Index: third_party/android_debug_dlmalloc/chromium/malloc.cc |
diff --git a/third_party/android_debug_dlmalloc/chromium/malloc.cc b/third_party/android_debug_dlmalloc/chromium/malloc.cc |
new file mode 100644 |
index 0000000000000000000000000000000000000000..f39a33ffe65bc3c407d27643049d77f92d2de143 |
--- /dev/null |
+++ b/third_party/android_debug_dlmalloc/chromium/malloc.cc |
@@ -0,0 +1,5658 @@ |
+/* |
+ This is a version (aka dlmalloc) of malloc/free/realloc written by |
+ Doug Lea and released to the public domain, as explained at |
+ http://creativecommons.org/publicdomain/zero/1.0/ Send questions, |
+ comments, complaints, performance data, etc to dl@cs.oswego.edu |
+ |
+* Version 2.8.6 Wed Aug 29 06:57:58 2012 Doug Lea |
+ Note: There may be an updated version of this malloc obtainable at |
+ ftp://gee.cs.oswego.edu/pub/misc/malloc.c |
+ Check before installing! |
+ |
+* Quickstart |
+ |
+ This library is all in one file to simplify the most common usage: |
+ ftp it, compile it (-O3), and link it into another program. All of |
+ the compile-time options default to reasonable values for use on |
+ most platforms. You might later want to step through various |
+ compile-time and dynamic tuning options. |
+ |
+ For convenience, an include file for code using this malloc is at: |
+ ftp://gee.cs.oswego.edu/pub/misc/malloc-2.8.6.h |
+ You don't really need this .h file unless you call functions not |
+ defined in your system include files. The .h file contains only the |
+ excerpts from this file needed for using this malloc on ANSI C/C++ |
+ systems, so long as you haven't changed compile-time options about |
+ naming and tuning parameters. If you do, then you can create your |
+ own malloc.h that does include all settings by cutting at the point |
+ indicated below. Note that you may already by default be using a C |
+ library containing a malloc that is based on some version of this |
+ malloc (for example in linux). You might still want to use the one |
+ in this file to customize settings or to avoid overheads associated |
+ with library versions. |
+ |
+* Vital statistics: |
+ |
+ Supported pointer/size_t representation: 4 or 8 bytes |
+ size_t MUST be an unsigned type of the same width as |
+ pointers. (If you are using an ancient system that declares |
+ size_t as a signed type, or need it to be a different width |
+ than pointers, you can use a previous release of this malloc |
+ (e.g. 2.7.2) supporting these.) |
+ |
+ Alignment: 8 bytes (minimum) |
+ This suffices for nearly all current machines and C compilers. |
+ However, you can define MALLOC_ALIGNMENT to be wider than this |
+ if necessary (up to 128bytes), at the expense of using more space. |
+ |
+ Minimum overhead per allocated chunk: 4 or 8 bytes (if 4byte sizes) |
+ 8 or 16 bytes (if 8byte sizes) |
+ Each malloced chunk has a hidden word of overhead holding size |
+ and status information, and additional cross-check word |
+ if FOOTERS is defined. |
+ |
+ Minimum allocated size: 4-byte ptrs: 16 bytes (including overhead) |
+ 8-byte ptrs: 32 bytes (including overhead) |
+ |
+ Even a request for zero bytes (i.e., malloc(0)) returns a |
+ pointer to something of the minimum allocatable size. |
+ The maximum overhead wastage (i.e., number of extra bytes |
+ allocated than were requested in malloc) is less than or equal |
+ to the minimum size, except for requests >= mmap_threshold that |
+ are serviced via mmap(), where the worst case wastage is about |
+ 32 bytes plus the remainder from a system page (the minimal |
+ mmap unit); typically 4096 or 8192 bytes. |
+ |
+ Security: static-safe; optionally more or less |
+ The "security" of malloc refers to the ability of malicious |
+ code to accentuate the effects of errors (for example, freeing |
+ space that is not currently malloc'ed or overwriting past the |
+ ends of chunks) in code that calls malloc. This malloc |
+ guarantees not to modify any memory locations below the base of |
+ heap, i.e., static variables, even in the presence of usage |
+ errors. The routines additionally detect most improper frees |
+ and reallocs. All this holds as long as the static bookkeeping |
+ for malloc itself is not corrupted by some other means. This |
+ is only one aspect of security -- these checks do not, and |
+ cannot, detect all possible programming errors. |
+ |
+ If FOOTERS is defined nonzero, then each allocated chunk |
+ carries an additional check word to verify that it was malloced |
+ from its space. These check words are the same within each |
+ execution of a program using malloc, but differ across |
+ executions, so externally crafted fake chunks cannot be |
+ freed. This improves security by rejecting frees/reallocs that |
+ could corrupt heap memory, in addition to the checks preventing |
+ writes to statics that are always on. This may further improve |
+ security at the expense of time and space overhead. (Note that |
+ FOOTERS may also be worth using with MSPACES.) |
+ |
+ By default detected errors cause the program to abort (calling |
+ "abort()"). You can override this to instead proceed past |
+ errors by defining PROCEED_ON_ERROR. In this case, a bad free |
+ has no effect, and a malloc that encounters a bad address |
+ caused by user overwrites will ignore the bad address by |
+ dropping pointers and indices to all known memory. This may |
+ be appropriate for programs that should continue if at all |
+ possible in the face of programming errors, although they may |
+ run out of memory because dropped memory is never reclaimed. |
+ |
+ If you don't like either of these options, you can define |
+ CORRUPTION_ERROR_ACTION and USAGE_ERROR_ACTION to do anything |
+ else. And if if you are sure that your program using malloc has |
+ no errors or vulnerabilities, you can define INSECURE to 1, |
+ which might (or might not) provide a small performance improvement. |
+ |
+ It is also possible to limit the maximum total allocatable |
+ space, using malloc_set_footprint_limit. This is not |
+ designed as a security feature in itself (calls to set limits |
+ are not screened or privileged), but may be useful as one |
+ aspect of a secure implementation. |
+ |
+ Thread-safety: NOT thread-safe unless USE_LOCKS defined non-zero |
+ When USE_LOCKS is defined, each public call to malloc, free, |
+ etc is surrounded with a lock. By default, this uses a plain |
+ pthread mutex, win32 critical section, or a spin-lock if if |
+ available for the platform and not disabled by setting |
+ USE_SPIN_LOCKS=0. However, if USE_RECURSIVE_LOCKS is defined, |
+ recursive versions are used instead (which are not required for |
+ base functionality but may be needed in layered extensions). |
+ Using a global lock is not especially fast, and can be a major |
+ bottleneck. It is designed only to provide minimal protection |
+ in concurrent environments, and to provide a basis for |
+ extensions. If you are using malloc in a concurrent program, |
+ consider instead using nedmalloc |
+ (http://www.nedprod.com/programs/portable/nedmalloc/) or |
+ ptmalloc (See http://www.malloc.de), which are derived from |
+ versions of this malloc. |
+ |
+ System requirements: Any combination of MORECORE and/or MMAP/MUNMAP |
+ This malloc can use unix sbrk or any emulation (invoked using |
+ the CALL_MORECORE macro) and/or mmap/munmap or any emulation |
+ (invoked using CALL_MMAP/CALL_MUNMAP) to get and release system |
+ memory. On most unix systems, it tends to work best if both |
+ MORECORE and MMAP are enabled. On Win32, it uses emulations |
+ based on VirtualAlloc. It also uses common C library functions |
+ like memset. |
+ |
+ Compliance: I believe it is compliant with the Single Unix Specification |
+ (See http://www.unix.org). Also SVID/XPG, ANSI C, and probably |
+ others as well. |
+ |
+* Overview of algorithms |
+ |
+ This is not the fastest, most space-conserving, most portable, or |
+ most tunable malloc ever written. However it is among the fastest |
+ while also being among the most space-conserving, portable and |
+ tunable. Consistent balance across these factors results in a good |
+ general-purpose allocator for malloc-intensive programs. |
+ |
+ In most ways, this malloc is a best-fit allocator. Generally, it |
+ chooses the best-fitting existing chunk for a request, with ties |
+ broken in approximately least-recently-used order. (This strategy |
+ normally maintains low fragmentation.) However, for requests less |
+ than 256bytes, it deviates from best-fit when there is not an |
+ exactly fitting available chunk by preferring to use space adjacent |
+ to that used for the previous small request, as well as by breaking |
+ ties in approximately most-recently-used order. (These enhance |
+ locality of series of small allocations.) And for very large requests |
+ (>= 256Kb by default), it relies on system memory mapping |
+ facilities, if supported. (This helps avoid carrying around and |
+ possibly fragmenting memory used only for large chunks.) |
+ |
+ All operations (except malloc_stats and mallinfo) have execution |
+ times that are bounded by a constant factor of the number of bits in |
+ a size_t, not counting any clearing in calloc or copying in realloc, |
+ or actions surrounding MORECORE and MMAP that have times |
+ proportional to the number of non-contiguous regions returned by |
+ system allocation routines, which is often just 1. In real-time |
+ applications, you can optionally suppress segment traversals using |
+ NO_SEGMENT_TRAVERSAL, which assures bounded execution even when |
+ system allocators return non-contiguous spaces, at the typical |
+ expense of carrying around more memory and increased fragmentation. |
+ |
+ The implementation is not very modular and seriously overuses |
+ macros. Perhaps someday all C compilers will do as good a job |
+ inlining modular code as can now be done by brute-force expansion, |
+ but now, enough of them seem not to. |
+ |
+ Some compilers issue a lot of warnings about code that is |
+ dead/unreachable only on some platforms, and also about intentional |
+ uses of negation on unsigned types. All known cases of each can be |
+ ignored. |
+ |
+ For a longer but out of date high-level description, see |
+ http://gee.cs.oswego.edu/dl/html/malloc.html |
+ |
+* MSPACES |
+ If MSPACES is defined, then in addition to malloc, free, etc., |
+ this file also defines mspace_malloc, mspace_free, etc. These |
+ are versions of malloc routines that take an "mspace" argument |
+ obtained using create_mspace, to control all internal bookkeeping. |
+ If ONLY_MSPACES is defined, only these versions are compiled. |
+ So if you would like to use this allocator for only some allocations, |
+ and your system malloc for others, you can compile with |
+ ONLY_MSPACES and then do something like... |
+ static mspace mymspace = create_mspace(0,0); // for example |
+ #define mymalloc(bytes) mspace_malloc(mymspace, bytes) |
+ |
+ (Note: If you only need one instance of an mspace, you can instead |
+ use "USE_DL_PREFIX" to relabel the global malloc.) |
+ |
+ You can similarly create thread-local allocators by storing |
+ mspaces as thread-locals. For example: |
+ static __thread mspace tlms = 0; |
+ void* tlmalloc(size_t bytes) { |
+ if (tlms == 0) tlms = create_mspace(0, 0); |
+ return mspace_malloc(tlms, bytes); |
+ } |
+ void tlfree(void* mem) { mspace_free(tlms, mem); } |
+ |
+ Unless FOOTERS is defined, each mspace is completely independent. |
+ You cannot allocate from one and free to another (although |
+ conformance is only weakly checked, so usage errors are not always |
+ caught). If FOOTERS is defined, then each chunk carries around a tag |
+ indicating its originating mspace, and frees are directed to their |
+ originating spaces. Normally, this requires use of locks. |
+ |
+ ------------------------- Compile-time options --------------------------- |
+ |
+Be careful in setting #define values for numerical constants of type |
+size_t. On some systems, literal values are not automatically extended |
+to size_t precision unless they are explicitly casted. You can also |
+use the symbolic values MAX_SIZE_T, SIZE_T_ONE, etc below. |
+ |
+WIN32 default: defined if _WIN32 defined |
+ Defining WIN32 sets up defaults for MS environment and compilers. |
+ Otherwise defaults are for unix. Beware that there seem to be some |
+ cases where this malloc might not be a pure drop-in replacement for |
+ Win32 malloc: Random-looking failures from Win32 GDI API's (eg; |
+ SetDIBits()) may be due to bugs in some video driver implementations |
+ when pixel buffers are malloc()ed, and the region spans more than |
+ one VirtualAlloc()ed region. Because dlmalloc uses a small (64Kb) |
+ default granularity, pixel buffers may straddle virtual allocation |
+ regions more often than when using the Microsoft allocator. You can |
+ avoid this by using VirtualAlloc() and VirtualFree() for all pixel |
+ buffers rather than using malloc(). If this is not possible, |
+ recompile this malloc with a larger DEFAULT_GRANULARITY. Note: |
+ in cases where MSC and gcc (cygwin) are known to differ on WIN32, |
+ conditions use _MSC_VER to distinguish them. |
+ |
+DLMALLOC_EXPORT default: extern |
+ Defines how public APIs are declared. If you want to export via a |
+ Windows DLL, you might define this as |
+ #define DLMALLOC_EXPORT extern __declspec(dllexport) |
+ If you want a POSIX ELF shared object, you might use |
+ #define DLMALLOC_EXPORT extern __attribute__((visibility("default"))) |
+ |
+MALLOC_ALIGNMENT default: (size_t)(2 * sizeof(void *)) |
+ Controls the minimum alignment for malloc'ed chunks. It must be a |
+ power of two and at least 8, even on machines for which smaller |
+ alignments would suffice. It may be defined as larger than this |
+ though. Note however that code and data structures are optimized for |
+ the case of 8-byte alignment. |
+ |
+MSPACES default: 0 (false) |
+ If true, compile in support for independent allocation spaces. |
+ This is only supported if HAVE_MMAP is true. |
+ |
+ONLY_MSPACES default: 0 (false) |
+ If true, only compile in mspace versions, not regular versions. |
+ |
+USE_LOCKS default: 0 (false) |
+ Causes each call to each public routine to be surrounded with |
+ pthread or WIN32 mutex lock/unlock. (If set true, this can be |
+ overridden on a per-mspace basis for mspace versions.) If set to a |
+ non-zero value other than 1, locks are used, but their |
+ implementation is left out, so lock functions must be supplied manually, |
+ as described below. |
+ |
+USE_SPIN_LOCKS default: 1 iff USE_LOCKS and spin locks available |
+ If true, uses custom spin locks for locking. This is currently |
+ supported only gcc >= 4.1, older gccs on x86 platforms, and recent |
+ MS compilers. Otherwise, posix locks or win32 critical sections are |
+ used. |
+ |
+USE_RECURSIVE_LOCKS default: not defined |
+ If defined nonzero, uses recursive (aka reentrant) locks, otherwise |
+ uses plain mutexes. This is not required for malloc proper, but may |
+ be needed for layered allocators such as nedmalloc. |
+ |
+LOCK_AT_FORK default: not defined |
+ If defined nonzero, performs pthread_atfork upon initialization |
+ to initialize child lock while holding parent lock. The implementation |
+ assumes that pthread locks (not custom locks) are being used. In other |
+ cases, you may need to customize the implementation. |
+ |
+FOOTERS default: 0 |
+ If true, provide extra checking and dispatching by placing |
+ information in the footers of allocated chunks. This adds |
+ space and time overhead. |
+ |
+INSECURE default: 0 |
+ If true, omit checks for usage errors and heap space overwrites. |
+ |
+USE_DL_PREFIX default: NOT defined |
+ Causes compiler to prefix all public routines with the string 'dl'. |
+ This can be useful when you only want to use this malloc in one part |
+ of a program, using your regular system malloc elsewhere. |
+ |
+MALLOC_INSPECT_ALL default: NOT defined |
+ If defined, compiles malloc_inspect_all and mspace_inspect_all, that |
+ perform traversal of all heap space. Unless access to these |
+ functions is otherwise restricted, you probably do not want to |
+ include them in secure implementations. |
+ |
+ABORT default: defined as abort() |
+ Defines how to abort on failed checks. On most systems, a failed |
+ check cannot die with an "assert" or even print an informative |
+ message, because the underlying print routines in turn call malloc, |
+ which will fail again. Generally, the best policy is to simply call |
+ abort(). It's not very useful to do more than this because many |
+ errors due to overwriting will show up as address faults (null, odd |
+ addresses etc) rather than malloc-triggered checks, so will also |
+ abort. Also, most compilers know that abort() does not return, so |
+ can better optimize code conditionally calling it. |
+ |
+PROCEED_ON_ERROR default: defined as 0 (false) |
+ Controls whether detected bad addresses cause them to bypassed |
+ rather than aborting. If set, detected bad arguments to free and |
+ realloc are ignored. And all bookkeeping information is zeroed out |
+ upon a detected overwrite of freed heap space, thus losing the |
+ ability to ever return it from malloc again, but enabling the |
+ application to proceed. If PROCEED_ON_ERROR is defined, the |
+ static variable malloc_corruption_error_count is compiled in |
+ and can be examined to see if errors have occurred. This option |
+ generates slower code than the default abort policy. |
+ |
+DEBUG default: NOT defined |
+ The DEBUG setting is mainly intended for people trying to modify |
+ this code or diagnose problems when porting to new platforms. |
+ However, it may also be able to better isolate user errors than just |
+ using runtime checks. The assertions in the check routines spell |
+ out in more detail the assumptions and invariants underlying the |
+ algorithms. The checking is fairly extensive, and will slow down |
+ execution noticeably. Calling malloc_stats or mallinfo with DEBUG |
+ set will attempt to check every non-mmapped allocated and free chunk |
+ in the course of computing the summaries. |
+ |
+ABORT_ON_ASSERT_FAILURE default: defined as 1 (true) |
+ Debugging assertion failures can be nearly impossible if your |
+ version of the assert macro causes malloc to be called, which will |
+ lead to a cascade of further failures, blowing the runtime stack. |
+ ABORT_ON_ASSERT_FAILURE cause assertions failures to call abort(), |
+ which will usually make debugging easier. |
+ |
+MALLOC_FAILURE_ACTION default: sets errno to ENOMEM, or no-op on win32 |
+ The action to take before "return 0" when malloc fails to be able to |
+ return memory because there is none available. |
+ |
+HAVE_MORECORE default: 1 (true) unless win32 or ONLY_MSPACES |
+ True if this system supports sbrk or an emulation of it. |
+ |
+MORECORE default: sbrk |
+ The name of the sbrk-style system routine to call to obtain more |
+ memory. See below for guidance on writing custom MORECORE |
+ functions. The type of the argument to sbrk/MORECORE varies across |
+ systems. It cannot be size_t, because it supports negative |
+ arguments, so it is normally the signed type of the same width as |
+ size_t (sometimes declared as "intptr_t"). It doesn't much matter |
+ though. Internally, we only call it with arguments less than half |
+ the max value of a size_t, which should work across all reasonable |
+ possibilities, although sometimes generating compiler warnings. |
+ |
+MORECORE_CONTIGUOUS default: 1 (true) if HAVE_MORECORE |
+ If true, take advantage of fact that consecutive calls to MORECORE |
+ with positive arguments always return contiguous increasing |
+ addresses. This is true of unix sbrk. It does not hurt too much to |
+ set it true anyway, since malloc copes with non-contiguities. |
+ Setting it false when definitely non-contiguous saves time |
+ and possibly wasted space it would take to discover this though. |
+ |
+MORECORE_CANNOT_TRIM default: NOT defined |
+ True if MORECORE cannot release space back to the system when given |
+ negative arguments. This is generally necessary only if you are |
+ using a hand-crafted MORECORE function that cannot handle negative |
+ arguments. |
+ |
+NO_SEGMENT_TRAVERSAL default: 0 |
+ If non-zero, suppresses traversals of memory segments |
+ returned by either MORECORE or CALL_MMAP. This disables |
+ merging of segments that are contiguous, and selectively |
+ releasing them to the OS if unused, but bounds execution times. |
+ |
+HAVE_MMAP default: 1 (true) |
+ True if this system supports mmap or an emulation of it. If so, and |
+ HAVE_MORECORE is not true, MMAP is used for all system |
+ allocation. If set and HAVE_MORECORE is true as well, MMAP is |
+ primarily used to directly allocate very large blocks. It is also |
+ used as a backup strategy in cases where MORECORE fails to provide |
+ space from system. Note: A single call to MUNMAP is assumed to be |
+ able to unmap memory that may have be allocated using multiple calls |
+ to MMAP, so long as they are adjacent. |
+ |
+HAVE_MREMAP default: 1 on linux, else 0 |
+ If true realloc() uses mremap() to re-allocate large blocks and |
+ extend or shrink allocation spaces. |
+ |
+MMAP_CLEARS default: 1 except on WINCE. |
+ True if mmap clears memory so calloc doesn't need to. This is true |
+ for standard unix mmap using /dev/zero and on WIN32 except for WINCE. |
+ |
+USE_BUILTIN_FFS default: 0 (i.e., not used) |
+ Causes malloc to use the builtin ffs() function to compute indices. |
+ Some compilers may recognize and intrinsify ffs to be faster than the |
+ supplied C version. Also, the case of x86 using gcc is special-cased |
+ to an asm instruction, so is already as fast as it can be, and so |
+ this setting has no effect. Similarly for Win32 under recent MS compilers. |
+ (On most x86s, the asm version is only slightly faster than the C version.) |
+ |
+malloc_getpagesize default: derive from system includes, or 4096. |
+ The system page size. To the extent possible, this malloc manages |
+ memory from the system in page-size units. This may be (and |
+ usually is) a function rather than a constant. This is ignored |
+ if WIN32, where page size is determined using getSystemInfo during |
+ initialization. |
+ |
+USE_DEV_RANDOM default: 0 (i.e., not used) |
+ Causes malloc to use /dev/random to initialize secure magic seed for |
+ stamping footers. Otherwise, the current time is used. |
+ |
+NO_MALLINFO default: 0 |
+ If defined, don't compile "mallinfo". This can be a simple way |
+ of dealing with mismatches between system declarations and |
+ those in this file. |
+ |
+MALLINFO_FIELD_TYPE default: size_t |
+ The type of the fields in the mallinfo struct. This was originally |
+ defined as "int" in SVID etc, but is more usefully defined as |
+ size_t. The value is used only if HAVE_USR_INCLUDE_MALLOC_H is not set |
+ |
+NO_MALLOC_STATS default: 0 |
+ If defined, don't compile "malloc_stats". This avoids calls to |
+ fprintf and bringing in stdio dependencies you might not want. |
+ |
+REALLOC_ZERO_BYTES_FREES default: not defined |
+ This should be set if a call to realloc with zero bytes should |
+ be the same as a call to free. Some people think it should. Otherwise, |
+ since this malloc returns a unique pointer for malloc(0), so does |
+ realloc(p, 0). |
+ |
+LACKS_UNISTD_H, LACKS_FCNTL_H, LACKS_SYS_PARAM_H, LACKS_SYS_MMAN_H |
+LACKS_STRINGS_H, LACKS_STRING_H, LACKS_SYS_TYPES_H, LACKS_ERRNO_H |
+LACKS_STDLIB_H LACKS_SCHED_H LACKS_TIME_H default: NOT defined unless on WIN32 |
+ Define these if your system does not have these header files. |
+ You might need to manually insert some of the declarations they provide. |
+ |
+DEFAULT_GRANULARITY default: page size if MORECORE_CONTIGUOUS, |
+ system_info.dwAllocationGranularity in WIN32, |
+ otherwise 64K. |
+ Also settable using mallopt(M_GRANULARITY, x) |
+ The unit for allocating and deallocating memory from the system. On |
+ most systems with contiguous MORECORE, there is no reason to |
+ make this more than a page. However, systems with MMAP tend to |
+ either require or encourage larger granularities. You can increase |
+ this value to prevent system allocation functions to be called so |
+ often, especially if they are slow. The value must be at least one |
+ page and must be a power of two. Setting to 0 causes initialization |
+ to either page size or win32 region size. (Note: In previous |
+ versions of malloc, the equivalent of this option was called |
+ "TOP_PAD") |
+ |
+DEFAULT_TRIM_THRESHOLD default: 2MB |
+ Also settable using mallopt(M_TRIM_THRESHOLD, x) |
+ The maximum amount of unused top-most memory to keep before |
+ releasing via malloc_trim in free(). Automatic trimming is mainly |
+ useful in long-lived programs using contiguous MORECORE. Because |
+ trimming via sbrk can be slow on some systems, and can sometimes be |
+ wasteful (in cases where programs immediately afterward allocate |
+ more large chunks) the value should be high enough so that your |
