Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(371)

Side by Side Diff: src/gpu/GrDistanceFieldGenFromVector.cpp

Issue 1643143002: Generate Signed Distance Field directly from vector path (Closed) Base URL: https://skia.googlesource.com/skia.git@master
Patch Set: Simplify path and add comments Created 4 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 /*
2 * Copyright 2016 ARM Ltd.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "GrDistanceFieldGenFromVector.h"
9 #include "SkPoint.h"
10 #include "SkGeometry.h"
11 #include "GrPathUtils.h"
12 #include "GrConfig.h"
13
14 /**
15 * If a scanline (a row of texel) cross from the kRight_SegSide
16 * of a segment to the kLeft_SegSide, the winding score should
17 * add 1.
18 * And winding score should subtract 1 if the scanline cross
19 * from kLeft_SegSide to kRight_SegSide.
20 * Always return kNA_SegSide if the scanline does not cross over
21 * the segment. Winding score should be zero in this case.
22 * You can get the winding number for each texel of the scanline
23 * by adding the winding score from left to right.
24 * Assuming we always start from outside, so the winding number
25 * should always start from zero.
26 * ________ ________
27 * | | | |
28 * ...R|L......L|R.....L|R......R|L..... <= Scanline & side of segment
29 * |+1 |-1 |-1 |+1 <= Winding score
30 * 0 | 1 ^ 0 ^ -1 |0 <= Winding number
31 * |________| |________|
32 *
33 * .......NA................NA..........
34 * 0 0
35 */
36 enum SegSide {
37 kLeft_SegSide = -1,
38 kOn_SegSide = 0,
39 kRight_SegSide = 1,
40 kNA_SegSide = 2,
41 };
42
43 struct DFData {
44 float fDistSq; // distance squared to nearest (so far) edge
45 int fDeltaWindingScore; // +1 or -1 whenever a scanline cross over a segme nt
46 };
47
48 ///////////////////////////////////////////////////////////////////////////////
49
50 /*
51 * Type definition for double precision DScalar, DPoint and DAffineMatrix
52 */
53
54 // Scalar with double precision
55 typedef double DScalar;
56
57 // Point with double precision
58 struct DPoint {
59 DScalar fX, fY;
60
61 static DPoint Make(DScalar x, DScalar y) {
62 DPoint pt;
63 pt.set(x, y);
64 return pt;
65 }
66
67 DScalar x() const { return fX; }
68 DScalar y() const { return fY; }
69
70 void set(DScalar x, DScalar y) { fX = x; fY = y; }
71
72 /** Returns the euclidian distance from (0,0) to (x,y)
73 */
74 static DScalar Length(DScalar x, DScalar y) {
75 return sqrt(x * x + y * y);
76 }
77
78 /** Returns the euclidian distance between a and b
79 */
80 static DScalar Distance(const DPoint& a, const DPoint& b) {
81 return Length(a.fX - b.fX, a.fY - b.fY);
82 }
83
84 DScalar distanceToSqd(const DPoint& pt) const {
85 DScalar dx = fX - pt.fX;
86 DScalar dy = fY - pt.fY;
87 return dx * dx + dy * dy;
88 }
89 };
90
91 // Matrix with double precision for affine transformation.
92 // We don't store row 3 because its always (0, 0, 1).
