| Index: src/gpu/GrDistanceFieldGenFromVector.cpp
|
| diff --git a/src/gpu/GrDistanceFieldGenFromVector.cpp b/src/gpu/GrDistanceFieldGenFromVector.cpp
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..79a8ce0e1b59fd97a49de40b7526ec2386eda384
|
| --- /dev/null
|
| +++ b/src/gpu/GrDistanceFieldGenFromVector.cpp
|
| @@ -0,0 +1,780 @@
|
| +/*
|
| + * Copyright 2016 ARM Ltd.
|
| + *
|
| + * Use of this source code is governed by a BSD-style license that can be
|
| + * found in the LICENSE file.
|
| + */
|
| +
|
| +#include "GrDistanceFieldGenFromVector.h"
|
| +#include "SkPoint.h"
|
| +#include "SkGeometry.h"
|
| +#include "GrPathUtils.h"
|
| +#include "GrConfig.h"
|
| +
|
| +/**
|
| + * If a scanline (a row of texel) cross from the kRight_SegSide
|
| + * of a segment to the kLeft_SegSide, the winding score should
|
| + * add 1.
|
| + * And winding score should subtract 1 if the scanline cross
|
| + * from kLeft_SegSide to kRight_SegSide.
|
| + * Always return kNA_SegSide if the scanline does not cross over
|
| + * the segment. Winding score should be zero in this case.
|
| + * You can get the winding number for each texel of the scanline
|
| + * by adding the winding score from left to right.
|
| + * Assuming we always start from outside, so the winding number
|
| + * should always start from zero.
|
| + * ________ ________
|
| + * | | | |
|
| + * ...R|L......L|R.....L|R......R|L..... <= Scanline & side of segment
|
| + * |+1 |-1 |-1 |+1 <= Winding score
|
| + * 0 | 1 ^ 0 ^ -1 |0 <= Winding number
|
| + * |________| |________|
|
| + *
|
| + * .......NA................NA..........
|
| + * 0 0
|
| + */
|
| +enum SegSide {
|
| + kLeft_SegSide = -1,
|
| + kOn_SegSide = 0,
|
| + kRight_SegSide = 1,
|
| + kNA_SegSide = 2,
|
| +};
|
| +
|
| +struct DFData {
|
| + float fDistSq; // distance squared to nearest (so far) edge
|
| + int fDeltaWindingScore; // +1 or -1 whenever a scanline cross over a segment
|
| +};
|
| +
|
| +///////////////////////////////////////////////////////////////////////////////
|
| +
|
| +/*
|
| + * Type definition for double precision DScalar, DPoint and DAffineMatrix
|
| + */
|
| +
|
| +// Scalar with double precision
|
| +typedef double DScalar;
|
| +
|
| +// Point with double precision
|
| +struct DPoint {
|
| + DScalar fX, fY;
|
| +
|
| + static DPoint Make(DScalar x, DScalar y) {
|
| + DPoint pt;
|
| + pt.set(x, y);
|
| + return pt;
|
| + }
|
| +
|
| + DScalar x() const { return fX; }
|
| + DScalar y() const { return fY; }
|
| +
|
| + void set(DScalar x, DScalar y) { fX = x; fY = y; }
|
| +
|
| + /** Returns the euclidian distance from (0,0) to (x,y)
|
| + */
|
| + static DScalar Length(DScalar x, DScalar y) {
|
| + return sqrt(x * x + y * y);
|
| + }
|
| +
|
| + /** Returns the euclidian distance between a and b
|
| + */
|
| + static DScalar Distance(const DPoint& a, const DPoint& b) {
|
| + return Length(a.fX - b.fX, a.fY - b.fY);
|
| + }
|
| +
|
| + DScalar distanceToSqd(const DPoint& pt) const {
|
| + DScalar dx = fX - pt.fX;
|
| + DScalar dy = fY - pt.fY;
|
| + return dx * dx + dy * dy;
|
| + }
|
| +};
|
| +
|
| +// Matrix with double precision for affine transformation.
|
| +// We don't store row 3 because its always (0, 0, 1).
