| Index: lib/algorithms.dart
|
| diff --git a/lib/algorithms.dart b/lib/algorithms.dart
|
| index 80f01070760209593dc3412618a1e3c3dd5abcb6..4d3ae8b58fb8463aab8332e41e87b1cd76378181 100644
|
| --- a/lib/algorithms.dart
|
| +++ b/lib/algorithms.dart
|
| @@ -2,347 +2,8 @@
|
| // for details. All rights reserved. Use of this source code is governed by a
|
| // BSD-style license that can be found in the LICENSE file.
|
|
|
| -/**
|
| - * Operations on collections.
|
| - */
|
| +/// Import `collection.dart` instead.
|
| +@Deprecated("Will be removed in collection 2.0.0.")
|
| library dart.pkg.collection.algorithms;
|
|
|
| -import "dart:math" show Random;
|
| -
|
| -/** Version of [binarySearch] optimized for comparable keys */
|
| -int _comparableBinarySearch(List<Comparable> list, Comparable value) {
|
| - int min = 0;
|
| - int max = list.length;
|
| - while (min < max) {
|
| - int mid = min + ((max - min) >> 1);
|
| - var element = list[mid];
|
| - int comp = element.compareTo(value);
|
| - if (comp == 0) return mid;
|
| - if (comp < 0) {
|
| - min = mid + 1;
|
| - } else {
|
| - max = mid;
|
| - }
|
| - }
|
| - return -1;
|
| -}
|
| -
|
| -/**
|
| - * Returns a position of the [value] in [sortedList], if it is there.
|
| - *
|
| - * If the list isn't sorted according to the [compare] function, the result
|
| - * is unpredictable.
|
| - *
|
| - * If [compare] is omitted, it defaults to calling [Comparable.compareTo] on
|
| - * the objects.
|
| - *
|
| - * Returns -1 if [value] is not in the list by default.
|
| - */
|
| -int binarySearch(List sortedList, value, { int compare(a, b) }) {
|
| - if (compare == null) {
|
| - return _comparableBinarySearch(sortedList, value);
|
| - }
|
| - int min = 0;
|
| - int max = sortedList.length;
|
| - while (min < max) {
|
| - int mid = min + ((max - min) >> 1);
|
| - var element = sortedList[mid];
|
| - int comp = compare(element, value);
|
| - if (comp == 0) return mid;
|
| - if (comp < 0) {
|
| - min = mid + 1;
|
| - } else {
|
| - max = mid;
|
| - }
|
| - }
|
| - return -1;
|
| -}
|
| -
|
| -/** Version of [lowerBound] optimized for comparable keys */
|
| -int _comparableLowerBound(List<Comparable> list, Comparable value) {
|
| - int min = 0;
|
| - int max = list.length;
|
| - while (min < max) {
|
| - int mid = min + ((max - min) >> 1);
|
| - var element = list[mid];
|
| - int comp = element.compareTo(value);
|
| - if (comp < 0) {
|
| - min = mid + 1;
|
| - } else {
|
| - max = mid;
|
| - }
|
| - }
|
| - return min;
|
| -}
|
| -
|
| -/**
|
| - * Returns the first position in [sortedList] that does not compare less than
|
| - * [value].
|
| - *
|
| - * If the list isn't sorted according to the [compare] function, the result
|
| - * is unpredictable.
|
| - *
|
| - * If [compare] is omitted, it defaults to calling [Comparable.compareTo] on
|
| - * the objects.
|
| - *
|
| - * Returns [sortedList.length] if all the items in [sortedList] compare less
|
| - * than [value].
|
| - */
|
| -int lowerBound(List sortedList, value, { int compare(a, b) }) {
|
| - if (compare == null) {
|
| - return _comparableLowerBound(sortedList, value);
|
| - }
|
| - int min = 0;
|
| - int max = sortedList.length;
|
| - while (min < max) {
|
| - int mid = min + ((max - min) >> 1);
|
| - var element = sortedList[mid];
|
| - int comp = compare(element, value);
|
| - if (comp < 0) {
|
| - min = mid + 1;
|
| - } else {
|
| - max = mid;
|
| - }
|
| - }
|
| - return min;
|
| -}
|
| -
|
| -/**
|
| - * Shuffles a list randomly.
|
| - *
|
| - * A sub-range of a list can be shuffled by providing [start] and [end].
