Index: src/gpu/GrDistanceFieldGenFromVector.cpp |
diff --git a/src/gpu/GrDistanceFieldGenFromVector.cpp b/src/gpu/GrDistanceFieldGenFromVector.cpp |
new file mode 100644 |
index 0000000000000000000000000000000000000000..81795006602ef0d642898aba5e0dafa92221e9ed |
--- /dev/null |
+++ b/src/gpu/GrDistanceFieldGenFromVector.cpp |
@@ -0,0 +1,873 @@ |
+/* |
+ * Copyright 2017 ARM Ltd. |
+ * |
+ * Use of this source code is governed by a BSD-style license that can be |
+ * found in the LICENSE file. |
+ */ |
+ |
+#include "SkDistanceFieldGen.h" |
+#include "GrDistanceFieldGenFromVector.h" |
+#include "SkMatrix.h" |
+#include "SkPoint.h" |
+#include "SkGeometry.h" |
+#include "SkPathOps.h" |
+#include "GrPathUtils.h" |
+#include "GrConfig.h" |
+ |
+/** |
+ * If a scanline (a row of texel) cross from the kRight_SegSide |
+ * of a segment to the kLeft_SegSide, the winding score should |
+ * add 1. |
+ * And winding score should subtract 1 if the scanline cross |
+ * from kLeft_SegSide to kRight_SegSide. |
+ * Always return kNA_SegSide if the scanline does not cross over |
+ * the segment. Winding score should be zero in this case. |
+ * You can get the winding number for each texel of the scanline |
+ * by adding the winding score from left to right. |
+ * Assuming we always start from outside, so the winding number |
+ * should always start from zero. |
+ * ________ ________ |
+ * | | | | |
+ * ...R|L......L|R.....L|R......R|L..... <= Scanline & side of segment |
+ * |+1 |-1 |-1 |+1 <= Winding score |
+ * 0 | 1 ^ 0 ^ -1 |0 <= Winding number |
+ * |________| |________| |
+ * |
+ * .......NA................NA.......... |
+ * 0 0 |
+ */ |
+enum SegSide { |
+ kLeft_SegSide = -1, |
+ kOn_SegSide = 0, |
+ kRight_SegSide = 1, |
+ kNA_SegSide = 2, |
+}; |
+ |
+struct DFData { |
+ float fDistSq; // distance squared to nearest (so far) edge |
+ int fDeltaWindingScore; // +1 or -1 whenever a scanline cross over a segment |
+}; |
+ |
+/////////////////////////////////////////////////////////////////////////////// |
+ |
+/* |
+ * Type definition for double precision DPoint and DAffineMatrix |
+ */ |
+ |
+// Point with double precision |
+struct DPoint { |
+ double fX, fY; |
+ |
+ static DPoint Make(double x, double y) { |
+ DPoint pt; |
+ pt.set(x, y); |
+ return pt; |
+ } |
+ |
+ double x() const { return fX; } |
+ double y() const { return fY; } |
+ |
+ void set(double x, double y) { fX = x; fY = y; } |
+ |
+ /** Returns the euclidian distance from (0,0) to (x,y) |
+ */ |
+ static double Length(double x, double y) { |
+ return sqrt(x * x + y * y); |
+ } |
+ |
+ /** Returns the euclidian distance between a and b |
+ */ |
+ static double Distance(const DPoint& a, const DPoint& b) { |
+ return Length(a.fX - b.fX, a.fY - b.fY); |
+ } |
+ |
+ double distanceToSqd(const DPoint& pt) const { |
+ double dx = fX - pt.fX; |
+ double dy = fY - pt.fY; |
+ return dx * dx + dy * dy; |
+ } |
+}; |
+ |
+// Matrix with double precision for affine transformation. |
+// We don't store row 3 because its always (0, 0, 1). |
+class DAffineMatrix { |
+public: |
+ double operator[](int index) const { |
+ SkASSERT((unsigned)index < 6); |
+ return fMat[index]; |
+ } |
+ |
+ double& operator[](int index) { |
+ SkASSERT((unsigned)index < 6); |
+ return fMat[index]; |
+ } |
+ |
+ void setAffine(double m11, double m12, double m13, |
+ double m21, double m22, double m23) { |
+ fMat[0] = m11; |
+ fMat[1] = m12; |
+ fMat[2] = m13; |
+ fMat[3] = m21; |
+ fMat[4] = m22; |
+ fMat[5] = m23; |
+ } |
+ |
+ /** Set the matrix to identity |
+ */ |
+ void reset() { |
+ fMat[0] = fMat[4] = 1.0; |
+ fMat[1] = fMat[3] = |
+ fMat[2] = fMat[5] = 0.0; |
