Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(333)

Side by Side Diff: src/gpu/GrDistanceFieldGenFromVector.cpp

Issue 1643143002: Generate Signed Distance Field directly from vector path (Closed) Base URL: https://skia.googlesource.com/skia.git@master
Patch Set: Remove get direction and add text SDF support Created 4 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 /*
2 * Copyright 2016 ARM Ltd.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "GrDistanceFieldGenFromVector.h"
9 #include "SkPoint.h"
10 #include "SkGeometry.h"
11 #include "SkPathOps.h"
12 #include "GrPathUtils.h"
13 #include "GrConfig.h"
14
15 /**
16 * If a scanline (a row of texel) cross from the kRight_SegSide
17 * of a segment to the kLeft_SegSide, the winding score should
18 * add 1.
19 * And winding score should subtract 1 if the scanline cross
20 * from kLeft_SegSide to kRight_SegSide.
21 * Always return kNA_SegSide if the scanline does not cross over
22 * the segment. Winding score should be zero in this case.
23 * You can get the winding number for each texel of the scanline
24 * by adding the winding score from left to right.
25 * Assuming we always start from outside, so the winding number
26 * should always start from zero.
27 * ________ ________
28 * | | | |
29 * ...R|L......L|R.....L|R......R|L..... <= Scanline & side of segment
30 * |+1 |-1 |-1 |+1 <= Winding score
31 * 0 | 1 ^ 0 ^ -1 |0 <= Winding number
32 * |________| |________|
33 *
34 * .......NA................NA..........
35 * 0 0
36 */
37 enum SegSide {
38 kLeft_SegSide = -1,
39 kOn_SegSide = 0,
40 kRight_SegSide = 1,
41 kNA_SegSide = 2,
42 };
43
44 struct DFData {
45 float fDistSq; // distance squared to nearest (so far) edge
46 int fDeltaWindingScore; // +1 or -1 whenever a scanline cross over a segme nt
47 };
48
49 ///////////////////////////////////////////////////////////////////////////////
50
51 /*
52 * Type definition for double precision DPoint and DAffineMatrix
53 */
54
55 // Point with double precision
56 struct DPoint {
57 double fX, fY;
58
59 static DPoint Make(double x, double y) {
60 DPoint pt;
61 pt.set(x, y);
62 return pt;
63 }
64
65 double x() const { return fX; }
66 double y() const { return fY; }
67
68 void set(double x, double y) { fX = x; fY = y; }
69
70 /** Returns the euclidian distance from (0,0) to (x,y)
71 */
72 static double Length(double x, double y) {
73 return sqrt(x * x + y * y);
74 }
75
76 /** Returns the euclidian distance between a and b
77 */
78 static double Distance(const DPoint& a, const DPoint& b) {
79 return Length(a.fX - b.fX, a.fY - b.fY);
80 }
81
82 double distanceToSqd(const DPoint& pt) const {
83 double dx = fX - pt.fX;
84 double dy = fY - pt.fY;
85 return dx * dx + dy * dy;
86 }
87 };
88
89 // Matrix with double precision for affine transformation.
90 // We don't store row 3 because its always (0, 0, 1).