|
| - */
|
| -void shuffle(List list, [int start = 0, int end = null]) {
|
| - Random random = new Random();
|
| - if (end == null) end = list.length;
|
| - int length = end - start;
|
| - while (length > 1) {
|
| - int pos = random.nextInt(length);
|
| - length--;
|
| - var tmp1 = list[start + pos];
|
| - list[start + pos] = list[start + length];
|
| - list[start + length] = tmp1;
|
| - }
|
| -}
|
| -
|
| -
|
| -/**
|
| - * Reverses a list, or a part of a list, in-place.
|
| - */
|
| -void reverse(List list, [int start = 0, int end = null]) {
|
| - if (end == null) end = list.length;
|
| - _reverse(list, start, end);
|
| -}
|
| -
|
| -// Internal helper function that assumes valid arguments.
|
| -void _reverse(List list, int start, int end) {
|
| - for (int i = start, j = end - 1; i < j; i++, j--) {
|
| - var tmp = list[i];
|
| - list[i] = list[j];
|
| - list[j] = tmp;
|
| - }
|
| -}
|
| -
|
| -/**
|
| - * Sort a list using insertion sort.
|
| - *
|
| - * Insertion sort is a simple sorting algorithm. For `n` elements it does on
|
| - * the order of `n * log(n)` comparisons but up to `n` squared moves. The
|
| - * sorting is performed in-place, without using extra memory.
|
| - *
|
| - * For short lists the many moves have less impact than the simple algorithm,
|
| - * and it is often the favored sorting algorithm for short lists.
|
| - *
|
| - * This insertion sort is stable: Equal elements end up in the same order
|
| - * as they started in.
|
| - */
|
| -void insertionSort(List list,
|
| - { int compare(a, b),
|
| - int start: 0,
|
| - int end: null }) {
|
| - // If the same method could have both positional and named optional
|
| - // parameters, this should be (list, [start, end], {compare}).
|
| - if (end == null) end = list.length;
|
| - if (compare == null) compare = Comparable.compare;
|
| - _insertionSort(list, compare, start, end, start + 1);
|
| -}
|
| -
|
| -/**
|
| - * Internal helper function that assumes arguments correct.
|
| - *
|
| - * Assumes that the elements up to [sortedUntil] (not inclusive) are
|
| - * already sorted. The [sortedUntil] values should always be at least
|
| - * `start + 1`.
|
| - */
|
| -void _insertionSort(List list, int compare(a, b), int start, int end,
|
| - int sortedUntil) {
|
| - for (int pos = sortedUntil; pos < end; pos++) {
|
| - int min = start;
|
| - int max = pos;
|
| - var element = list[pos];
|
| - while (min < max) {
|
| - int mid = min + ((max - min) >> 1);
|
| - int comparison = compare(element, list[mid]);
|
| - if (comparison < 0) {
|
| - max = mid;
|
| - } else {
|
| - min = mid + 1;
|
| - }
|
| - }
|
| - list.setRange(min + 1, pos + 1, list, min);
|
| - list[min] = element;
|
| - }
|
| -}
|
| -
|
| -/** Limit below which merge sort defaults to insertion sort. */
|
| -const int _MERGE_SORT_LIMIT = 32;
|
| -
|
| -/**
|
| - * Sorts a list, or a range of a list, using the merge sort algorithm.
|
| - *
|
| - * Merge-sorting works by splitting the job into two parts, sorting each
|
| - * recursively, and then merging the two sorted parts.
|
| - *
|
| - * This takes on the order of `n * log(n)` comparisons and moves to sort
|
| - * `n` elements, but requires extra space of about the same size as the list
|
| - * being sorted.
|
| - *
|
| - * This merge sort is stable: Equal elements end up in the same order
|
| - * as they started in.
|
| - */
|
| -void mergeSort(List list, {int start: 0, int end: null, int compare(a, b)}) {
|
| - if (end == null) end = list.length;
|
| - if (compare == null) compare = Comparable.compare;
|
| - int length = end - start;
|
| - if (length < 2) return;
|
| - if (length < _MERGE_SORT_LIMIT) {
|
| - _insertionSort(list, compare, start, end, start + 1);
|
| - return;
|
| - }
|
| - // Special case the first split instead of directly calling
|
| - // _mergeSort, because the _mergeSort requires its target to
|
| - // be different from its source, and it requires extra space
|
| - // of the same size as the list to sort.
|
| - // This split allows us to have only half as much extra space,
|
| - // and it ends up in the original place.
|
| - int middle = start + ((end - start) >> 1);
|
| - int firstLength = middle - start;
|
| - int secondLength = end - middle;
|
| - // secondLength is always the same as firstLength, or one greater.