93 class DAffineMatrix {
94 public:
95 DScalar operator[](int index) const {
96 SkASSERT((unsigned)index < 6);
97 return fMat[index];
98 }
99
100 DScalar& operator[](int index) {
101 SkASSERT((unsigned)index < 6);
102 return fMat[index];
103 }
104
105 void setAffine(DScalar m11, DScalar m12, DScalar m13,
106 DScalar m21, DScalar m22, DScalar m23) {
107 fMat[0] = m11;
108 fMat[1] = m12;
109 fMat[2] = m13;
110 fMat[3] = m21;
111 fMat[4] = m22;
112 fMat[5] = m23;
113 }
114
115 /** Set the matrix to identity
116 */
117 void reset() {
118 fMat[0] = fMat[4] = 1.0;
119 fMat[1] = fMat[3] =
120 fMat[2] = fMat[5] = 0.0;
121 }
122
123 // alias for reset()
124 void setIdentity() { this->reset(); }
125
126 DPoint mapPoint(const SkPoint& src) const {
127 DPoint pt = DPoint::Make(src.x(), src.y());
128 return this->mapPoint(pt);
129 }
130
131 DPoint mapPoint(const DPoint& src) const {
132 return DPoint::Make(fMat[0] * src.x() + fMat[1] * src.y() + fMat[2],
133 fMat[3] * src.x() + fMat[4] * src.y() + fMat[5]);
134 }
135 private:
136 DScalar fMat[6];
137 };
138
139 ///////////////////////////////////////////////////////////////////////////////
140
141 static const DScalar kClose = (SK_Scalar1 / 16.0);
142 static const DScalar kCloseSqd = SkScalarMul(kClose, kClose);
143 static const DScalar kNearlyZero = (SK_Scalar1 / (1 << 15));
144
145 static inline bool between_closed_open(DScalar a, DScalar b, DScalar c,
146 DScalar tolerance = kNearlyZero) {
147 SkASSERT(tolerance >= 0.f);
148 return b < c ? (a >= b - tolerance && a < c - tolerance) :
149 (a >= c - tolerance && a < b - tolerance);
150 }
151
152 static inline bool between_closed(DScalar a, DScalar b, DScalar c,
153 DScalar tolerance = kNearlyZero) {
154 SkASSERT(tolerance >= 0.f);
155 return b < c ? (a >= b - tolerance && a <= c + tolerance) :
156 (a >= c - tolerance && a <= b + tolerance);
157 }
158
159 static inline bool nearly_zero(DScalar x, DScalar tolerance = kNearlyZero) {
160 SkASSERT(tolerance >= 0.f);
161 return fabs(x) <= tolerance;
162 }
163
164 static inline bool nearly_equal(DScalar x, DScalar y, DScalar tolerance = kNearl yZero) {
165 SkASSERT(tolerance >= 0.f);
166 return fabs(x - y) <= tolerance;
167 }
168
169 static inline float sign_of(const float &val) {
170 return (val < 0.f) ? -1.f : 1.f;
171 }
172
173 static bool is_colinear(const SkPoint pts[3]) {
174 return nearly_zero((pts[1].y() - pts[0].y()) * (pts[1].x() - pts[2].x()) -
175 (pts[1].y() - pts[2].y()) * (pts[1].x() - pts[0].x()));
176 }
177
178 class PathSegment {
179 public:
180 enum {
181 // These enum values are assumed in member functions below.
182 kLine = 0,
183 kQuad = 1,
184 } fType;
185
186 // line uses 2 pts, quad uses 3 pts
187 SkPoint fPts[3];
188
189 DPoint fP0T, fP2T;
190 DAffineMatrix fXformMatrix;
191 DScalar fScalingFactor;
192 SkRect fBoundingBox;
193
194 void init();
195
196 int countPoints() {
197 GR_STATIC_ASSERT(0 == kLine && 1 == kQuad);
198 return fType + 2;
199 }
200
201 const SkPoint& endPt() const {
202 GR_STATIC_ASSERT(0 == kLine && 1 == kQuad);
203 return fPts[fType + 1];
204 };
205 };
206