|
| +class DAffineMatrix {
|
| +public:
|
| + DScalar operator[](int index) const {
|
| + SkASSERT((unsigned)index < 6);
|
| + return fMat[index];
|
| + }
|
| +
|
| + DScalar& operator[](int index) {
|
| + SkASSERT((unsigned)index < 6);
|
| + return fMat[index];
|
| + }
|
| +
|
| + void setAffine(DScalar m11, DScalar m12, DScalar m13,
|
| + DScalar m21, DScalar m22, DScalar m23) {
|
| + fMat[0] = m11;
|
| + fMat[1] = m12;
|
| + fMat[2] = m13;
|
| + fMat[3] = m21;
|
| + fMat[4] = m22;
|
| + fMat[5] = m23;
|
| + }
|
| +
|
| + /** Set the matrix to identity
|
| + */
|
| + void reset() {
|
| + fMat[0] = fMat[4] = 1.0;
|
| + fMat[1] = fMat[3] =
|
| + fMat[2] = fMat[5] = 0.0;
|
| + }
|
| +
|
| + // alias for reset()
|
| + void setIdentity() { this->reset(); }
|
| +
|
| + DPoint mapPoint(const SkPoint& src) const {
|
| + DPoint pt = DPoint::Make(src.x(), src.y());
|
| + return this->mapPoint(pt);
|
| + }
|
| +
|
| + DPoint mapPoint(const DPoint& src) const {
|
| + return DPoint::Make(fMat[0] * src.x() + fMat[1] * src.y() + fMat[2],
|
| + fMat[3] * src.x() + fMat[4] * src.y() + fMat[5]);
|
| + }
|
| +private:
|
| + DScalar fMat[6];
|
| +};
|
| +
|
| +///////////////////////////////////////////////////////////////////////////////
|
| +
|
| +static const DScalar kClose = (SK_Scalar1 / 16.0);
|
| +static const DScalar kCloseSqd = SkScalarMul(kClose, kClose);
|
| +static const DScalar kNearlyZero = (SK_Scalar1 / (1 << 15));
|
| +
|
| +static inline bool between_closed_open(DScalar a, DScalar b, DScalar c,
|
| + DScalar tolerance = kNearlyZero) {
|
| + SkASSERT(tolerance >= 0.f);
|
| + return b < c ? (a >= b - tolerance && a < c - tolerance) :
|
| + (a >= c - tolerance && a < b - tolerance);
|
| +}
|
| +
|
| +static inline bool between_closed(DScalar a, DScalar b, DScalar c,
|
| + DScalar tolerance = kNearlyZero) {
|
| + SkASSERT(tolerance >= 0.f);
|
| + return b < c ? (a >= b - tolerance && a <= c + tolerance) :
|
| + (a >= c - tolerance && a <= b + tolerance);
|
| +}
|
| +
|
| +static inline bool nearly_zero(DScalar x, DScalar tolerance = kNearlyZero) {
|
| + SkASSERT(tolerance >= 0.f);
|
| + return fabs(x) <= tolerance;
|
| +}
|
| +
|
| +static inline bool nearly_equal(DScalar x, DScalar y, DScalar tolerance = kNearlyZero) {
|
| + SkASSERT(tolerance >= 0.f);
|
| + return fabs(x - y) <= tolerance;
|
| +}
|
| +
|
| +static inline float sign_of(const float &val) {
|
| + return (val < 0.f) ? -1.f : 1.f;
|
| +}
|
| +
|
| +static bool is_colinear(const SkPoint pts[3]) {
|
| + return nearly_zero((pts[1].y() - pts[0].y()) * (pts[1].x() - pts[2].x()) -
|
| + (pts[1].y() - pts[2].y()) * (pts[1].x() - pts[0].x()));
|
| +}
|
| +
|
| +class PathSegment {
|
| +public:
|
| + enum {
|
| + // These enum values are assumed in member functions below.