+ overall system performance would improve by releasing this much |
+ memory. As a rough guide, you might set to a value close to the |
+ average size of a process (program) running on your system. |
+ Releasing this much memory would allow such a process to run in |
+ memory. Generally, it is worth tuning trim thresholds when a |
+ program undergoes phases where several large chunks are allocated |
+ and released in ways that can reuse each other's storage, perhaps |
+ mixed with phases where there are no such chunks at all. The trim |
+ value must be greater than page size to have any useful effect. To |
+ disable trimming completely, you can set to MAX_SIZE_T. Note that the trick |
+ some people use of mallocing a huge space and then freeing it at |
+ program startup, in an attempt to reserve system memory, doesn't |
+ have the intended effect under automatic trimming, since that memory |
+ will immediately be returned to the system. |
+ |
+DEFAULT_MMAP_THRESHOLD default: 256K |
+ Also settable using mallopt(M_MMAP_THRESHOLD, x) |
+ The request size threshold for using MMAP to directly service a |
+ request. Requests of at least this size that cannot be allocated |
+ using already-existing space will be serviced via mmap. (If enough |
+ normal freed space already exists it is used instead.) Using mmap |
+ segregates relatively large chunks of memory so that they can be |
+ individually obtained and released from the host system. A request |
+ serviced through mmap is never reused by any other request (at least |
+ not directly; the system may just so happen to remap successive |
+ requests to the same locations). Segregating space in this way has |
+ the benefits that: Mmapped space can always be individually released |
+ back to the system, which helps keep the system level memory demands |
+ of a long-lived program low. Also, mapped memory doesn't become |
+ `locked' between other chunks, as can happen with normally allocated |
+ chunks, which means that even trimming via malloc_trim would not |
+ release them. However, it has the disadvantage that the space |
+ cannot be reclaimed, consolidated, and then used to service later |
+ requests, as happens with normal chunks. The advantages of mmap |
+ nearly always outweigh disadvantages for "large" chunks, but the |
+ value of "large" may vary across systems. The default is an |
+ empirically derived value that works well in most systems. You can |
+ disable mmap by setting to MAX_SIZE_T. |
+ |
+MAX_RELEASE_CHECK_RATE default: 4095 unless not HAVE_MMAP |
+ The number of consolidated frees between checks to release |
+ unused segments when freeing. When using non-contiguous segments, |
+ especially with multiple mspaces, checking only for topmost space |
+ doesn't always suffice to trigger trimming. To compensate for this, |
+ free() will, with a period of MAX_RELEASE_CHECK_RATE (or the |
+ current number of segments, if greater) try to release unused |
+ segments to the OS when freeing chunks that result in |
+ consolidation. The best value for this parameter is a compromise |
+ between slowing down frees with relatively costly checks that |
+ rarely trigger versus holding on to unused memory. To effectively |
+ disable, set to MAX_SIZE_T. This may lead to a very slight speed |
+ improvement at the expense of carrying around more memory. |
+*/ |
+ |
+/* Version identifier to allow people to support multiple versions */ |
+#ifndef DLMALLOC_VERSION |
+#define DLMALLOC_VERSION 20806 |
+#endif /* DLMALLOC_VERSION */ |
+ |
+#ifndef DLMALLOC_EXPORT |
+#define DLMALLOC_EXPORT extern |
+#endif |
+ |
+#if defined(__ANDROID__) |
+#include <android/log.h> |
+#include "../../../third_party/ashmem/ashmem.h" |
+#endif |
+ |
+#ifndef WIN32 |
+#ifdef _WIN32 |
+#define WIN32 1 |
+#endif /* _WIN32 */ |
+#ifdef _WIN32_WCE |
+#define LACKS_FCNTL_H |
+#define WIN32 1 |
+#endif /* _WIN32_WCE */ |
+#endif /* WIN32 */ |
+#ifdef WIN32 |
+#define WIN32_LEAN_AND_MEAN |
+#include <windows.h> |
+#include <tchar.h> |
+#define HAVE_MMAP 1 |
+#define HAVE_MORECORE 0 |
+#define LACKS_UNISTD_H |
+#define LACKS_SYS_PARAM_H |
+#define LACKS_SYS_MMAN_H |
+#define LACKS_STRING_H |
+#define LACKS_STRINGS_H |
+#define LACKS_SYS_TYPES_H |
+#define LACKS_ERRNO_H |
+#define LACKS_SCHED_H |
+#ifndef MALLOC_FAILURE_ACTION |
+#define MALLOC_FAILURE_ACTION |
+#endif /* MALLOC_FAILURE_ACTION */ |
+#ifndef MMAP_CLEARS |
+#ifdef _WIN32_WCE /* WINCE reportedly does not clear */ |
+#define MMAP_CLEARS 0 |
+#else |
+#define MMAP_CLEARS 1 |
+#endif /* _WIN32_WCE */ |
+#endif /*MMAP_CLEARS */ |
+#endif /* WIN32 */ |
+ |
+#if defined(DARWIN) || defined(_DARWIN) |
+/* Mac OSX docs advise not to use sbrk; it seems better to use mmap */ |
+#ifndef HAVE_MORECORE |
+#define HAVE_MORECORE 0 |
+#define HAVE_MMAP 1 |
+/* OSX allocators provide 16 byte alignment */ |
+#ifndef MALLOC_ALIGNMENT |
+#define MALLOC_ALIGNMENT ((size_t)16U) |
+#endif |
+#endif /* HAVE_MORECORE */ |
+#endif /* DARWIN */ |
+ |
+#ifndef LACKS_SYS_TYPES_H |
+#include <sys/types.h> /* For size_t */ |
+#endif /* LACKS_SYS_TYPES_H */ |
+ |
+/* The maximum possible size_t value has all bits set */ |
+#define MAX_SIZE_T (~(size_t)0) |
+ |
+#ifndef USE_LOCKS /* ensure true if spin or recursive locks set */ |
+#define USE_LOCKS ((defined(USE_SPIN_LOCKS) && USE_SPIN_LOCKS != 0) || \ |
+ (defined(USE_RECURSIVE_LOCKS) && USE_RECURSIVE_LOCKS != 0)) |
+#endif /* USE_LOCKS */ |
+ |
+#if USE_LOCKS /* Spin locks for gcc >= 4.1, older gcc on x86, MSC >= 1310 */ |
+#if ((defined(__GNUC__) && \ |
+ ((__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 1)) || \ |
+ defined(__i386__) || defined(__x86_64__))) || \ |
+ (defined(_MSC_VER) && _MSC_VER>=1310)) |
+#ifndef USE_SPIN_LOCKS |
+#define USE_SPIN_LOCKS 1 |
+#endif /* USE_SPIN_LOCKS */ |
+#elif USE_SPIN_LOCKS |
+#error "USE_SPIN_LOCKS defined without implementation" |
+#endif /* ... locks available... */ |
+#elif !defined(USE_SPIN_LOCKS) |
+#define USE_SPIN_LOCKS 0 |
+#endif /* USE_LOCKS */ |
+ |
+#ifndef ONLY_MSPACES |
+#define ONLY_MSPACES 0 |
+#endif /* ONLY_MSPACES */ |
+#ifndef MSPACES |
+#if ONLY_MSPACES |
+#define MSPACES 1 |
+#else /* ONLY_MSPACES */ |
+#define MSPACES 0 |
+#endif /* ONLY_MSPACES */ |
+#endif /* MSPACES */ |
+#ifndef MALLOC_ALIGNMENT |
+#define MALLOC_ALIGNMENT ((size_t)(2 * sizeof(void *))) |
+#endif /* MALLOC_ALIGNMENT */ |
+#ifndef FOOTERS |
+#define FOOTERS 0 |
+#endif /* FOOTERS */ |
+#ifndef ABORT |
+#define ABORT abort() |
+#endif /* ABORT */ |
+#ifndef ABORT_ON_ASSERT_FAILURE |
+#define ABORT_ON_ASSERT_FAILURE 1 |
+#endif /* ABORT_ON_ASSERT_FAILURE */ |
+#ifndef PROCEED_ON_ERROR |
+#define PROCEED_ON_ERROR 0 |
+#endif /* PROCEED_ON_ERROR */ |
+ |
+#ifndef INSECURE |
+#define INSECURE 0 |
+#endif /* INSECURE */ |
+#ifndef MALLOC_INSPECT_ALL |
+#define MALLOC_INSPECT_ALL 0 |
+#endif /* MALLOC_INSPECT_ALL */ |
+#ifndef HAVE_MMAP |
+#define HAVE_MMAP 1 |
+#endif /* HAVE_MMAP */ |
+#ifndef MMAP_CLEARS |
+#define MMAP_CLEARS 1 |
+#endif /* MMAP_CLEARS */ |
+#ifndef HAVE_MREMAP |
+#ifdef linux |
+#define HAVE_MREMAP 1 |
+#define _GNU_SOURCE /* Turns on mremap() definition */ |
+#else /* linux */ |
+#define HAVE_MREMAP 0 |
+#endif /* linux */ |
+#endif /* HAVE_MREMAP */ |
+#ifndef MALLOC_FAILURE_ACTION |
+#define MALLOC_FAILURE_ACTION errno = ENOMEM; |
+#endif /* MALLOC_FAILURE_ACTION */ |
+#ifndef HAVE_MORECORE |
+#if ONLY_MSPACES |
+#define HAVE_MORECORE 0 |
+#else /* ONLY_MSPACES */ |
+#define HAVE_MORECORE 1 |
+#endif /* ONLY_MSPACES */ |
+#endif /* HAVE_MORECORE */ |
+#if !HAVE_MORECORE |
+#define MORECORE_CONTIGUOUS 0 |
+#else /* !HAVE_MORECORE */ |
+#define MORECORE_DEFAULT sbrk |
+#ifndef MORECORE_CONTIGUOUS |
+#define MORECORE_CONTIGUOUS 1 |
+#endif /* MORECORE_CONTIGUOUS */ |
+#endif /* HAVE_MORECORE */ |
+#ifndef DEFAULT_GRANULARITY |
+#if (MORECORE_CONTIGUOUS || defined(WIN32)) |
+#define DEFAULT_GRANULARITY (0) /* 0 means to compute in init_mparams */ |
+#else /* MORECORE_CONTIGUOUS */ |
+#define DEFAULT_GRANULARITY ((size_t)64U * (size_t)1024U) |
+#endif /* MORECORE_CONTIGUOUS */ |
+#endif /* DEFAULT_GRANULARITY */ |
+#ifndef DEFAULT_TRIM_THRESHOLD |
+#ifndef MORECORE_CANNOT_TRIM |
+#define DEFAULT_TRIM_THRESHOLD ((size_t)2U * (size_t)1024U * (size_t)1024U) |
+#else /* MORECORE_CANNOT_TRIM */ |
+#define DEFAULT_TRIM_THRESHOLD MAX_SIZE_T |
+#endif /* MORECORE_CANNOT_TRIM */ |
+#endif /* DEFAULT_TRIM_THRESHOLD */ |
+#ifndef DEFAULT_MMAP_THRESHOLD |
+#if HAVE_MMAP |
+#define DEFAULT_MMAP_THRESHOLD ((size_t)256U * (size_t)1024U) |
+#else /* HAVE_MMAP */ |
+#define DEFAULT_MMAP_THRESHOLD MAX_SIZE_T |
+#endif /* HAVE_MMAP */ |
+#endif /* DEFAULT_MMAP_THRESHOLD */ |
+#ifndef MAX_RELEASE_CHECK_RATE |
+#if HAVE_MMAP |
+#define MAX_RELEASE_CHECK_RATE 4095 |
+#else |
+#define MAX_RELEASE_CHECK_RATE MAX_SIZE_T |
+#endif /* HAVE_MMAP */ |
+#endif /* MAX_RELEASE_CHECK_RATE */ |
+#ifndef USE_BUILTIN_FFS |
+#define USE_BUILTIN_FFS 0 |
+#endif /* USE_BUILTIN_FFS */ |
+#ifndef USE_DEV_RANDOM |
+#define USE_DEV_RANDOM 0 |
+#endif /* USE_DEV_RANDOM */ |
+#ifndef NO_MALLINFO |
+#define NO_MALLINFO 0 |
+#endif /* NO_MALLINFO */ |
+#ifndef MALLINFO_FIELD_TYPE |
+#define MALLINFO_FIELD_TYPE size_t |
+#endif /* MALLINFO_FIELD_TYPE */ |
+#ifndef NO_MALLOC_STATS |
+#define NO_MALLOC_STATS 0 |
+#endif /* NO_MALLOC_STATS */ |
+#ifndef NO_SEGMENT_TRAVERSAL |
+#define NO_SEGMENT_TRAVERSAL 0 |
+#endif /* NO_SEGMENT_TRAVERSAL */ |
+ |
+/* |
+ mallopt tuning options. SVID/XPG defines four standard parameter |
+ numbers for mallopt, normally defined in malloc.h. None of these |
+ are used in this malloc, so setting them has no effect. But this |
+ malloc does support the following options. |
+*/ |
+ |
+#define M_TRIM_THRESHOLD (-1) |
+#define M_GRANULARITY (-2) |
+#define M_MMAP_THRESHOLD (-3) |
+ |
+/* ------------------------ Mallinfo declarations ------------------------ */ |
+ |
+#if !NO_MALLINFO |
+/* |
+ This version of malloc supports the standard SVID/XPG mallinfo |
+ routine that returns a struct containing usage properties and |
+ statistics. It should work on any system that has a |
+ /usr/include/malloc.h defining struct mallinfo. The main |
+ declaration needed is the mallinfo struct that is returned (by-copy) |
+ by mallinfo(). The malloinfo struct contains a bunch of fields that |
+ are not even meaningful in this version of malloc. These fields are |
+ are instead filled by mallinfo() with other numbers that might be of |
+ interest. |
+ |
+ HAVE_USR_INCLUDE_MALLOC_H should be set if you have a |
+ /usr/include/malloc.h file that includes a declaration of struct |
+ mallinfo. If so, it is included; else a compliant version is |
+ declared below. These must be precisely the same for mallinfo() to |
+ work. The original SVID version of this struct, defined on most |
+ systems with mallinfo, declares all fields as ints. But some others |
+ define as unsigned long. If your system defines the fields using a |
+ type of different width than listed here, you MUST #include your |
+ system version and #define HAVE_USR_INCLUDE_MALLOC_H. |
+*/ |
+ |
+/* #define HAVE_USR_INCLUDE_MALLOC_H */ |
+ |
+#ifdef HAVE_USR_INCLUDE_MALLOC_H |
+#include "/usr/include/malloc.h" |
+#else /* HAVE_USR_INCLUDE_MALLOC_H */ |
+#ifndef STRUCT_MALLINFO_DECLARED |
+/* HP-UX (and others?) redefines mallinfo unless _STRUCT_MALLINFO is defined */ |
+#define _STRUCT_MALLINFO |
+#define STRUCT_MALLINFO_DECLARED 1 |
+struct mallinfo { |
+ MALLINFO_FIELD_TYPE arena; /* non-mmapped space allocated from system */ |
+ MALLINFO_FIELD_TYPE ordblks; /* number of free chunks */ |
+ MALLINFO_FIELD_TYPE smblks; /* always 0 */ |
+ MALLINFO_FIELD_TYPE hblks; /* always 0 */ |
+ MALLINFO_FIELD_TYPE hblkhd; /* space in mmapped regions */ |
+ MALLINFO_FIELD_TYPE usmblks; /* maximum total allocated space */ |
+ MALLINFO_FIELD_TYPE fsmblks; /* always 0 */ |
+ MALLINFO_FIELD_TYPE uordblks; /* total allocated space */ |
+ MALLINFO_FIELD_TYPE fordblks; /* total free space */ |
+ MALLINFO_FIELD_TYPE keepcost; /* releasable (via malloc_trim) space */ |
+}; |
+#endif /* STRUCT_MALLINFO_DECLARED */ |
+#endif /* HAVE_USR_INCLUDE_MALLOC_H */ |
+#endif /* NO_MALLINFO */ |
+ |
+/* |
+ Try to persuade compilers to inline. The most critical functions for |
+ inlining are defined as macros, so these aren't used for them. |
+*/ |
+ |
+#ifndef FORCEINLINE |
+ #if defined(__GNUC__) |
+#define FORCEINLINE __inline __attribute__ ((always_inline)) |
+ #elif defined(_MSC_VER) |
+ #define FORCEINLINE __forceinline |
+ #endif |
+#endif |
+#ifndef NOINLINE |
+ #if defined(__GNUC__) |
+ #define NOINLINE __attribute__ ((noinline)) |
+ #elif defined(_MSC_VER) |
+ #define NOINLINE __declspec(noinline) |
+ #else |
+ #define NOINLINE |
+ #endif |
+#endif |
+ |
+#ifdef __cplusplus |
+extern "C" { |
+#ifndef FORCEINLINE |
+ #define FORCEINLINE inline |
+#endif |
+#endif /* __cplusplus */ |
+#ifndef FORCEINLINE |
+ #define FORCEINLINE |
+#endif |
+ |
+#if !ONLY_MSPACES |
+ |
+/* ------------------- Declarations of public routines ------------------- */ |
+ |
+#ifndef USE_DL_PREFIX |
+#define dlcalloc calloc |
+#define dlfree free |
+#define dlmalloc malloc |
+#define dlmemalign memalign |
+#define dlposix_memalign posix_memalign |
+#define dlrealloc realloc |
+#define dlrealloc_in_place realloc_in_place |
+#define dlvalloc valloc |
+#define dlpvalloc pvalloc |
+#define dlmallinfo mallinfo |
+#define dlmallopt mallopt |
+#define dlmalloc_trim malloc_trim |
+#define dlmalloc_stats malloc_stats |
+#define dlmalloc_usable_size malloc_usable_size |
+#define dlmalloc_footprint malloc_footprint |
+#define dlmalloc_max_footprint malloc_max_footprint |
+#define dlmalloc_footprint_limit malloc_footprint_limit |
+#define dlmalloc_set_footprint_limit malloc_set_footprint_limit |
+#define dlmalloc_inspect_all malloc_inspect_all |
+#define dlindependent_calloc independent_calloc |
+#define dlindependent_comalloc independent_comalloc |
+#define dlbulk_free bulk_free |
+#endif /* USE_DL_PREFIX */ |
+ |
+/* |
+ malloc(size_t n) |
+ Returns a pointer to a newly allocated chunk of at least n bytes, or |
+ null if no space is available, in which case errno is set to ENOMEM |
+ on ANSI C systems. |
+ |
+ If n is zero, malloc returns a minimum-sized chunk. (The minimum |
+ size is 16 bytes on most 32bit systems, and 32 bytes on 64bit |
+ systems.) Note that size_t is an unsigned type, so calls with |
+ arguments that would be negative if signed are interpreted as |
+ requests for huge amounts of space, which will often fail. The |
+ maximum supported value of n differs across systems, but is in all |
+ cases less than the maximum representable value of a size_t. |
+*/ |
+DLMALLOC_EXPORT void* dlmalloc(size_t); |
+ |
+/* |
+ free(void* p) |
+ Releases the chunk of memory pointed to by p, that had been previously |
+ allocated using malloc or a related routine such as realloc. |
+ It has no effect if p is null. If p was not malloced or already |
+ freed, free(p) will by default cause the current program to abort. |
+*/ |
+DLMALLOC_EXPORT void dlfree(void*); |
+ |
+/* |
+ calloc(size_t n_elements, size_t element_size); |
+ Returns a pointer to n_elements * element_size bytes, with all locations |
+ set to zero. |
+*/ |
+DLMALLOC_EXPORT void* dlcalloc(size_t, size_t); |
+ |
+/* |
+ realloc(void* p, size_t n) |
+ Returns a pointer to a chunk of size n that contains the same data |
+ as does chunk p up to the minimum of (n, p's size) bytes, or null |
+ if no space is available. |
+ |
+ The returned pointer may or may not be the same as p. The algorithm |
+ prefers extending p in most cases when possible, otherwise it |
+ employs the equivalent of a malloc-copy-free sequence. |
+ |
+ If p is null, realloc is equivalent to malloc. |
+ |
+ If space is not available, realloc returns null, errno is set (if on |
+ ANSI) and p is NOT freed. |
+ |
+ if n is for fewer bytes than already held by p, the newly unused |
+ space is lopped off and freed if possible. realloc with a size |
+ argument of zero (re)allocates a minimum-sized chunk. |
+ |
+ The old unix realloc convention of allowing the last-free'd chunk |
+ to be used as an argument to realloc is not supported. |
+*/ |
+DLMALLOC_EXPORT void* dlrealloc(void*, size_t); |
+ |
+/* |
+ realloc_in_place(void* p, size_t n) |
+ Resizes the space allocated for p to size n, only if this can be |
+ done without moving p (i.e., only if there is adjacent space |
+ available if n is greater than p's current allocated size, or n is |
+ less than or equal to p's size). This may be used instead of plain |
+ realloc if an alternative allocation strategy is needed upon failure |
+ to expand space; for example, reallocation of a buffer that must be |
+ memory-aligned or cleared. You can use realloc_in_place to trigger |
+ these alternatives only when needed. |
+ |
+ Returns p if successful; otherwise null. |
+*/ |
+DLMALLOC_EXPORT void* dlrealloc_in_place(void*, size_t); |
+ |
+/* |
+ memalign(size_t alignment, size_t n); |
+ Returns a pointer to a newly allocated chunk of n bytes, aligned |
+ in accord with the alignment argument. |
+ |
+ The alignment argument should be a power of two. If the argument is |
+ not a power of two, the nearest greater power is used. |
+ 8-byte alignment is guaranteed by normal malloc calls, so don't |
+ bother calling memalign with an argument of 8 or less. |
+ |
+ Overreliance on memalign is a sure way to fragment space. |
+*/ |
+DLMALLOC_EXPORT void* dlmemalign(size_t, size_t); |
+ |
+/* |
+ int posix_memalign(void** pp, size_t alignment, size_t n); |
+ Allocates a chunk of n bytes, aligned in accord with the alignment |
+ argument. Differs from memalign only in that it (1) assigns the |
+ allocated memory to *pp rather than returning it, (2) fails and |
+ returns EINVAL if the alignment is not a power of two (3) fails and |
+ returns ENOMEM if memory cannot be allocated. |
+*/ |
+DLMALLOC_EXPORT int dlposix_memalign(void**, size_t, size_t); |
+ |
+/* |
+ valloc(size_t n); |
+ Equivalent to memalign(pagesize, n), where pagesize is the page |
+ size of the system. If the pagesize is unknown, 4096 is used. |
+*/ |
+DLMALLOC_EXPORT void* dlvalloc(size_t); |
+ |
+/* |
+ mallopt(int parameter_number, int parameter_value) |
+ Sets tunable parameters The format is to provide a |
+ (parameter-number, parameter-value) pair. mallopt then sets the |
+ corresponding parameter to the argument value if it can (i.e., so |
+ long as the value is meaningful), and returns 1 if successful else |
+ 0. To workaround the fact that mallopt is specified to use int, |
+ not size_t parameters, the value -1 is specially treated as the |
+ maximum unsigned size_t value. |
+ |
+ SVID/XPG/ANSI defines four standard param numbers for mallopt, |
+ normally defined in malloc.h. None of these are use in this malloc, |
+ so setting them has no effect. But this malloc also supports other |
+ options in mallopt. See below for details. Briefly, supported |
+ parameters are as follows (listed defaults are for "typical" |
+ configurations). |
+ |
+ Symbol param # default allowed param values |
+ M_TRIM_THRESHOLD -1 2*1024*1024 any (-1 disables) |
+ M_GRANULARITY -2 page size any power of 2 >= page size |
+ M_MMAP_THRESHOLD -3 256*1024 any (or 0 if no MMAP support) |
+*/ |
+DLMALLOC_EXPORT int dlmallopt(int, int); |
+ |
+/* |
+ malloc_footprint(); |
+ Returns the number of bytes obtained from the system. The total |
+ number of bytes allocated by malloc, realloc etc., is less than this |
+ value. Unlike mallinfo, this function returns only a precomputed |
+ result, so can be called frequently to monitor memory consumption. |
+ Even if locks are otherwise defined, this function does not use them, |
+ so results might not be up to date. |
+*/ |
+DLMALLOC_EXPORT size_t dlmalloc_footprint(void); |
+ |
+/* |
+ malloc_max_footprint(); |
+ Returns the maximum number of bytes obtained from the system. This |
+ value will be greater than current footprint if deallocated space |
+ has been reclaimed by the system. The peak number of bytes allocated |
+ by malloc, realloc etc., is less than this value. Unlike mallinfo, |
+ this function returns only a precomputed result, so can be called |
+ frequently to monitor memory consumption. Even if locks are |
+ otherwise defined, this function does not use them, so results might |
+ not be up to date. |
+*/ |
+DLMALLOC_EXPORT size_t dlmalloc_max_footprint(void); |
+ |
+/* |
+ malloc_footprint_limit(); |
+ Returns the number of bytes that the heap is allowed to obtain from |
+ the system, returning the last value returned by |
+ malloc_set_footprint_limit, or the maximum size_t value if |
+ never set. The returned value reflects a permission. There is no |
+ guarantee that this number of bytes can actually be obtained from |
+ the system. |
+*/ |
+DLMALLOC_EXPORT size_t dlmalloc_footprint_limit(); |
+ |
+/* |
+ malloc_set_footprint_limit(); |
+ Sets the maximum number of bytes to obtain from the system, causing |
+ failure returns from malloc and related functions upon attempts to |
+ exceed this value. The argument value may be subject to page |
+ rounding to an enforceable limit; this actual value is returned. |
+ Using an argument of the maximum possible size_t effectively |
+ disables checks. If the argument is less than or equal to the |
+ current malloc_footprint, then all future allocations that require |
+ additional system memory will fail. However, invocation cannot |
+ retroactively deallocate existing used memory. |
+*/ |
+DLMALLOC_EXPORT size_t dlmalloc_set_footprint_limit(size_t bytes); |
+ |
+#if MALLOC_INSPECT_ALL |
+/* |
+ malloc_inspect_all(void(*handler)(void *start, |
+ void *end, |
+ size_t used_bytes, |
+ void* callback_arg), |
+ void* arg); |
+ Traverses the heap and calls the given handler for each managed |
+ region, skipping all bytes that are (or may be) used for bookkeeping |
+ purposes. Traversal does not include include chunks that have been |
+ directly memory mapped. Each reported region begins at the start |
+ address, and continues up to but not including the end address. The |
+ first used_bytes of the region contain allocated data. If |
+ used_bytes is zero, the region is unallocated. The handler is |
+ invoked with the given callback argument. If locks are defined, they |
+ are held during the entire traversal. It is a bad idea to invoke |
+ other malloc functions from within the handler. |
+ |
+ For example, to count the number of in-use chunks with size greater |
+ than 1000, you could write: |
+ static int count = 0; |
+ void count_chunks(void* start, void* end, size_t used, void* arg) { |
+ if (used >= 1000) ++count; |
+ } |
+ then: |
+ malloc_inspect_all(count_chunks, NULL); |
+ |
+ malloc_inspect_all is compiled only if MALLOC_INSPECT_ALL is defined. |
+*/ |
+DLMALLOC_EXPORT void dlmalloc_inspect_all(void(*handler)(void*, void *, size_t, void*), |
+ void* arg); |
+ |
+#endif /* MALLOC_INSPECT_ALL */ |
+ |
+#if !NO_MALLINFO |
+/* |
+ mallinfo() |
+ Returns (by copy) a struct containing various summary statistics: |
+ |
+ arena: current total non-mmapped bytes allocated from system |
+ ordblks: the number of free chunks |
+ smblks: always zero. |
+ hblks: current number of mmapped regions |
+ hblkhd: total bytes held in mmapped regions |
+ usmblks: the maximum total allocated space. This will be greater |
+ than current total if trimming has occurred. |
+ fsmblks: always zero |
+ uordblks: current total allocated space (normal or mmapped) |
+ fordblks: total free space |
+ keepcost: the maximum number of bytes that could ideally be released |
+ back to system via malloc_trim. ("ideally" means that |
+ it ignores page restrictions etc.) |
+ |
+ Because these fields are ints, but internal bookkeeping may |
+ be kept as longs, the reported values may wrap around zero and |
+ thus be inaccurate. |
+*/ |
+DLMALLOC_EXPORT struct mallinfo dlmallinfo(void); |
+#endif /* NO_MALLINFO */ |
+ |
+/* |
+ independent_calloc(size_t n_elements, size_t element_size, void* chunks[]); |
+ |
+ independent_calloc is similar to calloc, but instead of returning a |
+ single cleared space, it returns an array of pointers to n_elements |
+ independent elements that can hold contents of size elem_size, each |
+ of which starts out cleared, and can be independently freed, |
+ realloc'ed etc. The elements are guaranteed to be adjacently |
+ allocated (this is not guaranteed to occur with multiple callocs or |
+ mallocs), which may also improve cache locality in some |
+ applications. |
+ |
+ The "chunks" argument is optional (i.e., may be null, which is |
+ probably the most typical usage). If it is null, the returned array |
+ is itself dynamically allocated and should also be freed when it is |
+ no longer needed. Otherwise, the chunks array must be of at least |
+ n_elements in length. It is filled in with the pointers to the |
+ chunks. |
+ |
+ In either case, independent_calloc returns this pointer array, or |
+ null if the allocation failed. If n_elements is zero and "chunks" |
+ is null, it returns a chunk representing an array with zero elements |