+ } |
+ |
+ // alias for reset() |
+ void setIdentity() { this->reset(); } |
+ |
+ DPoint mapPoint(const SkPoint& src) const { |
+ DPoint pt = DPoint::Make(src.x(), src.y()); |
+ return this->mapPoint(pt); |
+ } |
+ |
+ DPoint mapPoint(const DPoint& src) const { |
+ return DPoint::Make(fMat[0] * src.x() + fMat[1] * src.y() + fMat[2], |
+ fMat[3] * src.x() + fMat[4] * src.y() + fMat[5]); |
+ } |
+private: |
+ double fMat[6]; |
+}; |
+ |
+/////////////////////////////////////////////////////////////////////////////// |
+ |
+static const double kClose = (SK_Scalar1 / 16.0); |
+static const double kCloseSqd = SkScalarMul(kClose, kClose); |
+static const double kNearlyZero = (SK_Scalar1 / (1 << 18)); |
+static const double kTangentTolerance = (SK_Scalar1 / (1 << 11)); |
+static const float kConicTolerance = 0.25f; |
+ |
+static inline bool between_closed_open(double a, double b, double c, |
+ double tolerance = 0.0, |
+ bool xformToleranceToX = false) { |
+ SkASSERT(tolerance >= 0.0); |
+ double tolB = tolerance; |
+ double tolC = tolerance; |
+ |
+ if (xformToleranceToX) { |
+ // Canonical space is y = x^2 and the derivative of x^2 is 2x. |
+ // So the slope of the tangent line at point (x, x^2) is 2x. |
+ // |
+ // /| |
+ // sqrt(2x * 2x + 1 * 1) / | 2x |
+ // /__| |
+ // 1 |
+ tolB = tolerance / sqrt(4.0 * b * b + 1.0); |
+ tolC = tolerance / sqrt(4.0 * c * c + 1.0); |
+ } |
+ return b < c ? (a >= b - tolB && a < c - tolC) : |
+ (a >= c - tolC && a < b - tolB); |
+} |
+ |
+static inline bool between_closed(double a, double b, double c, |
+ double tolerance = 0.0, |
+ bool xformToleranceToX = false) { |
+ SkASSERT(tolerance >= 0.0); |
+ double tolB = tolerance; |
+ double tolC = tolerance; |
+ |
+ if (xformToleranceToX) { |
+ tolB = tolerance / sqrt(4.0 * b * b + 1.0); |
+ tolC = tolerance / sqrt(4.0 * c * c + 1.0); |
+ } |
+ return b < c ? (a >= b - tolB && a <= c + tolC) : |
+ (a >= c - tolC && a <= b + tolB); |
+} |
+ |
+static inline bool nearly_zero(double x, double tolerance = kNearlyZero) { |
+ SkASSERT(tolerance >= 0.0); |
+ return fabs(x) <= tolerance; |
+} |
+ |
+static inline bool nearly_equal(double x, double y, |
+ double tolerance = kNearlyZero, |
+ bool xformToleranceToX = false) { |
+ SkASSERT(tolerance >= 0.0); |
+ if (xformToleranceToX) { |
+ tolerance = tolerance / sqrt(4.0 * y * y + 1.0); |
+ } |
+ return fabs(x - y) <= tolerance; |
+} |
+ |
+static inline double sign_of(const double &val) { |
+ return (val < 0.0) ? -1.0 : 1.0; |
+} |
+ |
+static bool is_colinear(const SkPoint pts[3]) { |
+ return nearly_zero((pts[1].y() - pts[0].y()) * (pts[1].x() - pts[2].x()) - |
+ (pts[1].y() - pts[2].y()) * (pts[1].x() - pts[0].x()), kCloseSqd); |
+} |
+ |
+class PathSegment { |
+public: |
+ enum { |
+ // These enum values are assumed in member functions below. |
+ kLine = 0, |
+ kQuad = 1, |
+ } fType; |
+ |
+ // line uses 2 pts, quad uses 3 pts |
+ SkPoint fPts[3]; |
+ |
+ DPoint fP0T, fP2T; |
+ DAffineMatrix fXformMatrix; |
+ double fScalingFactor; |
+ double fScalingFactorSqd; |
+ double fNearlyZeroScaled; |
+ double fTangentTolScaledSqd; |
+ SkRect fBoundingBox; |
+ |
+ void init(); |
+ |
+ int countPoints() { |
+ GR_STATIC_ASSERT(0 == kLine && 1 == kQuad); |
+ return fType + 2; |
+ } |
+ |
+ const SkPoint& endPt() const { |
+ GR_STATIC_ASSERT(0 == kLine && 1 == kQuad); |
+ return fPts[fType + 1]; |
+ } |
+}; |
+ |
+typedef SkTArray<PathSegment, true> PathSegmentArray; |
+ |
+void PathSegment::init() { |
+ const DPoint p0 = DPoint::Make(fPts[0].x(), fPts[0].y()); |
+ const DPoint p2 = DPoint::Make(this->endPt().x(), this->endPt().y()); |
+ const double p0x = p0.x(); |