91 class DAffineMatrix {
92 public:
93 double operator[](int index) const {
94 SkASSERT((unsigned)index < 6);
95 return fMat[index];
96 }
97
98 double& operator[](int index) {
99 SkASSERT((unsigned)index < 6);
100 return fMat[index];
101 }
102
103 void setAffine(double m11, double m12, double m13,
104 double m21, double m22, double m23) {
105 fMat[0] = m11;
106 fMat[1] = m12;
107 fMat[2] = m13;
108 fMat[3] = m21;
109 fMat[4] = m22;
110 fMat[5] = m23;
111 }
112
113 /** Set the matrix to identity
114 */
115 void reset() {
116 fMat[0] = fMat[4] = 1.0;
117 fMat[1] = fMat[3] =
118 fMat[2] = fMat[5] = 0.0;
119 }
120
121 // alias for reset()
122 void setIdentity() { this->reset(); }
123
124 DPoint mapPoint(const SkPoint& src) const {
125 DPoint pt = DPoint::Make(src.x(), src.y());
126 return this->mapPoint(pt);
127 }
128
129 DPoint mapPoint(const DPoint& src) const {
130 return DPoint::Make(fMat[0] * src.x() + fMat[1] * src.y() + fMat[2],
131 fMat[3] * src.x() + fMat[4] * src.y() + fMat[5]);
132 }
133 private:
134 double fMat[6];
135 };
136
137 ///////////////////////////////////////////////////////////////////////////////
138
139 static const double kClose = (SK_Scalar1 / 16.0);
140 static const double kCloseSqd = SkScalarMul(kClose, kClose);
141 static const double kNearlyZero = (SK_Scalar1 / (1 << 15));
142
143 static inline bool between_closed_open(double a, double b, double c,
144 double tolerance = kNearlyZero) {
145 SkASSERT(tolerance >= 0.f);
146 return b < c ? (a >= b - tolerance && a < c - tolerance) :
147 (a >= c - tolerance && a < b - tolerance);
148 }
149
150 static inline bool between_closed(double a, double b, double c,
151 double tolerance = kNearlyZero) {
152 SkASSERT(tolerance >= 0.f);
153 return b < c ? (a >= b - tolerance && a <= c + tolerance) :
154 (a >= c - tolerance && a <= b + tolerance);
155 }
156
157 static inline bool nearly_zero(double x, double tolerance = kNearlyZero) {
158 SkASSERT(tolerance >= 0.f);
159 return fabs(x) <= tolerance;
160 }
161
162 static inline bool nearly_equal(double x, double y, double tolerance = kNearlyZe ro) {
163 SkASSERT(tolerance >= 0.f);
164 return fabs(x - y) <= tolerance;
165 }
166
167 static inline float sign_of(const float &val) {
168 return (val < 0.f) ? -1.f : 1.f;
169 }
170
171 static bool is_colinear(const SkPoint pts[3]) {
172 return nearly_zero((pts[1].y() - pts[0].y()) * (pts[1].x() - pts[2].x()) -
173 (pts[1].y() - pts[2].y()) * (pts[1].x() - pts[0].x()));
174 }
175
176 class PathSegment {
177 public:
178 enum {
179 // These enum values are assumed in member functions below.
180 kLine = 0,
181 kQuad = 1,
182 } fType;
183
184 // line uses 2 pts, quad uses 3 pts
185 SkPoint fPts[3];
186
187 DPoint fP0T, fP2T;
188 DAffineMatrix fXformMatrix;
189 double fScalingFactor;
190 SkRect fBoundingBox;
191
192 void init();
193
194 int countPoints() {
195 GR_STATIC_ASSERT(0 == kLine && 1 == kQuad);
196 return fType + 2;
197 }
198
199 const SkPoint& endPt() const {
200 GR_STATIC_ASSERT(0 == kLine && 1 == kQuad);
201 return fPts[fType + 1];
202 };
203 };
204
205 typedef SkTArray<PathSegment, true> PathSegmentArray;
206
207 void PathSegment::init() {
208 const DPoint p0 = DPoint::Make(fPts[0].x(), fPts[0].y());
209 const DPoint p2 = DPoint::Make(this->endPt().x(), this->endPt().y());
210 const double p0x = p0.x();
211 const double p0y = p0.y();
212 const double p2x = p2.x();
213 const double p2y = p2.y();
214
215 fBoundingBox.set(fPts[0], this->endPt());