+ (which should be freed if not wanted). |
+ |
+ Each element must be freed when it is no longer needed. This can be |
+ done all at once using bulk_free. |
+ |
+ independent_calloc simplifies and speeds up implementations of many |
+ kinds of pools. It may also be useful when constructing large data |
+ structures that initially have a fixed number of fixed-sized nodes, |
+ but the number is not known at compile time, and some of the nodes |
+ may later need to be freed. For example: |
+ |
+ struct Node { int item; struct Node* next; }; |
+ |
+ struct Node* build_list() { |
+ struct Node** pool; |
+ int n = read_number_of_nodes_needed(); |
+ if (n <= 0) return 0; |
+ pool = (struct Node**)(independent_calloc(n, sizeof(struct Node), 0); |
+ if (pool == 0) die(); |
+ // organize into a linked list... |
+ struct Node* first = pool[0]; |
+ for (i = 0; i < n-1; ++i) |
+ pool[i]->next = pool[i+1]; |
+ free(pool); // Can now free the array (or not, if it is needed later) |
+ return first; |
+ } |
+*/ |
+DLMALLOC_EXPORT void** dlindependent_calloc(size_t, size_t, void**); |
+ |
+/* |
+ independent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]); |
+ |
+ independent_comalloc allocates, all at once, a set of n_elements |
+ chunks with sizes indicated in the "sizes" array. It returns |
+ an array of pointers to these elements, each of which can be |
+ independently freed, realloc'ed etc. The elements are guaranteed to |
+ be adjacently allocated (this is not guaranteed to occur with |
+ multiple callocs or mallocs), which may also improve cache locality |
+ in some applications. |
+ |
+ The "chunks" argument is optional (i.e., may be null). If it is null |
+ the returned array is itself dynamically allocated and should also |
+ be freed when it is no longer needed. Otherwise, the chunks array |
+ must be of at least n_elements in length. It is filled in with the |
+ pointers to the chunks. |
+ |
+ In either case, independent_comalloc returns this pointer array, or |
+ null if the allocation failed. If n_elements is zero and chunks is |
+ null, it returns a chunk representing an array with zero elements |
+ (which should be freed if not wanted). |
+ |
+ Each element must be freed when it is no longer needed. This can be |
+ done all at once using bulk_free. |
+ |
+ independent_comallac differs from independent_calloc in that each |
+ element may have a different size, and also that it does not |
+ automatically clear elements. |
+ |
+ independent_comalloc can be used to speed up allocation in cases |
+ where several structs or objects must always be allocated at the |
+ same time. For example: |
+ |
+ struct Head { ... } |
+ struct Foot { ... } |
+ |
+ void send_message(char* msg) { |
+ int msglen = strlen(msg); |
+ size_t sizes[3] = { sizeof(struct Head), msglen, sizeof(struct Foot) }; |
+ void* chunks[3]; |
+ if (independent_comalloc(3, sizes, chunks) == 0) |
+ die(); |
+ struct Head* head = (struct Head*)(chunks[0]); |
+ char* body = (char*)(chunks[1]); |
+ struct Foot* foot = (struct Foot*)(chunks[2]); |
+ // ... |
+ } |
+ |
+ In general though, independent_comalloc is worth using only for |
+ larger values of n_elements. For small values, you probably won't |
+ detect enough difference from series of malloc calls to bother. |
+ |
+ Overuse of independent_comalloc can increase overall memory usage, |
+ since it cannot reuse existing noncontiguous small chunks that |
+ might be available for some of the elements. |
+*/ |
+DLMALLOC_EXPORT void** dlindependent_comalloc(size_t, size_t*, void**); |
+ |
+/* |
+ bulk_free(void* array[], size_t n_elements) |
+ Frees and clears (sets to null) each non-null pointer in the given |
+ array. This is likely to be faster than freeing them one-by-one. |
+ If footers are used, pointers that have been allocated in different |
+ mspaces are not freed or cleared, and the count of all such pointers |
+ is returned. For large arrays of pointers with poor locality, it |
+ may be worthwhile to sort this array before calling bulk_free. |
+*/ |
+DLMALLOC_EXPORT size_t dlbulk_free(void**, size_t n_elements); |
+ |
+/* |
+ pvalloc(size_t n); |
+ Equivalent to valloc(minimum-page-that-holds(n)), that is, |
+ round up n to nearest pagesize. |
+ */ |
+DLMALLOC_EXPORT void* dlpvalloc(size_t); |
+ |
+/* |
+ malloc_trim(size_t pad); |
+ |
+ If possible, gives memory back to the system (via negative arguments |
+ to sbrk) if there is unused memory at the `high' end of the malloc |
+ pool or in unused MMAP segments. You can call this after freeing |
+ large blocks of memory to potentially reduce the system-level memory |
+ requirements of a program. However, it cannot guarantee to reduce |
+ memory. Under some allocation patterns, some large free blocks of |
+ memory will be locked between two used chunks, so they cannot be |
+ given back to the system. |
+ |
+ The `pad' argument to malloc_trim represents the amount of free |
+ trailing space to leave untrimmed. If this argument is zero, only |
+ the minimum amount of memory to maintain internal data structures |
+ will be left. Non-zero arguments can be supplied to maintain enough |
+ trailing space to service future expected allocations without having |
+ to re-obtain memory from the system. |
+ |
+ Malloc_trim returns 1 if it actually released any memory, else 0. |
+*/ |
+DLMALLOC_EXPORT int dlmalloc_trim(size_t); |
+ |
+/* |
+ malloc_stats(); |
+ Prints on stderr the amount of space obtained from the system (both |
+ via sbrk and mmap), the maximum amount (which may be more than |
+ current if malloc_trim and/or munmap got called), and the current |
+ number of bytes allocated via malloc (or realloc, etc) but not yet |
+ freed. Note that this is the number of bytes allocated, not the |
+ number requested. It will be larger than the number requested |
+ because of alignment and bookkeeping overhead. Because it includes |
+ alignment wastage as being in use, this figure may be greater than |
+ zero even when no user-level chunks are allocated. |
+ |
+ The reported current and maximum system memory can be inaccurate if |
+ a program makes other calls to system memory allocation functions |
+ (normally sbrk) outside of malloc. |
+ |
+ malloc_stats prints only the most commonly interesting statistics. |
+ More information can be obtained by calling mallinfo. |
+*/ |
+DLMALLOC_EXPORT void dlmalloc_stats(void); |
+ |
+#endif /* ONLY_MSPACES */ |
+ |
+#ifdef __cplusplus |
+} /* end of extern "C" */ |
+#endif /* __cplusplus */ |
+ |
+/* |
+ ======================================================================== |
+ To make a fully customizable malloc.h header file, cut everything |
+ above this line, put into file malloc.h, edit to suit, and #include it |
+ on the next line, as well as in programs that use this malloc. |
+ ======================================================================== |
+*/ |
+ |
+/* #include "malloc.h" */ |
+ |
+/*------------------------------ internal #includes ---------------------- */ |
+ |
+#ifdef _MSC_VER |
+#pragma warning( disable : 4146 ) /* no "unsigned" warnings */ |
+#endif /* _MSC_VER */ |
+#if !NO_MALLOC_STATS |
+#include <stdio.h> /* for printing in malloc_stats */ |
+#endif /* NO_MALLOC_STATS */ |
+#ifndef LACKS_ERRNO_H |
+#include <errno.h> /* for MALLOC_FAILURE_ACTION */ |
+#endif /* LACKS_ERRNO_H */ |
+#ifdef DEBUG |
+#if ABORT_ON_ASSERT_FAILURE |
+#undef assert |
+#define assert(x) if(!(x)) ABORT |
+#else /* ABORT_ON_ASSERT_FAILURE */ |
+#include <assert.h> |
+#endif /* ABORT_ON_ASSERT_FAILURE */ |
+#else /* DEBUG */ |
+#ifndef assert |
+#define assert(x) |
+#endif |
+#define DEBUG 0 |
+#endif /* DEBUG */ |
+#if !defined(WIN32) && !defined(LACKS_TIME_H) |
+#include <time.h> /* for magic initialization */ |
+#endif /* WIN32 */ |
+#ifndef LACKS_STDLIB_H |
+#include <stdlib.h> /* for abort() */ |
+#endif /* LACKS_STDLIB_H */ |
+#ifndef LACKS_STRING_H |
+#include <string.h> /* for memset etc */ |
+#endif /* LACKS_STRING_H */ |
+#if USE_BUILTIN_FFS |
+#ifndef LACKS_STRINGS_H |
+#include <strings.h> /* for ffs */ |
+#endif /* LACKS_STRINGS_H */ |
+#endif /* USE_BUILTIN_FFS */ |
+#if HAVE_MMAP |
+#ifndef LACKS_SYS_MMAN_H |
+/* On some versions of linux, mremap decl in mman.h needs __USE_GNU set */ |
+#if (defined(linux) && !defined(__USE_GNU)) |
+#define __USE_GNU 1 |
+#include <sys/mman.h> /* for mmap */ |
+#undef __USE_GNU |
+#else |
+#include <sys/mman.h> /* for mmap */ |
+#endif /* linux */ |
+#endif /* LACKS_SYS_MMAN_H */ |
+#ifndef LACKS_FCNTL_H |
+#include <fcntl.h> |
+#endif /* LACKS_FCNTL_H */ |
+#endif /* HAVE_MMAP */ |
+#ifndef LACKS_UNISTD_H |
+#include <unistd.h> /* for sbrk, sysconf */ |
+#else /* LACKS_UNISTD_H */ |
+#if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__NetBSD__) |
+extern void* sbrk(ptrdiff_t); |
+#endif /* FreeBSD etc */ |
+#endif /* LACKS_UNISTD_H */ |
+ |
+/* Declarations for locking */ |
+#if USE_LOCKS |
+#ifndef WIN32 |
+#if defined (__SVR4) && defined (__sun) /* solaris */ |
+#include <thread.h> |
+#elif !defined(LACKS_SCHED_H) |
+#include <sched.h> |
+#endif /* solaris or LACKS_SCHED_H */ |
+#if (defined(USE_RECURSIVE_LOCKS) && USE_RECURSIVE_LOCKS != 0) || !USE_SPIN_LOCKS |
+#include <pthread.h> |
+#endif /* USE_RECURSIVE_LOCKS ... */ |
+#elif defined(_MSC_VER) |
+#ifndef _M_AMD64 |
+/* These are already defined on AMD64 builds */ |
+#ifdef __cplusplus |
+extern "C" { |
+#endif /* __cplusplus */ |
+LONG __cdecl _InterlockedCompareExchange(LONG volatile *Dest, LONG Exchange, LONG Comp); |
+LONG __cdecl _InterlockedExchange(LONG volatile *Target, LONG Value); |
+#ifdef __cplusplus |
+} |
+#endif /* __cplusplus */ |
+#endif /* _M_AMD64 */ |
+#pragma intrinsic (_InterlockedCompareExchange) |
+#pragma intrinsic (_InterlockedExchange) |
+#define interlockedcompareexchange _InterlockedCompareExchange |
+#define interlockedexchange _InterlockedExchange |
+#elif defined(WIN32) && defined(__GNUC__) |
+#define interlockedcompareexchange(a, b, c) __sync_val_compare_and_swap(a, c, b) |
+#define interlockedexchange __sync_lock_test_and_set |
+#endif /* Win32 */ |
+#else /* USE_LOCKS */ |
+#endif /* USE_LOCKS */ |
+ |
+#ifndef LOCK_AT_FORK |
+#define LOCK_AT_FORK 0 |
+#endif |
+ |
+/* Declarations for bit scanning on win32 */ |
+#if defined(_MSC_VER) && _MSC_VER>=1300 |
+#ifndef BitScanForward /* Try to avoid pulling in WinNT.h */ |
+#ifdef __cplusplus |
+extern "C" { |
+#endif /* __cplusplus */ |
+unsigned char _BitScanForward(unsigned long *index, unsigned long mask); |
+unsigned char _BitScanReverse(unsigned long *index, unsigned long mask); |
+#ifdef __cplusplus |
+} |
+#endif /* __cplusplus */ |
+ |
+#define BitScanForward _BitScanForward |
+#define BitScanReverse _BitScanReverse |
+#pragma intrinsic(_BitScanForward) |
+#pragma intrinsic(_BitScanReverse) |
+#endif /* BitScanForward */ |
+#endif /* defined(_MSC_VER) && _MSC_VER>=1300 */ |
+ |
+#ifndef WIN32 |
+#ifndef malloc_getpagesize |
+# ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */ |
+# ifndef _SC_PAGE_SIZE |
+# define _SC_PAGE_SIZE _SC_PAGESIZE |
+# endif |
+# endif |
+# ifdef _SC_PAGE_SIZE |
+# define malloc_getpagesize sysconf(_SC_PAGE_SIZE) |
+# else |
+# if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE) |
+ extern size_t getpagesize(); |
+# define malloc_getpagesize getpagesize() |
+# else |
+# ifdef WIN32 /* use supplied emulation of getpagesize */ |
+# define malloc_getpagesize getpagesize() |
+# else |
+# ifndef LACKS_SYS_PARAM_H |
+# include <sys/param.h> |
+# endif |
+# ifdef EXEC_PAGESIZE |
+# define malloc_getpagesize EXEC_PAGESIZE |
+# else |
+# ifdef NBPG |
+# ifndef CLSIZE |
+# define malloc_getpagesize NBPG |
+# else |
+# define malloc_getpagesize (NBPG * CLSIZE) |
+# endif |
+# else |
+# ifdef NBPC |
+# define malloc_getpagesize NBPC |
+# else |
+# ifdef PAGESIZE |
+# define malloc_getpagesize PAGESIZE |
+# else /* just guess */ |
+# define malloc_getpagesize ((size_t)4096U) |
+# endif |
+# endif |
+# endif |
+# endif |
+# endif |
+# endif |
+# endif |
+#endif |
+#endif |
+ |
+/* ------------------- size_t and alignment properties -------------------- */ |
+ |
+/* The byte and bit size of a size_t */ |
+#define SIZE_T_SIZE (sizeof(size_t)) |
+#define SIZE_T_BITSIZE (sizeof(size_t) << 3) |
+ |
+/* Some constants coerced to size_t */ |
+/* Annoying but necessary to avoid errors on some platforms */ |
+#define SIZE_T_ZERO ((size_t)0) |
+#define SIZE_T_ONE ((size_t)1) |
+#define SIZE_T_TWO ((size_t)2) |
+#define SIZE_T_FOUR ((size_t)4) |
+#define TWO_SIZE_T_SIZES (SIZE_T_SIZE<<1) |
+#define FOUR_SIZE_T_SIZES (SIZE_T_SIZE<<2) |
+#define SIX_SIZE_T_SIZES (FOUR_SIZE_T_SIZES+TWO_SIZE_T_SIZES) |
+#define HALF_MAX_SIZE_T (MAX_SIZE_T / 2U) |
+ |
+/* The bit mask value corresponding to MALLOC_ALIGNMENT */ |
+#define CHUNK_ALIGN_MASK (MALLOC_ALIGNMENT - SIZE_T_ONE) |
+ |
+/* True if address a has acceptable alignment */ |
+#define is_aligned(A) (((size_t)((A)) & (CHUNK_ALIGN_MASK)) == 0) |
+ |
+/* the number of bytes to offset an address to align it */ |
+#define align_offset(A)\ |
+ ((((size_t)(A) & CHUNK_ALIGN_MASK) == 0)? 0 :\ |
+ ((MALLOC_ALIGNMENT - ((size_t)(A) & CHUNK_ALIGN_MASK)) & CHUNK_ALIGN_MASK)) |
+ |
+/* -------------------------- MMAP preliminaries ------------------------- */ |
+ |
+/* |
+ If HAVE_MORECORE or HAVE_MMAP are false, we just define calls and |
+ checks to fail so compiler optimizer can delete code rather than |
+ using so many "#if"s. |
+*/ |
+ |
+ |
+/* MORECORE and MMAP must return MFAIL on failure */ |
+#define MFAIL ((void*)(MAX_SIZE_T)) |
+#define CMFAIL ((char*)(MFAIL)) /* defined for convenience */ |
+ |
+#if HAVE_MMAP |
+ |
+#ifndef WIN32 |
+#define MUNMAP_DEFAULT(a, s) munmap((a), (s)) |
+#define MMAP_PROT (PROT_READ|PROT_WRITE) |
+#if !defined(MAP_ANONYMOUS) && defined(MAP_ANON) |
+#define MAP_ANONYMOUS MAP_ANON |
+#endif /* MAP_ANON */ |
+#ifdef MAP_ANONYMOUS |
+#define MMAP_FLAGS (MAP_PRIVATE) |
+#define MMAP_DEFAULT(s) mmap(0, (s), MMAP_PROT, MMAP_FLAGS, -1, 0) |
+#else /* MAP_ANONYMOUS */ |
+/* |
+ Nearly all versions of mmap support MAP_ANONYMOUS, so the following |
+ is unlikely to be needed, but is supplied just in case. |
+*/ |
+#define MMAP_FLAGS (MAP_PRIVATE) |
+static int dev_zero_fd = -1; /* Cached file descriptor for /dev/zero. */ |
+#define MMAP_DEFAULT(s) ((dev_zero_fd < 0) ? \ |
+ (dev_zero_fd = open("/dev/zero", O_RDWR), \ |
+ mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0)) : \ |
+ mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0)) |
+#endif /* MAP_ANONYMOUS */ |
+ |
+#define DIRECT_MMAP_DEFAULT(s) MMAP_DEFAULT(s) |
+ |
+#if defined(__ANDROID__) |
+ |
+static void android_log_error(const char* msg) { |
+ __android_log_write(ANDROID_LOG_ERROR, "dlmalloc", msg); |
+} |
+ |
+static int create_ashmem(size_t size) { |
+ const int ashmem_fd = ashmem_create_region("dlmalloc", size); |
+ if (ashmem_fd < 0) { |
+ char buf[128]; |
+ snprintf(buf, sizeof(buf), "Could not create ashmem with size: %d\n", size); |
+ android_log_error(buf); |
+ } |
+ return ashmem_fd; |
+} |
+ |
+static bool close_ashmem(int ashmem_fd) { |
+ if (close(ashmem_fd) < 0) { |
+ char buf[128]; |
+ snprintf( |
+ buf, sizeof(buf), "Could not close ashmem with fd: %d\n", ashmem_fd); |
+ android_log_error(buf); |
+ return false; |
+ } |
+ return true; |
+} |
+ |
+#endif |
+ |
+#else /* WIN32 */ |
+ |
+/* Win32 MMAP via VirtualAlloc */ |
+static FORCEINLINE void* win32mmap(size_t size) { |
+ void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT, PAGE_READWRITE); |
+ return (ptr != 0)? ptr: MFAIL; |
+} |
+ |
+/* For direct MMAP, use MEM_TOP_DOWN to minimize interference */ |
+static FORCEINLINE void* win32direct_mmap(size_t size) { |
+ void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT|MEM_TOP_DOWN, |
+ PAGE_READWRITE); |
+ return (ptr != 0)? ptr: MFAIL; |
+} |
+ |
+/* This function supports releasing coalesed segments */ |
+static FORCEINLINE int win32munmap(void* ptr, size_t size) { |
+ MEMORY_BASIC_INFORMATION minfo; |
+ char* cptr = (char*)ptr; |
+ while (size) { |
+ if (VirtualQuery(cptr, &minfo, sizeof(minfo)) == 0) |
+ return -1; |
+ if (minfo.BaseAddress != cptr || minfo.AllocationBase != cptr || |
+ minfo.State != MEM_COMMIT || minfo.RegionSize > size) |
+ return -1; |
+ if (VirtualFree(cptr, 0, MEM_RELEASE) == 0) |
+ return -1; |
+ cptr += minfo.RegionSize; |
+ size -= minfo.RegionSize; |
+ } |
+ return 0; |
+} |
+ |
+#define MMAP_DEFAULT(s) win32mmap(s) |
+#define MUNMAP_DEFAULT(a, s) win32munmap((a), (s)) |
+#define DIRECT_MMAP_DEFAULT(s) win32direct_mmap(s) |
+#endif /* WIN32 */ |
+#endif /* HAVE_MMAP */ |
+ |
+#if HAVE_MREMAP |
+#ifndef WIN32 |
+#define MREMAP_DEFAULT(addr, osz, nsz, mv) mremap((addr), (osz), (nsz), (mv)) |
+#endif /* WIN32 */ |
+#endif /* HAVE_MREMAP */ |
+ |
+/** |
+ * Define CALL_MORECORE |
+ */ |
+#if HAVE_MORECORE |
+ #ifdef MORECORE |
+ #define CALL_MORECORE(S) MORECORE(S) |
+ #else /* MORECORE */ |
+ #define CALL_MORECORE(S) MORECORE_DEFAULT(S) |
+ #endif /* MORECORE */ |
+#else /* HAVE_MORECORE */ |
+ #define CALL_MORECORE(S) MFAIL |
+#endif /* HAVE_MORECORE */ |
+ |
+/** |
+ * Define CALL_MMAP/CALL_MUNMAP/CALL_DIRECT_MMAP |
+ */ |
+#if HAVE_MMAP |
+ #define USE_MMAP_BIT (SIZE_T_ONE) |
+ |
+ #ifdef MMAP |
+ #define CALL_MMAP(s) MMAP(s) |
+ #else /* MMAP */ |
+ #define CALL_MMAP(s) MMAP_DEFAULT(s) |
+ #endif /* MMAP */ |
+ #ifdef MUNMAP |
+ #define CALL_MUNMAP(a, s) MUNMAP((a), (s)) |
+ #else /* MUNMAP */ |
+ #define CALL_MUNMAP(a, s) MUNMAP_DEFAULT((a), (s)) |
+ #endif /* MUNMAP */ |
+ #ifdef DIRECT_MMAP |
+ #define CALL_DIRECT_MMAP(s) DIRECT_MMAP(s) |
+ #else /* DIRECT_MMAP */ |
+ #define CALL_DIRECT_MMAP(s) DIRECT_MMAP_DEFAULT(s) |
+ #endif /* DIRECT_MMAP */ |
+#else /* HAVE_MMAP */ |
+ #define USE_MMAP_BIT (SIZE_T_ZERO) |
+ |
+ #define MMAP(s) MFAIL |
+ #define MUNMAP(a, s) (-1) |
+ #define DIRECT_MMAP(s) MFAIL |
+ #define CALL_DIRECT_MMAP(s) DIRECT_MMAP(s) |
+ #define CALL_MMAP(s) MMAP(s) |
+ #define CALL_MUNMAP(a, s) MUNMAP((a), (s)) |
+#endif /* HAVE_MMAP */ |
+ |
+/** |
+ * Define CALL_MREMAP |
+ */ |
+#if HAVE_MMAP && HAVE_MREMAP |
+ #ifdef MREMAP |
+ #define CALL_MREMAP(addr, osz, nsz, mv) MREMAP((addr), (osz), (nsz), (mv)) |
+ #else /* MREMAP */ |
+ #define CALL_MREMAP(addr, osz, nsz, mv) MREMAP_DEFAULT((addr), (osz), (nsz), (mv)) |
+ #endif /* MREMAP */ |
+#else /* HAVE_MMAP && HAVE_MREMAP */ |
+ #define CALL_MREMAP(addr, osz, nsz, mv) MFAIL |
+#endif /* HAVE_MMAP && HAVE_MREMAP */ |
+ |
+/* mstate bit set if continguous morecore disabled or failed */ |
+#define USE_NONCONTIGUOUS_BIT (4U) |
+ |
+/* segment bit set in create_mspace_with_base */ |
+#define EXTERN_BIT (8U) |
+ |
+ |
+/* --------------------------- Lock preliminaries ------------------------ */ |
+ |
+/* |
+ When locks are defined, there is one global lock, plus |
+ one per-mspace lock. |
+ |
+ The global lock_ensures that mparams.magic and other unique |
+ mparams values are initialized only once. It also protects |
+ sequences of calls to MORECORE. In many cases sys_alloc requires |
+ two calls, that should not be interleaved with calls by other |
+ threads. This does not protect against direct calls to MORECORE |
+ by other threads not using this lock, so there is still code to |
+ cope the best we can on interference. |
+ |
+ Per-mspace locks surround calls to malloc, free, etc. |
+ By default, locks are simple non-reentrant mutexes. |
+ |
+ Because lock-protected regions generally have bounded times, it is |
+ OK to use the supplied simple spinlocks. Spinlocks are likely to |
+ improve performance for lightly contended applications, but worsen |
+ performance under heavy contention. |
+ |
+ If USE_LOCKS is > 1, the definitions of lock routines here are |
+ bypassed, in which case you will need to define the type MLOCK_T, |
+ and at least INITIAL_LOCK, DESTROY_LOCK, ACQUIRE_LOCK, RELEASE_LOCK |
+ and TRY_LOCK. You must also declare a |
+ static MLOCK_T malloc_global_mutex = { initialization values };. |
+ |
+*/ |
+ |
+#if !USE_LOCKS |
+#define USE_LOCK_BIT (0U) |
+#define INITIAL_LOCK(l) (0) |
+#define DESTROY_LOCK(l) (0) |
+#define ACQUIRE_MALLOC_GLOBAL_LOCK() |
+#define RELEASE_MALLOC_GLOBAL_LOCK() |
+ |
+#else |
+#if USE_LOCKS > 1 |
+/* ----------------------- User-defined locks ------------------------ */ |
+/* Define your own lock implementation here */ |
+/* #define INITIAL_LOCK(lk) ... */ |
+/* #define DESTROY_LOCK(lk) ... */ |
+/* #define ACQUIRE_LOCK(lk) ... */ |
+/* #define RELEASE_LOCK(lk) ... */ |
+/* #define TRY_LOCK(lk) ... */ |
+/* static MLOCK_T malloc_global_mutex = ... */ |
+ |
+#elif USE_SPIN_LOCKS |
+ |
+/* First, define CAS_LOCK and CLEAR_LOCK on ints */ |
+/* Note CAS_LOCK defined to return 0 on success */ |
+ |
+#if defined(__GNUC__)&& (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 1)) |
+#define CAS_LOCK(sl) __sync_lock_test_and_set(sl, 1) |
+#define CLEAR_LOCK(sl) __sync_lock_release(sl) |
+ |
+#elif (defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))) |
+/* Custom spin locks for older gcc on x86 */ |
+static FORCEINLINE int x86_cas_lock(int *sl) { |
+ int ret; |
+ int val = 1; |
+ int cmp = 0; |
+ __asm__ __volatile__ ("lock; cmpxchgl %1, %2" |
+ : "=a" (ret) |
+ : "r" (val), "m" (*(sl)), "0"(cmp) |
+ : "memory", "cc"); |
+ return ret; |
+} |
+ |
+static FORCEINLINE void x86_clear_lock(int* sl) { |
+ assert(*sl != 0); |
+ int prev = 0; |
+ int ret; |
+ __asm__ __volatile__ ("lock; xchgl %0, %1" |
+ : "=r" (ret) |
+ : "m" (*(sl)), "0"(prev) |
+ : "memory"); |
+} |
+ |
+#define CAS_LOCK(sl) x86_cas_lock(sl) |
+#define CLEAR_LOCK(sl) x86_clear_lock(sl) |
+ |
+#else /* Win32 MSC */ |
+#define CAS_LOCK(sl) interlockedexchange(sl, (LONG)1) |
+#define CLEAR_LOCK(sl) interlockedexchange (sl, (LONG)0) |
+ |
+#endif /* ... gcc spins locks ... */ |
+ |
+/* How to yield for a spin lock */ |
+#define SPINS_PER_YIELD 63 |
+#if defined(_MSC_VER) |
+#define SLEEP_EX_DURATION 50 /* delay for yield/sleep */ |
+#define SPIN_LOCK_YIELD SleepEx(SLEEP_EX_DURATION, FALSE) |
+#elif defined (__SVR4) && defined (__sun) /* solaris */ |
+#define SPIN_LOCK_YIELD thr_yield(); |
+#elif !defined(LACKS_SCHED_H) |
+#define SPIN_LOCK_YIELD sched_yield(); |
+#else |
+#define SPIN_LOCK_YIELD |
+#endif /* ... yield ... */ |
+ |
+#if !defined(USE_RECURSIVE_LOCKS) || USE_RECURSIVE_LOCKS == 0 |
+/* Plain spin locks use single word (embedded in malloc_states) */ |
+static int spin_acquire_lock(int *sl) { |
+ int spins = 0; |
+ while (*(volatile int *)sl != 0 || CAS_LOCK(sl)) { |
+ if ((++spins & SPINS_PER_YIELD) == 0) { |
+ SPIN_LOCK_YIELD; |
+ } |
+ } |
+ return 0; |
+} |
+ |
+#define MLOCK_T int |
+#define TRY_LOCK(sl) !CAS_LOCK(sl) |
+#define RELEASE_LOCK(sl) CLEAR_LOCK(sl) |
+#define ACQUIRE_LOCK(sl) (CAS_LOCK(sl)? spin_acquire_lock(sl) : 0) |
+#define INITIAL_LOCK(sl) (*sl = 0) |
+#define DESTROY_LOCK(sl) (0) |
+static MLOCK_T malloc_global_mutex = 0; |
+ |
+#else /* USE_RECURSIVE_LOCKS */ |
+/* types for lock owners */ |
+#ifdef WIN32 |
+#define THREAD_ID_T DWORD |
+#define CURRENT_THREAD GetCurrentThreadId() |
+#define EQ_OWNER(X,Y) ((X) == (Y)) |
+#else |
+/* |
+ Note: the following assume that pthread_t is a type that can be |
+ initialized to (casted) zero. If this is not the case, you will need to |
+ somehow redefine these or not use spin locks. |
+*/ |
+#define THREAD_ID_T pthread_t |
+#define CURRENT_THREAD pthread_self() |
+#define EQ_OWNER(X,Y) pthread_equal(X, Y) |
+#endif |
+ |
+struct malloc_recursive_lock { |
+ int sl; |
+ unsigned int c; |
+ THREAD_ID_T threadid; |
+}; |
+ |
+#define MLOCK_T struct malloc_recursive_lock |
+static MLOCK_T malloc_global_mutex = { 0, 0, (THREAD_ID_T)0}; |
+ |
+static FORCEINLINE void recursive_release_lock(MLOCK_T *lk) { |
+ assert(lk->sl != 0); |
+ if (--lk->c == 0) { |
+ CLEAR_LOCK(&lk->sl); |
+ } |
+} |
+ |
+static FORCEINLINE int recursive_acquire_lock(MLOCK_T *lk) { |
+ THREAD_ID_T mythreadid = CURRENT_THREAD; |
+ int spins = 0; |
+ for (;;) { |
+ if (*((volatile int *)(&lk->sl)) == 0) { |
+ if (!CAS_LOCK(&lk->sl)) { |
+ lk->threadid = mythreadid; |
+ lk->c = 1; |
+ return 0; |
+ } |
+ } |
+ else if (EQ_OWNER(lk->threadid, mythreadid)) { |
+ ++lk->c; |
+ return 0; |
+ } |
+ if ((++spins & SPINS_PER_YIELD) == 0) { |
+ SPIN_LOCK_YIELD; |
+ } |
+ } |
+} |
+ |
+static FORCEINLINE int recursive_try_lock(MLOCK_T *lk) { |
+ THREAD_ID_T mythreadid = CURRENT_THREAD; |
+ if (*((volatile int *)(&lk->sl)) == 0) { |
+ if (!CAS_LOCK(&lk->sl)) { |
+ lk->threadid = mythreadid; |
+ lk->c = 1; |
+ return 1; |
+ } |
+ } |
+ else if (EQ_OWNER(lk->threadid, mythreadid)) { |
+ ++lk->c; |
+ return 1; |
+ } |
+ return 0; |
+} |
+ |
+#define RELEASE_LOCK(lk) recursive_release_lock(lk) |
+#define TRY_LOCK(lk) recursive_try_lock(lk) |
+#define ACQUIRE_LOCK(lk) recursive_acquire_lock(lk) |
+#define INITIAL_LOCK(lk) ((lk)->threadid = (THREAD_ID_T)0, (lk)->sl = 0, (lk)->c = 0) |
+#define DESTROY_LOCK(lk) (0) |
+#endif /* USE_RECURSIVE_LOCKS */ |
+ |
+#elif defined(WIN32) /* Win32 critical sections */ |
+#define MLOCK_T CRITICAL_SECTION |
+#define ACQUIRE_LOCK(lk) (EnterCriticalSection(lk), 0) |
+#define RELEASE_LOCK(lk) LeaveCriticalSection(lk) |
