Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(264)

Side by Side Diff: base/waitable_event_posix.cc

Issue 16554: WaitableEvent (Closed)
Patch Set: Addresssing darin's comments (round 2) Created 11 years, 11 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « base/waitable_event_generic.cc ('k') | base/waitable_event_unittest.cc » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 // Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "base/waitable_event.h"
6
7 #include "base/condition_variable.h"
8 #include "base/lock.h"
9 #include "base/message_loop.h"
10
11 // -----------------------------------------------------------------------------
12 // A WaitableEvent on POSIX is implemented as a wait-list. Currently we don't
13 // support cross-process events (where one process can signal an event which
14 // others are waiting on). Because of this, we can avoid having one thread per
15 // listener in several cases.
16 //
17 // The WaitableEvent maintains a list of waiters, protected by a lock. Each
18 // waiter is either an async wait, in which case we have a Task and the
19 // MessageLoop to run it on, or a blocking wait, in which case we have the
20 // condition variable to signal.
21 //
22 // Waiting involves grabbing the lock and adding oneself to the wait list. Async
23 // waits can be canceled, which means grabbing the lock and removing oneself
24 // from the list.
25 //
26 // Waiting on multiple events is handled by adding a single, synchronous wait to
27 // the wait-list of many events. An event passes a pointer to itself when
28 // firing a waiter and so we can store that pointer to find out which event
29 // triggered.
30 // -----------------------------------------------------------------------------
31
32 namespace base {
33
34 // -----------------------------------------------------------------------------
35 // This is just an abstract base class for waking the two types of waiters
36 // -----------------------------------------------------------------------------
37 WaitableEvent::WaitableEvent(bool manual_reset, bool initially_signaled)
38 : signaled_(false),
39 manual_reset_(manual_reset) {
40 DCHECK(!initially_signaled) << "Not implemented";
41 }
42
43 WaitableEvent::~WaitableEvent() {
44 DCHECK(waiters_.empty()) << "Deleting WaitableEvent with listeners!";
45 }
46
47 void WaitableEvent::Reset() {
48 AutoLock locked(lock_);
49 signaled_ = false;
50 }
51
52 void WaitableEvent::Signal() {
53 AutoLock locked(lock_);
54
55 if (signaled_)
56 return;
57
58 if (manual_reset_) {
59 SignalAll();
60 signaled_ = true;
61 } else {
62 // In the case of auto reset, if no waiters were woken, we remain
63 // signaled.
64 if (!SignalOne())
65 signaled_ = true;
66 }
67 }
68
69 bool WaitableEvent::IsSignaled() {
70 AutoLock locked(lock_);
71
72 const bool result = signaled_;
73 if (result && !manual_reset_)
74 signaled_ = false;
75 return result;
76 }
77
78 // -----------------------------------------------------------------------------
79 // Synchronous waits
80
81 // -----------------------------------------------------------------------------
82 // This is an synchronous waiter. The thread is waiting on the given condition
83 // variable and the fired flag in this object.
84 // -----------------------------------------------------------------------------
85 class SyncWaiter : public WaitableEvent::Waiter {
86 public:
87 SyncWaiter(ConditionVariable* cv, Lock* lock)
88 : fired_(false),
89 cv_(cv),
90 lock_(lock),
91 signaling_event_(NULL) { }
92
93 bool Fire(WaitableEvent *signaling_event) {
94 lock_->Acquire();
95 const bool previous_value = fired_;
96 fired_ = true;
97 if (!previous_value)
98 signaling_event_ = signaling_event;
99 lock_->Release();
100
101 if (previous_value)
102 return false;
103
104 cv_->Broadcast();
105
106 // SyncWaiters are stack allocated on the stack of the blocking thread.
107 return true;
108 }
109
110 WaitableEvent* signaled_event() const {
111 return signaling_event_;
112 }
113
114 // ---------------------------------------------------------------------------
115 // These waiters are always stack allocated and don't delete themselves. Thus
116 // there's no problem and the ABA tag is the same as the object pointer.
117 // ---------------------------------------------------------------------------
118 bool Compare(void* tag) {
119 return this == tag;
120 }
121
122 // ---------------------------------------------------------------------------
123 // Called with lock held.
124 // ---------------------------------------------------------------------------
125 bool fired() const {
126 return fired_;
127 }
128
129 // ---------------------------------------------------------------------------
130 // During a TimedWait, we need a way to make sure that an auto-reset
131 // WaitableEvent doesn't think that this event has been signaled between
132 // unlocking it and removing it from the wait-list. Called with lock held.