216
217 if (fType == PathSegment::kLine) {
218 fScalingFactor = DPoint::Distance(p0, p2);
219
220 const double cosTheta = (p2x - p0x) / fScalingFactor;
221 const double sinTheta = (p2y - p0y) / fScalingFactor;
222
223 fXformMatrix.setAffine(
224 cosTheta, sinTheta, -(cosTheta * p0x) - (sinTheta * p0y),
225 -sinTheta, cosTheta, (sinTheta * p0x) - (cosTheta * p0y)
226 );
227 } else {
228 SkASSERT(fType == PathSegment::kQuad);
229
230 // Calculate bounding box
231 const SkPoint _P1mP0 = fPts[1] - fPts[0];
232 SkPoint t = _P1mP0 - fPts[2] + fPts[1];
233 t.fX = _P1mP0.x() / t.x();
234 t.fY = _P1mP0.y() / t.y();
235 t.fX = SkScalarClampMax(t.x(), 1.0);
236 t.fY = SkScalarClampMax(t.y(), 1.0);
237 t.fX = _P1mP0.x() * t.x();
238 t.fY = _P1mP0.y() * t.y();
239 const SkPoint m = fPts[0] + t;
240 fBoundingBox.growToInclude(&m, 1);
241
242 const double p1x = fPts[1].x();
243 const double p1y = fPts[1].y();
244
245 const double p0xSqd = p0x * p0x;
246 const double p0ySqd = p0y * p0y;
247 const double p2xSqd = p2x * p2x;
248 const double p2ySqd = p2y * p2y;
249 const double p1xSqd = p1x * p1x;
250 const double p1ySqd = p1y * p1y;
251
252 const double p01xProd = p0x * p1x;
253 const double p02xProd = p0x * p2x;
254 const double b12xProd = p1x * p2x;
255 const double p01yProd = p0y * p1y;
256 const double p02yProd = p0y * p2y;
257 const double b12yProd = p1y * p2y;
258
259 const double sqrtA = p0y - (2.0 * p1y) + p2y;
260 const double a = sqrtA * sqrtA;
261 const double h = -1.0 * (p0y - (2.0 * p1y) + p2y) * (p0x - (2.0 * p1x) + p2x);
262 const double sqrtB = p0x - (2.0 * p1x) + p2x;
263 const double b = sqrtB * sqrtB;
264 const double c = (p0xSqd * p2ySqd) - (4.0 * p01xProd * b12yProd)
265 - (2.0 * p02xProd * p02yProd) + (4.0 * p02xProd * p1ySqd)
266 + (4.0 * p1xSqd * p02yProd) - (4.0 * b12xProd * p01yProd)
267 + (p2xSqd * p0ySqd);
268 const double g = (p0x * p02yProd) - (2.0 * p0x * p1ySqd)
269 + (2.0 * p0x * b12yProd) - (p0x * p2ySqd)
270 + (2.0 * p1x * p01yProd) - (4.0 * p1x * p02yProd)
271 + (2.0 * p1x * b12yProd) - (p2x * p0ySqd)
272 + (2.0 * p2x * p01yProd) + (p2x * p02yProd)
273 - (2.0 * p2x * p1ySqd);
274 const double f = -((p0xSqd * p2y) - (2.0 * p01xProd * p1y)
275 - (2.0 * p01xProd * p2y) - (p02xProd * p0y)
276 + (4.0 * p02xProd * p1y) - (p02xProd * p2y)
277 + (2.0 * p1xSqd * p0y) + (2.0 * p1xSqd * p2y)
278 - (2.0 * b12xProd * p0y) - (2.0 * b12xProd * p1y)
279 + (p2xSqd * p0y));
280
281 const double cosTheta = sqrt(a / (a + b));
282 const double sinTheta = -1.0 * sign_of((a + b) * h) * sqrt(b / (a + b));
283
284 const double gDef = cosTheta * g - sinTheta * f;
285 const double fDef = sinTheta * g + cosTheta * f;
286
287
288 const double x0 = gDef / (a + b);
289 const double y0 = (1.0 / (2.0 * fDef)) * (c - (gDef * gDef / (a + b)));
290
291
292 const double lambda = -1.0 * ((a + b) / (2.0 * fDef));
293 fScalingFactor = (1.0 / lambda);
294 fScalingFactor *= fScalingFactor;
295
296 const double lambda_cosTheta = lambda * cosTheta;
297 const double lambda_sinTheta = lambda * sinTheta;
298
299 fXformMatrix.setAffine(
300 lambda_cosTheta, -lambda_sinTheta, lambda * x0,
301 lambda_sinTheta, lambda_cosTheta, lambda * y0
302 );
303 }
304
305 fP0T = fXformMatrix.mapPoint(p0);
306 fP2T = fXformMatrix.mapPoint(p2);
307 }
308
309 static void init_distances(DFData* data, int size) {
310 DFData* currData = data;
311
312 for (int i = 0; i < size; ++i) {
313 // init distance to "far away"