|
| + kLine = 0,
|
| + kQuad = 1,
|
| + } fType;
|
| +
|
| + // line uses 2 pts, quad uses 3 pts
|
| + SkPoint fPts[3];
|
| +
|
| + DPoint fP0T, fP2T;
|
| + DAffineMatrix fXformMatrix;
|
| + DScalar fScalingFactor;
|
| + SkRect fBoundingBox;
|
| +
|
| + void init();
|
| +
|
| + int countPoints() {
|
| + GR_STATIC_ASSERT(0 == kLine && 1 == kQuad);
|
| + return fType + 2;
|
| + }
|
| +
|
| + const SkPoint& endPt() const {
|
| + GR_STATIC_ASSERT(0 == kLine && 1 == kQuad);
|
| + return fPts[fType + 1];
|
| + };
|
| +};
|
| +
|
| +typedef SkTArray<PathSegment, true> PathSegmentArray;
|
| +
|
| +void PathSegment::init() {
|
| + const DPoint p0 = DPoint::Make(fPts[0].x(), fPts[0].y());
|
| + const DPoint p2 = DPoint::Make(this->endPt().x(), this->endPt().y());
|
| + const DScalar p0x = p0.x();
|
| + const DScalar p0y = p0.y();
|
| + const DScalar p2x = p2.x();
|
| + const DScalar p2y = p2.y();
|
| +
|
| + fBoundingBox.set(fPts[0], this->endPt());
|
| +
|
| + if (fType == PathSegment::kLine) {
|
| + fScalingFactor = DPoint::Distance(p0, p2);
|
| +
|
| + const DScalar cosTheta = (p2x - p0x) / fScalingFactor;
|
| + const DScalar sinTheta = (p2y - p0y) / fScalingFactor;
|
| +
|
| + fXformMatrix.setAffine(
|
| + cosTheta, sinTheta, -(cosTheta * p0x) - (sinTheta * p0y),
|
| + -sinTheta, cosTheta, (sinTheta * p0x) - (cosTheta * p0y)
|
| + );
|
| + } else {
|
| + SkASSERT(fType == PathSegment::kQuad);
|
| +
|
| + // Calculate bounding box
|
| + const SkPoint _P1mP0 = fPts[1] - fPts[0];
|
| + SkPoint t = _P1mP0 - fPts[2] + fPts[1];
|
| + t.fX = _P1mP0.x() / t.x();
|
| + t.fY = _P1mP0.y() / t.y();
|
| + t.fX = SkScalarClampMax(t.x(), 1.0);
|
| + t.fY = SkScalarClampMax(t.y(), 1.0);
|
| + t.fX = _P1mP0.x() * t.x();
|
| + t.fY = _P1mP0.y() * t.y();
|
| + const SkPoint m = fPts[0] + t;
|
| + fBoundingBox.growToInclude(&m, 1);
|
| +
|
| + const DScalar p1x = fPts[1].x();
|
| + const DScalar p1y = fPts[1].y();
|
| +
|
| + const DScalar p0xSqd = p0x * p0x;
|
| + const DScalar p0ySqd = p0y * p0y;
|
| + const DScalar p2xSqd = p2x * p2x;
|
| + const DScalar p2ySqd = p2y * p2y;
|
| + const DScalar p1xSqd = p1x * p1x;
|
| + const DScalar p1ySqd = p1y * p1y;
|
| +
|
| + const DScalar p01xProd = p0x * p1x;
|
| + const DScalar p02xProd = p0x * p2x;
|
| + const DScalar b12xProd = p1x * p2x;
|
| + const DScalar p01yProd = p0y * p1y;
|
| + const DScalar p02yProd = p0y * p2y;
|
| + const DScalar b12yProd = p1y * p2y;
|
| +
|
| + const DScalar sqrtA = p0y - (2.0 * p1y) + p2y;
|
| + const DScalar a = sqrtA * sqrtA;
|
| + const DScalar h = -1.0 * (p0y - (2.0 * p1y) + p2y) * (p0x - (2.0 * p1x) + p2x);
|
| + const DScalar sqrtB = p0x - (2.0 * p1x) + p2x;
|
| + const DScalar b = sqrtB * sqrtB;
|
| + const DScalar c = (p0xSqd * p2ySqd) - (4.0 * p01xProd * b12yProd)
|
| + - (2.0 * p02xProd * p02yProd) + (4.0 * p02xProd * p1ySqd)
|
| + + (4.0 * p1xSqd * p02yProd) - (4.0 * b12xProd * p01yProd)
|
| + + (p2xSqd * p0ySqd);
|
| + const DScalar g = (p0x * p02yProd) - (2.0 * p0x * p1ySqd)
|
| + + (2.0 * p0x * b12yProd) - (p0x * p2ySqd)
|
| + + (2.0 * p1x * p01yProd) - (4.0 * p1x * p02yProd)
|
| + + (2.0 * p1x * b12yProd) - (p2x * p0ySqd)
|
| + + (2.0 * p2x * p01yProd) + (p2x * p02yProd)
|
| + - (2.0 * p2x * p1ySqd);
|
| + const DScalar f = -((p0xSqd * p2y) - (2.0 * p01xProd * p1y)
|
| + - (2.0 * p01xProd * p2y) - (p02xProd * p0y)
|
| + + (4.0 * p02xProd * p1y) - (p02xProd * p2y)