133 // ---------------------------------------------------------------------------
134 void Disable() {
135 fired_ = true;
136 }
137
138 private:
139 bool fired_;
140 ConditionVariable *const cv_;
141 Lock *const lock_;
142 WaitableEvent* signaling_event_; // The WaitableEvent which woke us
143 };
144
145 bool WaitableEvent::TimedWait(const TimeDelta& max_time) {
146 const Time end_time(Time::Now() + max_time);
147
148 lock_.Acquire();
149 if (signaled_) {
150 if (!manual_reset_) {
151 // In this case we were signaled when we had no waiters. Now that
152 // someone has waited upon us, we can automatically reset.
153 signaled_ = false;
154 }
155
156 lock_.Release();
157 return true;
158 }
159
160 Lock lock;
161 lock.Acquire();
162 ConditionVariable cv(&lock);
163 SyncWaiter sw(&cv, &lock);
164
165 Enqueue(&sw);
166 lock_.Release();
167 // We are violating locking order here by holding the SyncWaiter lock but not
168 // the WaitableEvent lock. However, this is safe because we don't lock @lock_
169 // again before unlocking it.
170
171 for (;;) {
172 if (sw.fired()) {
173 lock.Release();
174 return true;
175 }
176
177 if (max_time.ToInternalValue() < 0) {
178 cv.Wait();
179 } else {
180 const Time current_time(Time::Now());
181 if (current_time >= end_time) {
182 // We can't acquire @lock_ before releasing @lock (because of locking
183 // order), however, inbetween the two a signal could be fired and @sw
184 // would accept it, however we will still return false, so the signal
185 // would be lost on an auto-reset WaitableEvent. Thus we call Disable
186 // which makes sw::Fire return false.
187 sw.Disable();
188 lock.Release();
189
190 lock_.Acquire();
191 Dequeue(&sw, &sw);
192 lock_.Release();
193 return false;
194 }
195 const TimeDelta max_wait(end_time - current_time);
196
197 cv.TimedWait(max_wait);
198 }
199 }
200 }
201
202 bool WaitableEvent::Wait() {
203 return TimedWait(TimeDelta::FromSeconds(-1));
204 }
205
206 // -----------------------------------------------------------------------------
207
208
209 // -----------------------------------------------------------------------------
210 // Synchronous waiting on multiple objects.
211
212 static bool // StrictWeakOrdering
213 cmp_fst_addr(const std::pair<WaitableEvent*, unsigned> &a,
214 const std::pair<WaitableEvent*, unsigned> &b) {
215 return a.first < b.first;
216 }
217
218 // static
219 size_t WaitableEvent::WaitMany(WaitableEvent** raw_waitables,
220 size_t count) {
221 DCHECK(count) << "Cannot wait on no events";
222
223 // We need to acquire the locks in a globally consistent order. Thus we sort
224 // the array of waitables by address. We actually sort a pairs so that we can
225 // map back to the original index values later.
226 std::vector<std::pair<WaitableEvent*, size_t> > waitables;
227 waitables.reserve(count);
228 for (size_t i = 0; i < count; ++i)
229 waitables.push_back(std::make_pair(raw_waitables[i], i));
230
231 DCHECK_EQ(count, waitables.size());
232
233 sort(waitables.begin(), waitables.end(), cmp_fst_addr);
234
235 // The set of waitables must be distinct. Since we have just sorted by
236 // address, we can check this cheaply by comparing pairs of consecutive
237 // elements.
238 for (size_t i = 0; i < waitables.size() - 1; ++i) {
239 DCHECK(waitables[i].first != waitables[i+1].first);
240 }
241
242 Lock lock;
243 ConditionVariable cv(&lock);
244 SyncWaiter sw(&cv, &lock);
245
246 const size_t r = EnqueueMany(&waitables[0], count, &sw);
247 if (r) {
248 // One of the events is already signaled. The SyncWaiter has not been
249 // enqueued anywhere. EnqueueMany returns the count of remaining waitables
250 // when the signaled one was seen, so the index of the signaled event is
251 // @count - @r.
252 return waitables[count - r].second;
253 }
254
255 // At this point, we hold the locks on all the WaitableEvents and we have
256 // enqueued our waiter in them all.