207 typedef SkTArray<PathSegment, true> PathSegmentArray;
208
209 void PathSegment::init() {
210 const DPoint p0 = DPoint::Make(fPts[0].x(), fPts[0].y());
211 const DPoint p2 = DPoint::Make(this->endPt().x(), this->endPt().y());
212 const DScalar p0x = p0.x();
213 const DScalar p0y = p0.y();
214 const DScalar p2x = p2.x();
215 const DScalar p2y = p2.y();
216
217 fBoundingBox.set(fPts[0], this->endPt());
218
219 if (fType == PathSegment::kLine) {
220 fScalingFactor = DPoint::Distance(p0, p2);
221
222 const DScalar cosTheta = (p2x - p0x) / fScalingFactor;
223 const DScalar sinTheta = (p2y - p0y) / fScalingFactor;
224
225 fXformMatrix.setAffine(
226 cosTheta, sinTheta, -(cosTheta * p0x) - (sinTheta * p0y),
227 -sinTheta, cosTheta, (sinTheta * p0x) - (cosTheta * p0y)
228 );
229 } else {
230 SkASSERT(fType == PathSegment::kQuad);
231
232 // Calculate bounding box
233 const SkPoint _P1mP0 = fPts[1] - fPts[0];
234 SkPoint t = _P1mP0 - fPts[2] + fPts[1];
235 t.fX = _P1mP0.x() / t.x();
236 t.fY = _P1mP0.y() / t.y();
237 t.fX = SkScalarClampMax(t.x(), 1.0);
238 t.fY = SkScalarClampMax(t.y(), 1.0);
239 t.fX = _P1mP0.x() * t.x();
240 t.fY = _P1mP0.y() * t.y();
241 const SkPoint m = fPts[0] + t;
242 fBoundingBox.growToInclude(&m, 1);
243
244 const DScalar p1x = fPts[1].x();
245 const DScalar p1y = fPts[1].y();
246
247 const DScalar p0xSqd = p0x * p0x;
248 const DScalar p0ySqd = p0y * p0y;
249 const DScalar p2xSqd = p2x * p2x;
250 const DScalar p2ySqd = p2y * p2y;
251 const DScalar p1xSqd = p1x * p1x;
252 const DScalar p1ySqd = p1y * p1y;
253
254 const DScalar p01xProd = p0x * p1x;
255 const DScalar p02xProd = p0x * p2x;
256 const DScalar b12xProd = p1x * p2x;
257 const DScalar p01yProd = p0y * p1y;
258 const DScalar p02yProd = p0y * p2y;
259 const DScalar b12yProd = p1y * p2y;
260
261 const DScalar sqrtA = p0y - (2.0 * p1y) + p2y;
262 const DScalar a = sqrtA * sqrtA;
263 const DScalar h = -1.0 * (p0y - (2.0 * p1y) + p2y) * (p0x - (2.0 * p1x) + p2x);
264 const DScalar sqrtB = p0x - (2.0 * p1x) + p2x;
265 const DScalar b = sqrtB * sqrtB;
266 const DScalar c = (p0xSqd * p2ySqd) - (4.0 * p01xProd * b12yProd)
267 - (2.0 * p02xProd * p02yProd) + (4.0 * p02xProd * p1ySqd)
268 + (4.0 * p1xSqd * p02yProd) - (4.0 * b12xProd * p01yProd)
269 + (p2xSqd * p0ySqd);
270 const DScalar g = (p0x * p02yProd) - (2.0 * p0x * p1ySqd)
271 + (2.0 * p0x * b12yProd) - (p0x * p2ySqd)
272 + (2.0 * p1x * p01yProd) - (4.0 * p1x * p02yProd)
273 + (2.0 * p1x * b12yProd) - (p2x * p0ySqd)
274 + (2.0 * p2x * p01yProd) + (p2x * p02yProd)
275 - (2.0 * p2x * p1ySqd);
276 const DScalar f = -((p0xSqd * p2y) - (2.0 * p01xProd * p1y)
277 - (2.0 * p01xProd * p2y) - (p02xProd * p0y)
278 + (4.0 * p02xProd * p1y) - (p02xProd * p2y)
279 + (2.0 * p1xSqd * p0y) + (2.0 * p1xSqd * p2y)
280 - (2.0 * b12xProd * p0y) - (2.0 * b12xProd * p1y)
281 + (p2xSqd * p0y));
282
283 const DScalar cosTheta = sqrt(a / (a + b));
284 const DScalar sinTheta = -1.0 * sign_of((a + b) * h) * sqrt(b / (a + b)) ;
285
286 const DScalar gDef = cosTheta * g - sinTheta * f;
287 const DScalar fDef = sinTheta * g + cosTheta * f;
288
289
290 const DScalar x0 = gDef / (a + b);