+ const double p0y = p0.y(); |
+ const double p2x = p2.x(); |
+ const double p2y = p2.y(); |
+ |
+ fBoundingBox.set(fPts[0], this->endPt()); |
+ |
+ if (fType == PathSegment::kLine) { |
+ fScalingFactorSqd = fScalingFactor = 1.0; |
+ double hypotenuse = DPoint::Distance(p0, p2); |
+ |
+ const double cosTheta = (p2x - p0x) / hypotenuse; |
+ const double sinTheta = (p2y - p0y) / hypotenuse; |
+ |
+ fXformMatrix.setAffine( |
+ cosTheta, sinTheta, -(cosTheta * p0x) - (sinTheta * p0y), |
+ -sinTheta, cosTheta, (sinTheta * p0x) - (cosTheta * p0y) |
+ ); |
+ } else { |
+ SkASSERT(fType == PathSegment::kQuad); |
+ |
+ // Calculate bounding box |
+ const SkPoint _P1mP0 = fPts[1] - fPts[0]; |
+ SkPoint t = _P1mP0 - fPts[2] + fPts[1]; |
+ t.fX = _P1mP0.x() / t.x(); |
+ t.fY = _P1mP0.y() / t.y(); |
+ t.fX = SkScalarClampMax(t.x(), 1.0); |
+ t.fY = SkScalarClampMax(t.y(), 1.0); |
+ t.fX = _P1mP0.x() * t.x(); |
+ t.fY = _P1mP0.y() * t.y(); |
+ const SkPoint m = fPts[0] + t; |
+ fBoundingBox.growToInclude(&m, 1); |
+ |
+ const double p1x = fPts[1].x(); |
+ const double p1y = fPts[1].y(); |
+ |
+ const double p0xSqd = p0x * p0x; |
+ const double p0ySqd = p0y * p0y; |
+ const double p2xSqd = p2x * p2x; |
+ const double p2ySqd = p2y * p2y; |
+ const double p1xSqd = p1x * p1x; |
+ const double p1ySqd = p1y * p1y; |
+ |
+ const double p01xProd = p0x * p1x; |
+ const double p02xProd = p0x * p2x; |
+ const double b12xProd = p1x * p2x; |
+ const double p01yProd = p0y * p1y; |
+ const double p02yProd = p0y * p2y; |
+ const double b12yProd = p1y * p2y; |
+ |
+ const double sqrtA = p0y - (2.0 * p1y) + p2y; |
+ const double a = sqrtA * sqrtA; |
+ const double h = -1.0 * (p0y - (2.0 * p1y) + p2y) * (p0x - (2.0 * p1x) + p2x); |
+ const double sqrtB = p0x - (2.0 * p1x) + p2x; |
+ const double b = sqrtB * sqrtB; |
+ const double c = (p0xSqd * p2ySqd) - (4.0 * p01xProd * b12yProd) |
+ - (2.0 * p02xProd * p02yProd) + (4.0 * p02xProd * p1ySqd) |
+ + (4.0 * p1xSqd * p02yProd) - (4.0 * b12xProd * p01yProd) |
+ + (p2xSqd * p0ySqd); |
+ const double g = (p0x * p02yProd) - (2.0 * p0x * p1ySqd) |
+ + (2.0 * p0x * b12yProd) - (p0x * p2ySqd) |
+ + (2.0 * p1x * p01yProd) - (4.0 * p1x * p02yProd) |
+ + (2.0 * p1x * b12yProd) - (p2x * p0ySqd) |
+ + (2.0 * p2x * p01yProd) + (p2x * p02yProd) |
+ - (2.0 * p2x * p1ySqd); |
+ const double f = -((p0xSqd * p2y) - (2.0 * p01xProd * p1y) |
+ - (2.0 * p01xProd * p2y) - (p02xProd * p0y) |
+ + (4.0 * p02xProd * p1y) - (p02xProd * p2y) |
+ + (2.0 * p1xSqd * p0y) + (2.0 * p1xSqd * p2y) |
+ - (2.0 * b12xProd * p0y) - (2.0 * b12xProd * p1y) |
+ + (p2xSqd * p0y)); |
+ |
+ const double cosTheta = sqrt(a / (a + b)); |
+ const double sinTheta = -1.0 * sign_of((a + b) * h) * sqrt(b / (a + b)); |
+ |
+ const double gDef = cosTheta * g - sinTheta * f; |
+ const double fDef = sinTheta * g + cosTheta * f; |
+ |
+ |
+ const double x0 = gDef / (a + b); |
+ const double y0 = (1.0 / (2.0 * fDef)) * (c - (gDef * gDef / (a + b))); |
+ |
+ |
+ const double lambda = -1.0 * ((a + b) / (2.0 * fDef)); |
+ fScalingFactor = fabs(1.0 / lambda); |
+ fScalingFactorSqd = fScalingFactor * fScalingFactor; |
+ |
+ const double lambda_cosTheta = lambda * cosTheta; |
+ const double lambda_sinTheta = lambda * sinTheta; |
+ |
+ fXformMatrix.setAffine( |
+ lambda_cosTheta, -lambda_sinTheta, lambda * x0, |
+ lambda_sinTheta, lambda_cosTheta, lambda * y0 |
+ ); |
+ } |
+ |
+ fNearlyZeroScaled = kNearlyZero / fScalingFactor; |
+ fTangentTolScaledSqd = kTangentTolerance * kTangentTolerance / fScalingFactorSqd; |
+ |
+ fP0T = fXformMatrix.mapPoint(p0); |
+ fP2T = fXformMatrix.mapPoint(p2); |
+} |
+ |