|
| - List scratchSpace = new List(secondLength);
|
| - _mergeSort(list, compare, middle, end, scratchSpace, 0);
|
| - int firstTarget = end - firstLength;
|
| - _mergeSort(list, compare, start, middle, list, firstTarget);
|
| - _merge(compare,
|
| - list, firstTarget, end,
|
| - scratchSpace, 0, secondLength,
|
| - list, start);
|
| -}
|
| -
|
| -/**
|
| - * Performs an insertion sort into a potentially different list than the
|
| - * one containing the original values.
|
| - *
|
| - * It will work in-place as well.
|
| - */
|
| -void _movingInsertionSort(List list, int compare(a, b), int start, int end,
|
| - List target, int targetOffset) {
|
| - int length = end - start;
|
| - if (length == 0) return;
|
| - target[targetOffset] = list[start];
|
| - for (int i = 1; i < length; i++) {
|
| - var element = list[start + i];
|
| - int min = targetOffset;
|
| - int max = targetOffset + i;
|
| - while (min < max) {
|
| - int mid = min + ((max - min) >> 1);
|
| - if (compare(element, target[mid]) < 0) {
|
| - max = mid;
|
| - } else {
|
| - min = mid + 1;
|
| - }
|
| - }
|
| - target.setRange(min + 1, targetOffset + i + 1,
|
| - target, min);
|
| - target[min] = element;
|
| - }
|
| -}
|
| -
|
| -/**
|
| - * Sorts [list] from [start] to [end] into [target] at [targetOffset].
|
| - *
|
| - * The `target` list must be able to contain the range from `start` to `end`
|
| - * after `targetOffset`.
|
| - *
|
| - * Allows target to be the same list as [list], as long as it's not
|
| - * overlapping the `start..end` range.
|
| - */
|
| -void _mergeSort(List list, int compare(a, b), int start, int end,
|
| - List target, int targetOffset) {
|
| - int length = end - start;
|
| - if (length < _MERGE_SORT_LIMIT) {
|
| - _movingInsertionSort(list, compare, start, end, target, targetOffset);
|
| - return;
|
| - }
|
| - int middle = start + (length >> 1);
|
| - int firstLength = middle - start;
|
| - int secondLength = end - middle;
|
| - // Here secondLength >= firstLength (differs by at most one).
|
| - int targetMiddle = targetOffset + firstLength;
|
| - // Sort the second half into the end of the target area.
|
| - _mergeSort(list, compare, middle, end,
|
| - target, targetMiddle);
|
| - // Sort the first half into the end of the source area.
|
| - _mergeSort(list, compare, start, middle,
|
| - list, middle);
|
| - // Merge the two parts into the target area.
|
| - _merge(compare,
|
| - list, middle, middle + firstLength,
|
| - target, targetMiddle, targetMiddle + secondLength,
|
| - target, targetOffset);
|
| -}
|
| -
|
| -/**
|
| - * Merges two lists into a target list.
|
| - *
|
| - * One of the input lists may be positioned at the end of the target
|
| - * list.
|
| - *
|
| - * For equal object, elements from [firstList] are always preferred.
|
| - * This allows the merge to be stable if the first list contains elements
|
| - * that started out earlier than the ones in [secondList]
|
| - */
|
| -void _merge(int compare(a, b),
|
| - List firstList, int firstStart, int firstEnd,
|
| - List secondList, int secondStart, int secondEnd,
|
| - List target, int targetOffset) {
|
| - // No empty lists reaches here.
|
| - assert(firstStart < firstEnd);
|
| - assert(secondStart < secondEnd);
|
| - int cursor1 = firstStart;
|
| - int cursor2 = secondStart;
|
| - var firstElement = firstList[cursor1++];
|
| - var secondElement = secondList[cursor2++];
|
| - while (true) {
|
| - if (compare(firstElement, secondElement) <= 0) {
|
| - target[targetOffset++] = firstElement;
|
| - if (cursor1 == firstEnd) break; // Flushing second list after loop.
|
| - firstElement = firstList[cursor1++];
|
| - } else {
|
| - target[targetOffset++] = secondElement;
|
| - if (cursor2 != secondEnd) {
|
| - secondElement = secondList[cursor2++];
|
| - continue;
|
| - }
|
| - // Second list empties first. Flushing first list here.
|
| - target[targetOffset++] = firstElement;
|
| - target.setRange(targetOffset, targetOffset + (firstEnd - cursor1),
|
| - firstList, cursor1);
|
| - return;
|
| - }
|
| - }
|
| - // First list empties first. Reached by break above.
|
| - target[targetOffset++] = secondElement;
|
| - target.setRange(targetOffset, targetOffset + (secondEnd - cursor2),
|
| - secondList, cursor2);
|
| -}
|
| +export "src/algorithms.dart";
|
|
|