291 const DScalar y0 = (1.0 / (2.0 * fDef)) * (c - (gDef * gDef / (a + b)));
292
293
294 const DScalar lambda = -1.0 * ((a + b) / (2.0 * fDef));
295 fScalingFactor = (1.0 / lambda);
296 fScalingFactor *= fScalingFactor;
297
298 const DScalar lambda_cosTheta = lambda * cosTheta;
299 const DScalar lambda_sinTheta = lambda * sinTheta;
300
301 fXformMatrix.setAffine(
302 lambda_cosTheta, -lambda_sinTheta, lambda * x0,
303 lambda_sinTheta, lambda_cosTheta, lambda * y0
304 );
305 }
306
307 fP0T = fXformMatrix.mapPoint(p0);
308 fP2T = fXformMatrix.mapPoint(p2);
309 }
310
311 static void init_distances(DFData* data, int size) {
312 DFData* currData = data;
313
314 for (int i = 0; i < size; ++i) {
315 // init distance to "far away"
316 currData->fDistSq = SK_DistanceFieldMagnitude * SK_DistanceFieldMagnitud e;
317 currData->fDeltaWindingScore = 0;
318 ++currData;
319 }
320 }
321
322 static inline bool get_direction(const SkPath& path, const SkMatrix& m,
323 SkPathPriv::FirstDirection* dir) {
324 if (!SkPathPriv::CheapComputeFirstDirection(path, dir)) {
325 return false;
326 }
327
328 // check whether m reverses the orientation
329 SkASSERT(!m.hasPerspective());
330 SkScalar det2x2 = SkScalarMul(m.get(SkMatrix::kMScaleX), m.get(SkMatrix::kMS caleY)) -
331 SkScalarMul(m.get(SkMatrix::kMSkewX), m.get(SkMatrix::kMSk ewY));
332
333 if (det2x2 < 0) {
334 *dir = SkPathPriv::OppositeFirstDirection(*dir);
335 }
336 return true;
337 }
338
339 static inline void add_line_to_segment(const SkPoint pts[2],
340 PathSegmentArray* segments) {
341 segments->push_back();
342 segments->back().fType = PathSegment::kLine;
343 segments->back().fPts[0] = pts[0];
344 segments->back().fPts[1] = pts[1];
345
346 segments->back().init();
347 }
348
349 static inline void add_quad_segment(const SkPoint pts[3],
350 PathSegmentArray* segments) {
351 if (pts[0].distanceToSqd(pts[1]) < kCloseSqd ||
352 pts[1].distanceToSqd(pts[2]) < kCloseSqd ||
353 is_colinear(pts)) {
354 if (pts[0] != pts[2]) {
355 SkPoint line_pts[2];
356 line_pts[0] = pts[0];
357 line_pts[1] = pts[2];
358 add_line_to_segment(line_pts, segments);
359 }
360 } else {
361 segments->push_back();
362 segments->back().fType = PathSegment::kQuad;
363 segments->back().fPts[0] = pts[0];
364 segments->back().fPts[1] = pts[1];
365 segments->back().fPts[2] = pts[2];
366
367 segments->back().init();
368 }
369 }
370
371 static inline void add_cubic_segments(const SkPoint pts[4],
372 SkPathPriv::FirstDirection dir,
373 PathSegmentArray* segments) {
374 SkSTArray<15, SkPoint, true> quads;
375 GrPathUtils::convertCubicToQuads(pts, SK_Scalar1, true, dir, &quads);
376 int count = quads.count();
377 for (int q = 0; q < count; q += 3) {
378 add_quad_segment(&quads[q], segments);
379 }
380 }
381
382 static float calculate_nearest_point_for_quad(
383 const PathSegment& segment,
384 const DPoint &xFormPt) {
385 static const float kThird = 0.33333333333f;
386 static const float kTwentySeventh = 0.037037037f;
387
388 const float a = 0.5f - xFormPt.y();
389 const float b = -0.5f * xFormPt.x();
390
391 const float a3 = a * a * a;