|
| + + (2.0 * p1xSqd * p0y) + (2.0 * p1xSqd * p2y)
|
| + - (2.0 * b12xProd * p0y) - (2.0 * b12xProd * p1y)
|
| + + (p2xSqd * p0y));
|
| +
|
| + const DScalar cosTheta = sqrt(a / (a + b));
|
| + const DScalar sinTheta = -1.0 * sign_of((a + b) * h) * sqrt(b / (a + b));
|
| +
|
| + const DScalar gDef = cosTheta * g - sinTheta * f;
|
| + const DScalar fDef = sinTheta * g + cosTheta * f;
|
| +
|
| +
|
| + const DScalar x0 = gDef / (a + b);
|
| + const DScalar y0 = (1.0 / (2.0 * fDef)) * (c - (gDef * gDef / (a + b)));
|
| +
|
| +
|
| + const DScalar lambda = -1.0 * ((a + b) / (2.0 * fDef));
|
| + fScalingFactor = (1.0 / lambda);
|
| + fScalingFactor *= fScalingFactor;
|
| +
|
| + const DScalar lambda_cosTheta = lambda * cosTheta;
|
| + const DScalar lambda_sinTheta = lambda * sinTheta;
|
| +
|
| + fXformMatrix.setAffine(
|
| + lambda_cosTheta, -lambda_sinTheta, lambda * x0,
|
| + lambda_sinTheta, lambda_cosTheta, lambda * y0
|
| + );
|
| + }
|
| +
|
| + fP0T = fXformMatrix.mapPoint(p0);
|
| + fP2T = fXformMatrix.mapPoint(p2);
|
| +}
|
| +
|
| +static void init_distances(DFData* data, int size) {
|
| + DFData* currData = data;
|
| +
|
| + for (int i = 0; i < size; ++i) {
|
| + // init distance to "far away"
|
| + currData->fDistSq = SK_DistanceFieldMagnitude * SK_DistanceFieldMagnitude;
|
| + currData->fDeltaWindingScore = 0;
|
| + ++currData;
|
| + }
|
| +}
|
| +
|
| +static inline bool get_direction(const SkPath& path, const SkMatrix& m,
|
| + SkPathPriv::FirstDirection* dir) {
|
| + if (!SkPathPriv::CheapComputeFirstDirection(path, dir)) {
|
| + return false;
|
| + }
|
| +
|
| + // check whether m reverses the orientation
|
| + SkASSERT(!m.hasPerspective());
|
| + SkScalar det2x2 = SkScalarMul(m.get(SkMatrix::kMScaleX), m.get(SkMatrix::kMScaleY)) -
|
| + SkScalarMul(m.get(SkMatrix::kMSkewX), m.get(SkMatrix::kMSkewY));
|
| +
|
| + if (det2x2 < 0) {
|
| + *dir = SkPathPriv::OppositeFirstDirection(*dir);
|
| + }
|
| + return true;
|
| +}
|
| +
|
| +static inline void add_line_to_segment(const SkPoint pts[2],
|
| + PathSegmentArray* segments) {
|
| + segments->push_back();
|
| + segments->back().fType = PathSegment::kLine;
|
| + segments->back().fPts[0] = pts[0];
|
| + segments->back().fPts[1] = pts[1];
|
| +
|
| + segments->back().init();
|
| +}
|
| +
|
| +static inline void add_quad_segment(const SkPoint pts[3],
|
| + PathSegmentArray* segments) {
|
| + if (pts[0].distanceToSqd(pts[1]) < kCloseSqd ||
|
| + pts[1].distanceToSqd(pts[2]) < kCloseSqd ||
|
| + is_colinear(pts)) {
|
| + if (pts[0] != pts[2]) {
|
| + SkPoint line_pts[2];
|
| + line_pts[0] = pts[0];
|
| + line_pts[1] = pts[2];
|
| + add_line_to_segment(line_pts, segments);
|
| + }
|
| + } else {
|
| + segments->push_back();
|
| + segments->back().fType = PathSegment::kQuad;
|
| + segments->back().fPts[0] = pts[0];
|
| + segments->back().fPts[1] = pts[1];
|
| + segments->back().fPts[2] = pts[2];
|
| +
|
| + segments->back().init();
|
| + }
|
| +}
|
| +
|
| +static inline void add_cubic_segments(const SkPoint pts[4],
|
| + SkPathPriv::FirstDirection dir,
|
| + PathSegmentArray* segments) {
|
| + SkSTArray<15, SkPoint, true> quads;
|
| + GrPathUtils::convertCubicToQuads(pts, SK_Scalar1, true, dir, &quads);
|
| + int count = quads.count();
|
| + for (int q = 0; q < count; q += 3) {
|
| + add_quad_segment(&quads[q], segments);
|
| + }
|
| +}
|
| +
|
| +static float calculate_nearest_point_for_quad(
