Index: tools/telemetry/third_party/altgraph/altgraph/GraphStat.py |
diff --git a/tools/telemetry/third_party/altgraph/altgraph/GraphStat.py b/tools/telemetry/third_party/altgraph/altgraph/GraphStat.py |
deleted file mode 100644 |
index 25fc46c2de66e8e2f3def765e17766cc1188f6fb..0000000000000000000000000000000000000000 |
--- a/tools/telemetry/third_party/altgraph/altgraph/GraphStat.py |
+++ /dev/null |
@@ -1,73 +0,0 @@ |
-''' |
-altgraph.GraphStat - Functions providing various graph statistics |
-================================================================= |
-''' |
-import sys |
- |
-def degree_dist(graph, limits=(0,0), bin_num=10, mode='out'): |
- ''' |
- Computes the degree distribution for a graph. |
- |
- Returns a list of tuples where the first element of the tuple is the center of the bin |
- representing a range of degrees and the second element of the tuple are the number of nodes |
- with the degree falling in the range. |
- |
- Example:: |
- |
- .... |
- ''' |
- |
- deg = [] |
- if mode == 'inc': |
- get_deg = graph.inc_degree |
- else: |
- get_deg = graph.out_degree |
- |
- for node in graph: |
- deg.append( get_deg(node) ) |
- |
- if not deg: |
- return [] |
- |
- results = _binning(values=deg, limits=limits, bin_num=bin_num) |
- |
- return results |
- |
-_EPS = 1.0/(2.0**32) |
-def _binning(values, limits=(0,0), bin_num=10): |
- ''' |
- Bins data that falls between certain limits, if the limits are (0, 0) the |
- minimum and maximum values are used. |
- |
- Returns a list of tuples where the first element of the tuple is the center of the bin |
- and the second element of the tuple are the counts. |
- ''' |
- if limits == (0, 0): |
- min_val, max_val = min(values) - _EPS, max(values) + _EPS |
- else: |
- min_val, max_val = limits |
- |
- # get bin size |
- bin_size = (max_val - min_val)/float(bin_num) |
- bins = [0] * (bin_num) |
- |
- # will ignore these outliers for now |
- out_points = 0 |
- for value in values: |
- try: |
- if (value - min_val) < 0: |
- out_points += 1 |
- else: |
- index = int((value - min_val)/float(bin_size)) |
- bins[index] += 1 |
- except IndexError: |
- out_points += 1 |
- |
- # make it ready for an x,y plot |
- result = [] |
- center = (bin_size/2) + min_val |
- for i, y in enumerate(bins): |
- x = center + bin_size * i |
- result.append( (x,y) ) |
- |
- return result |