+#define TRY_LOCK(lk) TryEnterCriticalSection(lk) |
+#define INITIAL_LOCK(lk) (!InitializeCriticalSectionAndSpinCount((lk), 0x80000000|4000)) |
+#define DESTROY_LOCK(lk) (DeleteCriticalSection(lk), 0) |
+#define NEED_GLOBAL_LOCK_INIT |
+ |
+static MLOCK_T malloc_global_mutex; |
+static volatile LONG malloc_global_mutex_status; |
+ |
+/* Use spin loop to initialize global lock */ |
+static void init_malloc_global_mutex() { |
+ for (;;) { |
+ long stat = malloc_global_mutex_status; |
+ if (stat > 0) |
+ return; |
+ /* transition to < 0 while initializing, then to > 0) */ |
+ if (stat == 0 && |
+ interlockedcompareexchange(&malloc_global_mutex_status, (LONG)-1, (LONG)0) == 0) { |
+ InitializeCriticalSection(&malloc_global_mutex); |
+ interlockedexchange(&malloc_global_mutex_status, (LONG)1); |
+ return; |
+ } |
+ SleepEx(0, FALSE); |
+ } |
+} |
+ |
+#else /* pthreads-based locks */ |
+#define MLOCK_T pthread_mutex_t |
+#define ACQUIRE_LOCK(lk) pthread_mutex_lock(lk) |
+#define RELEASE_LOCK(lk) pthread_mutex_unlock(lk) |
+#define TRY_LOCK(lk) (!pthread_mutex_trylock(lk)) |
+#define INITIAL_LOCK(lk) pthread_init_lock(lk) |
+#define DESTROY_LOCK(lk) pthread_mutex_destroy(lk) |
+ |
+#if defined(USE_RECURSIVE_LOCKS) && USE_RECURSIVE_LOCKS != 0 && defined(linux) && !defined(PTHREAD_MUTEX_RECURSIVE) |
+/* Cope with old-style linux recursive lock initialization by adding */ |
+/* skipped internal declaration from pthread.h */ |
+extern int pthread_mutexattr_setkind_np __P ((pthread_mutexattr_t *__attr, |
+ int __kind)); |
+#define PTHREAD_MUTEX_RECURSIVE PTHREAD_MUTEX_RECURSIVE_NP |
+#define pthread_mutexattr_settype(x,y) pthread_mutexattr_setkind_np(x,y) |
+#endif /* USE_RECURSIVE_LOCKS ... */ |
+ |
+static MLOCK_T malloc_global_mutex = PTHREAD_MUTEX_INITIALIZER; |
+ |
+static int pthread_init_lock (MLOCK_T *lk) { |
+ pthread_mutexattr_t attr; |
+ if (pthread_mutexattr_init(&attr)) return 1; |
+#if defined(USE_RECURSIVE_LOCKS) && USE_RECURSIVE_LOCKS != 0 |
+ if (pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE)) return 1; |
+#endif |
+ if (pthread_mutex_init(lk, &attr)) return 1; |
+ if (pthread_mutexattr_destroy(&attr)) return 1; |
+ return 0; |
+} |
+ |
+#endif /* ... lock types ... */ |
+ |
+/* Common code for all lock types */ |
+#define USE_LOCK_BIT (2U) |
+ |
+#ifndef ACQUIRE_MALLOC_GLOBAL_LOCK |
+#define ACQUIRE_MALLOC_GLOBAL_LOCK() ACQUIRE_LOCK(&malloc_global_mutex); |
+#endif |
+ |
+#ifndef RELEASE_MALLOC_GLOBAL_LOCK |
+#define RELEASE_MALLOC_GLOBAL_LOCK() RELEASE_LOCK(&malloc_global_mutex); |
+#endif |
+ |
+#endif /* USE_LOCKS */ |
+ |
+/* ----------------------- Chunk representations ------------------------ */ |
+ |
+/* |
+ (The following includes lightly edited explanations by Colin Plumb.) |
+ |
+ The malloc_chunk declaration below is misleading (but accurate and |
+ necessary). It declares a "view" into memory allowing access to |
+ necessary fields at known offsets from a given base. |
+ |
+ Chunks of memory are maintained using a `boundary tag' method as |
+ originally described by Knuth. (See the paper by Paul Wilson |
+ ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a survey of such |
+ techniques.) Sizes of free chunks are stored both in the front of |
+ each chunk and at the end. This makes consolidating fragmented |
+ chunks into bigger chunks fast. The head fields also hold bits |
+ representing whether chunks are free or in use. |
+ |
+ Here are some pictures to make it clearer. They are "exploded" to |
+ show that the state of a chunk can be thought of as extending from |
+ the high 31 bits of the head field of its header through the |
+ prev_foot and PINUSE_BIT bit of the following chunk header. |
+ |
+ A chunk that's in use looks like: |
+ |
+ chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
+ | Size of previous chunk (if P = 0) | |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P| |
+ | Size of this chunk 1| +-+ |
+ mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
+ | | |
+ +- -+ |
+ | | |
+ +- -+ |
+ | : |
+ +- size - sizeof(size_t) available payload bytes -+ |
+ : | |
+ chunk-> +- -+ |
+ | | |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |1| |
+ | Size of next chunk (may or may not be in use) | +-+ |
+ mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
+ |
+ And if it's free, it looks like this: |
+ |
+ chunk-> +- -+ |
+ | User payload (must be in use, or we would have merged!) | |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P| |
+ | Size of this chunk 0| +-+ |
+ mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
+ | Next pointer | |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
+ | Prev pointer | |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
+ | : |
+ +- size - sizeof(struct chunk) unused bytes -+ |
+ : | |
+ chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
+ | Size of this chunk | |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |0| |
+ | Size of next chunk (must be in use, or we would have merged)| +-+ |
+ mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
+ | : |
+ +- User payload -+ |
+ : | |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
+ |0| |
+ +-+ |
+ Note that since we always merge adjacent free chunks, the chunks |
+ adjacent to a free chunk must be in use. |
+ |
+ Given a pointer to a chunk (which can be derived trivially from the |
+ payload pointer) we can, in O(1) time, find out whether the adjacent |
+ chunks are free, and if so, unlink them from the lists that they |
+ are on and merge them with the current chunk. |
+ |
+ Chunks always begin on even word boundaries, so the mem portion |
+ (which is returned to the user) is also on an even word boundary, and |
+ thus at least double-word aligned. |
+ |
+ The P (PINUSE_BIT) bit, stored in the unused low-order bit of the |
+ chunk size (which is always a multiple of two words), is an in-use |
+ bit for the *previous* chunk. If that bit is *clear*, then the |
+ word before the current chunk size contains the previous chunk |
+ size, and can be used to find the front of the previous chunk. |
+ The very first chunk allocated always has this bit set, preventing |
+ access to non-existent (or non-owned) memory. If pinuse is set for |
+ any given chunk, then you CANNOT determine the size of the |
+ previous chunk, and might even get a memory addressing fault when |
+ trying to do so. |
+ |
+ The C (CINUSE_BIT) bit, stored in the unused second-lowest bit of |
+ the chunk size redundantly records whether the current chunk is |
+ inuse (unless the chunk is mmapped). This redundancy enables usage |
+ checks within free and realloc, and reduces indirection when freeing |
+ and consolidating chunks. |
+ |
+ Each freshly allocated chunk must have both cinuse and pinuse set. |
+ That is, each allocated chunk borders either a previously allocated |
+ and still in-use chunk, or the base of its memory arena. This is |
+ ensured by making all allocations from the `lowest' part of any |
+ found chunk. Further, no free chunk physically borders another one, |
+ so each free chunk is known to be preceded and followed by either |
+ inuse chunks or the ends of memory. |
+ |
+ Note that the `foot' of the current chunk is actually represented |
+ as the prev_foot of the NEXT chunk. This makes it easier to |
+ deal with alignments etc but can be very confusing when trying |
+ to extend or adapt this code. |
+ |
+ The exceptions to all this are |
+ |
+ 1. The special chunk `top' is the top-most available chunk (i.e., |
+ the one bordering the end of available memory). It is treated |
+ specially. Top is never included in any bin, is used only if |
+ no other chunk is available, and is released back to the |
+ system if it is very large (see M_TRIM_THRESHOLD). In effect, |
+ the top chunk is treated as larger (and thus less well |
+ fitting) than any other available chunk. The top chunk |
+ doesn't update its trailing size field since there is no next |
+ contiguous chunk that would have to index off it. However, |
+ space is still allocated for it (TOP_FOOT_SIZE) to enable |
+ separation or merging when space is extended. |
+ |
+ 3. Chunks allocated via mmap, have both cinuse and pinuse bits |
+ cleared in their head fields. Because they are allocated |
+ one-by-one, each must carry its own prev_foot field, which is |
+ also used to hold the offset this chunk has within its mmapped |
+ region, which is needed to preserve alignment. Each mmapped |
+ chunk is trailed by the first two fields of a fake next-chunk |
+ for sake of usage checks. |
+ |
+*/ |
+ |
+struct malloc_chunk { |
+ public: |
+ void set_prev_foot(size_t prev_foot) { |
+ assert(prev_foot & 0xffc00000 == 0); |
+ prev_foot_ = prev_foot; |
+ } |
+ |
+ size_t prev_foot() const { return prev_foot_; } |
+ |
+ int ashmem_fd() const { return ashmem_fd_; } |
+ |
+ void set_ashmem_fd(int fd) { |
+ assert(fd & 0xfffff300 == 0); |
+ ashmem_fd_ = fd; |
+ } |
+ |
+ static bool unmap(malloc_chunk* chunk, size_t size) { |
+ const int ashmem_fd = chunk->ashmem_fd(); |
+ if (CALL_MUNMAP(chunk, size) < 0) |
+ return false; |
+ return close_ashmem(ashmem_fd); |
+ } |
+ |
+ private: |
+ size_t prev_foot_ : sizeof(size_t) * 8 - 10; |
+ unsigned ashmem_fd_ : 10; |
+ |
+ public: |
+ size_t head; // Size and inuse bits. |
+ struct malloc_chunk* fd; /* double links -- used only if free. */ |
+ struct malloc_chunk* bk; |
+}; |
+ |
+typedef struct malloc_chunk mchunk; |
+typedef struct malloc_chunk* mchunkptr; |
+typedef struct malloc_chunk* sbinptr; /* The type of bins of chunks */ |
+typedef unsigned int bindex_t; /* Described below */ |
+typedef unsigned int binmap_t; /* Described below */ |
+typedef unsigned int flag_t; /* The type of various bit flag sets */ |
+ |
+/* ------------------- Chunks sizes and alignments ----------------------- */ |
+ |
+#define MCHUNK_SIZE (sizeof(mchunk)) |
+ |
+#if FOOTERS |
+#define CHUNK_OVERHEAD (TWO_SIZE_T_SIZES) |
+#else /* FOOTERS */ |
+#define CHUNK_OVERHEAD (SIZE_T_SIZE) |
+#endif /* FOOTERS */ |
+ |
+/* MMapped chunks need a second word of overhead ... */ |
+#define MMAP_CHUNK_OVERHEAD (TWO_SIZE_T_SIZES) |
+/* ... and additional padding for fake next-chunk at foot */ |
+#define MMAP_FOOT_PAD (FOUR_SIZE_T_SIZES) |
+ |
+/* The smallest size we can malloc is an aligned minimal chunk */ |
+#define MIN_CHUNK_SIZE\ |
+ ((MCHUNK_SIZE + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK) |
+ |
+/* conversion from malloc headers to user pointers, and back */ |
+#define chunk2mem(p) ((void*)((char*)(p) + TWO_SIZE_T_SIZES)) |
+#define mem2chunk(mem) ((mchunkptr)((char*)(mem) - TWO_SIZE_T_SIZES)) |
+/* chunk associated with aligned address A */ |
+#define align_as_chunk(A) (mchunkptr)((A) + align_offset(chunk2mem(A))) |
+ |
+/* Bounds on request (not chunk) sizes. */ |
+#define MAX_REQUEST ((-MIN_CHUNK_SIZE) << 2) |
+#define MIN_REQUEST (MIN_CHUNK_SIZE - CHUNK_OVERHEAD - SIZE_T_ONE) |
+ |
+/* pad request bytes into a usable size */ |
+#define pad_request(req) \ |
+ (((req) + CHUNK_OVERHEAD + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK) |
+ |
+/* pad request, checking for minimum (but not maximum) */ |
+#define request2size(req) \ |
+ (((req) < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(req)) |
+ |
+ |
+/* ------------------ Operations on head and foot fields ----------------- */ |
+ |
+/* |
+ The head field of a chunk is or'ed with PINUSE_BIT when previous |
+ adjacent chunk in use, and or'ed with CINUSE_BIT if this chunk is in |
+ use, unless mmapped, in which case both bits are cleared. |
+ |
+ FLAG4_BIT is not used by this malloc, but might be useful in extensions. |
+*/ |
+ |
+#define PINUSE_BIT (SIZE_T_ONE) |
+#define CINUSE_BIT (SIZE_T_TWO) |
+#define FLAG4_BIT (SIZE_T_FOUR) |
+#define INUSE_BITS (PINUSE_BIT|CINUSE_BIT) |
+#define FLAG_BITS (PINUSE_BIT|CINUSE_BIT|FLAG4_BIT) |
+ |
+/* Head value for fenceposts */ |
+#define FENCEPOST_HEAD (INUSE_BITS|SIZE_T_SIZE) |
+ |
+/* extraction of fields from head words */ |
+#define cinuse(p) ((p)->head & CINUSE_BIT) |
+#define pinuse(p) ((p)->head & PINUSE_BIT) |
+#define flag4inuse(p) ((p)->head & FLAG4_BIT) |
+#define is_inuse(p) (((p)->head & INUSE_BITS) != PINUSE_BIT) |
+#define is_mmapped(p) (((p)->head & INUSE_BITS) == 0) |
+ |
+#define chunksize(p) ((p)->head & ~(FLAG_BITS)) |
+ |
+#define clear_pinuse(p) ((p)->head &= ~PINUSE_BIT) |
+#define set_flag4(p) ((p)->head |= FLAG4_BIT) |
+#define clear_flag4(p) ((p)->head &= ~FLAG4_BIT) |
+ |
+/* Treat space at ptr +/- offset as a chunk */ |
+#define chunk_plus_offset(p, s) ((mchunkptr)(((char*)(p)) + (s))) |
+#define chunk_minus_offset(p, s) ((mchunkptr)(((char*)(p)) - (s))) |
+ |
+/* Ptr to next or previous physical malloc_chunk. */ |
+#define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->head & ~FLAG_BITS))) |
+#define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_foot()) )) |
+ |
+/* extract next chunk's pinuse bit */ |
+#define next_pinuse(p) ((next_chunk(p)->head) & PINUSE_BIT) |
+ |
+/* Get/set size at footer */ |
+#define get_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot()) |
+#define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->set_prev_foot((s))) |
+ |
+/* Set size, pinuse bit, and foot */ |
+#define set_size_and_pinuse_of_free_chunk(p, s)\ |
+ ((p)->head = (s|PINUSE_BIT), set_foot(p, s)) |
+ |
+/* Set size, pinuse bit, foot, and clear next pinuse */ |
+#define set_free_with_pinuse(p, s, n)\ |
+ (clear_pinuse(n), set_size_and_pinuse_of_free_chunk(p, s)) |
+ |
+/* Get the internal overhead associated with chunk p */ |
+#define overhead_for(p)\ |
+ (is_mmapped(p)? MMAP_CHUNK_OVERHEAD : CHUNK_OVERHEAD) |
+ |
+/* Return true if malloced space is not necessarily cleared */ |
+#if MMAP_CLEARS |
+#define calloc_must_clear(p) (!is_mmapped(p)) |
+#else /* MMAP_CLEARS */ |
+#define calloc_must_clear(p) (1) |
+#endif /* MMAP_CLEARS */ |
+ |
+/* ---------------------- Overlaid data structures ----------------------- */ |
+ |
+/* |
+ When chunks are not in use, they are treated as nodes of either |
+ lists or trees. |
+ |
+ "Small" chunks are stored in circular doubly-linked lists, and look |
+ like this: |
+ |
+ chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
+ | Size of previous chunk | |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
+ `head:' | Size of chunk, in bytes |P| |
+ mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
+ | Forward pointer to next chunk in list | |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
+ | Back pointer to previous chunk in list | |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
+ | Unused space (may be 0 bytes long) . |
+ . . |
+ . | |
+nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
+ `foot:' | Size of chunk, in bytes | |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
+ |
+ Larger chunks are kept in a form of bitwise digital trees (aka |
+ tries) keyed on chunksizes. Because malloc_tree_chunks are only for |
+ free chunks greater than 256 bytes, their size doesn't impose any |
+ constraints on user chunk sizes. Each node looks like: |
+ |
+ chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
+ | Size of previous chunk | |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
+ `head:' | Size of chunk, in bytes |P| |
+ mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
+ | Forward pointer to next chunk of same size | |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
+ | Back pointer to previous chunk of same size | |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
+ | Pointer to left child (child[0]) | |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
+ | Pointer to right child (child[1]) | |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
+ | Pointer to parent | |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
+ | bin index of this chunk | |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
+ | Unused space . |
+ . | |
+nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
+ `foot:' | Size of chunk, in bytes | |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
+ |
+ Each tree holding treenodes is a tree of unique chunk sizes. Chunks |
+ of the same size are arranged in a circularly-linked list, with only |
+ the oldest chunk (the next to be used, in our FIFO ordering) |
+ actually in the tree. (Tree members are distinguished by a non-null |
+ parent pointer.) If a chunk with the same size an an existing node |
+ is inserted, it is linked off the existing node using pointers that |
+ work in the same way as fd/bk pointers of small chunks. |
+ |
+ Each tree contains a power of 2 sized range of chunk sizes (the |
+ smallest is 0x100 <= x < 0x180), which is is divided in half at each |
+ tree level, with the chunks in the smaller half of the range (0x100 |
+ <= x < 0x140 for the top nose) in the left subtree and the larger |
+ half (0x140 <= x < 0x180) in the right subtree. This is, of course, |
+ done by inspecting individual bits. |
+ |
+ Using these rules, each node's left subtree contains all smaller |
+ sizes than its right subtree. However, the node at the root of each |
+ subtree has no particular ordering relationship to either. (The |
+ dividing line between the subtree sizes is based on trie relation.) |
+ If we remove the last chunk of a given size from the interior of the |
+ tree, we need to replace it with a leaf node. The tree ordering |
+ rules permit a node to be replaced by any leaf below it. |
+ |
+ The smallest chunk in a tree (a common operation in a best-fit |
+ allocator) can be found by walking a path to the leftmost leaf in |
+ the tree. Unlike a usual binary tree, where we follow left child |
+ pointers until we reach a null, here we follow the right child |
+ pointer any time the left one is null, until we reach a leaf with |
+ both child pointers null. The smallest chunk in the tree will be |
+ somewhere along that path. |
+ |
+ The worst case number of steps to add, find, or remove a node is |
+ bounded by the number of bits differentiating chunks within |
+ bins. Under current bin calculations, this ranges from 6 up to 21 |
+ (for 32 bit sizes) or up to 53 (for 64 bit sizes). The typical case |
+ is of course much better. |
+*/ |
+ |
+struct malloc_tree_chunk { |
+ private: |
+ /* The first four fields must be compatible with malloc_chunk */ |
+ size_t prev_foot_; |
+ |
+ public: |
+ size_t prev_foot() const { return prev_foot_; } |
+ void set_prev_foot(size_t prev_foot) { prev_foot_ = prev_foot; } |
+ |
+ size_t head; |
+ struct malloc_tree_chunk* fd; |
+ struct malloc_tree_chunk* bk; |
+ |
+ struct malloc_tree_chunk* child[2]; |
+ struct malloc_tree_chunk* parent; |
+ bindex_t index; |
+}; |
+ |
+typedef struct malloc_tree_chunk tchunk; |
+typedef struct malloc_tree_chunk* tchunkptr; |
+typedef struct malloc_tree_chunk* tbinptr; /* The type of bins of trees */ |
+ |
+/* A little helper macro for trees */ |
+#define leftmost_child(t) ((t)->child[0] != 0? (t)->child[0] : (t)->child[1]) |
+ |
+/* ----------------------------- Segments -------------------------------- */ |
+ |
+/* |
+ Each malloc space may include non-contiguous segments, held in a |
+ list headed by an embedded malloc_segment record representing the |
+ top-most space. Segments also include flags holding properties of |
+ the space. Large chunks that are directly allocated by mmap are not |
+ included in this list. They are instead independently created and |
+ destroyed without otherwise keeping track of them. |
+ |
+ Segment management mainly comes into play for spaces allocated by |
+ MMAP. Any call to MMAP might or might not return memory that is |
+ adjacent to an existing segment. MORECORE normally contiguously |
+ extends the current space, so this space is almost always adjacent, |
+ which is simpler and faster to deal with. (This is why MORECORE is |
+ used preferentially to MMAP when both are available -- see |
+ sys_alloc.) When allocating using MMAP, we don't use any of the |
+ hinting mechanisms (inconsistently) supported in various |
+ implementations of unix mmap, or distinguish reserving from |
+ committing memory. Instead, we just ask for space, and exploit |
+ contiguity when we get it. It is probably possible to do |
+ better than this on some systems, but no general scheme seems |
+ to be significantly better. |
+ |
+ Management entails a simpler variant of the consolidation scheme |
+ used for chunks to reduce fragmentation -- new adjacent memory is |
+ normally prepended or appended to an existing segment. However, |
+ there are limitations compared to chunk consolidation that mostly |
+ reflect the fact that segment processing is relatively infrequent |
+ (occurring only when getting memory from system) and that we |
+ don't expect to have huge numbers of segments: |
+ |
+ * Segments are not indexed, so traversal requires linear scans. (It |
+ would be possible to index these, but is not worth the extra |
+ overhead and complexity for most programs on most platforms.) |
+ * New segments are only appended to old ones when holding top-most |
+ memory; if they cannot be prepended to others, they are held in |
+ different segments. |
+ |
+ Except for the top-most segment of an mstate, each segment record |
+ is kept at the tail of its segment. Segments are added by pushing |
+ segment records onto the list headed by &mstate.seg for the |
+ containing mstate. |
+ |
+ Segment flags control allocation/merge/deallocation policies: |
+ * If EXTERN_BIT set, then we did not allocate this segment, |
+ and so should not try to deallocate or merge with others. |
+ (This currently holds only for the initial segment passed |
+ into create_mspace_with_base.) |
+ * If USE_MMAP_BIT set, the segment may be merged with |
+ other surrounding mmapped segments and trimmed/de-allocated |
+ using munmap. |
+ * If neither bit is set, then the segment was obtained using |
+ MORECORE so can be merged with surrounding MORECORE'd segments |
+ and deallocated/trimmed using MORECORE with negative arguments. |
+*/ |
+ |
+struct malloc_segment { |
+ char* base; /* base address */ |
+ size_t size; /* allocated size */ |
+ struct malloc_segment* next; /* ptr to next segment */ |
+ |
+ flag_t sflags() const { return sflags_; } |
+ |
+ void set_sflags(flag_t flags) { |
+ assert(flags & 0xffc00000 == 0); |
+ sflags_ = flags; |
+ } |
+ |
+ int ashmem_fd() const { return ashmem_fd_; } |
+ |
+ void set_ashmem_fd(int ashmem_fd) { |
+ assert(ashmem_fd & 0xfffff300 == 0); |
+ ashmem_fd_ = ashmem_fd; |
+ } |
+ |
+ private: |
+ flag_t sflags_ : sizeof(flag_t) * 8 - 10; /* mmap and extern flag */ |
+ int ashmem_fd_ : 10; |
+}; |
+ |
+#define is_mmapped_segment(S) ((S)->sflags() & USE_MMAP_BIT) |
+#define is_extern_segment(S) ((S)->sflags() & EXTERN_BIT) |
+ |
+typedef struct malloc_segment msegment; |
+typedef struct malloc_segment* msegmentptr; |
+ |
+/* ---------------------------- malloc_state ----------------------------- */ |
+ |
+/* |
+ A malloc_state holds all of the bookkeeping for a space. |
+ The main fields are: |
+ |
+ Top |
+ The topmost chunk of the currently active segment. Its size is |
+ cached in topsize. The actual size of topmost space is |
+ topsize+TOP_FOOT_SIZE, which includes space reserved for adding |
+ fenceposts and segment records if necessary when getting more |
+ space from the system. The size at which to autotrim top is |
+ cached from mparams in trim_check, except that it is disabled if |
+ an autotrim fails. |
+ |
+ Designated victim (dv) |
+ This is the preferred chunk for servicing small requests that |
+ don't have exact fits. It is normally the chunk split off most |
+ recently to service another small request. Its size is cached in |
+ dvsize. The link fields of this chunk are not maintained since it |
+ is not kept in a bin. |
+ |
+ SmallBins |
+ An array of bin headers for free chunks. These bins hold chunks |
+ with sizes less than MIN_LARGE_SIZE bytes. Each bin contains |
+ chunks of all the same size, spaced 8 bytes apart. To simplify |
+ use in double-linked lists, each bin header acts as a malloc_chunk |
+ pointing to the real first node, if it exists (else pointing to |
+ itself). This avoids special-casing for headers. But to avoid |
+ waste, we allocate only the fd/bk pointers of bins, and then use |
+ repositioning tricks to treat these as the fields of a chunk. |
+ |
+ TreeBins |
+ Treebins are pointers to the roots of trees holding a range of |
+ sizes. There are 2 equally spaced treebins for each power of two |
+ from TREE_SHIFT to TREE_SHIFT+16. The last bin holds anything |
+ larger. |
+ |
+ Bin maps |
+ There is one bit map for small bins ("smallmap") and one for |
+ treebins ("treemap). Each bin sets its bit when non-empty, and |
+ clears the bit when empty. Bit operations are then used to avoid |
+ bin-by-bin searching -- nearly all "search" is done without ever |
+ looking at bins that won't be selected. The bit maps |
+ conservatively use 32 bits per map word, even if on 64bit system. |
+ For a good description of some of the bit-based techniques used |
+ here, see Henry S. Warren Jr's book "Hacker's Delight" (and |
