Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(235)

Side by Side Diff: tools/telemetry/docs/pydoc/telemetry.util.statistics.html

Issue 1647513002: Delete tools/telemetry. (Closed) Base URL: https://chromium.googlesource.com/chromium/src.git@master
Patch Set: Created 4 years, 11 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1
2 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
3 <html><head><title>Python: module telemetry.util.statistics</title>
4 <meta charset="utf-8">
5 </head><body bgcolor="#f0f0f8">
6
7 <table width="100%" cellspacing=0 cellpadding=2 border=0 summary="heading">
8 <tr bgcolor="#7799ee">
9 <td valign=bottom>&nbsp;<br>
10 <font color="#ffffff" face="helvetica, arial">&nbsp;<br><big><big><strong><a hre f="telemetry.html"><font color="#ffffff">telemetry</font></a>.<a href="telemetry .util.html"><font color="#ffffff">util</font></a>.statistics</strong></big></big ></font></td
11 ><td align=right valign=bottom
12 ><font color="#ffffff" face="helvetica, arial"><a href=".">index</a><br><a href= "../telemetry/util/statistics.py">telemetry/util/statistics.py</a></font></td></ tr></table>
13 <p><tt>A&nbsp;collection&nbsp;of&nbsp;statistical&nbsp;utility&nbsp;function s&nbsp;to&nbsp;be&nbsp;used&nbsp;by&nbsp;metrics.</tt></p>
14 <p>
15 <table width="100%" cellspacing=0 cellpadding=2 border=0 summary="section">
16 <tr bgcolor="#aa55cc">
17 <td colspan=3 valign=bottom>&nbsp;<br>
18 <font color="#ffffff" face="helvetica, arial"><big><strong>Modules</strong></big ></font></td></tr>
19
20 <tr><td bgcolor="#aa55cc"><tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</tt></td><td> &nbsp;</td>
21 <td width="100%"><table width="100%" summary="list"><tr><td width="25%" valign=t op><a href="math.html">math</a><br>
22 </td><td width="25%" valign=top></td><td width="25%" valign=top></td><td width=" 25%" valign=top></td></tr></table></td></tr></table><p>
23 <table width="100%" cellspacing=0 cellpadding=2 border=0 summary="section">
24 <tr bgcolor="#eeaa77">
25 <td colspan=3 valign=bottom>&nbsp;<br>
26 <font color="#ffffff" face="helvetica, arial"><big><strong>Functions</strong></b ig></font></td></tr>
27
28 <tr><td bgcolor="#eeaa77"><tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</tt></td><td> &nbsp;</td>
29 <td width="100%"><dl><dt><a name="-ArithmeticMean"><strong>ArithmeticMean</stron g></a>(data)</dt><dd><tt>Calculates&nbsp;arithmetic&nbsp;mean.<br>
30 &nbsp;<br>
31 Args:<br>
32 &nbsp;&nbsp;data:&nbsp;A&nbsp;list&nbsp;of&nbsp;samples.<br>
33 &nbsp;<br>
34 Returns:<br>
35 &nbsp;&nbsp;The&nbsp;arithmetic&nbsp;mean&nbsp;value,&nbsp;or&nbsp;0&nbsp;if&nbs p;the&nbsp;list&nbsp;is&nbsp;empty.</tt></dd></dl>