314 currData->fDistSq = SK_DistanceFieldMagnitude * SK_DistanceFieldMagnitud e;
315 currData->fDeltaWindingScore = 0;
316 ++currData;
317 }
318 }
319
320 static inline bool get_direction(const SkPath& path, const SkMatrix& m,
321 SkPathPriv::FirstDirection* dir) {
322 if (!SkPathPriv::CheapComputeFirstDirection(path, dir)) {
323 return false;
324 }
325
326 // check whether m reverses the orientation
327 SkASSERT(!m.hasPerspective());
328 SkScalar det2x2 = SkScalarMul(m.get(SkMatrix::kMScaleX), m.get(SkMatrix::kMS caleY)) -
329 SkScalarMul(m.get(SkMatrix::kMSkewX), m.get(SkMatrix::kMSk ewY));
330
331 if (det2x2 < 0) {
332 *dir = SkPathPriv::OppositeFirstDirection(*dir);
333 }
334 return true;
335 }
336
337 static inline void add_line_to_segment(const SkPoint pts[2],
338 PathSegmentArray* segments) {
339 segments->push_back();
340 segments->back().fType = PathSegment::kLine;
341 segments->back().fPts[0] = pts[0];
342 segments->back().fPts[1] = pts[1];
343
344 segments->back().init();
345 }
346
347 static inline void add_quad_segment(const SkPoint pts[3],
348 PathSegmentArray* segments) {
349 if (pts[0].distanceToSqd(pts[1]) < kCloseSqd ||
350 pts[1].distanceToSqd(pts[2]) < kCloseSqd ||
351 is_colinear(pts)) {
352 if (pts[0] != pts[2]) {
353 SkPoint line_pts[2];
354 line_pts[0] = pts[0];
355 line_pts[1] = pts[2];
356 add_line_to_segment(line_pts, segments);
357 }
358 } else {
359 segments->push_back();
360 segments->back().fType = PathSegment::kQuad;
361 segments->back().fPts[0] = pts[0];
362 segments->back().fPts[1] = pts[1];
363 segments->back().fPts[2] = pts[2];
364
365 segments->back().init();
366 }
367 }
368
369 static inline void add_cubic_segments(const SkPoint pts[4],
370 PathSegmentArray* segments) {
371 SkSTArray<15, SkPoint, true> quads;
372 SkPathPriv::FirstDirection dir = SkPathPriv::kUnknown_FirstDirection;
373 GrPathUtils::convertCubicToQuads(pts, SK_Scalar1, false, dir, &quads);
374 int count = quads.count();
375 for (int q = 0; q < count; q += 3) {
376 add_quad_segment(&quads[q], segments);
377 }
378 }
379
380 static float calculate_nearest_point_for_quad(
381 const PathSegment& segment,
382 const DPoint &xFormPt) {
383 static const float kThird = 0.33333333333f;
384 static const float kTwentySeventh = 0.037037037f;
385
386 const float a = 0.5f - xFormPt.y();
387 const float b = -0.5f * xFormPt.x();
388
389 const float a3 = a * a * a;
390 const float b2 = b * b;
391
392 const float c = (b2 * 0.25f) + (a3 * kTwentySeventh);
393
394 if (c >= 0.f) {
395 const float sqrtC = sqrt(c);
396 const float result = (float)cbrt((-b * 0.5f) + sqrtC) + (float)cbrt((-b * 0.5f) - sqrtC);
397 return result;
398 } else {
399 const float cosPhi = (float)sqrt((b2 * 0.25f) * (-27.f / a3)) * ((b > 0) ? -1.f : 1.f);
400 const float phi = (float)acos(cosPhi);
401 float result;
402 if (xFormPt.x() > 0.f) {
403 result = 2.f * (float)sqrt(-a * kThird) * (float)cos(phi * kThird);
404 if (!between_closed(result, segment.fP0T.x(), segment.fP2T.x())) {
405 result = 2.f * (float)sqrt(-a * kThird) * (float)cos((phi * kThi rd) + (SK_ScalarPI * 2.f * kThird));
406 }
407 } else {
408 result = 2.f * (float)sqrt(-a * kThird) * (float)cos((phi * kThird) + (SK_ScalarPI * 2.f * kThird));
409 if (!between_closed(result, segment.fP0T.x(), segment.fP2T.x())) {
410 result = 2.f * (float)sqrt(-a * kThird) * (float)cos(phi * kThir d);
411 }
412 }
413 return result;
414 }
415 }
416
417 // This structure contains some intermediate values shared by the same row.