+static void init_distances(DFData* data, int size) { |
+ DFData* currData = data; |
+ |
+ for (int i = 0; i < size; ++i) { |
+ // init distance to "far away" |
+ currData->fDistSq = SK_DistanceFieldMagnitude * SK_DistanceFieldMagnitude; |
+ currData->fDeltaWindingScore = 0; |
+ ++currData; |
+ } |
+} |
+ |
+static inline void add_line_to_segment(const SkPoint pts[2], |
+ PathSegmentArray* segments) { |
+ segments->push_back(); |
+ segments->back().fType = PathSegment::kLine; |
+ segments->back().fPts[0] = pts[0]; |
+ segments->back().fPts[1] = pts[1]; |
+ |
+ segments->back().init(); |
+} |
+ |
+static inline void add_quad_segment(const SkPoint pts[3], |
+ PathSegmentArray* segments) { |
+ if (pts[0].distanceToSqd(pts[1]) < kCloseSqd || |
+ pts[1].distanceToSqd(pts[2]) < kCloseSqd || |
+ is_colinear(pts)) { |
+ if (pts[0] != pts[2]) { |
+ SkPoint line_pts[2]; |
+ line_pts[0] = pts[0]; |
+ line_pts[1] = pts[2]; |
+ add_line_to_segment(line_pts, segments); |
+ } |
+ } else { |
+ segments->push_back(); |
+ segments->back().fType = PathSegment::kQuad; |
+ segments->back().fPts[0] = pts[0]; |
+ segments->back().fPts[1] = pts[1]; |
+ segments->back().fPts[2] = pts[2]; |
+ |
+ segments->back().init(); |
+ } |
+} |
+ |
+static inline void add_cubic_segments(const SkPoint pts[4], |
+ PathSegmentArray* segments) { |
+ SkSTArray<15, SkPoint, true> quads; |
+ GrPathUtils::convertCubicToQuads(pts, SK_Scalar1, &quads); |
+ int count = quads.count(); |
+ for (int q = 0; q < count; q += 3) { |
+ add_quad_segment(&quads[q], segments); |
+ } |
+} |
+ |
+static float calculate_nearest_point_for_quad( |
+ const PathSegment& segment, |
+ const DPoint &xFormPt) { |
+ static const float kThird = 0.33333333333f; |
+ static const float kTwentySeventh = 0.037037037f; |
+ |
+ const float a = 0.5f - (float)xFormPt.y(); |
+ const float b = -0.5f * (float)xFormPt.x(); |
+ |
+ const float a3 = a * a * a; |
+ const float b2 = b * b; |
+ |
+ const float c = (b2 * 0.25f) + (a3 * kTwentySeventh); |
+ |
+ if (c >= 0.f) { |
+ const float sqrtC = sqrt(c); |
+ const float result = (float)cbrt((-b * 0.5f) + sqrtC) + (float)cbrt((-b * 0.5f) - sqrtC); |
+ return result; |
+ } else { |
+ const float cosPhi = (float)sqrt((b2 * 0.25f) * (-27.f / a3)) * ((b > 0) ? -1.f : 1.f); |
+ const float phi = (float)acos(cosPhi); |
+ float result; |
+ if (xFormPt.x() > 0.f) { |
+ result = 2.f * (float)sqrt(-a * kThird) * (float)cos(phi * kThird); |
+ if (!between_closed(result, segment.fP0T.x(), segment.fP2T.x())) { |
+ result = 2.f * (float)sqrt(-a * kThird) * (float)cos((phi * kThird) + (SK_ScalarPI * 2.f * kThird)); |
+ } |
+ } else { |
+ result = 2.f * (float)sqrt(-a * kThird) * (float)cos((phi * kThird) + (SK_ScalarPI * 2.f * kThird)); |
+ if (!between_closed(result, segment.fP0T.x(), segment.fP2T.x())) { |
+ result = 2.f * (float)sqrt(-a * kThird) * (float)cos(phi * kThird); |
+ } |
+ } |
+ return result; |
+ } |
+} |
+ |
+// This structure contains some intermediate values shared by the same row. |
+// It is used to calculate segment side of a quadratic bezier. |
+struct RowData { |
+ // The intersection type of a scanline and y = x * x parabola in canonical space. |
+ enum IntersectionType { |
+ kNoIntersection, |
+ kVerticalLine, |
+ kTangentLine, |
+ kTwoPointsIntersect |
+ } fIntersectionType; |
+ |
+ // The direction of the quadratic segment/scanline in the canonical space. |
+ // 1: The quadratic segment/scanline going from negative x-axis to positive x-axis. |
+ // 0: The scanline is a vertical line in the canonical space. |
+ // -1: The quadratic segment/scanline going from positive x-axis to negative x-axis. |
+ int fQuadXDirection; |