36 <dl><dt><a name="-Clamp"><strong>Clamp</strong></a>(value, low<font color="#909 090">=0.0</font>, high<font color="#909090">=1.0</font>)</dt><dd><tt>Clamp&nbsp; a&nbsp;value&nbsp;between&nbsp;some&nbsp;low&nbsp;and&nbsp;high&nbsp;value.</tt> </dd></dl>
37 <dl><dt><a name="-Discrepancy"><strong>Discrepancy</strong></a>(samples, locati on_count<font color="#909090">=None</font>)</dt><dd><tt>Computes&nbsp;the&nbsp;d iscrepancy&nbsp;of&nbsp;a&nbsp;set&nbsp;of&nbsp;1D&nbsp;samples&nbsp;from&nbsp;t he&nbsp;interval&nbsp;[0,1].<br>
38 &nbsp;<br>
39 The&nbsp;samples&nbsp;must&nbsp;be&nbsp;sorted.&nbsp;We&nbsp;define&nbsp;the&nbs p;discrepancy&nbsp;of&nbsp;an&nbsp;empty&nbsp;set<br>
40 of&nbsp;samples&nbsp;to&nbsp;be&nbsp;zero.<br>
41 &nbsp;<br>
42 <a href="http://en.wikipedia.org/wiki/Low-discrepancy_sequence">http://en.wikipe dia.org/wiki/Low-discrepancy_sequence</a><br>
43 <a href="http://mathworld.wolfram.com/Discrepancy.html">http://mathworld.wolfram .com/Discrepancy.html</a></tt></dd></dl>
44 <dl><dt><a name="-DivideIfPossibleOrZero"><strong>DivideIfPossibleOrZero</stron g></a>(numerator, denominator)</dt><dd><tt>Returns&nbsp;the&nbsp;quotient,&nbsp; or&nbsp;zero&nbsp;if&nbsp;the&nbsp;denominator&nbsp;is&nbsp;zero.</tt></dd></dl>
45 <dl><dt><a name="-DurationsDiscrepancy"><strong>DurationsDiscrepancy</strong></ a>(durations, absolute<font color="#909090">=True</font>, location_count<font co lor="#909090">=None</font>)</dt><dd><tt>A&nbsp;discrepancy&nbsp;based&nbsp;metri c&nbsp;for&nbsp;measuring&nbsp;duration&nbsp;jank.<br>
46 &nbsp;<br>
47 DurationsDiscrepancy&nbsp;computes&nbsp;a&nbsp;jank&nbsp;metric&nbsp;which&nbsp; measures&nbsp;how&nbsp;irregular&nbsp;a<br>
48 given&nbsp;sequence&nbsp;of&nbsp;intervals&nbsp;is.&nbsp;In&nbsp;order&nbsp;to&n bsp;minimize&nbsp;jank,&nbsp;each&nbsp;duration<br>
49 should&nbsp;be&nbsp;equally&nbsp;long.&nbsp;This&nbsp;is&nbsp;similar&nbsp;to&nb sp;how&nbsp;timestamp&nbsp;jank&nbsp;works,<br>
50 and&nbsp;we&nbsp;therefore&nbsp;reuse&nbsp;the&nbsp;timestamp&nbsp;discrepancy&n bsp;function&nbsp;above&nbsp;to&nbsp;compute&nbsp;a<br>
51 similar&nbsp;duration&nbsp;discrepancy&nbsp;number.<br>
52 &nbsp;<br>
53 Because&nbsp;timestamp&nbsp;discrepancy&nbsp;is&nbsp;defined&nbsp;in&nbsp;terms& nbsp;of&nbsp;timestamps,&nbsp;we&nbsp;first<br>
54 convert&nbsp;the&nbsp;list&nbsp;of&nbsp;durations&nbsp;to&nbsp;monotonically&nbs p;increasing&nbsp;timestamps.<br>
55 &nbsp;<br>
56 Args:<br>
57 &nbsp;&nbsp;durations:&nbsp;List&nbsp;of&nbsp;interval&nbsp;lengths&nbsp;in&nbsp ;milliseconds.<br>