+ supplement at http://hackersdelight.org/). Many of these are |
+ intended to reduce the branchiness of paths through malloc etc, as |
+ well as to reduce the number of memory locations read or written. |
+ |
+ Segments |
+ A list of segments headed by an embedded malloc_segment record |
+ representing the initial space. |
+ |
+ Address check support |
+ The least_addr field is the least address ever obtained from |
+ MORECORE or MMAP. Attempted frees and reallocs of any address less |
+ than this are trapped (unless INSECURE is defined). |
+ |
+ Magic tag |
+ A cross-check field that should always hold same value as mparams.magic. |
+ |
+ Max allowed footprint |
+ The maximum allowed bytes to allocate from system (zero means no limit) |
+ |
+ Flags |
+ Bits recording whether to use MMAP, locks, or contiguous MORECORE |
+ |
+ Statistics |
+ Each space keeps track of current and maximum system memory |
+ obtained via MORECORE or MMAP. |
+ |
+ Trim support |
+ Fields holding the amount of unused topmost memory that should trigger |
+ trimming, and a counter to force periodic scanning to release unused |
+ non-topmost segments. |
+ |
+ Locking |
+ If USE_LOCKS is defined, the "mutex" lock is acquired and released |
+ around every public call using this mspace. |
+ |
+ Extension support |
+ A void* pointer and a size_t field that can be used to help implement |
+ extensions to this malloc. |
+*/ |
+ |
+/* Bin types, widths and sizes */ |
+#define NSMALLBINS (32U) |
+#define NTREEBINS (32U) |
+#define SMALLBIN_SHIFT (3U) |
+#define SMALLBIN_WIDTH (SIZE_T_ONE << SMALLBIN_SHIFT) |
+#define TREEBIN_SHIFT (8U) |
+#define MIN_LARGE_SIZE (SIZE_T_ONE << TREEBIN_SHIFT) |
+#define MAX_SMALL_SIZE (MIN_LARGE_SIZE - SIZE_T_ONE) |
+#define MAX_SMALL_REQUEST (MAX_SMALL_SIZE - CHUNK_ALIGN_MASK - CHUNK_OVERHEAD) |
+ |
+struct malloc_state { |
+ binmap_t smallmap; |
+ binmap_t treemap; |
+ size_t dvsize; |
+ size_t topsize; |
+ char* least_addr; |
+ mchunkptr dv; |
+ mchunkptr top; |
+ size_t trim_check; |
+ size_t release_checks; |
+ size_t magic; |
+ mchunkptr smallbins[(NSMALLBINS+1)*2]; |
+ tbinptr treebins[NTREEBINS]; |
+ size_t footprint; |
+ size_t max_footprint; |
+ size_t footprint_limit; /* zero means no limit */ |
+ flag_t mflags; |
+#if USE_LOCKS |
+ MLOCK_T mutex; /* locate lock among fields that rarely change */ |
+#endif /* USE_LOCKS */ |
+ msegment seg; |
+ void* extp; /* Unused but available for extensions */ |
+ size_t exts; |
+}; |
+ |
+typedef struct malloc_state* mstate; |
+ |
+/* ------------- Global malloc_state and malloc_params ------------------- */ |
+ |
+/* |
+ malloc_params holds global properties, including those that can be |
+ dynamically set using mallopt. There is a single instance, mparams, |
+ initialized in init_mparams. Note that the non-zeroness of "magic" |
+ also serves as an initialization flag. |
+*/ |
+ |
+struct malloc_params { |
+ size_t magic; |
+ size_t page_size; |
+ size_t granularity; |
+ size_t mmap_threshold; |
+ size_t trim_threshold; |
+ flag_t default_mflags; |
+}; |
+ |
+static struct malloc_params mparams; |
+ |
+/* Ensure mparams initialized */ |
+#define ensure_initialization() (void)(mparams.magic != 0 || init_mparams()) |
+ |
+#if !ONLY_MSPACES |
+ |
+/* The global malloc_state used for all non-"mspace" calls */ |
+static struct malloc_state _gm_; |
+#define gm (&_gm_) |
+#define is_global(M) ((M) == &_gm_) |
+ |
+#endif /* !ONLY_MSPACES */ |
+ |
+#define is_initialized(M) ((M)->top != 0) |
+ |
+/* -------------------------- system alloc setup ------------------------- */ |
+ |
+/* Operations on mflags */ |
+ |
+#define use_lock(M) ((M)->mflags & USE_LOCK_BIT) |
+#define enable_lock(M) ((M)->mflags |= USE_LOCK_BIT) |
+#if USE_LOCKS |
+#define disable_lock(M) ((M)->mflags &= ~USE_LOCK_BIT) |
+#else |
+#define disable_lock(M) |
+#endif |
+ |
+#define use_mmap(M) ((M)->mflags & USE_MMAP_BIT) |
+#define enable_mmap(M) ((M)->mflags |= USE_MMAP_BIT) |
+#if HAVE_MMAP |
+#define disable_mmap(M) ((M)->mflags &= ~USE_MMAP_BIT) |
+#else |
+#define disable_mmap(M) |
+#endif |
+ |
+#define use_noncontiguous(M) ((M)->mflags & USE_NONCONTIGUOUS_BIT) |
+#define disable_contiguous(M) ((M)->mflags |= USE_NONCONTIGUOUS_BIT) |
+ |
+#define set_lock(M,L)\ |
+ ((M)->mflags = (L)?\ |
+ ((M)->mflags | USE_LOCK_BIT) :\ |
+ ((M)->mflags & ~USE_LOCK_BIT)) |
+ |
+/* page-align a size */ |
+#define page_align(S)\ |
+ (((S) + (mparams.page_size - SIZE_T_ONE)) & ~(mparams.page_size - SIZE_T_ONE)) |
+ |
+/* granularity-align a size */ |
+#define granularity_align(S)\ |
+ (((S) + (mparams.granularity - SIZE_T_ONE))\ |
+ & ~(mparams.granularity - SIZE_T_ONE)) |
+ |
+ |
+/* For mmap, use granularity alignment on windows, else page-align */ |
+#ifdef WIN32 |
+#define mmap_align(S) granularity_align(S) |
+#else |
+#define mmap_align(S) page_align(S) |
+#endif |
+ |
+/* For sys_alloc, enough padding to ensure can malloc request on success */ |
+#define SYS_ALLOC_PADDING (TOP_FOOT_SIZE + MALLOC_ALIGNMENT) |
+ |
+#define is_page_aligned(S)\ |
+ (((size_t)(S) & (mparams.page_size - SIZE_T_ONE)) == 0) |
+#define is_granularity_aligned(S)\ |
+ (((size_t)(S) & (mparams.granularity - SIZE_T_ONE)) == 0) |
+ |
+/* True if segment S holds address A */ |
+#define segment_holds(S, A)\ |
+ ((char*)(A) >= S->base && (char*)(A) < S->base + S->size) |
+ |
+/* Return segment holding given address */ |
+static msegmentptr segment_holding(mstate m, char* addr) { |
+ msegmentptr sp = &m->seg; |
+ for (;;) { |
+ if (addr >= sp->base && addr < sp->base + sp->size) |
+ return sp; |
+ if ((sp = sp->next) == 0) |
+ return 0; |
+ } |
+} |
+ |
+/* Return true if segment contains a segment link */ |
+static int has_segment_link(mstate m, msegmentptr ss) { |
+ msegmentptr sp = &m->seg; |
+ for (;;) { |
+ if ((char*)sp >= ss->base && (char*)sp < ss->base + ss->size) |
+ return 1; |
+ if ((sp = sp->next) == 0) |
+ return 0; |
+ } |
+} |
+ |
+#ifndef MORECORE_CANNOT_TRIM |
+#define should_trim(M,s) ((s) > (M)->trim_check) |
+#else /* MORECORE_CANNOT_TRIM */ |
+#define should_trim(M,s) (0) |
+#endif /* MORECORE_CANNOT_TRIM */ |
+ |
+/* |
+ TOP_FOOT_SIZE is padding at the end of a segment, including space |
+ that may be needed to place segment records and fenceposts when new |
+ noncontiguous segments are added. |
+*/ |
+#define TOP_FOOT_SIZE\ |
+ (align_offset(chunk2mem(0))+pad_request(sizeof(struct malloc_segment))+MIN_CHUNK_SIZE) |
+ |
+ |
+/* ------------------------------- Hooks -------------------------------- */ |
+ |
+/* |
+ PREACTION should be defined to return 0 on success, and nonzero on |
+ failure. If you are not using locking, you can redefine these to do |
+ anything you like. |
+*/ |
+ |
+#if USE_LOCKS |
+#define PREACTION(M) ((use_lock(M))? ACQUIRE_LOCK(&(M)->mutex) : 0) |
+#define POSTACTION(M) { if (use_lock(M)) RELEASE_LOCK(&(M)->mutex); } |
+#else /* USE_LOCKS */ |
+ |
+#ifndef PREACTION |
+#define PREACTION(M) (0) |
+#endif /* PREACTION */ |
+ |
+#ifndef POSTACTION |
+#define POSTACTION(M) |
+#endif /* POSTACTION */ |
+ |
+#endif /* USE_LOCKS */ |
+ |
+/* |
+ CORRUPTION_ERROR_ACTION is triggered upon detected bad addresses. |
+ USAGE_ERROR_ACTION is triggered on detected bad frees and |
+ reallocs. The argument p is an address that might have triggered the |
+ fault. It is ignored by the two predefined actions, but might be |
+ useful in custom actions that try to help diagnose errors. |
+*/ |
+ |
+#if PROCEED_ON_ERROR |
+ |
+/* A count of the number of corruption errors causing resets */ |
+int malloc_corruption_error_count; |
+ |
+/* default corruption action */ |
+static void reset_on_error(mstate m); |
+ |
+#define CORRUPTION_ERROR_ACTION(m) reset_on_error(m) |
+#define USAGE_ERROR_ACTION(m, p) |
+ |
+#else /* PROCEED_ON_ERROR */ |
+ |
+#ifndef CORRUPTION_ERROR_ACTION |
+#define CORRUPTION_ERROR_ACTION(m) ABORT |
+#endif /* CORRUPTION_ERROR_ACTION */ |
+ |
+#ifndef USAGE_ERROR_ACTION |
+#define USAGE_ERROR_ACTION(m,p) ABORT |
+#endif /* USAGE_ERROR_ACTION */ |
+ |
+#endif /* PROCEED_ON_ERROR */ |
+ |
+ |
+/* -------------------------- Debugging setup ---------------------------- */ |
+ |
+#if ! DEBUG |
+ |
+#define check_free_chunk(M,P) |
+#define check_inuse_chunk(M,P) |
+#define check_malloced_chunk(M,P,N) |
+#define check_mmapped_chunk(M,P) |
+#define check_malloc_state(M) |
+#define check_top_chunk(M,P) |
+ |
+#else /* DEBUG */ |
+#define check_free_chunk(M,P) do_check_free_chunk(M,P) |
+#define check_inuse_chunk(M,P) do_check_inuse_chunk(M,P) |
+#define check_top_chunk(M,P) do_check_top_chunk(M,P) |
+#define check_malloced_chunk(M,P,N) do_check_malloced_chunk(M,P,N) |
+#define check_mmapped_chunk(M,P) do_check_mmapped_chunk(M,P) |
+#define check_malloc_state(M) do_check_malloc_state(M) |
+ |
+static void do_check_any_chunk(mstate m, mchunkptr p); |
+static void do_check_top_chunk(mstate m, mchunkptr p); |
+static void do_check_mmapped_chunk(mstate m, mchunkptr p); |
+static void do_check_inuse_chunk(mstate m, mchunkptr p); |
+static void do_check_free_chunk(mstate m, mchunkptr p); |
+static void do_check_malloced_chunk(mstate m, void* mem, size_t s); |
+static void do_check_tree(mstate m, tchunkptr t); |
+static void do_check_treebin(mstate m, bindex_t i); |
+static void do_check_smallbin(mstate m, bindex_t i); |
+static void do_check_malloc_state(mstate m); |
+static int bin_find(mstate m, mchunkptr x); |
+static size_t traverse_and_check(mstate m); |
+#endif /* DEBUG */ |
+ |
+/* ---------------------------- Indexing Bins ---------------------------- */ |
+ |
+#define is_small(s) (((s) >> SMALLBIN_SHIFT) < NSMALLBINS) |
+#define small_index(s) (bindex_t)((s) >> SMALLBIN_SHIFT) |
+#define small_index2size(i) ((i) << SMALLBIN_SHIFT) |
+#define MIN_SMALL_INDEX (small_index(MIN_CHUNK_SIZE)) |
+ |
+/* addressing by index. See above about smallbin repositioning */ |
+/* BEGIN android-changed: strict aliasing change: char* cast to void* */ |
+#define smallbin_at(M, i) ((sbinptr)((void*)&((M)->smallbins[(i)<<1]))) |
+/* END android-changed */ |
+#define treebin_at(M,i) (&((M)->treebins[i])) |
+ |
+/* assign tree index for size S to variable I. Use x86 asm if possible */ |
+#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)) |
+#define compute_tree_index(S, I)\ |
+{\ |
+ unsigned int X = S >> TREEBIN_SHIFT;\ |
+ if (X == 0)\ |
+ I = 0;\ |
+ else if (X > 0xFFFF)\ |
+ I = NTREEBINS-1;\ |
+ else {\ |
+ unsigned int K = (unsigned) sizeof(X)*__CHAR_BIT__ - 1 - (unsigned) __builtin_clz(X); \ |
+ I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\ |
+ }\ |
+} |
+ |
+#elif defined (__INTEL_COMPILER) |
+#define compute_tree_index(S, I)\ |
+{\ |
+ size_t X = S >> TREEBIN_SHIFT;\ |
+ if (X == 0)\ |
+ I = 0;\ |
+ else if (X > 0xFFFF)\ |
+ I = NTREEBINS-1;\ |
+ else {\ |
+ unsigned int K = _bit_scan_reverse (X); \ |
+ I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\ |
+ }\ |
+} |
+ |
+#elif defined(_MSC_VER) && _MSC_VER>=1300 |
+#define compute_tree_index(S, I)\ |
+{\ |
+ size_t X = S >> TREEBIN_SHIFT;\ |
+ if (X == 0)\ |
+ I = 0;\ |
+ else if (X > 0xFFFF)\ |
+ I = NTREEBINS-1;\ |
+ else {\ |
+ unsigned int K;\ |
+ _BitScanReverse((DWORD *) &K, (DWORD) X);\ |
+ I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\ |
+ }\ |
+} |
+ |
+#else /* GNUC */ |
+#define compute_tree_index(S, I)\ |
+{\ |
+ size_t X = S >> TREEBIN_SHIFT;\ |
+ if (X == 0)\ |
+ I = 0;\ |
+ else if (X > 0xFFFF)\ |
+ I = NTREEBINS-1;\ |
+ else {\ |
+ unsigned int Y = (unsigned int)X;\ |
+ unsigned int N = ((Y - 0x100) >> 16) & 8;\ |
+ unsigned int K = (((Y <<= N) - 0x1000) >> 16) & 4;\ |
+ N += K;\ |
+ N += K = (((Y <<= K) - 0x4000) >> 16) & 2;\ |
+ K = 14 - N + ((Y <<= K) >> 15);\ |
+ I = (K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1));\ |
+ }\ |
+} |
+#endif /* GNUC */ |
+ |
+/* Bit representing maximum resolved size in a treebin at i */ |
+#define bit_for_tree_index(i) \ |
+ (i == NTREEBINS-1)? (SIZE_T_BITSIZE-1) : (((i) >> 1) + TREEBIN_SHIFT - 2) |
+ |
+/* Shift placing maximum resolved bit in a treebin at i as sign bit */ |
+#define leftshift_for_tree_index(i) \ |
+ ((i == NTREEBINS-1)? 0 : \ |
+ ((SIZE_T_BITSIZE-SIZE_T_ONE) - (((i) >> 1) + TREEBIN_SHIFT - 2))) |
+ |
+/* The size of the smallest chunk held in bin with index i */ |
+#define minsize_for_tree_index(i) \ |
+ ((SIZE_T_ONE << (((i) >> 1) + TREEBIN_SHIFT)) | \ |
+ (((size_t)((i) & SIZE_T_ONE)) << (((i) >> 1) + TREEBIN_SHIFT - 1))) |
+ |
+ |
+/* ------------------------ Operations on bin maps ----------------------- */ |
+ |
+/* bit corresponding to given index */ |
+#define idx2bit(i) ((binmap_t)(1) << (i)) |
+ |
+/* Mark/Clear bits with given index */ |
+#define mark_smallmap(M,i) ((M)->smallmap |= idx2bit(i)) |
+#define clear_smallmap(M,i) ((M)->smallmap &= ~idx2bit(i)) |
+#define smallmap_is_marked(M,i) ((M)->smallmap & idx2bit(i)) |
+ |
+#define mark_treemap(M,i) ((M)->treemap |= idx2bit(i)) |
+#define clear_treemap(M,i) ((M)->treemap &= ~idx2bit(i)) |
+#define treemap_is_marked(M,i) ((M)->treemap & idx2bit(i)) |
+ |
+/* isolate the least set bit of a bitmap */ |
+#define least_bit(x) ((x) & -(x)) |
+ |
+/* mask with all bits to left of least bit of x on */ |
+#define left_bits(x) ((x<<1) | -(x<<1)) |
+ |
+/* mask with all bits to left of or equal to least bit of x on */ |
+#define same_or_left_bits(x) ((x) | -(x)) |
+ |
+/* index corresponding to given bit. Use x86 asm if possible */ |
+ |
+#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)) |
+#define compute_bit2idx(X, I)\ |
+{\ |
+ unsigned int J;\ |
+ J = __builtin_ctz(X); \ |
+ I = (bindex_t)J;\ |
+} |
+ |
+#elif defined (__INTEL_COMPILER) |
+#define compute_bit2idx(X, I)\ |
+{\ |
+ unsigned int J;\ |
+ J = _bit_scan_forward (X); \ |
+ I = (bindex_t)J;\ |
+} |
+ |
+#elif defined(_MSC_VER) && _MSC_VER>=1300 |
+#define compute_bit2idx(X, I)\ |
+{\ |
+ unsigned int J;\ |
+ _BitScanForward((DWORD *) &J, X);\ |
+ I = (bindex_t)J;\ |
+} |
+ |
+#elif USE_BUILTIN_FFS |
+#define compute_bit2idx(X, I) I = ffs(X)-1 |
+ |
+#else |
+#define compute_bit2idx(X, I)\ |
+{\ |
+ unsigned int Y = X - 1;\ |
+ unsigned int K = Y >> (16-4) & 16;\ |
+ unsigned int N = K; Y >>= K;\ |
+ N += K = Y >> (8-3) & 8; Y >>= K;\ |
+ N += K = Y >> (4-2) & 4; Y >>= K;\ |
+ N += K = Y >> (2-1) & 2; Y >>= K;\ |
+ N += K = Y >> (1-0) & 1; Y >>= K;\ |
+ I = (bindex_t)(N + Y);\ |
+} |
+#endif /* GNUC */ |
+ |
+ |
+/* ----------------------- Runtime Check Support ------------------------- */ |
+ |
+/* |
+ For security, the main invariant is that malloc/free/etc never |
+ writes to a static address other than malloc_state, unless static |
+ malloc_state itself has been corrupted, which cannot occur via |
+ malloc (because of these checks). In essence this means that we |
+ believe all pointers, sizes, maps etc held in malloc_state, but |
+ check all of those linked or offsetted from other embedded data |
+ structures. These checks are interspersed with main code in a way |
+ that tends to minimize their run-time cost. |
+ |
+ When FOOTERS is defined, in addition to range checking, we also |
+ verify footer fields of inuse chunks, which can be used guarantee |
+ that the mstate controlling malloc/free is intact. This is a |
+ streamlined version of the approach described by William Robertson |
+ et al in "Run-time Detection of Heap-based Overflows" LISA'03 |
+ http://www.usenix.org/events/lisa03/tech/robertson.html The footer |
+ of an inuse chunk holds the xor of its mstate and a random seed, |
+ that is checked upon calls to free() and realloc(). This is |
+ (probabalistically) unguessable from outside the program, but can be |
+ computed by any code successfully malloc'ing any chunk, so does not |
+ itself provide protection against code that has already broken |
+ security through some other means. Unlike Robertson et al, we |
+ always dynamically check addresses of all offset chunks (previous, |
+ next, etc). This turns out to be cheaper than relying on hashes. |
+*/ |
+ |
+#if !INSECURE |
+/* Check if address a is at least as high as any from MORECORE or MMAP */ |
+#define ok_address(M, a) ((char*)(a) >= (M)->least_addr) |
+/* Check if address of next chunk n is higher than base chunk p */ |
+#define ok_next(p, n) ((char*)(p) < (char*)(n)) |
+/* Check if p has inuse status */ |
+#define ok_inuse(p) is_inuse(p) |
+/* Check if p has its pinuse bit on */ |
+#define ok_pinuse(p) pinuse(p) |
+ |
+#else /* !INSECURE */ |
+#define ok_address(M, a) (1) |
+#define ok_next(b, n) (1) |
+#define ok_inuse(p) (1) |
+#define ok_pinuse(p) (1) |
+#endif /* !INSECURE */ |
+ |
+#if (FOOTERS && !INSECURE) |
+/* Check if (alleged) mstate m has expected magic field */ |
+#define ok_magic(M) ((M)->magic == mparams.magic) |
+#else /* (FOOTERS && !INSECURE) */ |
+#define ok_magic(M) (1) |
+#endif /* (FOOTERS && !INSECURE) */ |
+ |
+/* In gcc, use __builtin_expect to minimize impact of checks */ |
+#if !INSECURE |
+#if defined(__GNUC__) && __GNUC__ >= 3 |
+#define RTCHECK(e) __builtin_expect(e, 1) |
+#else /* GNUC */ |
+#define RTCHECK(e) (e) |
+#endif /* GNUC */ |
+#else /* !INSECURE */ |
+#define RTCHECK(e) (1) |
+#endif /* !INSECURE */ |
+ |
+/* macros to set up inuse chunks with or without footers */ |
+ |
+#if !FOOTERS |
+ |
+#define mark_inuse_foot(M,p,s) |
+ |
+/* Macros for setting head/foot of non-mmapped chunks */ |
+ |
+/* Set cinuse bit and pinuse bit of next chunk */ |
+#define set_inuse(M,p,s)\ |
+ ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\ |
+ ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT) |
+ |
+/* Set cinuse and pinuse of this chunk and pinuse of next chunk */ |
+#define set_inuse_and_pinuse(M,p,s)\ |
+ ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\ |
+ ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT) |
+ |
+/* Set size, cinuse and pinuse bit of this chunk */ |
+#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\ |
+ ((p)->head = (s|PINUSE_BIT|CINUSE_BIT)) |
+ |
+#else /* FOOTERS */ |
+ |
+/* Set foot of inuse chunk to be xor of mstate and seed */ |
+#define mark_inuse_foot(M,p,s)\ |
+ (((mchunkptr)((char*)(p) + (s)))->prev_foot = ((size_t)(M) ^ mparams.magic)) |
+ |
+#define get_mstate_for(p)\ |
+ ((mstate)(((mchunkptr)((char*)(p) +\ |
+ (chunksize(p))))->prev_foot ^ mparams.magic)) |
+ |
+#define set_inuse(M,p,s)\ |
+ ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\ |
+ (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT), \ |
+ mark_inuse_foot(M,p,s)) |
+ |
+#define set_inuse_and_pinuse(M,p,s)\ |
+ ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\ |
+ (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT),\ |
+ mark_inuse_foot(M,p,s)) |
+ |
+#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\ |
+ ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\ |
+ mark_inuse_foot(M, p, s)) |
+ |
+#endif /* !FOOTERS */ |
+ |
+/* ---------------------------- setting mparams -------------------------- */ |
+ |
+#if LOCK_AT_FORK |
+static void pre_fork(void) { ACQUIRE_LOCK(&(gm)->mutex); } |
+static void post_fork_parent(void) { RELEASE_LOCK(&(gm)->mutex); } |
+static void post_fork_child(void) { INITIAL_LOCK(&(gm)->mutex); } |
+#endif /* LOCK_AT_FORK */ |
+ |
+/* Initialize mparams */ |
+static int init_mparams(void) { |
+ /* BEGIN android-added: move pthread_atfork outside of lock */ |
+ int first_run = 0; |
+ /* END android-added */ |
+#ifdef NEED_GLOBAL_LOCK_INIT |
+ if (malloc_global_mutex_status <= 0) |
+ init_malloc_global_mutex(); |
+#endif |
+ |
+ ACQUIRE_MALLOC_GLOBAL_LOCK(); |
+ if (mparams.magic == 0) { |
+ size_t magic; |
+ size_t psize; |
+ size_t gsize; |
+ /* BEGIN android-added: move pthread_atfork outside of lock */ |
+ first_run = 1; |
+ /* END android-added */ |
+ |
+#ifndef WIN32 |
+ psize = malloc_getpagesize; |
+ gsize = ((DEFAULT_GRANULARITY != 0)? DEFAULT_GRANULARITY : psize); |
+#else /* WIN32 */ |
+ { |
+ SYSTEM_INFO system_info; |
+ GetSystemInfo(&system_info); |
+ psize = system_info.dwPageSize; |
+ gsize = ((DEFAULT_GRANULARITY != 0)? |
+ DEFAULT_GRANULARITY : system_info.dwAllocationGranularity); |
+ } |
+#endif /* WIN32 */ |
+ |
+ /* Sanity-check configuration: |
+ size_t must be unsigned and as wide as pointer type. |
+ ints must be at least 4 bytes. |
+ alignment must be at least 8. |
+ Alignment, min chunk size, and page size must all be powers of 2. |
+ */ |
+ if ((sizeof(size_t) != sizeof(char*)) || |
+ (MAX_SIZE_T < MIN_CHUNK_SIZE) || |
+ (sizeof(int) < 4) || |
+ (MALLOC_ALIGNMENT < (size_t)8U) || |
+ ((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT-SIZE_T_ONE)) != 0) || |
+ ((MCHUNK_SIZE & (MCHUNK_SIZE-SIZE_T_ONE)) != 0) || |
+ ((gsize & (gsize-SIZE_T_ONE)) != 0) || |
+ ((psize & (psize-SIZE_T_ONE)) != 0)) |
+ ABORT; |
+ mparams.granularity = gsize; |
+ mparams.page_size = psize; |
+ mparams.mmap_threshold = DEFAULT_MMAP_THRESHOLD; |
+ mparams.trim_threshold = DEFAULT_TRIM_THRESHOLD; |
+#if MORECORE_CONTIGUOUS |
+ mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT; |
+#else /* MORECORE_CONTIGUOUS */ |
+ mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT|USE_NONCONTIGUOUS_BIT; |
+#endif /* MORECORE_CONTIGUOUS */ |
+ |
+#if !ONLY_MSPACES |
+ /* Set up lock for main malloc area */ |
+ gm->mflags = mparams.default_mflags; |
+ (void)INITIAL_LOCK(&gm->mutex); |
+#endif |
+ /* BEGIN android-removed: move pthread_atfork outside of lock */ |
+#if 0 && LOCK_AT_FORK |
+ pthread_atfork(&pre_fork, &post_fork_parent, &post_fork_child); |
+#endif |
+ /* END android-removed */ |
+ |
+ { |
+#if USE_DEV_RANDOM |
+ int fd; |
+ unsigned char buf[sizeof(size_t)]; |
+ /* Try to use /dev/urandom, else fall back on using time */ |
+ if ((fd = open("/dev/urandom", O_RDONLY)) >= 0 && |
+ read(fd, buf, sizeof(buf)) == sizeof(buf)) { |
+ magic = *((size_t *) buf); |
+ close(fd); |
+ } |
+ else |
+#endif /* USE_DEV_RANDOM */ |
+#ifdef WIN32 |
+ magic = (size_t)(GetTickCount() ^ (size_t)0x55555555U); |
+#elif defined(LACKS_TIME_H) |
+ magic = (size_t)&magic ^ (size_t)0x55555555U; |
+#else |
+ magic = (size_t)(time(0) ^ (size_t)0x55555555U); |
+#endif |
+ magic |= (size_t)8U; /* ensure nonzero */ |
+ magic &= ~(size_t)7U; /* improve chances of fault for bad values */ |
+ /* Until memory modes commonly available, use volatile-write */ |
+ (*(volatile size_t *)(&(mparams.magic))) = magic; |
+ } |
+ } |
+ |
+ RELEASE_MALLOC_GLOBAL_LOCK(); |
+ /* BEGIN android-added: move pthread_atfork outside of lock */ |
+ if (first_run != 0) { |
+#if LOCK_AT_FORK |
+ //pthread_atfork(&pre_fork, &post_fork_parent, &post_fork_child); |
+#endif |
+ } |
+ /* END android-added */ |
+ return 1; |
+} |
+ |
+/* support for mallopt */ |
+static int change_mparam(int param_number, int value) { |
+ size_t val; |
+ ensure_initialization(); |
+ val = (value == -1)? MAX_SIZE_T : (size_t)value; |
+ switch(param_number) { |
+ case M_TRIM_THRESHOLD: |
+ mparams.trim_threshold = val; |
+ return 1; |
+ case M_GRANULARITY: |
+ if (val >= mparams.page_size && ((val & (val-1)) == 0)) { |
+ mparams.granularity = val; |
+ return 1; |
+ } |
+ else |
+ return 0; |
+ case M_MMAP_THRESHOLD: |
+ mparams.mmap_threshold = val; |
+ return 1; |
+ default: |
+ return 0; |
+ } |
+} |
+ |
+#if DEBUG |
+/* ------------------------- Debugging Support --------------------------- */ |
+ |
+/* Check properties of any chunk, whether free, inuse, mmapped etc */ |
+static void do_check_any_chunk(mstate m, mchunkptr p) { |
+ assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD)); |
+ assert(ok_address(m, p)); |
+} |
+ |
+/* Check properties of top chunk */ |
+static void do_check_top_chunk(mstate m, mchunkptr p) { |
+ msegmentptr sp = segment_holding(m, (char*)p); |
+ size_t sz = p->head & ~INUSE_BITS; /* third-lowest bit can be set! */ |
+ assert(sp != 0); |
+ assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD)); |
+ assert(ok_address(m, p)); |
+ assert(sz == m->topsize); |
+ assert(sz > 0); |
+ assert(sz == ((sp->base + sp->size) - (char*)p) - TOP_FOOT_SIZE); |
+ assert(pinuse(p)); |
+ assert(!pinuse(chunk_plus_offset(p, sz))); |
+} |
+ |
+/* Check properties of (inuse) mmapped chunks */ |
+static void do_check_mmapped_chunk(mstate m, mchunkptr p) { |
+ size_t sz = chunksize(p); |
+ size_t len = (sz + (p->prev_foot) + MMAP_FOOT_PAD); |
+ assert(is_mmapped(p)); |
+ assert(use_mmap(m)); |
+ assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD)); |
+ assert(ok_address(m, p)); |
+ assert(!is_small(sz)); |
+ assert((len & (mparams.page_size-SIZE_T_ONE)) == 0); |
+ assert(chunk_plus_offset(p, sz)->head == FENCEPOST_HEAD); |
+ assert(chunk_plus_offset(p, sz+SIZE_T_SIZE)->head == 0); |
+} |
+ |
+/* Check properties of inuse chunks */ |
+static void do_check_inuse_chunk(mstate m, mchunkptr p) { |
+ do_check_any_chunk(m, p); |
+ assert(is_inuse(p)); |
+ assert(next_pinuse(p)); |
+ /* If not pinuse and not mmapped, previous chunk has OK offset */ |
+ assert(is_mmapped(p) || pinuse(p) || next_chunk(prev_chunk(p)) == p); |
+ if (is_mmapped(p)) |
+ do_check_mmapped_chunk(m, p); |
+} |
+ |
+/* Check properties of free chunks */ |
+static void do_check_free_chunk(mstate m, mchunkptr p) { |
+ size_t sz = chunksize(p); |
+ mchunkptr next = chunk_plus_offset(p, sz); |