+ int fScanlineXDirection; |
+ |
+ // The y-value(equal to x*x) of intersection point for the kVerticalLine intersection type. |
+ double fYAtIntersection; |
+ |
+ // The x-value for two intersection points. |
+ double fXAtIntersection1; |
+ double fXAtIntersection2; |
+}; |
+ |
+void precomputation_for_row( |
+ RowData *rowData, |
+ const PathSegment& segment, |
+ const SkPoint& pointLeft, |
+ const SkPoint& pointRight |
+ ) { |
+ if (segment.fType != PathSegment::kQuad) { |
+ return; |
+ } |
+ |
+ const DPoint& xFormPtLeft = segment.fXformMatrix.mapPoint(pointLeft); |
+ const DPoint& xFormPtRight = segment.fXformMatrix.mapPoint(pointRight);; |
+ |
+ rowData->fQuadXDirection = (int)sign_of(segment.fP2T.x() - segment.fP0T.x()); |
+ rowData->fScanlineXDirection = (int)sign_of(xFormPtRight.x() - xFormPtLeft.x()); |
+ |
+ const double x1 = xFormPtLeft.x(); |
+ const double y1 = xFormPtLeft.y(); |
+ const double x2 = xFormPtRight.x(); |
+ const double y2 = xFormPtRight.y(); |
+ |
+ if (nearly_equal(x1, x2, segment.fNearlyZeroScaled, true)) { |
+ rowData->fIntersectionType = RowData::kVerticalLine; |
+ rowData->fYAtIntersection = x1 * x1; |
+ rowData->fScanlineXDirection = 0; |
+ return; |
+ } |
+ |
+ // Line y = mx + b |
+ const double m = (y2 - y1) / (x2 - x1); |
+ const double b = -m * x1 + y1; |
+ |
+ const double m2 = m * m; |
+ const double c = m2 + 4.0 * b; |
+ |
+ const double tol = 4.0 * segment.fTangentTolScaledSqd / (m2 + 1.0); |
+ |
+ // Check if the scanline is the tangent line of the curve, |
+ // and the curve start or end at the same y-coordinate of the scanline |
+ if ((rowData->fScanlineXDirection == 1 && |
+ (segment.fPts[0].y() == pointLeft.y() || |
+ segment.fPts[2].y() == pointLeft.y())) && |
+ nearly_zero(c, tol)) { |
+ rowData->fIntersectionType = RowData::kTangentLine; |
+ rowData->fXAtIntersection1 = m / 2.0; |
+ rowData->fXAtIntersection2 = m / 2.0; |
+ } else if (c <= 0.0) { |
+ rowData->fIntersectionType = RowData::kNoIntersection; |
+ return; |
+ } else { |
+ rowData->fIntersectionType = RowData::kTwoPointsIntersect; |
+ const double d = sqrt(c); |
+ rowData->fXAtIntersection1 = (m + d) / 2.0; |
+ rowData->fXAtIntersection2 = (m - d) / 2.0; |
+ } |
+} |
+ |
+SegSide calculate_side_of_quad( |
+ const PathSegment& segment, |
+ const SkPoint& point, |
+ const DPoint& xFormPt, |
+ const RowData& rowData) { |
+ SegSide side = kNA_SegSide; |
+ |
+ if (RowData::kVerticalLine == rowData.fIntersectionType) { |
+ side = (SegSide)(int)(sign_of(xFormPt.y() - rowData.fYAtIntersection) * rowData.fQuadXDirection); |
+ } |
+ else if (RowData::kTwoPointsIntersect == rowData.fIntersectionType) { |
+ const double p1 = rowData.fXAtIntersection1; |
+ const double p2 = rowData.fXAtIntersection2; |
+ |
+ int signP1 = (int)sign_of(p1 - xFormPt.x()); |
+ bool includeP1 = true; |
+ bool includeP2 = true; |
+ |
+ if (rowData.fScanlineXDirection == 1) { |
+ if ((rowData.fQuadXDirection == -1 && segment.fPts[0].y() <= point.y() && |
+ nearly_equal(segment.fP0T.x(), p1, segment.fNearlyZeroScaled, true)) || |
+ (rowData.fQuadXDirection == 1 && segment.fPts[2].y() <= point.y() && |
+ nearly_equal(segment.fP2T.x(), p1, segment.fNearlyZeroScaled, true))) { |
+ includeP1 = false; |
+ } |
+ if ((rowData.fQuadXDirection == -1 && segment.fPts[2].y() <= point.y() && |
+ nearly_equal(segment.fP2T.x(), p2, segment.fNearlyZeroScaled, true)) || |
+ (rowData.fQuadXDirection == 1 && segment.fPts[0].y() <= point.y() && |
+ nearly_equal(segment.fP0T.x(), p2, segment.fNearlyZeroScaled, true))) { |
+ includeP2 = false; |
+ } |
+ } |
+ |
+ if (includeP1 && between_closed(p1, segment.fP0T.x(), segment.fP2T.x(), |