|
| + const PathSegment& segment,
|
| + const DPoint &xFormPt) {
|
| + static const float kThird = 0.33333333333f;
|
| + static const float kTwentySeventh = 0.037037037f;
|
| +
|
| + const float a = 0.5f - xFormPt.y();
|
| + const float b = -0.5f * xFormPt.x();
|
| +
|
| + const float a3 = a * a * a;
|
| + const float b2 = b * b;
|
| +
|
| + const float c = (b2 * 0.25f) + (a3 * kTwentySeventh);
|
| +
|
| + if (c >= 0.f) {
|
| + const float sqrtC = sqrt(c);
|
| + const float result = (float)cbrt((-b * 0.5f) + sqrtC) + (float)cbrt((-b * 0.5f) - sqrtC);
|
| + return result;
|
| + } else {
|
| + const float cosPhi = (float)sqrt((b2 * 0.25f) * (-27.f / a3)) * ((b > 0) ? -1.f : 1.f);
|
| + const float phi = (float)acos(cosPhi);
|
| + float result;
|
| + if (xFormPt.x() > 0.f) {
|
| + result = 2.f * (float)sqrt(-a * kThird) * (float)cos(phi * kThird);
|
| + if (!between_closed(result, segment.fP0T.x(), segment.fP2T.x())) {
|
| + result = 2.f * (float)sqrt(-a * kThird) * (float)cos((phi * kThird) + (SK_ScalarPI * 2.f * kThird));
|
| + }
|
| + } else {
|
| + result = 2.f * (float)sqrt(-a * kThird) * (float)cos((phi * kThird) + (SK_ScalarPI * 2.f * kThird));
|
| + if (!between_closed(result, segment.fP0T.x(), segment.fP2T.x())) {
|
| + result = 2.f * (float)sqrt(-a * kThird) * (float)cos(phi * kThird);
|
| + }
|
| + }
|
| + return result;
|
| + }
|
| +}
|
| +
|
| +// This structure contains some intermediate values shared by the same row.
|
| +// It is used to calculate segment side of a quadratic bezier.
|
| +struct RowData {
|
| + // The intersection type of a scanline and y = x * x parabola in canonical space.
|
| + enum IntersectionType {
|
| + kNoIntersection,
|
| + kVerticalLine,
|
| + kTangentLine,
|
| + kTwoPointsIntersect
|
| + } fIntersectionType;
|
| +
|
| + // The direction of the quadratic segment in the canonical space.
|
| + // 1: The quadratic segment going from negative x-axis to positive x-axis.
|
| + // -1: The quadratic segment going from positive x-axis to negative x-axis.
|
| + int fQuadXDirection;
|
| +
|
| + // The y-value(equal to x*x) of intersection point for the kVerticalLine intersection type.
|
| + DScalar fYAtIntersection;
|
| +
|
| + // The x-value for two intersection points.
|
| + DScalar fXAtIntersection1;
|
| + DScalar fXAtIntersection2;
|
| +};
|
| +
|
| +void precomputation_for_row(
|
| + RowData *rowData,
|
| + const PathSegment& segment,
|
| + const SkPoint& pointLeft,
|
| + const SkPoint& pointRight
|
| + ) {
|
| + if (segment.fType != PathSegment::kQuad) {
|
| + return;
|
| + }
|
| +
|
| + const DPoint& xFormPtLeft = segment.fXformMatrix.mapPoint(pointLeft);
|
| + const DPoint& xFormPtRight = segment.fXformMatrix.mapPoint(pointRight);;
|
| +
|
| + rowData->fQuadXDirection = sign_of(segment.fP2T.x() - segment.fP0T.x());
|
| +
|
| + const DScalar x1 = xFormPtLeft.x();
|
| + const DScalar y1 = xFormPtLeft.y();
|
| + const DScalar x2 = xFormPtRight.x();
|
| + const DScalar y2 = xFormPtRight.y();
|
| +
|
| + if (nearly_equal(x1, x2)) {
|
| + rowData->fIntersectionType = RowData::kVerticalLine;
|
| + rowData->fYAtIntersection = x1 * x1;
|
| + return;
|
| + }
|
| +
|
| + // Line y = mx + b
|
| + const DScalar m = (y2 - y1) / (x2 - x1);
|
| + const DScalar b = -m * x1 + y1;
|
| +
|
| + const DScalar c = m * m + 4.0 * b;
|
| +
|
| + if (nearly_zero(c, 4.0 * kNearlyZero * kNearlyZero)) {