392 const float b2 = b * b;
393
394 const float c = (b2 * 0.25f) + (a3 * kTwentySeventh);
395
396 if (c >= 0.f) {
397 const float sqrtC = sqrt(c);
398 const float result = (float)cbrt((-b * 0.5f) + sqrtC) + (float)cbrt((-b * 0.5f) - sqrtC);
399 return result;
400 } else {
401 const float cosPhi = (float)sqrt((b2 * 0.25f) * (-27.f / a3)) * ((b > 0) ? -1.f : 1.f);
402 const float phi = (float)acos(cosPhi);
403 float result;
404 if (xFormPt.x() > 0.f) {
405 result = 2.f * (float)sqrt(-a * kThird) * (float)cos(phi * kThird);
406 if (!between_closed(result, segment.fP0T.x(), segment.fP2T.x())) {
407 result = 2.f * (float)sqrt(-a * kThird) * (float)cos((phi * kThi rd) + (SK_ScalarPI * 2.f * kThird));
408 }
409 } else {
410 result = 2.f * (float)sqrt(-a * kThird) * (float)cos((phi * kThird) + (SK_ScalarPI * 2.f * kThird));
411 if (!between_closed(result, segment.fP0T.x(), segment.fP2T.x())) {
412 result = 2.f * (float)sqrt(-a * kThird) * (float)cos(phi * kThir d);
413 }
414 }
415 return result;
416 }
417 }
418
419 // This structure contains some intermediate values shared by the same row.
420 // It is used to calculate segment side of a quadratic bezier.
421 struct RowData {
422 // The intersection type of a scanline and y = x * x parabola in canonical s pace.
423 enum IntersectionType {
424 kNoIntersection,
425 kVerticalLine,
426 kTangentLine,
427 kTwoPointsIntersect
428 } fIntersectionType;
429
430 // The direction of the quadratic segment in the canonical space.
431 // 1: The quadratic segment going from negative x-axis to positive x-axis.
432 // -1: The quadratic segment going from positive x-axis to negative x-axis.
433 int fQuadXDirection;
434
435 // The y-value(equal to x*x) of intersection point for the kVerticalLine int ersection type.
436 DScalar fYAtIntersection;
437
438 // The x-value for two intersection points.
439 DScalar fXAtIntersection1;
440 DScalar fXAtIntersection2;
441 };
442
443 void precomputation_for_row(
444 RowData *rowData,
445 const PathSegment& segment,
446 const SkPoint& pointLeft,
447 const SkPoint& pointRight
448 ) {
449 if (segment.fType != PathSegment::kQuad) {
450 return;
451 }
452
453 const DPoint& xFormPtLeft = segment.fXformMatrix.mapPoint(pointLeft);
454 const DPoint& xFormPtRight = segment.fXformMatrix.mapPoint(pointRight);;
455
456 rowData->fQuadXDirection = sign_of(segment.fP2T.x() - segment.fP0T.x());
457
458 const DScalar x1 = xFormPtLeft.x();
459 const DScalar y1 = xFormPtLeft.y();
460 const DScalar x2 = xFormPtRight.x();
461 const DScalar y2 = xFormPtRight.y();
462
463 if (nearly_equal(x1, x2)) {
464 rowData->fIntersectionType = RowData::kVerticalLine;
465 rowData->fYAtIntersection = x1 * x1;
466 return;
467 }
468
469 // Line y = mx + b
470 const DScalar m = (y2 - y1) / (x2 - x1);
471 const DScalar b = -m * x1 + y1;
472
473 const DScalar c = m * m + 4.0 * b;
474
475 if (nearly_zero(c, 4.0 * kNearlyZero * kNearlyZero)) {
476 rowData->fIntersectionType = RowData::kTangentLine;
477 rowData->fXAtIntersection1 = m / 2.0;
478 rowData->fXAtIntersection2 = m / 2.0;
479 } else if (c < 0.0) {
480 rowData->fIntersectionType = RowData::kNoIntersection;