+ do_check_any_chunk(m, p); |
+ assert(!is_inuse(p)); |
+ assert(!next_pinuse(p)); |
+ assert (!is_mmapped(p)); |
+ if (p != m->dv && p != m->top) { |
+ if (sz >= MIN_CHUNK_SIZE) { |
+ assert((sz & CHUNK_ALIGN_MASK) == 0); |
+ assert(is_aligned(chunk2mem(p))); |
+ assert(next->prev_foot == sz); |
+ assert(pinuse(p)); |
+ assert (next == m->top || is_inuse(next)); |
+ assert(p->fd->bk == p); |
+ assert(p->bk->fd == p); |
+ } |
+ else /* markers are always of size SIZE_T_SIZE */ |
+ assert(sz == SIZE_T_SIZE); |
+ } |
+} |
+ |
+/* Check properties of malloced chunks at the point they are malloced */ |
+static void do_check_malloced_chunk(mstate m, void* mem, size_t s) { |
+ if (mem != 0) { |
+ mchunkptr p = mem2chunk(mem); |
+ size_t sz = p->head & ~INUSE_BITS; |
+ do_check_inuse_chunk(m, p); |
+ assert((sz & CHUNK_ALIGN_MASK) == 0); |
+ assert(sz >= MIN_CHUNK_SIZE); |
+ assert(sz >= s); |
+ /* unless mmapped, size is less than MIN_CHUNK_SIZE more than request */ |
+ assert(is_mmapped(p) || sz < (s + MIN_CHUNK_SIZE)); |
+ } |
+} |
+ |
+/* Check a tree and its subtrees. */ |
+static void do_check_tree(mstate m, tchunkptr t) { |
+ tchunkptr head = 0; |
+ tchunkptr u = t; |
+ bindex_t tindex = t->index; |
+ size_t tsize = chunksize(t); |
+ bindex_t idx; |
+ compute_tree_index(tsize, idx); |
+ assert(tindex == idx); |
+ assert(tsize >= MIN_LARGE_SIZE); |
+ assert(tsize >= minsize_for_tree_index(idx)); |
+ assert((idx == NTREEBINS-1) || (tsize < minsize_for_tree_index((idx+1)))); |
+ |
+ do { /* traverse through chain of same-sized nodes */ |
+ do_check_any_chunk(m, ((mchunkptr)u)); |
+ assert(u->index == tindex); |
+ assert(chunksize(u) == tsize); |
+ assert(!is_inuse(u)); |
+ assert(!next_pinuse(u)); |
+ assert(u->fd->bk == u); |
+ assert(u->bk->fd == u); |
+ if (u->parent == 0) { |
+ assert(u->child[0] == 0); |
+ assert(u->child[1] == 0); |
+ } |
+ else { |
+ assert(head == 0); /* only one node on chain has parent */ |
+ head = u; |
+ assert(u->parent != u); |
+ assert (u->parent->child[0] == u || |
+ u->parent->child[1] == u || |
+ *((tbinptr*)(u->parent)) == u); |
+ if (u->child[0] != 0) { |
+ assert(u->child[0]->parent == u); |
+ assert(u->child[0] != u); |
+ do_check_tree(m, u->child[0]); |
+ } |
+ if (u->child[1] != 0) { |
+ assert(u->child[1]->parent == u); |
+ assert(u->child[1] != u); |
+ do_check_tree(m, u->child[1]); |
+ } |
+ if (u->child[0] != 0 && u->child[1] != 0) { |
+ assert(chunksize(u->child[0]) < chunksize(u->child[1])); |
+ } |
+ } |
+ u = u->fd; |
+ } while (u != t); |
+ assert(head != 0); |
+} |
+ |
+/* Check all the chunks in a treebin. */ |
+static void do_check_treebin(mstate m, bindex_t i) { |
+ tbinptr* tb = treebin_at(m, i); |
+ tchunkptr t = *tb; |
+ int empty = (m->treemap & (1U << i)) == 0; |
+ if (t == 0) |
+ assert(empty); |
+ if (!empty) |
+ do_check_tree(m, t); |
+} |
+ |
+/* Check all the chunks in a smallbin. */ |
+static void do_check_smallbin(mstate m, bindex_t i) { |
+ sbinptr b = smallbin_at(m, i); |
+ mchunkptr p = b->bk; |
+ unsigned int empty = (m->smallmap & (1U << i)) == 0; |
+ if (p == b) |
+ assert(empty); |
+ if (!empty) { |
+ for (; p != b; p = p->bk) { |
+ size_t size = chunksize(p); |
+ mchunkptr q; |
+ /* each chunk claims to be free */ |
+ do_check_free_chunk(m, p); |
+ /* chunk belongs in bin */ |
+ assert(small_index(size) == i); |
+ assert(p->bk == b || chunksize(p->bk) == chunksize(p)); |
+ /* chunk is followed by an inuse chunk */ |
+ q = next_chunk(p); |
+ if (q->head != FENCEPOST_HEAD) |
+ do_check_inuse_chunk(m, q); |
+ } |
+ } |
+} |
+ |
+/* Find x in a bin. Used in other check functions. */ |
+static int bin_find(mstate m, mchunkptr x) { |
+ size_t size = chunksize(x); |
+ if (is_small(size)) { |
+ bindex_t sidx = small_index(size); |
+ sbinptr b = smallbin_at(m, sidx); |
+ if (smallmap_is_marked(m, sidx)) { |
+ mchunkptr p = b; |
+ do { |
+ if (p == x) |
+ return 1; |
+ } while ((p = p->fd) != b); |
+ } |
+ } |
+ else { |
+ bindex_t tidx; |
+ compute_tree_index(size, tidx); |
+ if (treemap_is_marked(m, tidx)) { |
+ tchunkptr t = *treebin_at(m, tidx); |
+ size_t sizebits = size << leftshift_for_tree_index(tidx); |
+ while (t != 0 && chunksize(t) != size) { |
+ t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]; |
+ sizebits <<= 1; |
+ } |
+ if (t != 0) { |
+ tchunkptr u = t; |
+ do { |
+ if (u == (tchunkptr)x) |
+ return 1; |
+ } while ((u = u->fd) != t); |
+ } |
+ } |
+ } |
+ return 0; |
+} |
+ |
+/* Traverse each chunk and check it; return total */ |
+static size_t traverse_and_check(mstate m) { |
+ size_t sum = 0; |
+ if (is_initialized(m)) { |
+ msegmentptr s = &m->seg; |
+ sum += m->topsize + TOP_FOOT_SIZE; |
+ while (s != 0) { |
+ mchunkptr q = align_as_chunk(s->base); |
+ mchunkptr lastq = 0; |
+ assert(pinuse(q)); |
+ while (segment_holds(s, q) && |
+ q != m->top && q->head != FENCEPOST_HEAD) { |
+ sum += chunksize(q); |
+ if (is_inuse(q)) { |
+ assert(!bin_find(m, q)); |
+ do_check_inuse_chunk(m, q); |
+ } |
+ else { |
+ assert(q == m->dv || bin_find(m, q)); |
+ assert(lastq == 0 || is_inuse(lastq)); /* Not 2 consecutive free */ |
+ do_check_free_chunk(m, q); |
+ } |
+ lastq = q; |
+ q = next_chunk(q); |
+ } |
+ s = s->next; |
+ } |
+ } |
+ return sum; |
+} |
+ |
+ |
+/* Check all properties of malloc_state. */ |
+static void do_check_malloc_state(mstate m) { |
+ bindex_t i; |
+ size_t total; |
+ /* check bins */ |
+ for (i = 0; i < NSMALLBINS; ++i) |
+ do_check_smallbin(m, i); |
+ for (i = 0; i < NTREEBINS; ++i) |
+ do_check_treebin(m, i); |
+ |
+ if (m->dvsize != 0) { /* check dv chunk */ |
+ do_check_any_chunk(m, m->dv); |
+ assert(m->dvsize == chunksize(m->dv)); |
+ assert(m->dvsize >= MIN_CHUNK_SIZE); |
+ assert(bin_find(m, m->dv) == 0); |
+ } |
+ |
+ if (m->top != 0) { /* check top chunk */ |
+ do_check_top_chunk(m, m->top); |
+ /*assert(m->topsize == chunksize(m->top)); redundant */ |
+ assert(m->topsize > 0); |
+ assert(bin_find(m, m->top) == 0); |
+ } |
+ |
+ total = traverse_and_check(m); |
+ assert(total <= m->footprint); |
+ assert(m->footprint <= m->max_footprint); |
+} |
+#endif /* DEBUG */ |
+ |
+/* ----------------------------- statistics ------------------------------ */ |
+ |
+#if !NO_MALLINFO |
+static struct mallinfo internal_mallinfo(mstate m) { |
+ struct mallinfo nm = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; |
+ ensure_initialization(); |
+ if (!PREACTION(m)) { |
+ check_malloc_state(m); |
+ if (is_initialized(m)) { |
+ size_t nfree = SIZE_T_ONE; /* top always free */ |
+ size_t mfree = m->topsize + TOP_FOOT_SIZE; |
+ size_t sum = mfree; |
+ msegmentptr s = &m->seg; |
+ while (s != 0) { |
+ mchunkptr q = align_as_chunk(s->base); |
+ while (segment_holds(s, q) && |
+ q != m->top && q->head != FENCEPOST_HEAD) { |
+ size_t sz = chunksize(q); |
+ sum += sz; |
+ if (!is_inuse(q)) { |
+ mfree += sz; |
+ ++nfree; |
+ } |
+ q = next_chunk(q); |
+ } |
+ s = s->next; |
+ } |
+ |
+ nm.arena = sum; |
+ nm.ordblks = nfree; |
+ nm.hblkhd = m->footprint - sum; |
+ nm.usmblks = m->max_footprint; |
+ nm.uordblks = m->footprint - mfree; |
+ nm.fordblks = mfree; |
+ nm.keepcost = m->topsize; |
+ } |
+ |
+ POSTACTION(m); |
+ } |
+ return nm; |
+} |
+#endif /* !NO_MALLINFO */ |
+ |
+#if !NO_MALLOC_STATS |
+static void internal_malloc_stats(mstate m) { |
+ ensure_initialization(); |
+ if (!PREACTION(m)) { |
+ size_t maxfp = 0; |
+ size_t fp = 0; |
+ size_t used = 0; |
+ check_malloc_state(m); |
+ if (is_initialized(m)) { |
+ msegmentptr s = &m->seg; |
+ maxfp = m->max_footprint; |
+ fp = m->footprint; |
+ used = fp - (m->topsize + TOP_FOOT_SIZE); |
+ |
+ while (s != 0) { |
+ mchunkptr q = align_as_chunk(s->base); |
+ while (segment_holds(s, q) && |
+ q != m->top && q->head != FENCEPOST_HEAD) { |
+ if (!is_inuse(q)) |
+ used -= chunksize(q); |
+ q = next_chunk(q); |
+ } |
+ s = s->next; |
+ } |
+ } |
+ POSTACTION(m); /* drop lock */ |
+ fprintf(stderr, "max system bytes = %10lu\n", (unsigned long)(maxfp)); |
+ fprintf(stderr, "system bytes = %10lu\n", (unsigned long)(fp)); |
+ fprintf(stderr, "in use bytes = %10lu\n", (unsigned long)(used)); |
+ } |
+} |
+#endif /* NO_MALLOC_STATS */ |
+ |
+/* ----------------------- Operations on smallbins ----------------------- */ |
+ |
+/* |
+ Various forms of linking and unlinking are defined as macros. Even |
+ the ones for trees, which are very long but have very short typical |
+ paths. This is ugly but reduces reliance on inlining support of |
+ compilers. |
+*/ |
+ |
+/* Link a free chunk into a smallbin */ |
+#define insert_small_chunk(M, P, S) {\ |
+ bindex_t I = small_index(S);\ |
+ mchunkptr B = smallbin_at(M, I);\ |
+ mchunkptr F = B;\ |
+ assert(S >= MIN_CHUNK_SIZE);\ |
+ if (!smallmap_is_marked(M, I))\ |
+ mark_smallmap(M, I);\ |
+ else if (RTCHECK(ok_address(M, B->fd)))\ |
+ F = B->fd;\ |
+ else {\ |
+ CORRUPTION_ERROR_ACTION(M);\ |
+ }\ |
+ B->fd = P;\ |
+ F->bk = P;\ |
+ P->fd = F;\ |
+ P->bk = B;\ |
+} |
+ |
+/* Unlink a chunk from a smallbin */ |
+#define unlink_small_chunk(M, P, S) {\ |
+ mchunkptr F = P->fd;\ |
+ mchunkptr B = P->bk;\ |
+ bindex_t I = small_index(S);\ |
+ assert(P != B);\ |
+ assert(P != F);\ |
+ assert(chunksize(P) == small_index2size(I));\ |
+ if (RTCHECK(F == smallbin_at(M,I) || (ok_address(M, F) && F->bk == P))) { \ |
+ if (B == F) {\ |
+ clear_smallmap(M, I);\ |
+ }\ |
+ else if (RTCHECK(B == smallbin_at(M,I) ||\ |
+ (ok_address(M, B) && B->fd == P))) {\ |
+ F->bk = B;\ |
+ B->fd = F;\ |
+ }\ |
+ else {\ |
+ CORRUPTION_ERROR_ACTION(M);\ |
+ }\ |
+ }\ |
+ else {\ |
+ CORRUPTION_ERROR_ACTION(M);\ |
+ }\ |
+} |
+ |
+/* Unlink the first chunk from a smallbin */ |
+#define unlink_first_small_chunk(M, B, P, I) {\ |
+ mchunkptr F = P->fd;\ |
+ assert(P != B);\ |
+ assert(P != F);\ |
+ assert(chunksize(P) == small_index2size(I));\ |
+ if (B == F) {\ |
+ clear_smallmap(M, I);\ |
+ }\ |
+ else if (RTCHECK(ok_address(M, F) && F->bk == P)) {\ |
+ F->bk = B;\ |
+ B->fd = F;\ |
+ }\ |
+ else {\ |
+ CORRUPTION_ERROR_ACTION(M);\ |
+ }\ |
+} |
+ |
+/* Replace dv node, binning the old one */ |
+/* Used only when dvsize known to be small */ |
+#define replace_dv(M, P, S) {\ |
+ size_t DVS = M->dvsize;\ |
+ assert(is_small(DVS));\ |
+ if (DVS != 0) {\ |
+ mchunkptr DV = M->dv;\ |
+ insert_small_chunk(M, DV, DVS);\ |
+ }\ |
+ M->dvsize = S;\ |
+ M->dv = P;\ |
+} |
+ |
+/* ------------------------- Operations on trees ------------------------- */ |
+ |
+/* Insert chunk into tree */ |
+#define insert_large_chunk(M, X, S) {\ |
+ tbinptr* H;\ |
+ bindex_t I;\ |
+ compute_tree_index(S, I);\ |
+ H = treebin_at(M, I);\ |
+ X->index = I;\ |
+ X->child[0] = X->child[1] = 0;\ |
+ if (!treemap_is_marked(M, I)) {\ |
+ mark_treemap(M, I);\ |
+ *H = X;\ |
+ X->parent = (tchunkptr)H;\ |
+ X->fd = X->bk = X;\ |
+ }\ |
+ else {\ |
+ tchunkptr T = *H;\ |
+ size_t K = S << leftshift_for_tree_index(I);\ |
+ for (;;) {\ |
+ if (chunksize(T) != S) {\ |
+ tchunkptr* C = &(T->child[(K >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]);\ |
+ K <<= 1;\ |
+ if (*C != 0)\ |
+ T = *C;\ |
+ else if (RTCHECK(ok_address(M, C))) {\ |
+ *C = X;\ |
+ X->parent = T;\ |
+ X->fd = X->bk = X;\ |
+ break;\ |
+ }\ |
+ else {\ |
+ CORRUPTION_ERROR_ACTION(M);\ |
+ break;\ |
+ }\ |
+ }\ |
+ else {\ |
+ tchunkptr F = T->fd;\ |
+ if (RTCHECK(ok_address(M, T) && ok_address(M, F))) {\ |
+ T->fd = F->bk = X;\ |
+ X->fd = F;\ |
+ X->bk = T;\ |
+ X->parent = 0;\ |
+ break;\ |
+ }\ |
+ else {\ |
+ CORRUPTION_ERROR_ACTION(M);\ |
+ break;\ |
+ }\ |
+ }\ |
+ }\ |
+ }\ |
+} |
+ |
+/* |
+ Unlink steps: |
+ |
+ 1. If x is a chained node, unlink it from its same-sized fd/bk links |
+ and choose its bk node as its replacement. |
+ 2. If x was the last node of its size, but not a leaf node, it must |
+ be replaced with a leaf node (not merely one with an open left or |
+ right), to make sure that lefts and rights of descendents |
+ correspond properly to bit masks. We use the rightmost descendent |
+ of x. We could use any other leaf, but this is easy to locate and |
+ tends to counteract removal of leftmosts elsewhere, and so keeps |
+ paths shorter than minimally guaranteed. This doesn't loop much |
+ because on average a node in a tree is near the bottom. |
+ 3. If x is the base of a chain (i.e., has parent links) relink |
+ x's parent and children to x's replacement (or null if none). |
+*/ |
+ |
+#define unlink_large_chunk(M, X) {\ |
+ tchunkptr XP = X->parent;\ |
+ tchunkptr R;\ |
+ if (X->bk != X) {\ |
+ tchunkptr F = X->fd;\ |
+ R = X->bk;\ |
+ if (RTCHECK(ok_address(M, F) && F->bk == X && R->fd == X)) {\ |
+ F->bk = R;\ |
+ R->fd = F;\ |
+ }\ |
+ else {\ |
+ CORRUPTION_ERROR_ACTION(M);\ |
+ }\ |
+ }\ |
+ else {\ |
+ tchunkptr* RP;\ |
+ if (((R = *(RP = &(X->child[1]))) != 0) ||\ |
+ ((R = *(RP = &(X->child[0]))) != 0)) {\ |
+ tchunkptr* CP;\ |
+ while ((*(CP = &(R->child[1])) != 0) ||\ |
+ (*(CP = &(R->child[0])) != 0)) {\ |
+ R = *(RP = CP);\ |
+ }\ |
+ if (RTCHECK(ok_address(M, RP)))\ |
+ *RP = 0;\ |
+ else {\ |
+ CORRUPTION_ERROR_ACTION(M);\ |
+ }\ |
+ }\ |
+ }\ |
+ if (XP != 0) {\ |
+ tbinptr* H = treebin_at(M, X->index);\ |
+ if (X == *H) {\ |
+ if ((*H = R) == 0) \ |
+ clear_treemap(M, X->index);\ |
+ }\ |
+ else if (RTCHECK(ok_address(M, XP))) {\ |
+ if (XP->child[0] == X) \ |
+ XP->child[0] = R;\ |
+ else \ |
+ XP->child[1] = R;\ |
+ }\ |
+ else\ |
+ CORRUPTION_ERROR_ACTION(M);\ |
+ if (R != 0) {\ |
+ if (RTCHECK(ok_address(M, R))) {\ |
+ tchunkptr C0, C1;\ |
+ R->parent = XP;\ |
+ if ((C0 = X->child[0]) != 0) {\ |
+ if (RTCHECK(ok_address(M, C0))) {\ |
+ R->child[0] = C0;\ |
+ C0->parent = R;\ |
+ }\ |
+ else\ |
+ CORRUPTION_ERROR_ACTION(M);\ |
+ }\ |
+ if ((C1 = X->child[1]) != 0) {\ |
+ if (RTCHECK(ok_address(M, C1))) {\ |
+ R->child[1] = C1;\ |
+ C1->parent = R;\ |
+ }\ |
+ else\ |
+ CORRUPTION_ERROR_ACTION(M);\ |
+ }\ |
+ }\ |
+ else\ |
+ CORRUPTION_ERROR_ACTION(M);\ |
+ }\ |
+ }\ |
+} |
+ |
+/* Relays to large vs small bin operations */ |
+ |
+#define insert_chunk(M, P, S)\ |
+ if (is_small(S)) insert_small_chunk(M, P, S)\ |
+ else { tchunkptr TP = (tchunkptr)(P); insert_large_chunk(M, TP, S); } |
+ |
+#define unlink_chunk(M, P, S)\ |
+ if (is_small(S)) unlink_small_chunk(M, P, S)\ |
+ else { tchunkptr TP = (tchunkptr)(P); unlink_large_chunk(M, TP); } |
+ |
+ |
+/* Relays to internal calls to malloc/free from realloc, memalign etc */ |
+ |
+#if ONLY_MSPACES |
+#define internal_malloc(m, b) mspace_malloc(m, b) |
+#define internal_free(m, mem) mspace_free(m,mem); |
+#else /* ONLY_MSPACES */ |
+#if MSPACES |
+#define internal_malloc(m, b)\ |
+ ((m == gm)? dlmalloc(b) : mspace_malloc(m, b)) |
+#define internal_free(m, mem)\ |
+ if (m == gm) dlfree(mem); else mspace_free(m,mem); |
+#else /* MSPACES */ |
+#define internal_malloc(m, b) dlmalloc(b) |
+#define internal_free(m, mem) dlfree(mem) |
+#endif /* MSPACES */ |
+#endif /* ONLY_MSPACES */ |
+ |
+/* ----------------------- Direct-mmapping chunks ----------------------- */ |
+ |
+/* |
+ Directly mmapped chunks are set up with an offset to the start of |
+ the mmapped region stored in the prev_foot field of the chunk. This |
+ allows reconstruction of the required argument to MUNMAP when freed, |
+ and also allows adjustment of the returned chunk to meet alignment |
+ requirements (especially in memalign). |
+*/ |
+ |
+/* Malloc using mmap */ |
+static void* mmap_alloc(mstate m, size_t nb) { |
+ size_t mmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK); |
+ if (m->footprint_limit != 0) { |
+ size_t fp = m->footprint + mmsize; |
+ if (fp <= m->footprint || fp > m->footprint_limit) |
+ return 0; |
+ } |
+ if (mmsize > nb) { /* Check for wrap around 0 */ |
+ const int ashmem_fd = create_ashmem(mmsize); |
+ if (ashmem_fd < 0) |
+ return 0; |
+ char* mm = (char*)(mmap(NULL, mmsize, MMAP_PROT, MMAP_FLAGS, ashmem_fd, 0)); |
+ if (mm != CMFAIL) { |
+ size_t offset = align_offset(chunk2mem(mm)); |
+ size_t psize = mmsize - offset - MMAP_FOOT_PAD; |
+ mchunkptr p = (mchunkptr)(mm + offset); |
+ p->set_prev_foot(offset); |
+ p->set_ashmem_fd(ashmem_fd); |
+ p->head = psize; |
+ mark_inuse_foot(m, p, psize); |
+ chunk_plus_offset(p, psize)->head = FENCEPOST_HEAD; |
+ chunk_plus_offset(p, psize+SIZE_T_SIZE)->head = 0; |
+ |
+ if (m->least_addr == 0 || mm < m->least_addr) |
+ m->least_addr = mm; |
+ if ((m->footprint += mmsize) > m->max_footprint) |
+ m->max_footprint = m->footprint; |
+ assert(is_aligned(chunk2mem(p))); |
+ check_mmapped_chunk(m, p); |
+ return chunk2mem(p); |
+ } |
+ } |
+ return 0; |
+} |
+ |
+/* Realloc using mmap */ |
+static mchunkptr mmap_resize(mstate m, mchunkptr oldp, size_t nb, int flags) { |
+ size_t oldsize = chunksize(oldp); |
+ (void)flags; /* placate people compiling -Wunused */ |
+ if (is_small(nb)) /* Can't shrink mmap regions below small size */ |
+ return 0; |
+ /* Keep old chunk if big enough but not too big */ |
+ if (oldsize >= nb + SIZE_T_SIZE && |
+ (oldsize - nb) <= (mparams.granularity << 1)) |
+ return oldp; |
+ else { |
+ size_t offset = oldp->prev_foot(); |
+ size_t oldmmsize = oldsize + offset + MMAP_FOOT_PAD; |
+ size_t newmmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK); |
+ char* cp = (char*)CALL_MREMAP((char*)oldp - offset, |
+ oldmmsize, newmmsize, flags); |
+ if (cp != CMFAIL) { |
+ mchunkptr newp = (mchunkptr)(cp + offset); |
+ size_t psize = newmmsize - offset - MMAP_FOOT_PAD; |
+ newp->head = psize; |
+ mark_inuse_foot(m, newp, psize); |
+ chunk_plus_offset(newp, psize)->head = FENCEPOST_HEAD; |
+ chunk_plus_offset(newp, psize+SIZE_T_SIZE)->head = 0; |
+ |
+ if (cp < m->least_addr) |
+ m->least_addr = cp; |
+ if ((m->footprint += newmmsize - oldmmsize) > m->max_footprint) |
+ m->max_footprint = m->footprint; |
+ check_mmapped_chunk(m, newp); |
+ return newp; |
+ } |
+ } |
+ return 0; |
+} |
+ |
+ |
+/* -------------------------- mspace management -------------------------- */ |
+ |
+/* Initialize top chunk and its size */ |
+static void init_top(mstate m, mchunkptr p, size_t psize) { |
+ /* Ensure alignment */ |
+ size_t offset = align_offset(chunk2mem(p)); |
+ p = (mchunkptr)((char*)p + offset); |
+ psize -= offset; |
+ |
+ m->top = p; |
+ m->topsize = psize; |
+ p->head = psize | PINUSE_BIT; |
+ /* set size of fake trailing chunk holding overhead space only once */ |
+ chunk_plus_offset(p, psize)->head = TOP_FOOT_SIZE; |
+ m->trim_check = mparams.trim_threshold; /* reset on each update */ |
+} |
+ |
+/* Initialize bins for a new mstate that is otherwise zeroed out */ |
+static void init_bins(mstate m) { |
+ /* Establish circular links for smallbins */ |
+ bindex_t i; |
+ for (i = 0; i < NSMALLBINS; ++i) { |
+ sbinptr bin = smallbin_at(m,i); |
+ bin->fd = bin->bk = bin; |
+ } |
+} |
+ |
+#if PROCEED_ON_ERROR |
+ |
+/* default corruption action */ |
+static void reset_on_error(mstate m) { |
+ int i; |
+ ++malloc_corruption_error_count; |
+ /* Reinitialize fields to forget about all memory */ |
+ m->smallmap = m->treemap = 0; |
+ m->dvsize = m->topsize = 0; |
+ m->seg.base = 0; |
+ m->seg.size = 0; |
+ m->seg.next = 0; |
+ m->top = m->dv = 0; |
+ for (i = 0; i < NTREEBINS; ++i) |
+ *treebin_at(m, i) = 0; |
+ init_bins(m); |
+} |
+#endif /* PROCEED_ON_ERROR */ |
+ |
+/* Allocate chunk and prepend remainder with chunk in successor base. */ |
+static void* prepend_alloc(mstate m, char* newbase, char* oldbase, |
+ size_t nb) { |
+ mchunkptr p = align_as_chunk(newbase); |
+ mchunkptr oldfirst = align_as_chunk(oldbase); |
+ size_t psize = (char*)oldfirst - (char*)p; |
+ mchunkptr q = chunk_plus_offset(p, nb); |
+ size_t qsize = psize - nb; |
+ set_size_and_pinuse_of_inuse_chunk(m, p, nb); |
+ |
+ assert((char*)oldfirst > (char*)q); |
+ assert(pinuse(oldfirst)); |
+ assert(qsize >= MIN_CHUNK_SIZE); |
+ |
+ /* consolidate remainder with first chunk of old base */ |
+ if (oldfirst == m->top) { |
+ size_t tsize = m->topsize += qsize; |
+ m->top = q; |
+ q->head = tsize | PINUSE_BIT; |
+ check_top_chunk(m, q); |
+ } |
+ else if (oldfirst == m->dv) { |
+ size_t dsize = m->dvsize += qsize; |
+ m->dv = q; |
+ set_size_and_pinuse_of_free_chunk(q, dsize); |
+ } |
+ else { |
+ if (!is_inuse(oldfirst)) { |
+ size_t nsize = chunksize(oldfirst); |
+ unlink_chunk(m, oldfirst, nsize); |
+ oldfirst = chunk_plus_offset(oldfirst, nsize); |
+ qsize += nsize; |
+ } |
+ set_free_with_pinuse(q, qsize, oldfirst); |
+ insert_chunk(m, q, qsize); |
+ check_free_chunk(m, q); |
+ } |
+ |
+ check_malloced_chunk(m, chunk2mem(p), nb); |
+ return chunk2mem(p); |
+} |
+ |
+/* Add a segment to hold a new noncontiguous region */ |
+static void add_segment(mstate m, char* tbase, size_t tsize, flag_t mmapped) { |
+ /* Determine locations and sizes of segment, fenceposts, old top */ |
+ char* old_top = (char*)m->top; |
+ msegmentptr oldsp = segment_holding(m, old_top); |
+ char* old_end = oldsp->base + oldsp->size; |
+ size_t ssize = pad_request(sizeof(struct malloc_segment)); |
+ char* rawsp = old_end - (ssize + FOUR_SIZE_T_SIZES + CHUNK_ALIGN_MASK); |
+ size_t offset = align_offset(chunk2mem(rawsp)); |
+ char* asp = rawsp + offset; |
+ char* csp = (asp < (old_top + MIN_CHUNK_SIZE))? old_top : asp; |
+ mchunkptr sp = (mchunkptr)csp; |
+ msegmentptr ss = (msegmentptr)(chunk2mem(sp)); |
+ mchunkptr tnext = chunk_plus_offset(sp, ssize); |
+ mchunkptr p = tnext; |
+ int nfences = 0; |
+ |
+ /* reset top to new space */ |
+ init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE); |
+ |
+ /* Set up segment record */ |
+ assert(is_aligned(ss)); |
+ set_size_and_pinuse_of_inuse_chunk(m, sp, ssize); |
+ *ss = m->seg; /* Push current record */ |
+ m->seg.base = tbase; |
+ m->seg.size = tsize; |
+ m->seg.set_sflags(mmapped); |
+ m->seg.next = ss; |
+ |
+ /* Insert trailing fenceposts */ |
+ for (;;) { |
+ mchunkptr nextp = chunk_plus_offset(p, SIZE_T_SIZE); |
+ p->head = FENCEPOST_HEAD; |
+ ++nfences; |
+ if ((char*)(&(nextp->head)) < old_end) |
+ p = nextp; |
+ else |
+ break; |
+ } |
+ assert(nfences >= 2); |
+ |
+ /* Insert the rest of old top into a bin as an ordinary free chunk */ |
+ if (csp != old_top) { |
+ mchunkptr q = (mchunkptr)old_top; |
+ size_t psize = csp - old_top; |
+ mchunkptr tn = chunk_plus_offset(q, psize); |
+ set_free_with_pinuse(q, psize, tn); |
+ insert_chunk(m, q, psize); |
+ } |
+ |
+ check_top_chunk(m, m->top); |
+} |
+ |
+/* -------------------------- System allocation -------------------------- */ |
+ |
+/* Get memory from system using MORECORE or MMAP */ |
+static void* sys_alloc(mstate m, size_t nb) { |
+ char* tbase = CMFAIL; |
+ size_t tsize = 0; |
+ flag_t mmap_flag = 0; |
+ size_t asize; /* allocation size */ |
+ |
+ ensure_initialization(); |
+ |
+ /* Directly map large chunks, but only if already initialized */ |
+ if (use_mmap(m) && nb >= mparams.mmap_threshold && m->topsize != 0) { |
+ void* mem = mmap_alloc(m, nb); |
+ if (mem != 0) |
+ return mem; |
+ } |
+ |
+ asize = granularity_align(nb + SYS_ALLOC_PADDING); |
+ if (asize <= nb) { |
+ /* BEGIN android-added: set errno */ |
+ MALLOC_FAILURE_ACTION; |
+ /* END android-added */ |
+ return 0; /* wraparound */ |
+ } |
+ if (m->footprint_limit != 0) { |
+ size_t fp = m->footprint + asize; |
+ if (fp <= m->footprint || fp > m->footprint_limit) { |
+ /* BEGIN android-added: set errno */ |
+ MALLOC_FAILURE_ACTION; |
+ /* END android-added */ |
+ return 0; |
+ } |
+ } |
+ |
+ /* |
+ Try getting memory in any of three ways (in most-preferred to |
+ least-preferred order): |
+ 1. A call to MORECORE that can normally contiguously extend memory. |
+ (disabled if not MORECORE_CONTIGUOUS or not HAVE_MORECORE or |
+ or main space is mmapped or a previous contiguous call failed) |
+ 2. A call to MMAP new space (disabled if not HAVE_MMAP). |
+ Note that under the default settings, if MORECORE is unable to |
+ fulfill a request, and HAVE_MMAP is true, then mmap is |
+ used as a noncontiguous system allocator. This is a useful backup |
+ strategy for systems with holes in address spaces -- in this case |
+ sbrk cannot contiguously expand the heap, but mmap may be able to |
+ find space. |
+ 3. A call to MORECORE that cannot usually contiguously extend memory. |
+ (disabled if not HAVE_MORECORE) |
+ |
+ In all cases, we need to request enough bytes from system to ensure |
+ we can malloc nb bytes upon success, so pad with enough space for |
+ top_foot, plus alignment-pad to make sure we don't lose bytes if |
+ not on boundary, and round this up to a granularity unit. |
+ */ |
+ |
+ if (MORECORE_CONTIGUOUS && !use_noncontiguous(m)) { |
+ char* br = CMFAIL; |
+ size_t ssize = asize; /* sbrk call size */ |
+ msegmentptr ss = (m->top == 0)? 0 : segment_holding(m, (char*)m->top); |
+ ACQUIRE_MALLOC_GLOBAL_LOCK(); |
+ |
+ if (ss == 0) { /* First time through or recovery */ |
+ char* base = (char*)CALL_MORECORE(0); |
+ if (base != CMFAIL) { |
+ size_t fp; |
+ /* Adjust to end on a page boundary */ |
+ if (!is_page_aligned(base)) |
+ ssize += (page_align((size_t)base) - (size_t)base); |
+ fp = m->footprint + ssize; /* recheck limits */ |
+ if (ssize > nb && ssize < HALF_MAX_SIZE_T && |
+ (m->footprint_limit == 0 || |
+ (fp > m->footprint && fp <= m->footprint_limit)) && |
+ (br = (char*)(CALL_MORECORE(ssize))) == base) { |