|
| + rowData->fIntersectionType = RowData::kTangentLine;
|
| + rowData->fXAtIntersection1 = m / 2.0;
|
| + rowData->fXAtIntersection2 = m / 2.0;
|
| + } else if (c < 0.0) {
|
| + rowData->fIntersectionType = RowData::kNoIntersection;
|
| + return;
|
| + } else {
|
| + rowData->fIntersectionType = RowData::kTwoPointsIntersect;
|
| + const DScalar d = sqrt(c);
|
| + rowData->fXAtIntersection1 = (m + d) / 2.0;
|
| + rowData->fXAtIntersection2 = (m - d) / 2.0;
|
| + }
|
| +}
|
| +
|
| +SegSide calculate_side_of_quad(
|
| + const PathSegment& segment,
|
| + const SkPoint& point,
|
| + const DPoint& xFormPt,
|
| + const RowData& rowData) {
|
| + SegSide side = kNA_SegSide;
|
| +
|
| + if (RowData::kVerticalLine == rowData.fIntersectionType) {
|
| + side = (SegSide)(int)(sign_of(rowData.fYAtIntersection - xFormPt.y()) * rowData.fQuadXDirection);
|
| + }
|
| + else if (RowData::kTwoPointsIntersect == rowData.fIntersectionType ||
|
| + RowData::kTangentLine == rowData.fIntersectionType) {
|
| + const DScalar p1 = rowData.fXAtIntersection1;
|
| + const DScalar p2 = rowData.fXAtIntersection2;
|
| +
|
| + int signP1 = sign_of(p1 - xFormPt.x());
|
| + if (between_closed(p1, segment.fP0T.x(), segment.fP2T.x())) {
|
| + side = (SegSide)((-signP1) * rowData.fQuadXDirection);
|
| + }
|
| + if (between_closed(p2, segment.fP0T.x(), segment.fP2T.x())) {
|
| + int signP2 = sign_of(p2 - xFormPt.x());
|
| + if (side == kNA_SegSide || signP2 == 1) {
|
| + side = (SegSide)(signP2 * rowData.fQuadXDirection);
|
| + }
|
| + }
|
| +
|
| + // The scanline is the tangent line of current quadratic segment.
|
| + if (RowData::kTangentLine == rowData.fIntersectionType) {
|
| + // The path start at the tangent point.
|
| + if (nearly_equal(p1, segment.fP0T.x())) {
|
| + side = (SegSide)(side * (-signP1) * rowData.fQuadXDirection);
|
| + }
|
| +
|
| + // The path end at the tangent point.
|
| + if (nearly_equal(p1, segment.fP2T.x())) {
|
| + side = (SegSide)(side * signP1 * rowData.fQuadXDirection);
|
| + }
|
| + }
|
| + }
|
| +
|
| + return side;
|
| +}
|
| +
|
| +static float distance_to_segment(const SkPoint& point,
|
| + const PathSegment& segment,
|
| + const RowData& rowData,
|
| + SegSide* side) {
|
| + SkASSERT(side);
|
| +
|
| + const DPoint xformPt = segment.fXformMatrix.mapPoint(point);
|
| +
|
| + if (segment.fType == PathSegment::kLine) {
|
| + float result = SK_DistanceFieldPad * SK_DistanceFieldPad;
|
| +
|
| + if (between_closed(xformPt.x(), segment.fP0T.x(), segment.fP2T.x())) {
|
| + result = xformPt.y() * xformPt.y();
|
| + } else if (xformPt.x() < segment.fP0T.x()) {
|
| + result = (xformPt.x() * xformPt.x() + xformPt.y() * xformPt.y());
|
| + } else {
|
| + result = ((xformPt.x() - segment.fP2T.x()) * (xformPt.x() - segment.fP2T.x())
|
| + + xformPt.y() * xformPt.y());
|
| + }
|
| +
|
| + if (between_closed_open(point.y(), segment.fBoundingBox.top(),
|
| + segment.fBoundingBox.bottom())) {
|
| + *side = (SegSide)(int)sign_of(-xformPt.y());
|
| + } else {
|
| + *side = kNA_SegSide;
|
| + }
|
| + return result;
|
| + } else {
|
| + SkASSERT(segment.fType == PathSegment::kQuad);
|
| +
|
| + const float nearestPoint = calculate_nearest_point_for_quad(segment, xformPt);
|
| +
|
| + float dist;
|
| +
|
| + if (between_closed(nearestPoint, segment.fP0T.x(), segment.fP2T.x())) {
|
| + DPoint x = DPoint::Make(nearestPoint, nearestPoint * nearestPoint);