257 lock.Acquire();
258 // Release the WaitableEvent locks in the reverse order
259 for (size_t i = 0; i < count; ++i) {
260 waitables[count - (1 + i)].first->lock_.Release();
261 }
262
263 for (;;) {
264 if (sw.fired())
265 break;
266
267 cv.Wait();
268 }
269 lock.Release();
270
271 // The address of the WaitableEvent which fired is stored in the SyncWaiter.
272 WaitableEvent *const signaled_event = sw.signaled_event();
273 // This will store the index of the raw_waitables which fired.
274 size_t signaled_index;
275
276 // Take the locks of each WaitableEvent in turn (except the signaled one) and
277 // remove our SyncWaiter from the wait-list
278 for (size_t i = 0; i < count; ++i) {
279 if (raw_waitables[i] != signaled_event) {
280 raw_waitables[i]->lock_.Acquire();
281 // There's no possible ABA issue with the address of the SyncWaiter here
282 // because it lives on the stack. Thus the tag value is just the pointer
283 // value again.
284 raw_waitables[i]->Dequeue(&sw, &sw);
285 raw_waitables[i]->lock_.Release();
286 } else {
287 signaled_index = i;
288 }
289 }
290
291 return signaled_index;
292 }
293
294 // -----------------------------------------------------------------------------
295 // If return value == 0:
296 // The locks of the WaitableEvents have been taken in order and the Waiter has
297 // been enqueued in the wait-list of each. None of the WaitableEvents are
298 // currently signaled
299 // else:
300 // None of the WaitableEvent locks are held. The Waiter has not been enqueued
301 // in any of them and the return value is the index of the first WaitableEvent
302 // which was signaled, from the end of the array.
303 // -----------------------------------------------------------------------------
304 // static
305 unsigned WaitableEvent::EnqueueMany
306 (std::pair<WaitableEvent*, unsigned>* waitables,
307 unsigned count, Waiter* waiter) {
308 if (!count)
309 return 0;
310
311 waitables[0].first->lock_.Acquire();
312 if (waitables[0].first->signaled_) {
313 if (!waitables[0].first->manual_reset_)
314 waitables[0].first->signaled_ = false;
315 waitables[0].first->lock_.Release();
316 return count;
317 }
318
319 const unsigned r = EnqueueMany(waitables + 1, count - 1, waiter);
320 if (r) {
321 waitables[0].first->lock_.Release();
322 } else {
323 waitables[0].first->Enqueue(waiter);
324 }
325
326 return r;
327 }
328
329 // -----------------------------------------------------------------------------
330
331
332 // -----------------------------------------------------------------------------
333 // Private functions...
334
335 // -----------------------------------------------------------------------------
336 // Wake all waiting waiters. Called with lock held.
337 // -----------------------------------------------------------------------------
338 bool WaitableEvent::SignalAll() {
339 bool signaled_at_least_one = false;
340
341 for (std::list<Waiter*>::iterator
342 i = waiters_.begin(); i != waiters_.end(); ++i) {
343 if ((*i)->Fire(this))
344 signaled_at_least_one = true;
345 }
346
347 waiters_.clear();
348 return signaled_at_least_one;
349 }
350
351 // ---------------------------------------------------------------------------
352 // Try to wake a single waiter. Return true if one was woken. Called with lock
353 // held.
354 // ---------------------------------------------------------------------------
355 bool WaitableEvent::SignalOne() {
356 for (;;) {
357 if (waiters_.empty())
358 return false;
359
360 const bool r = (*waiters_.begin())->Fire(this);
361 waiters_.pop_front();
362 if (r)
363 return true;
364 }
365 }
366
367 // -----------------------------------------------------------------------------
368 // Add a waiter to the list of those waiting. Called with lock held.
369 // -----------------------------------------------------------------------------
370 void WaitableEvent::Enqueue(Waiter* waiter) {
371 waiters_.push_back(waiter);
372 }
373
374 // -----------------------------------------------------------------------------
375 // Remove a waiter from the list of those waiting. Return true if the waiter was
376 // actually removed. Called with lock held.
377 // -----------------------------------------------------------------------------
378 bool WaitableEvent::Dequeue(Waiter* waiter, void* tag) {
379 for (std::list<Waiter*>::iterator
380 i = waiters_.begin(); i != waiters_.end(); ++i) {
381 if (*i == waiter && (*i)->Compare(tag)) {
382 waiters_.erase(i);
383 return true;
384 }
385 }
386
387 return false;
388 }
389
390 // -----------------------------------------------------------------------------
391
392 } // namespace base
OLDNEW
« no previous file with comments | « base/waitable_event_generic.cc ('k') | base/waitable_event_unittest.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698