+ tbase = base; |
+ tsize = ssize; |
+ } |
+ } |
+ } |
+ else { |
+ /* Subtract out existing available top space from MORECORE request. */ |
+ ssize = granularity_align(nb - m->topsize + SYS_ALLOC_PADDING); |
+ /* Use mem here only if it did continuously extend old space */ |
+ if (ssize < HALF_MAX_SIZE_T && |
+ (br = (char*)(CALL_MORECORE(ssize))) == ss->base+ss->size) { |
+ tbase = br; |
+ tsize = ssize; |
+ } |
+ } |
+ |
+ if (tbase == CMFAIL) { /* Cope with partial failure */ |
+ if (br != CMFAIL) { /* Try to use/extend the space we did get */ |
+ if (ssize < HALF_MAX_SIZE_T && |
+ ssize < nb + SYS_ALLOC_PADDING) { |
+ size_t esize = granularity_align(nb + SYS_ALLOC_PADDING - ssize); |
+ if (esize < HALF_MAX_SIZE_T) { |
+ char* end = (char*)CALL_MORECORE(esize); |
+ if (end != CMFAIL) |
+ ssize += esize; |
+ else { /* Can't use; try to release */ |
+ (void) CALL_MORECORE(-ssize); |
+ br = CMFAIL; |
+ } |
+ } |
+ } |
+ } |
+ if (br != CMFAIL) { /* Use the space we did get */ |
+ tbase = br; |
+ tsize = ssize; |
+ } |
+ else |
+ disable_contiguous(m); /* Don't try contiguous path in the future */ |
+ } |
+ |
+ RELEASE_MALLOC_GLOBAL_LOCK(); |
+ } |
+ |
+ int ashmem_fd = -1; |
+ if (HAVE_MMAP && tbase == CMFAIL) { /* Try MMAP */ |
+ ashmem_fd = create_ashmem(asize); |
+ if (ashmem_fd > 0) { |
+ char* mp = (char*)mmap(NULL, asize, MMAP_PROT, MMAP_FLAGS, ashmem_fd, 0); |
+ if (mp != CMFAIL) { |
+ tbase = mp; |
+ tsize = asize; |
+ mmap_flag = USE_MMAP_BIT; |
+ } |
+ } |
+ } |
+ |
+ if (HAVE_MORECORE && tbase == CMFAIL) { /* Try noncontiguous MORECORE */ |
+ if (asize < HALF_MAX_SIZE_T) { |
+ char* br = CMFAIL; |
+ char* end = CMFAIL; |
+ ACQUIRE_MALLOC_GLOBAL_LOCK(); |
+ br = (char*)(CALL_MORECORE(asize)); |
+ end = (char*)(CALL_MORECORE(0)); |
+ RELEASE_MALLOC_GLOBAL_LOCK(); |
+ if (br != CMFAIL && end != CMFAIL && br < end) { |
+ size_t ssize = end - br; |
+ if (ssize > nb + TOP_FOOT_SIZE) { |
+ tbase = br; |
+ tsize = ssize; |
+ } |
+ } |
+ } |
+ } |
+ |
+ if (tbase != CMFAIL) { |
+ |
+ if ((m->footprint += tsize) > m->max_footprint) |
+ m->max_footprint = m->footprint; |
+ |
+ if (!is_initialized(m)) { /* first-time initialization */ |
+ if (m->least_addr == 0 || tbase < m->least_addr) |
+ m->least_addr = tbase; |
+ m->seg.base = tbase; |
+ assert(ashmem_fd != -1); |
+ m->seg.set_ashmem_fd(ashmem_fd); |
+ m->seg.size = tsize; |
+ m->seg.set_sflags(mmap_flag); |
+ m->magic = mparams.magic; |
+ m->release_checks = MAX_RELEASE_CHECK_RATE; |
+ init_bins(m); |
+#if !ONLY_MSPACES |
+ if (is_global(m)) |
+ init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE); |
+ else |
+#endif |
+ { |
+ /* Offset top by embedded malloc_state */ |
+ mchunkptr mn = next_chunk(mem2chunk(m)); |
+ init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) -TOP_FOOT_SIZE); |
+ } |
+ } |
+ |
+ else { |
+ /* Try to merge with an existing segment */ |
+ msegmentptr sp = &m->seg; |
+ /* Only consider most recent segment if traversal suppressed */ |
+ while (sp != 0 && tbase != sp->base + sp->size) |
+ sp = (NO_SEGMENT_TRAVERSAL) ? 0 : sp->next; |
+ if (sp != 0 && |
+ !is_extern_segment(sp) && |
+ (sp->sflags() & USE_MMAP_BIT) == mmap_flag && |
+ segment_holds(sp, m->top)) { /* append */ |
+ sp->size += tsize; |
+ init_top(m, m->top, m->topsize + tsize); |
+ } |
+ else { |
+ if (tbase < m->least_addr) |
+ m->least_addr = tbase; |
+ sp = &m->seg; |
+ while (sp != 0 && sp->base != tbase + tsize) |
+ sp = (NO_SEGMENT_TRAVERSAL) ? 0 : sp->next; |
+ if (sp != 0 && |
+ !is_extern_segment(sp) && |
+ (sp->sflags() & USE_MMAP_BIT) == mmap_flag) { |
+ char* oldbase = sp->base; |
+ sp->base = tbase; |
+ sp->size += tsize; |
+ return prepend_alloc(m, tbase, oldbase, nb); |
+ } |
+ else |
+ add_segment(m, tbase, tsize, mmap_flag); |
+ } |
+ } |
+ |
+ if (nb < m->topsize) { /* Allocate from new or extended top space */ |
+ size_t rsize = m->topsize -= nb; |
+ mchunkptr p = m->top; |
+ mchunkptr r = m->top = chunk_plus_offset(p, nb); |
+ r->head = rsize | PINUSE_BIT; |
+ set_size_and_pinuse_of_inuse_chunk(m, p, nb); |
+ check_top_chunk(m, m->top); |
+ check_malloced_chunk(m, chunk2mem(p), nb); |
+ return chunk2mem(p); |
+ } |
+ } |
+ |
+ MALLOC_FAILURE_ACTION; |
+ return 0; |
+} |
+ |
+/* ----------------------- system deallocation -------------------------- */ |
+ |
+/* Unmap and unlink any mmapped segments that don't contain used chunks */ |
+static size_t release_unused_segments(mstate m) { |
+ size_t released = 0; |
+ int nsegs = 0; |
+ msegmentptr pred = &m->seg; |
+ msegmentptr sp = pred->next; |
+ while (sp != 0) { |
+ char* base = sp->base; |
+ size_t size = sp->size; |
+ msegmentptr next = sp->next; |
+ ++nsegs; |
+ if (is_mmapped_segment(sp) && !is_extern_segment(sp)) { |
+ mchunkptr p = align_as_chunk(base); |
+ size_t psize = chunksize(p); |
+ /* Can unmap if first chunk holds entire segment and not pinned */ |
+ if (!is_inuse(p) && (char*)p + psize >= base + size - TOP_FOOT_SIZE) { |
+ tchunkptr tp = (tchunkptr)p; |
+ assert(segment_holds(sp, (char*)sp)); |
+ if (p == m->dv) { |
+ m->dv = 0; |
+ m->dvsize = 0; |
+ } |
+ else { |
+ unlink_large_chunk(m, tp); |
+ } |
+ const int ashmem_fd = sp->ashmem_fd(); |
+ if (CALL_MUNMAP(base, size) == 0) { |
+ close_ashmem(ashmem_fd); |
+ released += size; |
+ m->footprint -= size; |
+ /* unlink obsoleted record */ |
+ sp = pred; |
+ sp->next = next; |
+ } |
+ else { /* back out if cannot unmap */ |
+ insert_large_chunk(m, tp, psize); |
+ } |
+ } |
+ } |
+ if (NO_SEGMENT_TRAVERSAL) /* scan only first segment */ |
+ break; |
+ pred = sp; |
+ sp = next; |
+ } |
+ /* Reset check counter */ |
+ m->release_checks = (((size_t) nsegs > (size_t) MAX_RELEASE_CHECK_RATE)? |
+ (size_t) nsegs : (size_t) MAX_RELEASE_CHECK_RATE); |
+ return released; |
+} |
+ |
+static int sys_trim(mstate m, size_t pad) { |
+ size_t released = 0; |
+ ensure_initialization(); |
+ if (pad < MAX_REQUEST && is_initialized(m)) { |
+ pad += TOP_FOOT_SIZE; /* ensure enough room for segment overhead */ |
+ |
+ if (m->topsize > pad) { |
+ /* Shrink top space in granularity-size units, keeping at least one */ |
+ size_t unit = mparams.granularity; |
+ size_t extra = ((m->topsize - pad + (unit - SIZE_T_ONE)) / unit - |
+ SIZE_T_ONE) * unit; |
+ msegmentptr sp = segment_holding(m, (char*)m->top); |
+ |
+ if (!is_extern_segment(sp)) { |
+ if (is_mmapped_segment(sp)) { |
+ if (HAVE_MMAP && |
+ sp->size >= extra && |
+ !has_segment_link(m, sp)) { /* can't shrink if pinned */ |
+ size_t newsize = sp->size - extra; |
+ (void)newsize; /* placate people compiling -Wunused-variable */ |
+ /* Prefer mremap, fall back to munmap */ |
+ if ((CALL_MREMAP(sp->base, sp->size, newsize, 0) != MFAIL) || |
+ (CALL_MUNMAP(sp->base + newsize, extra) == 0)) { |
+ released = extra; |
+ if (ashmem_unpin_region(sp->ashmem_fd(), newsize, extra)) |
+ android_log_error("Could not unpin ashmem region"); |
+ } |
+ } |
+ } |
+ else if (HAVE_MORECORE) { |
+ if (extra >= HALF_MAX_SIZE_T) /* Avoid wrapping negative */ |
+ extra = (HALF_MAX_SIZE_T) + SIZE_T_ONE - unit; |
+ ACQUIRE_MALLOC_GLOBAL_LOCK(); |
+ { |
+ /* Make sure end of memory is where we last set it. */ |
+ char* old_br = (char*)(CALL_MORECORE(0)); |
+ if (old_br == sp->base + sp->size) { |
+ char* rel_br = (char*)(CALL_MORECORE(-extra)); |
+ char* new_br = (char*)(CALL_MORECORE(0)); |
+ if (rel_br != CMFAIL && new_br < old_br) |
+ released = old_br - new_br; |
+ } |
+ } |
+ RELEASE_MALLOC_GLOBAL_LOCK(); |
+ } |
+ } |
+ |
+ if (released != 0) { |
+ sp->size -= released; |
+ m->footprint -= released; |
+ init_top(m, m->top, m->topsize - released); |
+ check_top_chunk(m, m->top); |
+ } |
+ } |
+ |
+ /* Unmap any unused mmapped segments */ |
+ if (HAVE_MMAP) |
+ released += release_unused_segments(m); |
+ |
+ /* On failure, disable autotrim to avoid repeated failed future calls */ |
+ if (released == 0 && m->topsize > m->trim_check) |
+ m->trim_check = MAX_SIZE_T; |
+ } |
+ |
+ return (released != 0)? 1 : 0; |
+} |
+ |
+/* Consolidate and bin a chunk. Differs from exported versions |
+ of free mainly in that the chunk need not be marked as inuse. |
+*/ |
+static void dispose_chunk(mstate m, mchunkptr p, size_t psize) { |
+ mchunkptr next = chunk_plus_offset(p, psize); |
+ if (!pinuse(p)) { |
+ mchunkptr prev; |
+ size_t prevsize = p->prev_foot(); |
+ if (is_mmapped(p)) { |
+ psize += prevsize + MMAP_FOOT_PAD; |
+ mchunkptr const chunk = (mchunkptr) ((char*) p - prevsize); |
+ const int ashmem_fd = chunk->ashmem_fd(); |
+ if (malloc_chunk::unmap(chunk, psize)) |
+ m->footprint -= psize; |
+ return; |
+ } |
+ prev = chunk_minus_offset(p, prevsize); |
+ psize += prevsize; |
+ p = prev; |
+ if (RTCHECK(ok_address(m, prev))) { /* consolidate backward */ |
+ if (p != m->dv) { |
+ unlink_chunk(m, p, prevsize); |
+ } |
+ else if ((next->head & INUSE_BITS) == INUSE_BITS) { |
+ m->dvsize = psize; |
+ set_free_with_pinuse(p, psize, next); |
+ return; |
+ } |
+ } |
+ else { |
+ CORRUPTION_ERROR_ACTION(m); |
+ return; |
+ } |
+ } |
+ if (RTCHECK(ok_address(m, next))) { |
+ if (!cinuse(next)) { /* consolidate forward */ |
+ if (next == m->top) { |
+ size_t tsize = m->topsize += psize; |
+ m->top = p; |
+ p->head = tsize | PINUSE_BIT; |
+ if (p == m->dv) { |
+ m->dv = 0; |
+ m->dvsize = 0; |
+ } |
+ return; |
+ } |
+ else if (next == m->dv) { |
+ size_t dsize = m->dvsize += psize; |
+ m->dv = p; |
+ set_size_and_pinuse_of_free_chunk(p, dsize); |
+ return; |
+ } |
+ else { |
+ size_t nsize = chunksize(next); |
+ psize += nsize; |
+ unlink_chunk(m, next, nsize); |
+ set_size_and_pinuse_of_free_chunk(p, psize); |
+ if (p == m->dv) { |
+ m->dvsize = psize; |
+ return; |
+ } |
+ } |
+ } |
+ else { |
+ set_free_with_pinuse(p, psize, next); |
+ } |
+ insert_chunk(m, p, psize); |
+ } |
+ else { |
+ CORRUPTION_ERROR_ACTION(m); |
+ } |
+} |
+ |
+/* ---------------------------- malloc --------------------------- */ |
+ |
+/* allocate a large request from the best fitting chunk in a treebin */ |
+static void* tmalloc_large(mstate m, size_t nb) { |
+ tchunkptr v = 0; |
+ size_t rsize = -nb; /* Unsigned negation */ |
+ tchunkptr t; |
+ bindex_t idx; |
+ compute_tree_index(nb, idx); |
+ if ((t = *treebin_at(m, idx)) != 0) { |
+ /* Traverse tree for this bin looking for node with size == nb */ |
+ size_t sizebits = nb << leftshift_for_tree_index(idx); |
+ tchunkptr rst = 0; /* The deepest untaken right subtree */ |
+ for (;;) { |
+ tchunkptr rt; |
+ size_t trem = chunksize(t) - nb; |
+ if (trem < rsize) { |
+ v = t; |
+ if ((rsize = trem) == 0) |
+ break; |
+ } |
+ rt = t->child[1]; |
+ t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]; |
+ if (rt != 0 && rt != t) |
+ rst = rt; |
+ if (t == 0) { |
+ t = rst; /* set t to least subtree holding sizes > nb */ |
+ break; |
+ } |
+ sizebits <<= 1; |
+ } |
+ } |
+ if (t == 0 && v == 0) { /* set t to root of next non-empty treebin */ |
+ binmap_t leftbits = left_bits(idx2bit(idx)) & m->treemap; |
+ if (leftbits != 0) { |
+ bindex_t i; |
+ binmap_t leastbit = least_bit(leftbits); |
+ compute_bit2idx(leastbit, i); |
+ t = *treebin_at(m, i); |
+ } |
+ } |
+ |
+ while (t != 0) { /* find smallest of tree or subtree */ |
+ size_t trem = chunksize(t) - nb; |
+ if (trem < rsize) { |
+ rsize = trem; |
+ v = t; |
+ } |
+ t = leftmost_child(t); |
+ } |
+ |
+ /* If dv is a better fit, return 0 so malloc will use it */ |
+ if (v != 0 && rsize < (size_t)(m->dvsize - nb)) { |
+ if (RTCHECK(ok_address(m, v))) { /* split */ |
+ mchunkptr r = chunk_plus_offset(v, nb); |
+ assert(chunksize(v) == rsize + nb); |
+ if (RTCHECK(ok_next(v, r))) { |
+ unlink_large_chunk(m, v); |
+ if (rsize < MIN_CHUNK_SIZE) |
+ set_inuse_and_pinuse(m, v, (rsize + nb)); |
+ else { |
+ set_size_and_pinuse_of_inuse_chunk(m, v, nb); |
+ set_size_and_pinuse_of_free_chunk(r, rsize); |
+ insert_chunk(m, r, rsize); |
+ } |
+ return chunk2mem(v); |
+ } |
+ } |
+ CORRUPTION_ERROR_ACTION(m); |
+ } |
+ return 0; |
+} |
+ |
+/* allocate a small request from the best fitting chunk in a treebin */ |
+static void* tmalloc_small(mstate m, size_t nb) { |
+ tchunkptr t, v; |
+ size_t rsize; |
+ bindex_t i; |
+ binmap_t leastbit = least_bit(m->treemap); |
+ compute_bit2idx(leastbit, i); |
+ v = t = *treebin_at(m, i); |
+ rsize = chunksize(t) - nb; |
+ |
+ while ((t = leftmost_child(t)) != 0) { |
+ size_t trem = chunksize(t) - nb; |
+ if (trem < rsize) { |
+ rsize = trem; |
+ v = t; |
+ } |
+ } |
+ |
+ if (RTCHECK(ok_address(m, v))) { |
+ mchunkptr r = chunk_plus_offset(v, nb); |
+ assert(chunksize(v) == rsize + nb); |
+ if (RTCHECK(ok_next(v, r))) { |
+ unlink_large_chunk(m, v); |
+ if (rsize < MIN_CHUNK_SIZE) |
+ set_inuse_and_pinuse(m, v, (rsize + nb)); |
+ else { |
+ set_size_and_pinuse_of_inuse_chunk(m, v, nb); |
+ set_size_and_pinuse_of_free_chunk(r, rsize); |
+ replace_dv(m, r, rsize); |
+ } |
+ return chunk2mem(v); |
+ } |
+ } |
+ |
+ CORRUPTION_ERROR_ACTION(m); |
+ return 0; |
+} |
+ |
+#if !ONLY_MSPACES |
+ |
+void* dlmalloc(size_t bytes) { |
+ /* |
+ Basic algorithm: |
+ If a small request (< 256 bytes minus per-chunk overhead): |
+ 1. If one exists, use a remainderless chunk in associated smallbin. |
+ (Remainderless means that there are too few excess bytes to |
+ represent as a chunk.) |
+ 2. If it is big enough, use the dv chunk, which is normally the |
+ chunk adjacent to the one used for the most recent small request. |
+ 3. If one exists, split the smallest available chunk in a bin, |
+ saving remainder in dv. |
+ 4. If it is big enough, use the top chunk. |
+ 5. If available, get memory from system and use it |
+ Otherwise, for a large request: |
+ 1. Find the smallest available binned chunk that fits, and use it |
+ if it is better fitting than dv chunk, splitting if necessary. |
+ 2. If better fitting than any binned chunk, use the dv chunk. |
+ 3. If it is big enough, use the top chunk. |
+ 4. If request size >= mmap threshold, try to directly mmap this chunk. |
+ 5. If available, get memory from system and use it |
+ |
+ The ugly goto's here ensure that postaction occurs along all paths. |
+ */ |
+ |
+#if USE_LOCKS |
+ ensure_initialization(); /* initialize in sys_alloc if not using locks */ |
+#endif |
+ |
+ if (!PREACTION(gm)) { |
+ void* mem; |
+ size_t nb; |
+ if (bytes <= MAX_SMALL_REQUEST) { |
+ bindex_t idx; |
+ binmap_t smallbits; |
+ nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes); |
+ idx = small_index(nb); |
+ smallbits = gm->smallmap >> idx; |
+ |
+ if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */ |
+ mchunkptr b, p; |
+ idx += ~smallbits & 1; /* Uses next bin if idx empty */ |
+ b = smallbin_at(gm, idx); |
+ p = b->fd; |
+ assert(chunksize(p) == small_index2size(idx)); |
+ unlink_first_small_chunk(gm, b, p, idx); |
+ set_inuse_and_pinuse(gm, p, small_index2size(idx)); |
+ mem = chunk2mem(p); |
+ check_malloced_chunk(gm, mem, nb); |
+ goto postaction; |
+ } |
+ |
+ else if (nb > gm->dvsize) { |
+ if (smallbits != 0) { /* Use chunk in next nonempty smallbin */ |
+ mchunkptr b, p, r; |
+ size_t rsize; |
+ bindex_t i; |
+ binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx)); |
+ binmap_t leastbit = least_bit(leftbits); |
+ compute_bit2idx(leastbit, i); |
+ b = smallbin_at(gm, i); |
+ p = b->fd; |
+ assert(chunksize(p) == small_index2size(i)); |
+ unlink_first_small_chunk(gm, b, p, i); |
+ rsize = small_index2size(i) - nb; |
+ /* Fit here cannot be remainderless if 4byte sizes */ |
+ if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE) |
+ set_inuse_and_pinuse(gm, p, small_index2size(i)); |
+ else { |
+ set_size_and_pinuse_of_inuse_chunk(gm, p, nb); |
+ r = chunk_plus_offset(p, nb); |
+ set_size_and_pinuse_of_free_chunk(r, rsize); |
+ replace_dv(gm, r, rsize); |
+ } |
+ mem = chunk2mem(p); |
+ check_malloced_chunk(gm, mem, nb); |
+ goto postaction; |
+ } |
+ |
+ else if (gm->treemap != 0 && (mem = tmalloc_small(gm, nb)) != 0) { |
+ check_malloced_chunk(gm, mem, nb); |
+ goto postaction; |
+ } |
+ } |
+ } |
+ else if (bytes >= MAX_REQUEST) |
+ nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */ |
+ else { |
+ nb = pad_request(bytes); |
+ if (gm->treemap != 0 && (mem = tmalloc_large(gm, nb)) != 0) { |
+ check_malloced_chunk(gm, mem, nb); |
+ goto postaction; |
+ } |
+ } |
+ |
+ if (nb <= gm->dvsize) { |
+ size_t rsize = gm->dvsize - nb; |
+ mchunkptr p = gm->dv; |
+ if (rsize >= MIN_CHUNK_SIZE) { /* split dv */ |
+ mchunkptr r = gm->dv = chunk_plus_offset(p, nb); |
+ gm->dvsize = rsize; |
+ set_size_and_pinuse_of_free_chunk(r, rsize); |
+ set_size_and_pinuse_of_inuse_chunk(gm, p, nb); |
+ } |
+ else { /* exhaust dv */ |
+ size_t dvs = gm->dvsize; |
+ gm->dvsize = 0; |
+ gm->dv = 0; |
+ set_inuse_and_pinuse(gm, p, dvs); |
+ } |
+ mem = chunk2mem(p); |
+ check_malloced_chunk(gm, mem, nb); |
+ goto postaction; |
+ } |
+ |
+ else if (nb < gm->topsize) { /* Split top */ |
+ size_t rsize = gm->topsize -= nb; |
+ mchunkptr p = gm->top; |
+ mchunkptr r = gm->top = chunk_plus_offset(p, nb); |
+ r->head = rsize | PINUSE_BIT; |
+ set_size_and_pinuse_of_inuse_chunk(gm, p, nb); |
+ mem = chunk2mem(p); |
+ check_top_chunk(gm, gm->top); |
+ check_malloced_chunk(gm, mem, nb); |
+ goto postaction; |
+ } |
+ |
+ mem = sys_alloc(gm, nb); |
+ |
+ postaction: |
+ POSTACTION(gm); |
+ return mem; |
+ } |
+ |
+ return 0; |
+} |
+ |
+/* ---------------------------- free --------------------------- */ |
+ |
+void dlfree(void* mem) { |
+ /* |
+ Consolidate freed chunks with preceeding or succeeding bordering |
+ free chunks, if they exist, and then place in a bin. Intermixed |
+ with special cases for top, dv, mmapped chunks, and usage errors. |
+ */ |
+ |
+ if (mem != 0) { |
+ mchunkptr p = mem2chunk(mem); |
+#if FOOTERS |
+ mstate fm = get_mstate_for(p); |
+ if (!ok_magic(fm)) { |
+ USAGE_ERROR_ACTION(fm, p); |
+ return; |
+ } |
+#else /* FOOTERS */ |
+#define fm gm |
+#endif /* FOOTERS */ |
+ if (!PREACTION(fm)) { |
+ check_inuse_chunk(fm, p); |
+ if (RTCHECK(ok_address(fm, p) && ok_inuse(p))) { |
+ size_t psize = chunksize(p); |
+ mchunkptr next = chunk_plus_offset(p, psize); |
+ if (!pinuse(p)) { |
+ size_t prevsize = p->prev_foot(); |
+ if (is_mmapped(p)) { |
+ psize += prevsize + MMAP_FOOT_PAD; |
+ if (malloc_chunk::unmap((mchunkptr)((char*) p - prevsize), psize)) |
+ fm->footprint -= psize; |
+ goto postaction; |
+ } |
+ else { |
+ mchunkptr prev = chunk_minus_offset(p, prevsize); |
+ psize += prevsize; |
+ p = prev; |
+ if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */ |
+ if (p != fm->dv) { |
+ unlink_chunk(fm, p, prevsize); |
+ } |
+ else if ((next->head & INUSE_BITS) == INUSE_BITS) { |
+ fm->dvsize = psize; |
+ set_free_with_pinuse(p, psize, next); |
+ goto postaction; |
+ } |
+ } |
+ else |
+ goto erroraction; |
+ } |
+ } |
+ |
+ if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) { |
+ if (!cinuse(next)) { /* consolidate forward */ |
+ if (next == fm->top) { |
+ size_t tsize = fm->topsize += psize; |
+ fm->top = p; |
+ p->head = tsize | PINUSE_BIT; |
+ if (p == fm->dv) { |
+ fm->dv = 0; |
+ fm->dvsize = 0; |
+ } |
+ if (should_trim(fm, tsize)) |
+ sys_trim(fm, 0); |
+ goto postaction; |
+ } |
+ else if (next == fm->dv) { |
+ size_t dsize = fm->dvsize += psize; |
+ fm->dv = p; |
+ set_size_and_pinuse_of_free_chunk(p, dsize); |
+ goto postaction; |
+ } |
+ else { |
+ size_t nsize = chunksize(next); |
+ psize += nsize; |
+ unlink_chunk(fm, next, nsize); |
+ set_size_and_pinuse_of_free_chunk(p, psize); |
+ if (p == fm->dv) { |
+ fm->dvsize = psize; |
+ goto postaction; |
+ } |
+ } |
+ } |
+ else |
+ set_free_with_pinuse(p, psize, next); |
+ |
+ if (is_small(psize)) { |
+ insert_small_chunk(fm, p, psize); |
+ check_free_chunk(fm, p); |
+ } |
+ else { |
+ tchunkptr tp = (tchunkptr)p; |
+ insert_large_chunk(fm, tp, psize); |
+ check_free_chunk(fm, p); |
+ if (--fm->release_checks == 0) |
+ release_unused_segments(fm); |
+ } |
+ goto postaction; |
+ } |
+ } |
+ erroraction: |
+ USAGE_ERROR_ACTION(fm, p); |
+ postaction: |
+ POSTACTION(fm); |
+ } |
+ } |
+#if !FOOTERS |
+#undef fm |
+#endif /* FOOTERS */ |
+} |
+ |
+void* dlcalloc(size_t n_elements, size_t elem_size) { |
+ void* mem; |
+ size_t req = 0; |
+ if (n_elements != 0) { |
+ req = n_elements * elem_size; |
+ if (((n_elements | elem_size) & ~(size_t)0xffff) && |
+ (req / n_elements != elem_size)) |
+ req = MAX_SIZE_T; /* force downstream failure on overflow */ |
+ } |
+ mem = dlmalloc(req); |
+ if (mem != 0 && calloc_must_clear(mem2chunk(mem))) |
+ memset(mem, 0, req); |
+ return mem; |
+} |
+ |
+#endif /* !ONLY_MSPACES */ |
+ |
+/* ------------ Internal support for realloc, memalign, etc -------------- */ |
+ |
+/* Try to realloc; only in-place unless can_move true */ |
+static mchunkptr try_realloc_chunk(mstate m, mchunkptr p, size_t nb, |
+ int can_move) { |
+ mchunkptr newp = 0; |
+ size_t oldsize = chunksize(p); |
+ mchunkptr next = chunk_plus_offset(p, oldsize); |
+ if (RTCHECK(ok_address(m, p) && ok_inuse(p) && |
+ ok_next(p, next) && ok_pinuse(next))) { |
+ if (is_mmapped(p)) { |
+ newp = mmap_resize(m, p, nb, can_move); |
+ } |
+ else if (oldsize >= nb) { /* already big enough */ |
+ size_t rsize = oldsize - nb; |
+ if (rsize >= MIN_CHUNK_SIZE) { /* split off remainder */ |
+ mchunkptr r = chunk_plus_offset(p, nb); |
+ set_inuse(m, p, nb); |
+ set_inuse(m, r, rsize); |
+ dispose_chunk(m, r, rsize); |
+ } |
+ newp = p; |
+ } |
+ else if (next == m->top) { /* extend into top */ |
+ if (oldsize + m->topsize > nb) { |
+ size_t newsize = oldsize + m->topsize; |
+ size_t newtopsize = newsize - nb; |
+ mchunkptr newtop = chunk_plus_offset(p, nb); |
+ set_inuse(m, p, nb); |
+ newtop->head = newtopsize |PINUSE_BIT; |
+ m->top = newtop; |
+ m->topsize = newtopsize; |
+ newp = p; |
+ } |
+ } |
+ else if (next == m->dv) { /* extend into dv */ |
+ size_t dvs = m->dvsize; |
+ if (oldsize + dvs >= nb) { |
+ size_t dsize = oldsize + dvs - nb; |
+ if (dsize >= MIN_CHUNK_SIZE) { |
+ mchunkptr r = chunk_plus_offset(p, nb); |
+ mchunkptr n = chunk_plus_offset(r, dsize); |
+ set_inuse(m, p, nb); |
+ set_size_and_pinuse_of_free_chunk(r, dsize); |
+ clear_pinuse(n); |
+ m->dvsize = dsize; |
+ m->dv = r; |
+ } |
+ else { /* exhaust dv */ |
+ size_t newsize = oldsize + dvs; |
+ set_inuse(m, p, newsize); |
+ m->dvsize = 0; |
+ m->dv = 0; |
+ } |
+ newp = p; |
+ } |
+ } |
+ else if (!cinuse(next)) { /* extend into next free chunk */ |
+ size_t nextsize = chunksize(next); |
+ if (oldsize + nextsize >= nb) { |
+ size_t rsize = oldsize + nextsize - nb; |
+ unlink_chunk(m, next, nextsize); |
+ if (rsize < MIN_CHUNK_SIZE) { |
+ size_t newsize = oldsize + nextsize; |
+ set_inuse(m, p, newsize); |
+ } |
+ else { |
+ mchunkptr r = chunk_plus_offset(p, nb); |
+ set_inuse(m, p, nb); |
+ set_inuse(m, r, rsize); |
+ dispose_chunk(m, r, rsize); |
+ } |
+ newp = p; |
+ } |
+ } |
+ } |
+ else { |
+ USAGE_ERROR_ACTION(m, chunk2mem(p)); |
+ } |
+ return newp; |
+} |
+ |
+static void* internal_memalign(mstate m, size_t alignment, size_t bytes) { |
+ void* mem = 0; |
+ if (alignment < MIN_CHUNK_SIZE) /* must be at least a minimum chunk size */ |
+ alignment = MIN_CHUNK_SIZE; |
+ if ((alignment & (alignment-SIZE_T_ONE)) != 0) {/* Ensure a power of 2 */ |
+ size_t a = MALLOC_ALIGNMENT << 1; |
+ while (a < alignment) a <<= 1; |
+ alignment = a; |
+ } |
+ if (bytes >= MAX_REQUEST - alignment) { |
+ if (m != 0) { /* Test isn't needed but avoids compiler warning */ |
+ MALLOC_FAILURE_ACTION; |
+ } |
+ } |
+ else { |
+ size_t nb = request2size(bytes); |
+ size_t req = nb + alignment + MIN_CHUNK_SIZE - CHUNK_OVERHEAD; |
+ mem = internal_malloc(m, req); |
+ if (mem != 0) { |
+ mchunkptr p = mem2chunk(mem); |
+ if (PREACTION(m)) |
+ return 0; |
+ if ((((size_t)(mem)) & (alignment - 1)) != 0) { /* misaligned */ |
+ /* |
+ Find an aligned spot inside chunk. Since we need to give |
+ back leading space in a chunk of at least MIN_CHUNK_SIZE, if |
+ the first calculation places us at a spot with less than |
+ MIN_CHUNK_SIZE leader, we can move to the next aligned spot. |
+ We've allocated enough total room so that this is always |
+ possible. |
+ */ |
+ char* br = (char*)mem2chunk((size_t)(((size_t)((char*)mem + alignment - |
+ SIZE_T_ONE)) & |
+ -alignment)); |
+ char* pos = ((size_t)(br - (char*)(p)) >= MIN_CHUNK_SIZE)? |
+ br : br+alignment; |
+ mchunkptr newp = (mchunkptr)pos; |
+ size_t leadsize = pos - (char*)(p); |
+ size_t newsize = chunksize(p) - leadsize; |
+ |
+ if (is_mmapped(p)) { /* For mmapped chunks, just adjust offset */ |
+ newp->set_prev_foot(p->prev_foot() + leadsize); |
+ newp->head = newsize; |
+ } |
+ else { /* Otherwise, give back leader, use the rest */ |
+ set_inuse(m, newp, newsize); |
+ set_inuse(m, p, leadsize); |
+ dispose_chunk(m, p, leadsize); |
+ } |
+ p = newp; |
+ } |
+ |
+ /* Give back spare room at the end */ |
+ if (!is_mmapped(p)) { |
+ size_t size = chunksize(p); |
+ if (size > nb + MIN_CHUNK_SIZE) { |
+ size_t remainder_size = size - nb; |
+ mchunkptr remainder = chunk_plus_offset(p, nb); |
+ set_inuse(m, p, nb); |
+ set_inuse(m, remainder, remainder_size); |
+ dispose_chunk(m, remainder, remainder_size); |
+ } |
+ } |
+ |
+ mem = chunk2mem(p); |
+ assert (chunksize(p) >= nb); |