|
| + dist = xformPt.distanceToSqd(x);
|
| + } else {
|
| + const float distToB0T = xformPt.distanceToSqd(segment.fP0T);
|
| + const float distToB2T = xformPt.distanceToSqd(segment.fP2T);
|
| +
|
| + if (distToB0T < distToB2T) {
|
| + dist = distToB0T;
|
| + } else {
|
| + dist = distToB2T;
|
| + }
|
| + }
|
| +
|
| + if (between_closed_open(point.y(), segment.fBoundingBox.top(),
|
| + segment.fBoundingBox.bottom())) {
|
| + *side = calculate_side_of_quad(segment, point, xformPt, rowData);
|
| + } else {
|
| + *side = kNA_SegSide;
|
| + }
|
| +
|
| + return dist * segment.fScalingFactor;
|
| + }
|
| +}
|
| +
|
| +static void calculate_distance_field_data(PathSegmentArray* segments,
|
| + DFData* dataPtr,
|
| + int width, int height) {
|
| + int count = segments->count();
|
| + for (int a = 0; a < count; ++a) {
|
| + PathSegment& segment = (*segments)[a];
|
| + const SkRect& segBB = segment.fBoundingBox.makeOutset(
|
| + SK_DistanceFieldPad, SK_DistanceFieldPad);
|
| + int startColumn = segBB.left();
|
| + int endColumn = segBB.right() + 1;
|
| +
|
| + int startRow = segBB.top();
|
| + int endRow = segBB.bottom() + 1;
|
| +
|
| + SkASSERT((startColumn >= 0) && "StartColumn < 0!");
|
| + SkASSERT((endColumn <= width) && "endColumn > width!");
|
| + SkASSERT((startRow >= 0) && "StartRow < 0!");
|
| + SkASSERT((endRow <= height) && "EndRow > height!");
|
| +
|
| + for (int row = startRow; row < endRow; ++row) {
|
| + SegSide prevSide = kNA_SegSide;
|
| + const float pY = row + 0.5f;
|
| + RowData rowData;
|
| +
|
| + const SkPoint pointLeft = SkPoint::Make(startColumn, pY);
|
| + const SkPoint pointRight = SkPoint::Make(endColumn, pY);
|
| +
|
| + precomputation_for_row(&rowData, segment, pointLeft, pointRight);
|
| +
|
| + for (int col = startColumn; col < endColumn; ++col) {
|
| + int idx = (row * width) + col;
|
| +
|
| + const float pX = col + 0.5f;
|
| + const SkPoint point = SkPoint::Make(pX, pY);
|
| +
|
| + const float distSq = dataPtr[idx].fDistSq;
|
| + int dilation = distSq < 1.5 * 1.5 ? 1 :
|
| + distSq < 2.5 * 2.5 ? 2 :
|
| + distSq < 3.5 * 3.5 ? 3 : SK_DistanceFieldPad;
|
| + if (dilation > SK_DistanceFieldPad) {
|
| + dilation = SK_DistanceFieldPad;
|
| + }
|
| +
|
| + // Optimisation for not calculating some points.
|
| + if (dilation != SK_DistanceFieldPad && !segment.fBoundingBox.roundOut()
|
| + .makeOutset(dilation, dilation).contains(col, row)) {
|
| + continue;
|
| + }
|
| +
|
| + SegSide side = kNA_SegSide;
|
| + int deltaWindingScore = 0;
|
| + float currDistSq = distance_to_segment(point, segment, rowData, &side);
|
| + if (prevSide == kLeft_SegSide && side == kRight_SegSide) {
|
| + deltaWindingScore = -1;
|
| + } else if (prevSide == kRight_SegSide && side == kLeft_SegSide) {
|
| + deltaWindingScore = 1;
|
| + }
|
| +
|
| + prevSide = side;
|
| +
|
| + if (currDistSq < distSq) {
|
| + dataPtr[idx].fDistSq = currDistSq;
|
| + }
|
| +
|
| + dataPtr[idx].fDeltaWindingScore += deltaWindingScore;
|
| + }
|
| + }
|
| + }
|
| +}
|
| +
|
| +static unsigned char pack_distance_field_val(float dist, float distanceMagnitude) {
|
| + // The distance field is constructed as unsigned char values, so that the zero value is at 128,
|
| + // Beside 128, we have 128 values in range [0, 128), but only 127 values in range (128, 255].
|
| + // So we multiply distanceMagnitude by 127/128 at the latter range to avoid overflow.
