| Index: tools/perf/statistics-for-json.R
|
| diff --git a/tools/perf/statistics-for-json.R b/tools/perf/statistics-for-json.R
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..fde2cd75db128e9593fdf0d9c82c3e021b3db97b
|
| --- /dev/null
|
| +++ b/tools/perf/statistics-for-json.R
|
| @@ -0,0 +1,113 @@
|
| +# Copyright 2016 the V8 project authors. All rights reserved.
|
| +# Use of this source code is governed by a BSD-style license that can be
|
| +# found in the LICENSE file.
|
| +
|
| +# Do statistical tests on benchmark results
|
| +# This script requires the libraries rjson, R.utils, ggplot2 and data.table
|
| +# Install them prior to running
|
| +
|
| +# To use the script, first get some benchmark results, for example via
|
| +# tools/run_perf.py ../v8-perf/benchmarks/Octane2.1/Octane2.1-TF.json
|
| +# --outdir=out/x64.release-on --outdir-no-patch=out/x64.release-off
|
| +# --json-test-results=results-on.json
|
| +# --json-test-results-no-patch=results-off.json
|
| +# then run this script
|
| +# Rscript statistics-for-json.R results-on.json results-off.json ~/SVG
|
| +# to produce graphs (and get stdio output of statistical tests).
|
| +
|
| +
|
| +suppressMessages(library("rjson")) # for fromJson
|
| +suppressMessages(library("R.utils")) # for printf
|
| +suppressMessages(library("ggplot2")) # for plotting
|
| +suppressMessages(library("data.table")) # less broken than data.frame
|
| +
|
| +# Clear all variables from environment
|
| +rm(list=ls())
|
| +
|
| +args <- commandArgs(TRUE)
|
| +if (length(args) != 3) {
|
| + printf(paste("usage: Rscript %%this_script patched-results.json",
|
| + "unpatched-results.json\n"))
|
| +} else {
|
| + patch <- fromJSON(file=args[1])
|
| + nopatch <- fromJSON(file=args[2])
|
| + outputPath <- args[3]
|
| + df <- data.table(L = numeric(), R = numeric(), E = numeric(),
|
| + p.value = numeric(), yL = character(),
|
| + p.value.sig = logical())
|
| +
|
| + for (i in seq(1, length(patch$traces))) {
|
| + testName <- patch$traces[[i]]$graphs[[2]]
|
| + printf("%s\n", testName)
|
| +
|
| + nopatch_res <- as.integer(nopatch$traces[[i]]$results)
|
| + patch_res <- as.integer(patch$traces[[i]]$results)
|
| + if (length(nopatch_res) > 0) {
|
| + patch_norm <- shapiro.test(patch_res);
|
| + nopatch_norm <- shapiro.test(nopatch_res);
|
| +
|
| + # Shaprio-Wilk test indicates whether data is not likely to
|
| + # come from a normal distribution. The p-value is the probability
|
| + # to obtain the sample from a normal distribution. This means, the
|
| + # smaller p, the more likely the sample was not drawn from a normal
|
| + # distribution. See [wikipedia:Shapiro-Wilk-Test].
|
| + printf(" Patched scores look %s distributed (W=%.4f, p=%.4f)\n",
|
| + ifelse(patch_norm$p.value < 0.05, "not normally", "normally"),
|
| + patch_norm$statistic, patch_norm$p.value);
|
| + printf(" Unpatched scores look %s distributed (W=%.4f, p=%.4f)\n",
|
| + ifelse(nopatch_norm$p.value < 0.05, "not normally", "normally"),
|
| + nopatch_norm$statistic, nopatch_norm$p.value);
|
| +
|
| + hist <- ggplot(data=data.frame(x=as.integer(patch_res)), aes(x)) +
|
| + theme_bw() +
|
| + geom_histogram(bins=50) +
|
| + ylab("Points") +
|
| + xlab(patch$traces[[i]]$graphs[[2]])
|
| + ggsave(filename=sprintf("%s/%s.svg", outputPath, testName),
|
| + plot=hist, width=7, height=7)
|
| +
|
| + hist <- ggplot(data=data.frame(x=as.integer(nopatch_res)), aes(x)) +
|
| + theme_bw() +
|
| + geom_histogram(bins=50) +
|
| + ylab("Points") +
|
| + xlab(patch$traces[[i]]$graphs[[2]])
|
| + ggsave(filename=sprintf("%s/%s-before.svg", outputPath, testName),
|
| + plot=hist, width=7, height=7)
|
| +
|
| + # The Wilcoxon rank-sum test
|
| + mww <- wilcox.test(patch_res, nopatch_res, conf.int = TRUE, exact=TRUE)
|
| + printf(paste(" Wilcoxon U-test W=%.4f, p=%.4f,",
|
| + "confidence interval [%.1f, %.1f],",
|
| + "est. effect size %.1f \n"),
|
| + mww$statistic, mww$p.value,
|
| + mww$conf.int[1], mww$conf.int[2], mww$estimate);
|
| + df <-rbind(df, list(mww$conf.int[1], mww$conf.int[2],
|
| + unname(mww$estimate), unname(mww$p.value),
|
| + testName, ifelse(mww$p.value < 0.05, TRUE, FALSE)))
|
| + # t-test
|
| + t <- t.test(patch_res, nopatch_res, paired=FALSE)
|
| + printf(paste(" Welch t-test t=%.4f, df = %.2f, p=%.4f,",
|
| + "confidence interval [%.1f, %.1f], mean diff %.1f \n"),
|
| + t$statistic, t$parameter, t$p.value,
|
| + t$conf.int[1], t$conf.int[2], t$estimate[1]-t$estimate[2]);
|
| + }
|
| + }
|
| + df2 <- cbind(x=1:nrow(df), df[order(E),])
|
| + speedup <- ggplot(df2, aes(x = x, y = E, colour=p.value.sig)) +
|
| + geom_errorbar(aes(ymax = L, ymin = R), colour="black") +
|
| + geom_point(size = 4) +
|
| + scale_x_discrete(limits=df2$yL,
|
| + name=paste("Benchmark, n=", length(patch_res))) +
|
| + theme_bw() +
|
| + geom_hline(yintercept = 0) +
|
| + ylab("Est. Effect Size in Points") +
|
| + theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust=0.5)) +
|
| + theme(legend.position = "bottom") +
|
| + scale_colour_manual(name="Statistical Significance (MWW, p < 0.05)",
|
| + values=c("red", "green"),
|
| + labels=c("not significant", "significant")) +
|
| + theme(legend.justification=c(0,1), legend.position=c(0,1))
|
| + print(speedup)
|
| + ggsave(filename=sprintf("%s/speedup-estimates.svg", outputPath),
|
| + plot=speedup, width=7, height=7)
|
| +}
|
|
|