481 return;
482 } else {
483 rowData->fIntersectionType = RowData::kTwoPointsIntersect;
484 const DScalar d = sqrt(c);
485 rowData->fXAtIntersection1 = (m + d) / 2.0;
486 rowData->fXAtIntersection2 = (m - d) / 2.0;
487 }
488 }
489
490 SegSide calculate_side_of_quad(
491 const PathSegment& segment,
492 const SkPoint& point,
493 const DPoint& xFormPt,
494 const RowData& rowData) {
495 SegSide side = kNA_SegSide;
496
497 if (RowData::kVerticalLine == rowData.fIntersectionType) {
498 side = (SegSide)(int)(sign_of(rowData.fYAtIntersection - xFormPt.y()) * rowData.fQuadXDirection);
499 }
500 else if (RowData::kTwoPointsIntersect == rowData.fIntersectionType ||
501 RowData::kTangentLine == rowData.fIntersectionType) {
502 const DScalar p1 = rowData.fXAtIntersection1;
503 const DScalar p2 = rowData.fXAtIntersection2;
504
505 int signP1 = sign_of(p1 - xFormPt.x());
506 if (between_closed(p1, segment.fP0T.x(), segment.fP2T.x())) {
507 side = (SegSide)((-signP1) * rowData.fQuadXDirection);
508 }
509 if (between_closed(p2, segment.fP0T.x(), segment.fP2T.x())) {
510 int signP2 = sign_of(p2 - xFormPt.x());
511 if (side == kNA_SegSide || signP2 == 1) {
512 side = (SegSide)(signP2 * rowData.fQuadXDirection);
513 }
514 }
515
516 // The scanline is the tangent line of current quadratic segment.
517 if (RowData::kTangentLine == rowData.fIntersectionType) {
518 // The path start at the tangent point.
519 if (nearly_equal(p1, segment.fP0T.x())) {
520 side = (SegSide)(side * (-signP1) * rowData.fQuadXDirection);
521 }
522
523 // The path end at the tangent point.
524 if (nearly_equal(p1, segment.fP2T.x())) {
525 side = (SegSide)(side * signP1 * rowData.fQuadXDirection);
526 }
527 }
528 }
529
530 return side;
531 }
532
533 static float distance_to_segment(const SkPoint& point,
534 const PathSegment& segment,
535 const RowData& rowData,
536 SegSide* side) {
537 SkASSERT(side);
538
539 const DPoint xformPt = segment.fXformMatrix.mapPoint(point);
540
541 if (segment.fType == PathSegment::kLine) {
542 float result = SK_DistanceFieldPad * SK_DistanceFieldPad;
543
544 if (between_closed(xformPt.x(), segment.fP0T.x(), segment.fP2T.x())) {
545 result = xformPt.y() * xformPt.y();
546 } else if (xformPt.x() < segment.fP0T.x()) {
547 result = (xformPt.x() * xformPt.x() + xformPt.y() * xformPt.y());
548 } else {
549 result = ((xformPt.x() - segment.fP2T.x()) * (xformPt.x() - segment. fP2T.x())
550 + xformPt.y() * xformPt.y());
551 }
552
553 if (between_closed_open(point.y(), segment.fBoundingBox.top(),
554 segment.fBoundingBox.bottom())) {
555 *side = (SegSide)(int)sign_of(-xformPt.y());
556 } else {
557 *side = kNA_SegSide;
558 }
559 return result;
560 } else {
561 SkASSERT(segment.fType == PathSegment::kQuad);
562
563 const float nearestPoint = calculate_nearest_point_for_quad(segment, xfo rmPt);
564
565 float dist;
566
567 if (between_closed(nearestPoint, segment.fP0T.x(), segment.fP2T.x())) {
568 DPoint x = DPoint::Make(nearestPoint, nearestPoint * nearestPoint);
569 dist = xformPt.distanceToSqd(x);
570 } else {
571 const float distToB0T = xformPt.distanceToSqd(segment.fP0T);