+ segment.fNearlyZeroScaled, true)) { |
+ side = (SegSide)(signP1 * rowData.fQuadXDirection); |
+ } |
+ if (includeP2 && between_closed(p2, segment.fP0T.x(), segment.fP2T.x(), |
+ segment.fNearlyZeroScaled, true)) { |
+ int signP2 = (int)sign_of(p2 - xFormPt.x()); |
+ if (side == kNA_SegSide || signP2 == 1) { |
+ side = (SegSide)(-signP2 * rowData.fQuadXDirection); |
+ } |
+ } |
+ } else if (RowData::kTangentLine == rowData.fIntersectionType) { |
+ // The scanline is the tangent line of current quadratic segment. |
+ |
+ const double p = rowData.fXAtIntersection1; |
+ int signP = (int)sign_of(p - xFormPt.x()); |
+ if (rowData.fScanlineXDirection == 1) { |
+ // The path start or end at the tangent point. |
+ if (segment.fPts[0].y() == point.y()) { |
+ side = (SegSide)(signP); |
+ } else if (segment.fPts[2].y() == point.y()) { |
+ side = (SegSide)(-signP); |
+ } |
+ } |
+ } |
+ |
+ return side; |
+} |
+ |
+static float distance_to_segment(const SkPoint& point, |
+ const PathSegment& segment, |
+ const RowData& rowData, |
+ SegSide* side) { |
+ SkASSERT(side); |
+ |
+ const DPoint xformPt = segment.fXformMatrix.mapPoint(point); |
+ |
+ if (segment.fType == PathSegment::kLine) { |
+ float result = SK_DistanceFieldPad * SK_DistanceFieldPad; |
+ |
+ if (between_closed(xformPt.x(), segment.fP0T.x(), segment.fP2T.x())) { |
+ result = (float)(xformPt.y() * xformPt.y()); |
+ } else if (xformPt.x() < segment.fP0T.x()) { |
+ result = (float)(xformPt.x() * xformPt.x() + xformPt.y() * xformPt.y()); |
+ } else { |
+ result = (float)((xformPt.x() - segment.fP2T.x()) * (xformPt.x() - segment.fP2T.x()) |
+ + xformPt.y() * xformPt.y()); |
+ } |
+ |
+ if (between_closed_open(point.y(), segment.fBoundingBox.top(), |
+ segment.fBoundingBox.bottom())) { |
+ *side = (SegSide)(int)sign_of(xformPt.y()); |
+ } else { |
+ *side = kNA_SegSide; |
+ } |
+ return result; |
+ } else { |
+ SkASSERT(segment.fType == PathSegment::kQuad); |
+ |
+ const float nearestPoint = calculate_nearest_point_for_quad(segment, xformPt); |
+ |
+ float dist; |
+ |
+ if (between_closed(nearestPoint, segment.fP0T.x(), segment.fP2T.x())) { |
+ DPoint x = DPoint::Make(nearestPoint, nearestPoint * nearestPoint); |
+ dist = (float)xformPt.distanceToSqd(x); |
+ } else { |
+ const float distToB0T = (float)xformPt.distanceToSqd(segment.fP0T); |
+ const float distToB2T = (float)xformPt.distanceToSqd(segment.fP2T); |
+ |
+ if (distToB0T < distToB2T) { |
+ dist = distToB0T; |
+ } else { |
+ dist = distToB2T; |
+ } |
+ } |
+ |
+ if (between_closed_open(point.y(), segment.fBoundingBox.top(), |
+ segment.fBoundingBox.bottom())) { |
+ *side = calculate_side_of_quad(segment, point, xformPt, rowData); |
+ } else { |
+ *side = kNA_SegSide; |
+ } |
+ |
+ return (float)(dist * segment.fScalingFactorSqd); |
+ } |
+} |
+ |
+static void calculate_distance_field_data(PathSegmentArray* segments, |
+ DFData* dataPtr, |
+ int width, int height) { |
+ int count = segments->count(); |
+ for (int a = 0; a < count; ++a) { |
+ PathSegment& segment = (*segments)[a]; |
+ const SkRect& segBB = segment.fBoundingBox.makeOutset( |
+ SK_DistanceFieldPad, SK_DistanceFieldPad); |
+ int startColumn = (int)segBB.left(); |
+ int endColumn = SkScalarCeilToInt(segBB.right()); |
+ |
+ int startRow = (int)segBB.top(); |
+ int endRow = SkScalarCeilToInt(segBB.bottom()); |
+ |
+ SkASSERT((startColumn >= 0) && "StartColumn < 0!"); |
+ SkASSERT((endColumn <= width) && "endColumn > width!"); |
+ SkASSERT((startRow >= 0) && "StartRow < 0!"); |
+ SkASSERT((endRow <= height) && "EndRow > height!"); |
+ |
+ // Clip inside the distance field to avoid overflow |