58 &nbsp;&nbsp;absolute:&nbsp;See&nbsp;TimestampsDiscrepancy.<br>
59 &nbsp;&nbsp;interval_multiplier:&nbsp;See&nbsp;TimestampsDiscrepancy.</tt></dd>< /dl>
60 <dl><dt><a name="-GeneralizedMean"><strong>GeneralizedMean</strong></a>(values, exponent)</dt><dd><tt>See&nbsp;<a href="http://en.wikipedia.org/wiki/Generalize d_mean">http://en.wikipedia.org/wiki/Generalized_mean</a></tt></dd></dl>
61 <dl><dt><a name="-GeometricMean"><strong>GeometricMean</strong></a>(values)</dt ><dd><tt>Compute&nbsp;a&nbsp;rounded&nbsp;geometric&nbsp;mean&nbsp;from&nbsp;an& nbsp;array&nbsp;of&nbsp;values.</tt></dd></dl>
62 <dl><dt><a name="-Median"><strong>Median</strong></a>(values)</dt><dd><tt>Gets& nbsp;the&nbsp;median&nbsp;of&nbsp;a&nbsp;list&nbsp;of&nbsp;values.</tt></dd></dl >
63 <dl><dt><a name="-NormalizeSamples"><strong>NormalizeSamples</strong></a>(sampl es)</dt><dd><tt>Sorts&nbsp;the&nbsp;samples,&nbsp;and&nbsp;map&nbsp;them&nbsp;li nearly&nbsp;to&nbsp;the&nbsp;range&nbsp;[0,1].<br>
64 &nbsp;<br>
65 They're&nbsp;mapped&nbsp;such&nbsp;that&nbsp;for&nbsp;the&nbsp;N&nbsp;samples,&n bsp;the&nbsp;first&nbsp;sample&nbsp;is&nbsp;0.5/N&nbsp;and&nbsp;the<br>
66 last&nbsp;sample&nbsp;is&nbsp;(N-0.5)/N.<br>
67 &nbsp;<br>
68 Background:&nbsp;The&nbsp;discrepancy&nbsp;of&nbsp;the&nbsp;sample&nbsp;set&nbsp ;i/(N-1);&nbsp;i=0,&nbsp;...,&nbsp;N-1&nbsp;is&nbsp;2/N,<br>
69 twice&nbsp;the&nbsp;discrepancy&nbsp;of&nbsp;the&nbsp;sample&nbsp;set&nbsp;(i+1/ 2)/N;&nbsp;i=0,&nbsp;...,&nbsp;N-1.&nbsp;In&nbsp;our&nbsp;case<br>
70 we&nbsp;don't&nbsp;want&nbsp;to&nbsp;distinguish&nbsp;between&nbsp;these&nbsp;tw o&nbsp;cases,&nbsp;as&nbsp;our&nbsp;original&nbsp;domain<br>
71 is&nbsp;not&nbsp;bounded&nbsp;(it&nbsp;is&nbsp;for&nbsp;Monte&nbsp;Carlo&nbsp;in tegration,&nbsp;where&nbsp;discrepancy&nbsp;was<br>
72 first&nbsp;used).</tt></dd></dl>
73 <dl><dt><a name="-Percentile"><strong>Percentile</strong></a>(values, percentil e)</dt><dd><tt>Calculates&nbsp;the&nbsp;value&nbsp;below&nbsp;which&nbsp;a&nbsp; given&nbsp;percentage&nbsp;of&nbsp;values&nbsp;fall.<br>
74 &nbsp;<br>
75 For&nbsp;example,&nbsp;if&nbsp;17%&nbsp;of&nbsp;the&nbsp;values&nbsp;are&nbsp;le ss&nbsp;than&nbsp;5.0,&nbsp;then&nbsp;5.0&nbsp;is&nbsp;the&nbsp;17th<br>
76 percentile&nbsp;for&nbsp;this&nbsp;set&nbsp;of&nbsp;values.&nbsp;When&nbsp;the&n bsp;percentage&nbsp;doesn't&nbsp;exactly<br>
77 match&nbsp;a&nbsp;rank&nbsp;in&nbsp;the&nbsp;list&nbsp;of&nbsp;values,&nbsp;the& nbsp;percentile&nbsp;is&nbsp;computed&nbsp;using&nbsp;linear<br>
78 interpolation&nbsp;between&nbsp;closest&nbsp;ranks.<br>
79 &nbsp;<br>
80 Args:<br>