572 const float distToB2T = xformPt.distanceToSqd(segment.fP2T);
573
574 if (distToB0T < distToB2T) {
575 dist = distToB0T;
576 } else {
577 dist = distToB2T;
578 }
579 }
580
581 if (between_closed_open(point.y(), segment.fBoundingBox.top(),
582 segment.fBoundingBox.bottom())) {
583 *side = calculate_side_of_quad(segment, point, xformPt, rowData);
584 } else {
585 *side = kNA_SegSide;
586 }
587
588 return dist * segment.fScalingFactor;
589 }
590 }
591
592 static void calculate_distance_field_data(PathSegmentArray* segments,
593 DFData* dataPtr,
594 int width, int height) {
595 int count = segments->count();
596 for (int a = 0; a < count; ++a) {
597 PathSegment& segment = (*segments)[a];
598 const SkRect& segBB = segment.fBoundingBox.makeOutset(
599 SK_DistanceFieldPad, SK_DistanceFieldPad);
600 int startColumn = segBB.left();
601 int endColumn = segBB.right() + 1;
602
603 int startRow = segBB.top();
604 int endRow = segBB.bottom() + 1;
605
606 SkASSERT((startColumn >= 0) && "StartColumn < 0!");
607 SkASSERT((endColumn <= width) && "endColumn > width!");
608 SkASSERT((startRow >= 0) && "StartRow < 0!");
609 SkASSERT((endRow <= height) && "EndRow > height!");
610
611 for (int row = startRow; row < endRow; ++row) {
612 SegSide prevSide = kNA_SegSide;
613 const float pY = row + 0.5f;
614 RowData rowData;
615
616 const SkPoint pointLeft = SkPoint::Make(startColumn, pY);
617 const SkPoint pointRight = SkPoint::Make(endColumn, pY);
618
619 precomputation_for_row(&rowData, segment, pointLeft, pointRight);
620
621 for (int col = startColumn; col < endColumn; ++col) {
622 int idx = (row * width) + col;
623
624 const float pX = col + 0.5f;
625 const SkPoint point = SkPoint::Make(pX, pY);
626
627 const float distSq = dataPtr[idx].fDistSq;
628 int dilation = distSq < 1.5 * 1.5 ? 1 :
629 distSq < 2.5 * 2.5 ? 2 :
630 distSq < 3.5 * 3.5 ? 3 : SK_DistanceFieldPad;
631 if (dilation > SK_DistanceFieldPad) {
632 dilation = SK_DistanceFieldPad;
633 }
634
635 // Optimisation for not calculating some points.
636 if (dilation != SK_DistanceFieldPad && !segment.fBoundingBox.rou ndOut()
637 .makeOutset(dilation, dilation).contains(col, row)) {
638 continue;
639 }
640
641 SegSide side = kNA_SegSide;
642 int deltaWindingScore = 0;
643 float currDistSq = distance_to_segment(point, segment, rowData , &side);
644 if (prevSide == kLeft_SegSide && side == kRight_SegSide) {
645 deltaWindingScore = -1;
646 } else if (prevSide == kRight_SegSide && side == kLeft_SegSide) {
647 deltaWindingScore = 1;
648 }
649
650 prevSide = side;
651
652 if (currDistSq < distSq) {
653 dataPtr[idx].fDistSq = currDistSq;
654 }
655
656 dataPtr[idx].fDeltaWindingScore += deltaWindingScore;
657 }
658 }
659 }
660 }
661
662 static unsigned char pack_distance_field_val(float dist, float distanceMagnitude ) {
663 // The distance field is constructed as unsigned char values, so that the ze ro value is at 128,
664 // Beside 128, we have 128 values in range [0, 128), but only 127 values in range (128, 255].
665 // So we multiply distanceMagnitude by 127/128 at the latter range to avoid overflow.