+ startColumn = SkTMax(startColumn, 0); |
+ endColumn = SkTMin(endColumn, width); |
+ startRow = SkTMax(startRow, 0); |
+ endRow = SkTMin(endRow, height); |
+ |
+ for (int row = startRow; row < endRow; ++row) { |
+ SegSide prevSide = kNA_SegSide; |
+ const float pY = row + 0.5f; |
+ RowData rowData; |
+ |
+ const SkPoint pointLeft = SkPoint::Make((SkScalar)startColumn, pY); |
+ const SkPoint pointRight = SkPoint::Make((SkScalar)endColumn, pY); |
+ |
+ if (between_closed_open(pY, segment.fBoundingBox.top(), |
+ segment.fBoundingBox.bottom())) { |
+ precomputation_for_row(&rowData, segment, pointLeft, pointRight); |
+ } |
+ |
+ for (int col = startColumn; col < endColumn; ++col) { |
+ int idx = (row * width) + col; |
+ |
+ const float pX = col + 0.5f; |
+ const SkPoint point = SkPoint::Make(pX, pY); |
+ |
+ const float distSq = dataPtr[idx].fDistSq; |
+ int dilation = distSq < 1.5 * 1.5 ? 1 : |
+ distSq < 2.5 * 2.5 ? 2 : |
+ distSq < 3.5 * 3.5 ? 3 : SK_DistanceFieldPad; |
+ if (dilation > SK_DistanceFieldPad) { |
+ dilation = SK_DistanceFieldPad; |
+ } |
+ |
+ // Optimisation for not calculating some points. |
+ if (dilation != SK_DistanceFieldPad && !segment.fBoundingBox.roundOut() |
+ .makeOutset(dilation, dilation).contains(col, row)) { |
+ continue; |
+ } |
+ |
+ SegSide side = kNA_SegSide; |
+ int deltaWindingScore = 0; |
+ float currDistSq = distance_to_segment(point, segment, rowData, &side); |
+ if (prevSide == kLeft_SegSide && side == kRight_SegSide) { |
+ deltaWindingScore = -1; |
+ } else if (prevSide == kRight_SegSide && side == kLeft_SegSide) { |
+ deltaWindingScore = 1; |
+ } |
+ |
+ prevSide = side; |
+ |
+ if (currDistSq < distSq) { |
+ dataPtr[idx].fDistSq = currDistSq; |
+ } |
+ |
+ dataPtr[idx].fDeltaWindingScore += deltaWindingScore; |
+ } |
+ } |
+ } |
+} |
+ |
+template <int distanceMagnitude> |
+static unsigned char pack_distance_field_val(float dist) { |
+ // The distance field is constructed as unsigned char values, so that the zero value is at 128, |
+ // Beside 128, we have 128 values in range [0, 128), but only 127 values in range (128, 255]. |
+ // So we multiply distanceMagnitude by 127/128 at the latter range to avoid overflow. |
+ dist = SkScalarPin(-dist, -distanceMagnitude, distanceMagnitude * 127.0f / 128.0f); |
+ |
+ // Scale into the positive range for unsigned distance. |
+ dist += distanceMagnitude; |
+ |
+ // Scale into unsigned char range. |
+ // Round to place negative and positive values as equally as possible around 128 |
+ // (which represents zero). |
+ return (unsigned char)SkScalarRoundToInt(dist / (2 * distanceMagnitude) * 256.0f); |
+} |
+ |
+bool GrGenerateDistanceFieldFromPath(unsigned char* distanceField, |
+ const SkPath& path, const SkMatrix& drawMatrix, |
+ int width, int height, size_t rowBytes) { |
+ SkASSERT(distanceField); |
+ |
+ SkDEBUGCODE(SkPath xformPath;); |
+ SkDEBUGCODE(path.transform(drawMatrix, &xformPath)); |
+ SkDEBUGCODE(SkIRect pathBounds = xformPath.getBounds().roundOut()); |
+ SkDEBUGCODE(SkIRect expectPathBounds = SkIRect::MakeWH(width - 2 * SK_DistanceFieldPad, |
+ height - 2 * SK_DistanceFieldPad)); |
+ SkASSERT(expectPathBounds.isEmpty() || |
+ expectPathBounds.contains(pathBounds.x(), pathBounds.y())); |
+ SkASSERT(expectPathBounds.isEmpty() || pathBounds.isEmpty() || |
+ expectPathBounds.contains(pathBounds)); |
+ |
+ SkPath simplifiedPath; |
+ SkPath workingPath; |
+ if (Simplify(path, &simplifiedPath)) { |
+ workingPath = simplifiedPath; |
+ } else { |
+ workingPath = path; |
+ } |
+ |
+ if (!IsDistanceFieldSupportedFillType(workingPath.getFillType())) { |
+ return false; |
+ } |
+ |
+ workingPath.transform(drawMatrix); |