418 // It is used to calculate segment side of a quadratic bezier.
419 struct RowData {
420 // The intersection type of a scanline and y = x * x parabola in canonical s pace.
421 enum IntersectionType {
422 kNoIntersection,
423 kVerticalLine,
424 kTangentLine,
425 kTwoPointsIntersect
426 } fIntersectionType;
427
428 // The direction of the quadratic segment in the canonical space.
429 // 1: The quadratic segment going from negative x-axis to positive x-axis.
430 // -1: The quadratic segment going from positive x-axis to negative x-axis.
431 int fQuadXDirection;
432
433 // The y-value(equal to x*x) of intersection point for the kVerticalLine int ersection type.
434 double fYAtIntersection;
435
436 // The x-value for two intersection points.
437 double fXAtIntersection1;
438 double fXAtIntersection2;
439 };
440
441 void precomputation_for_row(
442 RowData *rowData,
443 const PathSegment& segment,
444 const SkPoint& pointLeft,
445 const SkPoint& pointRight
446 ) {
447 if (segment.fType != PathSegment::kQuad) {
448 return;
449 }
450
451 const DPoint& xFormPtLeft = segment.fXformMatrix.mapPoint(pointLeft);
452 const DPoint& xFormPtRight = segment.fXformMatrix.mapPoint(pointRight);;
453
454 rowData->fQuadXDirection = sign_of(segment.fP2T.x() - segment.fP0T.x());
455
456 const double x1 = xFormPtLeft.x();
457 const double y1 = xFormPtLeft.y();
458 const double x2 = xFormPtRight.x();
459 const double y2 = xFormPtRight.y();
460
461 if (nearly_equal(x1, x2)) {
462 rowData->fIntersectionType = RowData::kVerticalLine;
463 rowData->fYAtIntersection = x1 * x1;
464 return;
465 }
466
467 // Line y = mx + b
468 const double m = (y2 - y1) / (x2 - x1);
469 const double b = -m * x1 + y1;
470
471 const double c = m * m + 4.0 * b;
472
473 if (nearly_zero(c, 4.0 * kNearlyZero * kNearlyZero)) {
474 rowData->fIntersectionType = RowData::kTangentLine;
475 rowData->fXAtIntersection1 = m / 2.0;
476 rowData->fXAtIntersection2 = m / 2.0;
477 } else if (c < 0.0) {
478 rowData->fIntersectionType = RowData::kNoIntersection;
479 return;
480 } else {
481 rowData->fIntersectionType = RowData::kTwoPointsIntersect;
482 const double d = sqrt(c);
483 rowData->fXAtIntersection1 = (m + d) / 2.0;
484 rowData->fXAtIntersection2 = (m - d) / 2.0;
485 }
486 }
487
488 SegSide calculate_side_of_quad(
489 const PathSegment& segment,
490 const SkPoint& point,
491 const DPoint& xFormPt,
492 const RowData& rowData) {
493 SegSide side = kNA_SegSide;
494
495 if (RowData::kVerticalLine == rowData.fIntersectionType) {
496 side = (SegSide)(int)(sign_of(rowData.fYAtIntersection - xFormPt.y()) * rowData.fQuadXDirection);
497 }
498 else if (RowData::kTwoPointsIntersect == rowData.fIntersectionType ||
499 RowData::kTangentLine == rowData.fIntersectionType) {
