin);
276 } 276 }
277 277
278 bool ComposedTreeTraversal::isDescendantOf(const Node& node, const Node& other) 278 bool FlatTreeTraversal::isDescendantOf(const Node& node, const Node& other)
279 { 279 {
280 assertPrecondition(node); 280 assertPrecondition(node);
281 assertPrecondition(other); 281 assertPrecondition(other);
282 if (!hasChildren(other) || node.inDocument() != other.inDocument()) 282 if (!hasChildren(other) || node.inDocument() != other.inDocument())
283 return false; 283 return false;
284 for (const ContainerNode* n = traverseParent(node); n; n = traverseParent(*n )) { 284 for (const ContainerNode* n = traverseParent(node); n; n = traverseParent(*n )) {
285 if (n == other) 285 if (n == other)
286 return true; 286 return true;
287 } 287 }
288 return false; 288 return false;
289 } 289 }
290 290
291 Node* ComposedTreeTraversal::commonAncestor(const Node& nodeA, const Node& nodeB ) 291 Node* FlatTreeTraversal::commonAncestor(const Node& nodeA, const Node& nodeB)
292 { 292 {
293 assertPrecondition(nodeA); 293 assertPrecondition(nodeA);
294 assertPrecondition(nodeB); 294 assertPrecondition(nodeB);
295 Node* result = nodeA.commonAncestor(nodeB, 295 Node* result = nodeA.commonAncestor(nodeB,
296 [](const Node& node) 296 [](const Node& node)
297 { 297 {
298 return ComposedTreeTraversal::parent(node); 298 return FlatTreeTraversal::parent(node);
299 }); 299 });
300 assertPostcondition(result); 300 assertPostcondition(result);
301 return result; 301 return result;
302 } 302 }
303 303
304 Node* ComposedTreeTraversal::traverseNextAncestorSibling(const Node& node) 304 Node* FlatTreeTraversal::traverseNextAncestorSibling(const Node& node)
305 { 305 {
306 ASSERT(!traverseNextSibling(node)); 306 ASSERT(!traverseNextSibling(node));
307 for (Node* parent = traverseParent(node); parent; parent = traverseParent(*p arent)) { 307 for (Node* parent = traverseParent(node); parent; parent = traverseParent(*p arent)) {
308 if (Node* nextSibling = traverseNextSibling(*parent)) 308 if (Node* nextSibling = traverseNextSibling(*parent))
309 return nextSibling; 309 return nextSibling;
310 } 310 }
311 return nullptr; 311 return nullptr;
312 } 312 }
313 313
314 Node* ComposedTreeTraversal::traversePreviousAncestorSibling(const Node& node) 314 Node* FlatTreeTraversal::traversePreviousAncestorSibling(const Node& node)
315 { 315 {
316 ASSERT(!traversePreviousSibling(node)); 316 ASSERT(!traversePreviousSibling(node));
317 for (Node* parent = traverseParent(node); parent; parent = traverseParent(*p arent)) { 317 for (Node* parent = traverseParent(node); parent; parent = traverseParent(*p arent)) {
318 if (Node* previousSibling = traversePreviousSibling(*parent)) 318 if (Node* previousSibling = traversePreviousSibling(*parent))
319 return previousSibling; 319 return previousSibling;
320 } 320 }
321 return nullptr; 321 return nullptr;
322 } 322 }
323 323
324 unsigned ComposedTreeTraversal::index(const Node& node) 324 unsigned FlatTreeTraversal::index(const Node& node)
325 { 325 {
326 assertPrecondition(node); 326 assertPrecondition(node);
327 unsigned count = 0; 327 unsigned count = 0;
328 for (Node* runner = traversePreviousSibling(node); runner; runner = previous Sibling(*runner)) 328 for (Node* runner = traversePreviousSibling(node); runner; runner = previous Sibling(*runner))
329 ++count; 329 ++count;
330 return count; 330 return count;
331 } 331 }
332 332
333 unsigned ComposedTreeTraversal::countChildren(const Node& node) 333 unsigned FlatTreeTraversal::countChildren(const Node& node)
334 { 334 {
335 assertPrecondition(node); 335 assertPrecondition(node);
336 unsigned count = 0; 336 unsigned count = 0;
337 for (Node* runner = traverseFirstChild(node); runner; runner = traverseNextS ibling(*runner)) 337 for (Node* runner = traverseFirstChild(node); runner; runner = traverseNextS ibling(*runner))
338 ++count; 338 ++count;
339 return count; 339 return count;
340 } 340 }
341 341
342 Node* ComposedTreeTraversal::lastWithin(const Node& node) 342 Node* FlatTreeTraversal::lastWithin(const Node& node)
343 { 343 {
344 assertPrecondition(node); 344 assertPrecondition(node);
345 Node* descendant = traverseLastChild(node); 345 Node* descendant = traverseLastChild(node);
346 for (Node* child = descendant; child; child = lastChild(*child)) 346 for (Node* child = descendant; child; child = lastChild(*child))
347 descendant = child; 347 descendant = child;
348 assertPostcondition(descendant); 348 assertPostcondition(descendant);
349 return descendant; 349 return descendant;
350 } 350 }
351 351
352 Node& ComposedTreeTraversal::lastWithinOrSelf(const Node& node) 352 Node& FlatTreeTraversal::lastWithinOrSelf(const Node& node)
353 { 353 {
354 assertPrecondition(node); 354 assertPrecondition(node);
355 Node* lastDescendant = lastWithin(node); 355 Node* lastDescendant = lastWithin(node);
356 Node& result = lastDescendant ? *lastDescendant : const_cast<Node&>(node); 356 Node& result = lastDescendant ? *lastDescendant : const_cast<Node&>(node);
357 assertPostcondition(&result); 357 assertPostcondition(&result);
358 return result; 358 return result;
359 } 359 }
360 360
361 } // namespace blink 361 } // namespace blink
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698