81 &nbsp;&nbsp;values:&nbsp;A&nbsp;list&nbsp;of&nbsp;numerical&nbsp;values.<br>
82 &nbsp;&nbsp;percentile:&nbsp;A&nbsp;number&nbsp;between&nbsp;0&nbsp;and&nbsp;100 .<br>
83 &nbsp;<br>
84 Returns:<br>
85 &nbsp;&nbsp;The&nbsp;Nth&nbsp;percentile&nbsp;for&nbsp;the&nbsp;list&nbsp;of&nbs p;values,&nbsp;where&nbsp;N&nbsp;is&nbsp;the&nbsp;given&nbsp;percentage.</tt></d d></dl>
86 <dl><dt><a name="-StandardDeviation"><strong>StandardDeviation</strong></a>(dat a)</dt><dd><tt>Calculates&nbsp;the&nbsp;standard&nbsp;deviation.<br>
87 &nbsp;<br>
88 Args:<br>
89 &nbsp;&nbsp;data:&nbsp;A&nbsp;list&nbsp;of&nbsp;samples.<br>
90 &nbsp;<br>
91 Returns:<br>
92 &nbsp;&nbsp;The&nbsp;standard&nbsp;deviation&nbsp;of&nbsp;the&nbsp;samples&nbsp; provided.</tt></dd></dl>
93 <dl><dt><a name="-TimestampsDiscrepancy"><strong>TimestampsDiscrepancy</strong> </a>(timestamps, absolute<font color="#909090">=True</font>, location_count<font color="#909090">=None</font>)</dt><dd><tt>A&nbsp;discrepancy&nbsp;based&nbsp;me tric&nbsp;for&nbsp;measuring&nbsp;timestamp&nbsp;jank.<br>
94 &nbsp;<br>
95 TimestampsDiscrepancy&nbsp;quantifies&nbsp;the&nbsp;largest&nbsp;area&nbsp;of&nb sp;jank&nbsp;observed&nbsp;in&nbsp;a&nbsp;series<br>
96 of&nbsp;timestamps.&nbsp;&nbsp;Note&nbsp;that&nbsp;this&nbsp;is&nbsp;different&n bsp;from&nbsp;metrics&nbsp;based&nbsp;on&nbsp;the<br>
97 max_time_interval.&nbsp;For&nbsp;example,&nbsp;the&nbsp;time&nbsp;stamp&nbsp;ser ies&nbsp;A&nbsp;=&nbsp;[0,1,2,3,5,6]&nbsp;and<br>
98 B&nbsp;=&nbsp;[0,1,2,3,5,7]&nbsp;have&nbsp;the&nbsp;same&nbsp;max_time_interval& nbsp;=&nbsp;2,&nbsp;but<br>
99 <a href="#-Discrepancy">Discrepancy</a>(B)&nbsp;&gt;&nbsp;<a href="#-Discrepancy ">Discrepancy</a>(A).<br>
100 &nbsp;<br>
101 Two&nbsp;variants&nbsp;of&nbsp;discrepancy&nbsp;can&nbsp;be&nbsp;computed:<br>
102 &nbsp;<br>
103 Relative&nbsp;discrepancy&nbsp;is&nbsp;following&nbsp;the&nbsp;original&nbsp;def inition&nbsp;of<br>
104 discrepancy.&nbsp;It&nbsp;characterized&nbsp;the&nbsp;largest&nbsp;area&nbsp;of& nbsp;jank,&nbsp;relative&nbsp;to&nbsp;the<br>
105 duration&nbsp;of&nbsp;the&nbsp;entire&nbsp;time&nbsp;stamp&nbsp;series.&nbsp;&nb sp;We&nbsp;normalize&nbsp;the&nbsp;raw&nbsp;results,<br>
106 because&nbsp;the&nbsp;best&nbsp;case&nbsp;discrepancy&nbsp;for&nbsp;a&nbsp;set&n bsp;of&nbsp;N&nbsp;samples&nbsp;is&nbsp;1/N&nbsp;(for<br>
107 equally&nbsp;spaced&nbsp;samples),&nbsp;and&nbsp;we&nbsp;want&nbsp;our&nbsp;metr ic&nbsp;to&nbsp;report&nbsp;0.0&nbsp;in&nbsp;that<br>
108 case.<br>
109 &nbsp;<br>
110 Absolute&nbsp;discrepancy&nbsp;also&nbsp;characterizes&nbsp;the&nbsp;largest&nbs p;area&nbsp;of&nbsp;jank,&nbsp;but&nbsp;its<br>