+ assert(((size_t)mem & (alignment - 1)) == 0); |
+ check_inuse_chunk(m, p); |
+ POSTACTION(m); |
+ } |
+ } |
+ return mem; |
+} |
+ |
+/* |
+ Common support for independent_X routines, handling |
+ all of the combinations that can result. |
+ The opts arg has: |
+ bit 0 set if all elements are same size (using sizes[0]) |
+ bit 1 set if elements should be zeroed |
+*/ |
+static void** ialloc(mstate m, |
+ size_t n_elements, |
+ size_t* sizes, |
+ int opts, |
+ void* chunks[]) { |
+ |
+ size_t element_size; /* chunksize of each element, if all same */ |
+ size_t contents_size; /* total size of elements */ |
+ size_t array_size; /* request size of pointer array */ |
+ void* mem; /* malloced aggregate space */ |
+ mchunkptr p; /* corresponding chunk */ |
+ size_t remainder_size; /* remaining bytes while splitting */ |
+ void** marray; /* either "chunks" or malloced ptr array */ |
+ mchunkptr array_chunk; /* chunk for malloced ptr array */ |
+ flag_t was_enabled; /* to disable mmap */ |
+ size_t size; |
+ size_t i; |
+ |
+ ensure_initialization(); |
+ /* compute array length, if needed */ |
+ if (chunks != 0) { |
+ if (n_elements == 0) |
+ return chunks; /* nothing to do */ |
+ marray = chunks; |
+ array_size = 0; |
+ } |
+ else { |
+ /* if empty req, must still return chunk representing empty array */ |
+ if (n_elements == 0) |
+ return (void**)internal_malloc(m, 0); |
+ marray = 0; |
+ array_size = request2size(n_elements * (sizeof(void*))); |
+ } |
+ |
+ /* compute total element size */ |
+ if (opts & 0x1) { /* all-same-size */ |
+ element_size = request2size(*sizes); |
+ contents_size = n_elements * element_size; |
+ } |
+ else { /* add up all the sizes */ |
+ element_size = 0; |
+ contents_size = 0; |
+ for (i = 0; i != n_elements; ++i) |
+ contents_size += request2size(sizes[i]); |
+ } |
+ |
+ size = contents_size + array_size; |
+ |
+ /* |
+ Allocate the aggregate chunk. First disable direct-mmapping so |
+ malloc won't use it, since we would not be able to later |
+ free/realloc space internal to a segregated mmap region. |
+ */ |
+ was_enabled = use_mmap(m); |
+ disable_mmap(m); |
+ mem = internal_malloc(m, size - CHUNK_OVERHEAD); |
+ if (was_enabled) |
+ enable_mmap(m); |
+ if (mem == 0) |
+ return 0; |
+ |
+ if (PREACTION(m)) return 0; |
+ p = mem2chunk(mem); |
+ remainder_size = chunksize(p); |
+ |
+ assert(!is_mmapped(p)); |
+ |
+ if (opts & 0x2) { /* optionally clear the elements */ |
+ memset((size_t*)mem, 0, remainder_size - SIZE_T_SIZE - array_size); |
+ } |
+ |
+ /* If not provided, allocate the pointer array as final part of chunk */ |
+ if (marray == 0) { |
+ size_t array_chunk_size; |
+ array_chunk = chunk_plus_offset(p, contents_size); |
+ array_chunk_size = remainder_size - contents_size; |
+ marray = (void**) (chunk2mem(array_chunk)); |
+ set_size_and_pinuse_of_inuse_chunk(m, array_chunk, array_chunk_size); |
+ remainder_size = contents_size; |
+ } |
+ |
+ /* split out elements */ |
+ for (i = 0; ; ++i) { |
+ marray[i] = chunk2mem(p); |
+ if (i != n_elements-1) { |
+ if (element_size != 0) |
+ size = element_size; |
+ else |
+ size = request2size(sizes[i]); |
+ remainder_size -= size; |
+ set_size_and_pinuse_of_inuse_chunk(m, p, size); |
+ p = chunk_plus_offset(p, size); |
+ } |
+ else { /* the final element absorbs any overallocation slop */ |
+ set_size_and_pinuse_of_inuse_chunk(m, p, remainder_size); |
+ break; |
+ } |
+ } |
+ |
+#if DEBUG |
+ if (marray != chunks) { |
+ /* final element must have exactly exhausted chunk */ |
+ if (element_size != 0) { |
+ assert(remainder_size == element_size); |
+ } |
+ else { |
+ assert(remainder_size == request2size(sizes[i])); |
+ } |
+ check_inuse_chunk(m, mem2chunk(marray)); |
+ } |
+ for (i = 0; i != n_elements; ++i) |
+ check_inuse_chunk(m, mem2chunk(marray[i])); |
+ |
+#endif /* DEBUG */ |
+ |
+ POSTACTION(m); |
+ return marray; |
+} |
+ |
+/* Try to free all pointers in the given array. |
+ Note: this could be made faster, by delaying consolidation, |
+ at the price of disabling some user integrity checks, We |
+ still optimize some consolidations by combining adjacent |
+ chunks before freeing, which will occur often if allocated |
+ with ialloc or the array is sorted. |
+*/ |
+static size_t internal_bulk_free(mstate m, void* array[], size_t nelem) { |
+ size_t unfreed = 0; |
+ if (!PREACTION(m)) { |
+ void** a; |
+ void** fence = &(array[nelem]); |
+ for (a = array; a != fence; ++a) { |
+ void* mem = *a; |
+ if (mem != 0) { |
+ mchunkptr p = mem2chunk(mem); |
+ size_t psize = chunksize(p); |
+#if FOOTERS |
+ if (get_mstate_for(p) != m) { |
+ ++unfreed; |
+ continue; |
+ } |
+#endif |
+ check_inuse_chunk(m, p); |
+ *a = 0; |
+ if (RTCHECK(ok_address(m, p) && ok_inuse(p))) { |
+ void ** b = a + 1; /* try to merge with next chunk */ |
+ mchunkptr next = next_chunk(p); |
+ if (b != fence && *b == chunk2mem(next)) { |
+ size_t newsize = chunksize(next) + psize; |
+ set_inuse(m, p, newsize); |
+ *b = chunk2mem(p); |
+ } |
+ else |
+ dispose_chunk(m, p, psize); |
+ } |
+ else { |
+ CORRUPTION_ERROR_ACTION(m); |
+ break; |
+ } |
+ } |
+ } |
+ if (should_trim(m, m->topsize)) |
+ sys_trim(m, 0); |
+ POSTACTION(m); |
+ } |
+ return unfreed; |
+} |
+ |
+/* Traversal */ |
+#if MALLOC_INSPECT_ALL |
+static void internal_inspect_all(mstate m, |
+ void(*handler)(void *start, |
+ void *end, |
+ size_t used_bytes, |
+ void* callback_arg), |
+ void* arg) { |
+ if (is_initialized(m)) { |
+ mchunkptr top = m->top; |
+ msegmentptr s; |
+ for (s = &m->seg; s != 0; s = s->next) { |
+ mchunkptr q = align_as_chunk(s->base); |
+ while (segment_holds(s, q) && q->head != FENCEPOST_HEAD) { |
+ mchunkptr next = next_chunk(q); |
+ size_t sz = chunksize(q); |
+ size_t used; |
+ void* start; |
+ if (is_inuse(q)) { |
+ used = sz - CHUNK_OVERHEAD; /* must not be mmapped */ |
+ start = chunk2mem(q); |
+ } |
+ else { |
+ used = 0; |
+ if (is_small(sz)) { /* offset by possible bookkeeping */ |
+ start = (void*)((char*)q + sizeof(struct malloc_chunk)); |
+ } |
+ else { |
+ start = (void*)((char*)q + sizeof(struct malloc_tree_chunk)); |
+ } |
+ } |
+ if (start < (void*)next) /* skip if all space is bookkeeping */ |
+ handler(start, next, used, arg); |
+ if (q == top) |
+ break; |
+ q = next; |
+ } |
+ } |
+ } |
+} |
+#endif /* MALLOC_INSPECT_ALL */ |
+ |
+/* ------------------ Exported realloc, memalign, etc -------------------- */ |
+ |
+#if !ONLY_MSPACES |
+ |
+void* dlrealloc(void* oldmem, size_t bytes) { |
+ void* mem = 0; |
+ if (oldmem == 0) { |
+ mem = dlmalloc(bytes); |
+ } |
+ else if (bytes >= MAX_REQUEST) { |
+ MALLOC_FAILURE_ACTION; |
+ } |
+#ifdef REALLOC_ZERO_BYTES_FREES |
+ else if (bytes == 0) { |
+ dlfree(oldmem); |
+ } |
+#endif /* REALLOC_ZERO_BYTES_FREES */ |
+ else { |
+ size_t nb = request2size(bytes); |
+ mchunkptr oldp = mem2chunk(oldmem); |
+#if ! FOOTERS |
+ mstate m = gm; |
+#else /* FOOTERS */ |
+ mstate m = get_mstate_for(oldp); |
+ if (!ok_magic(m)) { |
+ USAGE_ERROR_ACTION(m, oldmem); |
+ return 0; |
+ } |
+#endif /* FOOTERS */ |
+ if (!PREACTION(m)) { |
+ mchunkptr newp = try_realloc_chunk(m, oldp, nb, 1); |
+ POSTACTION(m); |
+ if (newp != 0) { |
+ check_inuse_chunk(m, newp); |
+ mem = chunk2mem(newp); |
+ } |
+ else { |
+ mem = internal_malloc(m, bytes); |
+ if (mem != 0) { |
+ size_t oc = chunksize(oldp) - overhead_for(oldp); |
+ memcpy(mem, oldmem, (oc < bytes)? oc : bytes); |
+ internal_free(m, oldmem); |
+ } |
+ } |
+ } |
+ } |
+ return mem; |
+} |
+ |
+void* dlrealloc_in_place(void* oldmem, size_t bytes) { |
+ void* mem = 0; |
+ if (oldmem != 0) { |
+ if (bytes >= MAX_REQUEST) { |
+ MALLOC_FAILURE_ACTION; |
+ } |
+ else { |
+ size_t nb = request2size(bytes); |
+ mchunkptr oldp = mem2chunk(oldmem); |
+#if ! FOOTERS |
+ mstate m = gm; |
+#else /* FOOTERS */ |
+ mstate m = get_mstate_for(oldp); |
+ if (!ok_magic(m)) { |
+ USAGE_ERROR_ACTION(m, oldmem); |
+ return 0; |
+ } |
+#endif /* FOOTERS */ |
+ if (!PREACTION(m)) { |
+ mchunkptr newp = try_realloc_chunk(m, oldp, nb, 0); |
+ POSTACTION(m); |
+ if (newp == oldp) { |
+ check_inuse_chunk(m, newp); |
+ mem = oldmem; |
+ } |
+ } |
+ } |
+ } |
+ return mem; |
+} |
+ |
+void* dlmemalign(size_t alignment, size_t bytes) { |
+ if (alignment <= MALLOC_ALIGNMENT) { |
+ return dlmalloc(bytes); |
+ } |
+ return internal_memalign(gm, alignment, bytes); |
+} |
+ |
+int dlposix_memalign(void** pp, size_t alignment, size_t bytes) { |
+ void* mem = 0; |
+ if (alignment == MALLOC_ALIGNMENT) |
+ mem = dlmalloc(bytes); |
+ else { |
+ size_t d = alignment / sizeof(void*); |
+ size_t r = alignment % sizeof(void*); |
+ if (r != 0 || d == 0 || (d & (d-SIZE_T_ONE)) != 0) |
+ return EINVAL; |
+ else if (bytes <= MAX_REQUEST - alignment) { |
+ if (alignment < MIN_CHUNK_SIZE) |
+ alignment = MIN_CHUNK_SIZE; |
+ mem = internal_memalign(gm, alignment, bytes); |
+ } |
+ } |
+ if (mem == 0) |
+ return ENOMEM; |
+ else { |
+ *pp = mem; |
+ return 0; |
+ } |
+} |
+ |
+void* dlvalloc(size_t bytes) { |
+ size_t pagesz; |
+ ensure_initialization(); |
+ pagesz = mparams.page_size; |
+ return dlmemalign(pagesz, bytes); |
+} |
+ |
+void* dlpvalloc(size_t bytes) { |
+ size_t pagesz; |
+ ensure_initialization(); |
+ pagesz = mparams.page_size; |
+ return dlmemalign(pagesz, (bytes + pagesz - SIZE_T_ONE) & ~(pagesz - SIZE_T_ONE)); |
+} |
+ |
+void** dlindependent_calloc(size_t n_elements, size_t elem_size, |
+ void* chunks[]) { |
+ size_t sz = elem_size; /* serves as 1-element array */ |
+ return ialloc(gm, n_elements, &sz, 3, chunks); |
+} |
+ |
+void** dlindependent_comalloc(size_t n_elements, size_t sizes[], |
+ void* chunks[]) { |
+ return ialloc(gm, n_elements, sizes, 0, chunks); |
+} |
+ |
+size_t dlbulk_free(void* array[], size_t nelem) { |
+ return internal_bulk_free(gm, array, nelem); |
+} |
+ |
+#if MALLOC_INSPECT_ALL |
+void dlmalloc_inspect_all(void(*handler)(void *start, |
+ void *end, |
+ size_t used_bytes, |
+ void* callback_arg), |
+ void* arg) { |
+ ensure_initialization(); |
+ if (!PREACTION(gm)) { |
+ internal_inspect_all(gm, handler, arg); |
+ POSTACTION(gm); |
+ } |
+} |
+#endif /* MALLOC_INSPECT_ALL */ |
+ |
+int dlmalloc_trim(size_t pad) { |
+ int result = 0; |
+ ensure_initialization(); |
+ if (!PREACTION(gm)) { |
+ result = sys_trim(gm, pad); |
+ POSTACTION(gm); |
+ } |
+ return result; |
+} |
+ |
+size_t dlmalloc_footprint(void) { |
+ return gm->footprint; |
+} |
+ |
+size_t dlmalloc_max_footprint(void) { |
+ return gm->max_footprint; |
+} |
+ |
+size_t dlmalloc_footprint_limit(void) { |
+ size_t maf = gm->footprint_limit; |
+ return maf == 0 ? MAX_SIZE_T : maf; |
+} |
+ |
+size_t dlmalloc_set_footprint_limit(size_t bytes) { |
+ size_t result; /* invert sense of 0 */ |
+ if (bytes == 0) |
+ result = granularity_align(1); /* Use minimal size */ |
+ if (bytes == MAX_SIZE_T) |
+ result = 0; /* disable */ |
+ else |
+ result = granularity_align(bytes); |
+ return gm->footprint_limit = result; |
+} |
+ |
+#if !NO_MALLINFO |
+struct mallinfo dlmallinfo(void) { |
+ return internal_mallinfo(gm); |
+} |
+#endif /* NO_MALLINFO */ |
+ |
+#if !NO_MALLOC_STATS |
+void dlmalloc_stats() { |
+ internal_malloc_stats(gm); |
+} |
+#endif /* NO_MALLOC_STATS */ |
+ |
+int dlmallopt(int param_number, int value) { |
+ return change_mparam(param_number, value); |
+} |
+ |
+/* BEGIN android-changed: added const */ |
+size_t dlmalloc_usable_size(const void* mem) { |
+/* END android-change */ |
+ if (mem != 0) { |
+ mchunkptr p = mem2chunk(mem); |
+ if (is_inuse(p)) |
+ return chunksize(p) - overhead_for(p); |
+ } |
+ return 0; |
+} |
+ |
+#endif /* !ONLY_MSPACES */ |
+ |
+ |
+/* -------------------- Alternative MORECORE functions ------------------- */ |
+ |
+/* |
+ Guidelines for creating a custom version of MORECORE: |
+ |
+ * For best performance, MORECORE should allocate in multiples of pagesize. |
+ * MORECORE may allocate more memory than requested. (Or even less, |
+ but this will usually result in a malloc failure.) |
+ * MORECORE must not allocate memory when given argument zero, but |
+ instead return one past the end address of memory from previous |
+ nonzero call. |
+ * For best performance, consecutive calls to MORECORE with positive |
+ arguments should return increasing addresses, indicating that |
+ space has been contiguously extended. |
+ * Even though consecutive calls to MORECORE need not return contiguous |
+ addresses, it must be OK for malloc'ed chunks to span multiple |
+ regions in those cases where they do happen to be contiguous. |
+ * MORECORE need not handle negative arguments -- it may instead |
+ just return MFAIL when given negative arguments. |
+ Negative arguments are always multiples of pagesize. MORECORE |
+ must not misinterpret negative args as large positive unsigned |
+ args. You can suppress all such calls from even occurring by defining |
+ MORECORE_CANNOT_TRIM, |
+ |
+ As an example alternative MORECORE, here is a custom allocator |
+ kindly contributed for pre-OSX macOS. It uses virtually but not |
+ necessarily physically contiguous non-paged memory (locked in, |
+ present and won't get swapped out). You can use it by uncommenting |
+ this section, adding some #includes, and setting up the appropriate |
+ defines above: |
+ |
+ #define MORECORE osMoreCore |
+ |
+ There is also a shutdown routine that should somehow be called for |
+ cleanup upon program exit. |
+ |
+ #define MAX_POOL_ENTRIES 100 |
+ #define MINIMUM_MORECORE_SIZE (64 * 1024U) |
+ static int next_os_pool; |
+ void *our_os_pools[MAX_POOL_ENTRIES]; |
+ |
+ void *osMoreCore(int size) |
+ { |
+ void *ptr = 0; |
+ static void *sbrk_top = 0; |
+ |
+ if (size > 0) |
+ { |
+ if (size < MINIMUM_MORECORE_SIZE) |
+ size = MINIMUM_MORECORE_SIZE; |
+ if (CurrentExecutionLevel() == kTaskLevel) |
+ ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0); |
+ if (ptr == 0) |
+ { |
+ return (void *) MFAIL; |
+ } |
+ // save ptrs so they can be freed during cleanup |
+ our_os_pools[next_os_pool] = ptr; |
+ next_os_pool++; |
+ ptr = (void *) ((((size_t) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK); |
+ sbrk_top = (char *) ptr + size; |
+ return ptr; |
+ } |
+ else if (size < 0) |
+ { |
+ // we don't currently support shrink behavior |
+ return (void *) MFAIL; |
+ } |
+ else |
+ { |
+ return sbrk_top; |
+ } |
+ } |
+ |
+ // cleanup any allocated memory pools |
+ // called as last thing before shutting down driver |
+ |
+ void osCleanupMem(void) |
+ { |
+ void **ptr; |
+ |
+ for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++) |
+ if (*ptr) |
+ { |
+ PoolDeallocate(*ptr); |
+ *ptr = 0; |
+ } |
+ } |
+ |
+*/ |
+ |
+ |
+/* ----------------------------------------------------------------------- |
+History: |
+ v2.8.6 Wed Aug 29 06:57:58 2012 Doug Lea |
+ * fix bad comparison in dlposix_memalign |
+ * don't reuse adjusted asize in sys_alloc |
+ * add LOCK_AT_FORK -- thanks to Kirill Artamonov for the suggestion |
+ * reduce compiler warnings -- thanks to all who reported/suggested these |
+ |
+ v2.8.5 Sun May 22 10:26:02 2011 Doug Lea (dl at gee) |
+ * Always perform unlink checks unless INSECURE |
+ * Add posix_memalign. |
+ * Improve realloc to expand in more cases; expose realloc_in_place. |
+ Thanks to Peter Buhr for the suggestion. |
+ * Add footprint_limit, inspect_all, bulk_free. Thanks |
+ to Barry Hayes and others for the suggestions. |
+ * Internal refactorings to avoid calls while holding locks |
+ * Use non-reentrant locks by default. Thanks to Roland McGrath |
+ for the suggestion. |
+ * Small fixes to mspace_destroy, reset_on_error. |
+ * Various configuration extensions/changes. Thanks |
+ to all who contributed these. |
+ |
+ V2.8.4a Thu Apr 28 14:39:43 2011 (dl at gee.cs.oswego.edu) |
+ * Update Creative Commons URL |
+ |
+ V2.8.4 Wed May 27 09:56:23 2009 Doug Lea (dl at gee) |
+ * Use zeros instead of prev foot for is_mmapped |
+ * Add mspace_track_large_chunks; thanks to Jean Brouwers |
+ * Fix set_inuse in internal_realloc; thanks to Jean Brouwers |
+ * Fix insufficient sys_alloc padding when using 16byte alignment |
+ * Fix bad error check in mspace_footprint |
+ * Adaptations for ptmalloc; thanks to Wolfram Gloger. |
+ * Reentrant spin locks; thanks to Earl Chew and others |
+ * Win32 improvements; thanks to Niall Douglas and Earl Chew |
+ * Add NO_SEGMENT_TRAVERSAL and MAX_RELEASE_CHECK_RATE options |
+ * Extension hook in malloc_state |
+ * Various small adjustments to reduce warnings on some compilers |
+ * Various configuration extensions/changes for more platforms. Thanks |
+ to all who contributed these. |
+ |
+ V2.8.3 Thu Sep 22 11:16:32 2005 Doug Lea (dl at gee) |
+ * Add max_footprint functions |
+ * Ensure all appropriate literals are size_t |
+ * Fix conditional compilation problem for some #define settings |
+ * Avoid concatenating segments with the one provided |
+ in create_mspace_with_base |
+ * Rename some variables to avoid compiler shadowing warnings |
+ * Use explicit lock initialization. |
+ * Better handling of sbrk interference. |
+ * Simplify and fix segment insertion, trimming and mspace_destroy |
+ * Reinstate REALLOC_ZERO_BYTES_FREES option from 2.7.x |
+ * Thanks especially to Dennis Flanagan for help on these. |
+ |
+ V2.8.2 Sun Jun 12 16:01:10 2005 Doug Lea (dl at gee) |
+ * Fix memalign brace error. |
+ |
+ V2.8.1 Wed Jun 8 16:11:46 2005 Doug Lea (dl at gee) |
+ * Fix improper #endif nesting in C++ |
+ * Add explicit casts needed for C++ |
+ |
+ V2.8.0 Mon May 30 14:09:02 2005 Doug Lea (dl at gee) |
+ * Use trees for large bins |
+ * Support mspaces |
+ * Use segments to unify sbrk-based and mmap-based system allocation, |
+ removing need for emulation on most platforms without sbrk. |
+ * Default safety checks |
+ * Optional footer checks. Thanks to William Robertson for the idea. |
+ * Internal code refactoring |
+ * Incorporate suggestions and platform-specific changes. |
+ Thanks to Dennis Flanagan, Colin Plumb, Niall Douglas, |
+ Aaron Bachmann, Emery Berger, and others. |
+ * Speed up non-fastbin processing enough to remove fastbins. |
+ * Remove useless cfree() to avoid conflicts with other apps. |
+ * Remove internal memcpy, memset. Compilers handle builtins better. |
+ * Remove some options that no one ever used and rename others. |
+ |
+ V2.7.2 Sat Aug 17 09:07:30 2002 Doug Lea (dl at gee) |
+ * Fix malloc_state bitmap array misdeclaration |
+ |
+ V2.7.1 Thu Jul 25 10:58:03 2002 Doug Lea (dl at gee) |
+ * Allow tuning of FIRST_SORTED_BIN_SIZE |
+ * Use PTR_UINT as type for all ptr->int casts. Thanks to John Belmonte. |
+ * Better detection and support for non-contiguousness of MORECORE. |
+ Thanks to Andreas Mueller, Conal Walsh, and Wolfram Gloger |
+ * Bypass most of malloc if no frees. Thanks To Emery Berger. |
+ * Fix freeing of old top non-contiguous chunk im sysmalloc. |
+ * Raised default trim and map thresholds to 256K. |
+ * Fix mmap-related #defines. Thanks to Lubos Lunak. |
+ * Fix copy macros; added LACKS_FCNTL_H. Thanks to Neal Walfield. |
+ * Branch-free bin calculation |
+ * Default trim and mmap thresholds now 256K. |
+ |
+ V2.7.0 Sun Mar 11 14:14:06 2001 Doug Lea (dl at gee) |
+ * Introduce independent_comalloc and independent_calloc. |
+ Thanks to Michael Pachos for motivation and help. |
+ * Make optional .h file available |
+ * Allow > 2GB requests on 32bit systems. |
+ * new WIN32 sbrk, mmap, munmap, lock code from <Walter@GeNeSys-e.de>. |
+ Thanks also to Andreas Mueller <a.mueller at paradatec.de>, |
+ and Anonymous. |
+ * Allow override of MALLOC_ALIGNMENT (Thanks to Ruud Waij for |
+ helping test this.) |
+ * memalign: check alignment arg |
+ * realloc: don't try to shift chunks backwards, since this |
+ leads to more fragmentation in some programs and doesn't |
+ seem to help in any others. |
+ * Collect all cases in malloc requiring system memory into sysmalloc |
+ * Use mmap as backup to sbrk |
+ * Place all internal state in malloc_state |
+ * Introduce fastbins (although similar to 2.5.1) |
+ * Many minor tunings and cosmetic improvements |
+ * Introduce USE_PUBLIC_MALLOC_WRAPPERS, USE_MALLOC_LOCK |
+ * Introduce MALLOC_FAILURE_ACTION, MORECORE_CONTIGUOUS |
+ Thanks to Tony E. Bennett <tbennett@nvidia.com> and others. |
+ * Include errno.h to support default failure action. |
+ |
+ V2.6.6 Sun Dec 5 07:42:19 1999 Doug Lea (dl at gee) |
+ * return null for negative arguments |
+ * Added Several WIN32 cleanups from Martin C. Fong <mcfong at yahoo.com> |
+ * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h' |
+ (e.g. WIN32 platforms) |
+ * Cleanup header file inclusion for WIN32 platforms |
+ * Cleanup code to avoid Microsoft Visual C++ compiler complaints |
+ * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing |
+ memory allocation routines |
+ * Set 'malloc_getpagesize' for WIN32 platforms (needs more work) |
+ * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to |
+ usage of 'assert' in non-WIN32 code |
+ * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to |
+ avoid infinite loop |
+ * Always call 'fREe()' rather than 'free()' |
+ |
+ V2.6.5 Wed Jun 17 15:57:31 1998 Doug Lea (dl at gee) |
+ * Fixed ordering problem with boundary-stamping |
+ |
+ V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee) |
+ * Added pvalloc, as recommended by H.J. Liu |
+ * Added 64bit pointer support mainly from Wolfram Gloger |
+ * Added anonymously donated WIN32 sbrk emulation |
+ * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen |
+ * malloc_extend_top: fix mask error that caused wastage after |
+ foreign sbrks |
+ * Add linux mremap support code from HJ Liu |
+ |
+ V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee) |
+ * Integrated most documentation with the code. |
+ * Add support for mmap, with help from |
+ Wolfram Gloger (Gloger@lrz.uni-muenchen.de). |
+ * Use last_remainder in more cases. |
+ * Pack bins using idea from colin@nyx10.cs.du.edu |
+ * Use ordered bins instead of best-fit threshhold |
+ * Eliminate block-local decls to simplify tracing and debugging. |
+ * Support another case of realloc via move into top |
+ * Fix error occuring when initial sbrk_base not word-aligned. |
+ * Rely on page size for units instead of SBRK_UNIT to |
+ avoid surprises about sbrk alignment conventions. |
+ * Add mallinfo, mallopt. Thanks to Raymond Nijssen |
+ (raymond@es.ele.tue.nl) for the suggestion. |
+ * Add `pad' argument to malloc_trim and top_pad mallopt parameter. |
+ * More precautions for cases where other routines call sbrk, |
+ courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de). |
+ * Added macros etc., allowing use in linux libc from |
+ H.J. Lu (hjl@gnu.ai.mit.edu) |
+ * Inverted this history list |
+ |
+ V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee) |
+ * Re-tuned and fixed to behave more nicely with V2.6.0 changes. |
+ * Removed all preallocation code since under current scheme |
+ the work required to undo bad preallocations exceeds |
+ the work saved in good cases for most test programs. |
+ * No longer use return list or unconsolidated bins since |
+ no scheme using them consistently outperforms those that don't |
+ given above changes. |
+ * Use best fit for very large chunks to prevent some worst-cases. |
+ * Added some support for debugging |
+ |
+ V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee) |
+ * Removed footers when chunks are in use. Thanks to |
+ Paul Wilson (wilson@cs.texas.edu) for the suggestion. |
+ |
+ V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee) |
+ * Added malloc_trim, with help from Wolfram Gloger |
+ (wmglo@Dent.MED.Uni-Muenchen.DE). |
+ |
+ V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g) |
+ |
+ V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g) |
+ * realloc: try to expand in both directions |
+ * malloc: swap order of clean-bin strategy; |
+ * realloc: only conditionally expand backwards |
+ * Try not to scavenge used bins |
+ * Use bin counts as a guide to preallocation |
+ * Occasionally bin return list chunks in first scan |
+ * Add a few optimizations from colin@nyx10.cs.du.edu |
+ |
+ V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g) |
+ * faster bin computation & slightly different binning |
+ * merged all consolidations to one part of malloc proper |
+ (eliminating old malloc_find_space & malloc_clean_bin) |
+ * Scan 2 returns chunks (not just 1) |
+ * Propagate failure in realloc if malloc returns 0 |
+ * Add stuff to allow compilation on non-ANSI compilers |
+ from kpv@research.att.com |
+ |
+ V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu) |
+ * removed potential for odd address access in prev_chunk |
+ * removed dependency on getpagesize.h |
+ * misc cosmetics and a bit more internal documentation |
+ * anticosmetics: mangled names in macros to evade debugger strangeness |
+ * tested on sparc, hp-700, dec-mips, rs6000 |
+ with gcc & native cc (hp, dec only) allowing |
+ Detlefs & Zorn comparison study (in SIGPLAN Notices.) |
+ |
+ Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu) |
+ * Based loosely on libg++-1.2X malloc. (It retains some of the overall |
+ structure of old version, but most details differ.) |
+ |
+*/ |