+ |
+ SkDEBUGCODE(pathBounds = workingPath.getBounds().roundOut()); |
+ SkASSERT(expectPathBounds.isEmpty() || |
+ expectPathBounds.contains(pathBounds.x(), pathBounds.y())); |
+ SkASSERT(expectPathBounds.isEmpty() || pathBounds.isEmpty() || |
+ expectPathBounds.contains(pathBounds)); |
+ |
+ // translate path to offset (SK_DistanceFieldPad, SK_DistanceFieldPad) |
+ SkMatrix dfMatrix; |
+ dfMatrix.setTranslate(SK_DistanceFieldPad, SK_DistanceFieldPad); |
+ workingPath.transform(dfMatrix); |
+ |
+ // create temp data |
+ size_t dataSize = width * height * sizeof(DFData); |
+ SkAutoSMalloc<1024> dfStorage(dataSize); |
+ DFData* dataPtr = (DFData*) dfStorage.get(); |
+ |
+ // create initial distance data |
+ init_distances(dataPtr, width * height); |
+ |
+ SkPath::Iter iter(workingPath, true); |
+ SkSTArray<15, PathSegment, true> segments; |
+ |
+ for (;;) { |
+ SkPoint pts[4]; |
+ SkPath::Verb verb = iter.next(pts); |
+ switch (verb) { |
+ case SkPath::kMove_Verb: |
+ break; |
+ case SkPath::kLine_Verb: { |
+ add_line_to_segment(pts, &segments); |
+ break; |
+ } |
+ case SkPath::kQuad_Verb: |
+ add_quad_segment(pts, &segments); |
+ break; |
+ case SkPath::kConic_Verb: { |
+ SkScalar weight = iter.conicWeight(); |
+ SkAutoConicToQuads converter; |
+ const SkPoint* quadPts = converter.computeQuads(pts, weight, kConicTolerance); |
+ for (int i = 0; i < converter.countQuads(); ++i) { |
+ add_quad_segment(quadPts + 2*i, &segments); |
+ } |
+ break; |
+ } |
+ case SkPath::kCubic_Verb: { |
+ add_cubic_segments(pts, &segments); |
+ break; |
+ }; |
+ default: |
+ break; |
+ } |
+ if (verb == SkPath::kDone_Verb) { |
+ break; |
+ } |
+ } |
+ |
+ calculate_distance_field_data(&segments, dataPtr, width, height); |
+ |
+ for (int row = 0; row < height; ++row) { |
+ int windingNumber = 0; // Winding number start from zero for each scanline |
+ for (int col = 0; col < width; ++col) { |
+ int idx = (row * width) + col; |
+ windingNumber += dataPtr[idx].fDeltaWindingScore; |
+ |
+ enum DFSign { |
+ kInside = -1, |
+ kOutside = 1 |
+ } dfSign; |
+ |
+ if (workingPath.getFillType() == SkPath::kWinding_FillType) { |
+ dfSign = windingNumber ? kInside : kOutside; |
+ } else if (workingPath.getFillType() == SkPath::kInverseWinding_FillType) { |
+ dfSign = windingNumber ? kOutside : kInside; |
+ } else if (workingPath.getFillType() == SkPath::kEvenOdd_FillType) { |
+ dfSign = (windingNumber % 2) ? kInside : kOutside; |
+ } else { |
+ SkASSERT(workingPath.getFillType() == SkPath::kInverseEvenOdd_FillType); |
+ dfSign = (windingNumber % 2) ? kOutside : kInside; |
+ } |
+ |
+ // The winding number at the end of a scanline should be zero. |
+ SkASSERT(((col != width - 1) || (windingNumber == 0)) && |
+ "Winding number should be zero at the end of a scan line."); |
+ // Fallback to use SkPath::contains to determine the sign of pixel in release build. |
+ if (col == width - 1 && windingNumber != 0) { |
+ for (int col = 0; col < width; ++col) { |
+ int idx = (row * width) + col; |
+ dfSign = workingPath.contains(col + 0.5, row + 0.5) ? kInside : kOutside; |
+ const float miniDist = sqrt(dataPtr[idx].fDistSq); |
+ const float dist = dfSign * miniDist; |
+ |
+ unsigned char pixelVal = pack_distance_field_val<SK_DistanceFieldMagnitude>(dist); |
+ |
+ distanceField[(row * rowBytes) + col] = pixelVal; |
+ } |
+ continue; |
+ } |
+ |
+ const float miniDist = sqrt(dataPtr[idx].fDistSq); |
+ const float dist = dfSign * miniDist; |
+ |
+ unsigned char pixelVal = pack_distance_field_val<SK_DistanceFieldMagnitude>(dist); |
+ |
+ distanceField[(row * rowBytes) + col] = pixelVal; |
+ } |
+ } |
+ return true; |
+} |