500 const double p1 = rowData.fXAtIntersection1;
501 const double p2 = rowData.fXAtIntersection2;
502
503 int signP1 = sign_of(p1 - xFormPt.x());
504 if (between_closed(p1, segment.fP0T.x(), segment.fP2T.x())) {
505 side = (SegSide)((-signP1) * rowData.fQuadXDirection);
506 }
507 if (between_closed(p2, segment.fP0T.x(), segment.fP2T.x())) {
508 int signP2 = sign_of(p2 - xFormPt.x());
509 if (side == kNA_SegSide || signP2 == 1) {
510 side = (SegSide)(signP2 * rowData.fQuadXDirection);
511 }
512 }
513
514 // The scanline is the tangent line of current quadratic segment.
515 if (RowData::kTangentLine == rowData.fIntersectionType) {
516 // The path start at the tangent point.
517 if (nearly_equal(p1, segment.fP0T.x())) {
518 side = (SegSide)(side * (-signP1) * rowData.fQuadXDirection);
519 }
520
521 // The path end at the tangent point.
522 if (nearly_equal(p1, segment.fP2T.x())) {
523 side = (SegSide)(side * signP1 * rowData.fQuadXDirection);
524 }
525 }
526 }
527
528 return side;
529 }
530
531 static float distance_to_segment(const SkPoint& point,
532 const PathSegment& segment,
533 const RowData& rowData,
534 SegSide* side) {
535 SkASSERT(side);
536
537 const DPoint xformPt = segment.fXformMatrix.mapPoint(point);
538
539 if (segment.fType == PathSegment::kLine) {
540 float result = SK_DistanceFieldPad * SK_DistanceFieldPad;
541
542 if (between_closed(xformPt.x(), segment.fP0T.x(), segment.fP2T.x())) {
543 result = xformPt.y() * xformPt.y();
544 } else if (xformPt.x() < segment.fP0T.x()) {
545 result = (xformPt.x() * xformPt.x() + xformPt.y() * xformPt.y());
546 } else {
547 result = ((xformPt.x() - segment.fP2T.x()) * (xformPt.x() - segment. fP2T.x())
548 + xformPt.y() * xformPt.y());
549 }
550
551 if (between_closed_open(point.y(), segment.fBoundingBox.top(),
552 segment.fBoundingBox.bottom())) {
553 *side = (SegSide)(int)sign_of(-xformPt.y());
554 } else {
555 *side = kNA_SegSide;
556 }
557 return result;
558 } else {
559 SkASSERT(segment.fType == PathSegment::kQuad);
560
561 const float nearestPoint = calculate_nearest_point_for_quad(segment, xfo rmPt);
562
563 float dist;
564
565 if (between_closed(nearestPoint, segment.fP0T.x(), segment.fP2T.x())) {
566 DPoint x = DPoint::Make(nearestPoint, nearestPoint * nearestPoint);
567 dist = xformPt.distanceToSqd(x);
568 } else {
569 const float distToB0T = xformPt.distanceToSqd(segment.fP0T);
570 const float distToB2T = xformPt.distanceToSqd(segment.fP2T);
571
572 if (distToB0T < distToB2T) {
573 dist = distToB0T;
574 } else {
575 dist = distToB2T;
576 }
577 }
578
579 if (between_closed_open(point.y(), segment.fBoundingBox.top(),
580 segment.fBoundingBox.bottom())) {
581 *side = calculate_side_of_quad(segment, point, xformPt, rowData);
582 } else {