111 value&nbsp;wouldn't&nbsp;change&nbsp;(except&nbsp;for&nbsp;imprecisions&nbsp;due &nbsp;to&nbsp;a&nbsp;low<br>
112 |interval_multiplier|)&nbsp;if&nbsp;additional&nbsp;'good'&nbsp;intervals&nbsp;w ere&nbsp;added&nbsp;to&nbsp;an<br>
113 exisiting&nbsp;list&nbsp;of&nbsp;time&nbsp;stamps.&nbsp;&nbsp;Its&nbsp;range&nbs p;is&nbsp;[0,inf]&nbsp;and&nbsp;the&nbsp;unit&nbsp;is<br>
114 milliseconds.<br>
115 &nbsp;<br>
116 The&nbsp;time&nbsp;stamp&nbsp;series&nbsp;C&nbsp;=&nbsp;[0,2,3,4]&nbsp;and&nbsp; D&nbsp;=&nbsp;[0,2,3,4,5]&nbsp;have&nbsp;the&nbsp;same<br>
117 absolute&nbsp;discrepancy,&nbsp;but&nbsp;D&nbsp;has&nbsp;lower&nbsp;relative&nbs p;discrepancy&nbsp;than&nbsp;C.<br>
118 &nbsp;<br>
119 |timestamps|&nbsp;may&nbsp;be&nbsp;a&nbsp;list&nbsp;of&nbsp;lists&nbsp;S&nbsp;=& nbsp;[S_1,&nbsp;S_2,&nbsp;...,&nbsp;S_N],&nbsp;where&nbsp;each<br>
120 S_i&nbsp;is&nbsp;a&nbsp;time&nbsp;stamp&nbsp;series.&nbsp;In&nbsp;that&nbsp;case ,&nbsp;the&nbsp;discrepancy&nbsp;D(S)&nbsp;is:<br>
121 D(S)&nbsp;=&nbsp;max(D(S_1),&nbsp;D(S_2),&nbsp;...,&nbsp;D(S_N))</tt></dd></dl>
122 <dl><dt><a name="-Total"><strong>Total</strong></a>(data)</dt><dd><tt>Returns&n bsp;the&nbsp;float&nbsp;value&nbsp;of&nbsp;a&nbsp;number&nbsp;or&nbsp;the&nbsp;s um&nbsp;of&nbsp;a&nbsp;list.</tt></dd></dl>
123 <dl><dt><a name="-TrapezoidalRule"><strong>TrapezoidalRule</strong></a>(data, d x)</dt><dd><tt>Calculate&nbsp;the&nbsp;integral&nbsp;according&nbsp;to&nbsp;the& nbsp;trapezoidal&nbsp;rule<br>
124 &nbsp;<br>
125 TrapezoidalRule&nbsp;approximates&nbsp;the&nbsp;definite&nbsp;integral&nbsp;of&n bsp;f&nbsp;from&nbsp;a&nbsp;to&nbsp;b&nbsp;by<br>
126 the&nbsp;composite&nbsp;trapezoidal&nbsp;rule,&nbsp;using&nbsp;n&nbsp;subinterva ls.<br>
127 <a href="http://en.wikipedia.org/wiki/Trapezoidal_rule#Uniform_grid">http://en.w ikipedia.org/wiki/Trapezoidal_rule#Uniform_grid</a><br>
128 &nbsp;<br>
129 Args:<br>
130 &nbsp;&nbsp;data:&nbsp;A&nbsp;list&nbsp;of&nbsp;samples<br>
131 &nbsp;&nbsp;dx:&nbsp;The&nbsp;uniform&nbsp;distance&nbsp;along&nbsp;the&nbsp;x&n bsp;axis&nbsp;between&nbsp;any&nbsp;two&nbsp;samples<br>
132 &nbsp;<br>
133 Returns:<br>
134 &nbsp;&nbsp;The&nbsp;area&nbsp;under&nbsp;the&nbsp;curve&nbsp;defined&nbsp;by&nb sp;the&nbsp;samples&nbsp;and&nbsp;the&nbsp;uniform&nbsp;distance<br>
135 &nbsp;&nbsp;according&nbsp;to&nbsp;the&nbsp;trapezoidal&nbsp;rule.</tt></dd></dl >
136 </td></tr></table>
137 </body></html>
OLDNEW
« no previous file with comments | « tools/telemetry/docs/pydoc/telemetry.util.rgba_color.html ('k') | tools/telemetry/docs/pydoc/telemetry.util.wpr_modes.html » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698