|
| + dist = SkScalarPin(-dist, -distanceMagnitude, distanceMagnitude * 127.0f / 128.0f);
|
| +
|
| + // Scale into the positive range for unsigned distance
|
| + dist += distanceMagnitude;
|
| +
|
| + // Scale into unsigned char range
|
| + return (unsigned char)(dist / (2 * distanceMagnitude) * 256.0f);
|
| +}
|
| +
|
| +bool GrGenerateDistanceFieldFromPath(unsigned char* distanceField,
|
| + const SkPath& path, const SkMatrix& drawMatrix,
|
| + int width, int height, size_t rowBytes) {
|
| + SkASSERT(distanceField);
|
| +
|
| + SkMatrix m = drawMatrix;
|
| + m.postTranslate(SK_DistanceFieldPad, SK_DistanceFieldPad);
|
| +
|
| + // create temp data
|
| + size_t dataSize = width * height * sizeof(DFData);
|
| + SkAutoSMalloc<1024> dfStorage(dataSize);
|
| + DFData* dataPtr = (DFData*) dfStorage.get();
|
| +
|
| + // create initial distance data
|
| + init_distances(dataPtr, width * height);
|
| +
|
| + SkPath::Iter iter(path, true);
|
| + SkSTArray<15, PathSegment, true> segments;
|
| +
|
| + SkPathPriv::FirstDirection dir;
|
| + // get_direction can fail for some degenerate paths.
|
| + if (path.getSegmentMasks() & SkPath::kCubic_SegmentMask &&
|
| + !get_direction(path, m, &dir)) {
|
| + return false;
|
| + }
|
| +
|
| + for (;;) {
|
| + SkPoint pts[4];
|
| + SkPath::Verb verb = iter.next(pts);
|
| + switch (verb) {
|
| + case SkPath::kMove_Verb:
|
| + // m.mapPoints(pts, 1);
|
| + break;
|
| + case SkPath::kLine_Verb: {
|
| + m.mapPoints(pts, 2);
|
| + add_line_to_segment(pts, &segments);
|
| + break;
|
| + }
|
| + case SkPath::kQuad_Verb:
|
| + m.mapPoints(pts, 3);
|
| + add_quad_segment(pts, &segments);
|
| + break;
|
| + case SkPath::kConic_Verb: {
|
| + m.mapPoints(pts, 3);
|
| + SkScalar weight = iter.conicWeight();
|
| + SkAutoConicToQuads converter;
|
| + const SkPoint* quadPts = converter.computeQuads(pts, weight, 0.5f);
|
| + for (int i = 0; i < converter.countQuads(); ++i) {
|
| + add_quad_segment(quadPts + 2*i, &segments);
|
| + }
|
| + break;
|
| + }
|
| + case SkPath::kCubic_Verb: {
|
| + m.mapPoints(pts, 4);
|
| + add_cubic_segments(pts, dir, &segments);
|
| + break;
|
| + };
|
| + default:
|
| + break;
|
| + }
|
| + if (verb == SkPath::kDone_Verb) {
|
| + break;
|
| + }
|
| + }
|
| +
|
| + calculate_distance_field_data(&segments, dataPtr, width, height);
|
| +
|
| + for (int row = 0; row < height; ++row) {
|
| + int windingNumber = 0; // Winding number start from zero for each scanline
|
| + for (int col = 0; col < width; ++col) {
|
| + int idx = (row * width) + col;
|
| + windingNumber += dataPtr[idx].fDeltaWindingScore;
|
| +
|
| + enum DFSign {
|
| + kInside = -1,
|
| + kOutside = 1
|
| + } dfSign;
|
| +
|
| + if (path.getFillType() == SkPath::kWinding_FillType) {
|
| + dfSign = windingNumber ? kInside : kOutside;
|
| + } else if (path.getFillType() == SkPath::kInverseWinding_FillType) {
|
| + dfSign = windingNumber ? kOutside : kInside;
|
| + } else if (path.getFillType() == SkPath::kEvenOdd_FillType) {
|
| + dfSign = (windingNumber % 2) ? kInside : kOutside;
|
| + } else {
|
| + SkASSERT(path.getFillType() == SkPath::kInverseEvenOdd_FillType);
|
| + dfSign = (windingNumber % 2) ? kOutside : kInside;
|
| + }
|
| +
|
| + // The winding number at the end of a scanline should be zero.
|
| + if ((col == width - 1) && (windingNumber != 0)) {
|
| + SkASSERT(0 && "Winding number should be zero at the end of a scan line.");
|
| + return false;
|
| + }
|
| +
|
| + const float miniDist = sqrt(dataPtr[idx].fDistSq);
|
| + const float dist = dfSign * miniDist;
|
| +
|
| + unsigned char pixelVal =
|
| + pack_distance_field_val(dist, (float)SK_DistanceFieldMagnitude);
|
| +
|
| + distanceField[(row * rowBytes) + col] = pixelVal;
|
| + }
|
| + }
|
| + return true;
|
| +}
|
|
|