666 dist = SkScalarPin(-dist, -distanceMagnitude, distanceMagnitude * 127.0f / 1 28.0f);
667
668 // Scale into the positive range for unsigned distance
669 dist += distanceMagnitude;
670
671 // Scale into unsigned char range
672 return (unsigned char)(dist / (2 * distanceMagnitude) * 256.0f);
673 }
674
675 bool GrGenerateDistanceFieldFromPath(unsigned char* distanceField,
676 const SkPath& path, const SkMatrix& drawMat rix,
677 int width, int height, size_t rowBytes) {
678 SkASSERT(distanceField);
679
680 SkMatrix m = drawMatrix;
681 m.postTranslate(SK_DistanceFieldPad, SK_DistanceFieldPad);
682
683 // create temp data
684 size_t dataSize = width * height * sizeof(DFData);
685 SkAutoSMalloc<1024> dfStorage(dataSize);
686 DFData* dataPtr = (DFData*) dfStorage.get();
687
688 // create initial distance data
689 init_distances(dataPtr, width * height);
690
691 SkPath::Iter iter(path, true);
692 SkSTArray<15, PathSegment, true> segments;
693
694 SkPathPriv::FirstDirection dir;
695 // get_direction can fail for some degenerate paths.
696 if (path.getSegmentMasks() & SkPath::kCubic_SegmentMask &&
697 !get_direction(path, m, &dir)) {
698 return false;
699 }
700
701 for (;;) {
702 SkPoint pts[4];
703 SkPath::Verb verb = iter.next(pts);
704 switch (verb) {
705 case SkPath::kMove_Verb:
706 // m.mapPoints(pts, 1);
707 break;
708 case SkPath::kLine_Verb: {
709 m.mapPoints(pts, 2);
710 add_line_to_segment(pts, &segments);
711 break;
712 }
713 case SkPath::kQuad_Verb:
714 m.mapPoints(pts, 3);
715 add_quad_segment(pts, &segments);
716 break;
717 case SkPath::kConic_Verb: {
718 m.mapPoints(pts, 3);
719 SkScalar weight = iter.conicWeight();
720 SkAutoConicToQuads converter;
721 const SkPoint* quadPts = converter.computeQuads(pts, weight, 0.5 f);
722 for (int i = 0; i < converter.countQuads(); ++i) {
723 add_quad_segment(quadPts + 2*i, &segments);
724 }
725 break;
726 }
727 case SkPath::kCubic_Verb: {
728 m.mapPoints(pts, 4);
729 add_cubic_segments(pts, dir, &segments);
730 break;
731 };
732 default:
733 break;
734 }
735 if (verb == SkPath::kDone_Verb) {
736 break;
737 }
738 }
739
740 calculate_distance_field_data(&segments, dataPtr, width, height);
741
742 for (int row = 0; row < height; ++row) {
743 int windingNumber = 0; // Winding number start from zero for each scanli ne
744 for (int col = 0; col < width; ++col) {
745 int idx = (row * width) + col;
746 windingNumber += dataPtr[idx].fDeltaWindingScore;
747
748 enum DFSign {
749 kInside = -1,
750 kOutside = 1
751 } dfSign;
752
753 if (path.getFillType() == SkPath::kWinding_FillType) {
754 dfSign = windingNumber ? kInside : kOutside;
755 } else if (path.getFillType() == SkPath::kInverseWinding_FillType) {
756 dfSign = windingNumber ? kOutside : kInside;
757 } else if (path.getFillType() == SkPath::kEvenOdd_FillType) {
758 dfSign = (windingNumber % 2) ? kInside : kOutside;
759 } else {
760 SkASSERT(path.getFillType() == SkPath::kInverseEvenOdd_FillType) ;
761 dfSign = (windingNumber % 2) ? kOutside : kInside;
762 }
763
764 // The winding number at the end of a scanline should be zero.
765 if ((col == width - 1) && (windingNumber != 0)) {
766 SkASSERT(0 && "Winding number should be zero at the end of a sca n line.");
767 return false;
768 }
769
770 const float miniDist = sqrt(dataPtr[idx].fDistSq);
771 const float dist = dfSign * miniDist;
772
773 unsigned char pixelVal =
774 pack_distance_field_val(dist, (float)SK_DistanceFieldMagnitude);
775
776 distanceField[(row * rowBytes) + col] = pixelVal;
777 }
778 }
779 return true;
780 }
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698