583 *side = kNA_SegSide;
584 }
585
586 return dist * segment.fScalingFactor;
587 }
588 }
589
590 static void calculate_distance_field_data(PathSegmentArray* segments,
591 DFData* dataPtr,
592 int width, int height) {
593 int count = segments->count();
594 for (int a = 0; a < count; ++a) {
595 PathSegment& segment = (*segments)[a];
596 const SkRect& segBB = segment.fBoundingBox.makeOutset(
597 SK_DistanceFieldPad, SK_DistanceFieldPad);
598 int startColumn = segBB.left();
599 int endColumn = SkScalarCeilToInt(segBB.right());
600
601 int startRow = segBB.top();
602 int endRow = SkScalarCeilToInt(segBB.bottom());
603
604 SkASSERT((startColumn >= 0) && "StartColumn < 0!");
605 SkASSERT((endColumn <= width) && "endColumn > width!");
606 SkASSERT((startRow >= 0) && "StartRow < 0!");
607 SkASSERT((endRow <= height) && "EndRow > height!");
608
609 for (int row = startRow; row < endRow; ++row) {
610 SegSide prevSide = kNA_SegSide;
611 const float pY = row + 0.5f;
612 RowData rowData;
613
614 const SkPoint pointLeft = SkPoint::Make(startColumn, pY);
615 const SkPoint pointRight = SkPoint::Make(endColumn, pY);
616
617 precomputation_for_row(&rowData, segment, pointLeft, pointRight);
618
619 for (int col = startColumn; col < endColumn; ++col) {
620 int idx = (row * width) + col;
621
622 const float pX = col + 0.5f;
623 const SkPoint point = SkPoint::Make(pX, pY);
624
625 const float distSq = dataPtr[idx].fDistSq;
626 int dilation = distSq < 1.5 * 1.5 ? 1 :
627 distSq < 2.5 * 2.5 ? 2 :
628 distSq < 3.5 * 3.5 ? 3 : SK_DistanceFieldPad;
629 if (dilation > SK_DistanceFieldPad) {
630 dilation = SK_DistanceFieldPad;
631 }
632
633 // Optimisation for not calculating some points.
634 if (dilation != SK_DistanceFieldPad && !segment.fBoundingBox.rou ndOut()
635 .makeOutset(dilation, dilation).contains(col, row)) {
636 continue;
637 }
638
639 SegSide side = kNA_SegSide;
640 int deltaWindingScore = 0;
641 float currDistSq = distance_to_segment(point, segment, rowData , &side);
642 if (prevSide == kLeft_SegSide && side == kRight_SegSide) {
643 deltaWindingScore = -1;
644 } else if (prevSide == kRight_SegSide && side == kLeft_SegSide) {
645 deltaWindingScore = 1;
646 }
647
648 prevSide = side;
649
650 if (currDistSq < distSq) {
651 dataPtr[idx].fDistSq = currDistSq;
652 }
653
654 dataPtr[idx].fDeltaWindingScore += deltaWindingScore;
655 }
656 }
657 }
658 }
659
660 static unsigned char pack_distance_field_val(float dist, float distanceMagnitude ) {
661 // The distance field is constructed as unsigned char values, so that the ze ro value is at 128,
662 // Beside 128, we have 128 values in range [0, 128), but only 127 values in range (128, 255].
663 // So we multiply distanceMagnitude by 127/128 at the latter range to avoid overflow.
664 dist = SkScalarPin(-dist, -distanceMagnitude, distanceMagnitude * 127.0f / 1 28.0f);
665
666 // Scale into the positive range for unsigned distance
667 dist += distanceMagnitude;
668
669 // Scale into unsigned char range
670 return (unsigned char)(dist / (2 * distanceMagnitude) * 256.0f);
671 }
672
673 bool GrGenerateDistanceFieldFromPath(unsigned char* distanceField,
674 const SkPath& path, const SkMatrix& drawMat rix,
675 int width, int height, size_t rowBytes) {
676 SkASSERT(distanceField);
677
678 SkPath simplifiedPath;
679 Simplify(path, &simplifiedPath);
680
681 SkASSERT(SkPath::kEvenOdd_FillType == simplifiedPath.getFillType() ||
682 SkPath::kInverseEvenOdd_FillType == simplifiedPath.getFillType());
683
684 SkMatrix m = drawMatrix;
685 m.postTranslate(SK_DistanceFieldPad, SK_DistanceFieldPad);
686
687 // create temp data
688 size_t dataSize = width * height * sizeof(DFData);
689 SkAutoSMalloc<1024> dfStorage(dataSize);
690 DFData* dataPtr = (DFData*) dfStorage.get();
691
692 // create initial distance data
693 init_distances(dataPtr, width * height);
694
695 SkPath::Iter iter(simplifiedPath, true);
696 SkSTArray<15, PathSegment, true> segments;
697
698 for (;;) {
699 SkPoint pts[4];
700 SkPath::Verb verb = iter.next(pts);
701 switch (verb) {
702 case SkPath::kMove_Verb:
703 // m.mapPoints(pts, 1);
704 break;
705 case SkPath::kLine_Verb: {
706 m.mapPoints(pts, 2);
707 add_line_to_segment(pts, &segments);
708 break;
709 }
710 case SkPath::kQuad_Verb:
711 m.mapPoints(pts, 3);
712 add_quad_segment(pts, &segments);
713 break;
714 case SkPath::kConic_Verb: {
715 m.mapPoints(pts, 3);
716 SkScalar weight = iter.conicWeight();
717 SkAutoConicToQuads converter;
718 const SkPoint* quadPts = converter.computeQuads(pts, weight, 0.5 f);
719 for (int i = 0; i < converter.countQuads(); ++i) {
720 add_quad_segment(quadPts + 2*i, &segments);
721 }
722 break;
723 }
724 case SkPath::kCubic_Verb: {
725 m.mapPoints(pts, 4);
726 add_cubic_segments(pts, &segments);
727 break;
728 };
729 default:
730 break;
731 }
732 if (verb == SkPath::kDone_Verb) {
733 break;
734 }
735 }
736
737 calculate_distance_field_data(&segments, dataPtr, width, height);
738
739 for (int row = 0; row < height; ++row) {
740 int windingNumber = 0; // Winding number start from zero for each scanli ne
741 for (int col = 0; col < width; ++col) {
742 int idx = (row * width) + col;
743 windingNumber += dataPtr[idx].fDeltaWindingScore;
744
745 enum DFSign {
746 kInside = -1,
747 kOutside = 1
748 } dfSign;
749
750 if (simplifiedPath.getFillType() == SkPath::kWinding_FillType) {
751 dfSign = windingNumber ? kInside : kOutside;
752 } else if (simplifiedPath.getFillType() == SkPath::kInverseWinding_F illType) {
753 dfSign = windingNumber ? kOutside : kInside;
754 } else if (simplifiedPath.getFillType() == SkPath::kEvenOdd_FillType ) {
755 dfSign = (windingNumber % 2) ? kInside : kOutside;
756 } else {
757 SkASSERT(simplifiedPath.getFillType() == SkPath::kInverseEvenOdd _FillType);
758 dfSign = (windingNumber % 2) ? kOutside : kInside;
759 }
760
761 // The winding number at the end of a scanline should be zero.
762 if ((col == width - 1) && (windingNumber != 0)) {
763 SkASSERT(0 && "Winding number should be zero at the end of a sca n line.");
764 return false;
765 }
766
767 const float miniDist = sqrt(dataPtr[idx].fDistSq);
768 const float dist = dfSign * miniDist;
769
770 unsigned char pixelVal =
771 pack_distance_field_val(dist, (float)SK_DistanceFieldMagnitude);
772
773 distanceField[(row * rowBytes) + col] = pixelVal;
774 }
775 }
776 return true;
777 }
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698