| Index: xfa/src/fxbarcode/common/reedsolomon/BC_ReedSolomonDecoder.cpp
|
| diff --git a/xfa/src/fxbarcode/common/reedsolomon/BC_ReedSolomonDecoder.cpp b/xfa/src/fxbarcode/common/reedsolomon/BC_ReedSolomonDecoder.cpp
|
| index 4ee87a4fa7d96283886fa40d2dd1350de785c5f8..b053f2a784cb41f513e3462df8f71a4c50568658 100644
|
| --- a/xfa/src/fxbarcode/common/reedsolomon/BC_ReedSolomonDecoder.cpp
|
| +++ b/xfa/src/fxbarcode/common/reedsolomon/BC_ReedSolomonDecoder.cpp
|
| @@ -1,239 +1,239 @@
|
| -// Copyright 2014 PDFium Authors. All rights reserved.
|
| -// Use of this source code is governed by a BSD-style license that can be
|
| -// found in the LICENSE file.
|
| -
|
| -// Original code copyright 2014 Foxit Software Inc. http://www.foxitsoftware.com
|
| -// Original code is licensed as follows:
|
| -/*
|
| - * Copyright 2007 ZXing authors
|
| - *
|
| - * Licensed under the Apache License, Version 2.0 (the "License");
|
| - * you may not use this file except in compliance with the License.
|
| - * You may obtain a copy of the License at
|
| - *
|
| - * http://www.apache.org/licenses/LICENSE-2.0
|
| - *
|
| - * Unless required by applicable law or agreed to in writing, software
|
| - * distributed under the License is distributed on an "AS IS" BASIS,
|
| - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| - * See the License for the specific language governing permissions and
|
| - * limitations under the License.
|
| - */
|
| -
|
| -#include "xfa/src/fxbarcode/barcode.h"
|
| -#include "BC_ReedSolomonGF256.h"
|
| -#include "BC_ReedSolomonGF256Poly.h"
|
| -#include "BC_ReedSolomonDecoder.h"
|
| -CBC_ReedSolomonDecoder::CBC_ReedSolomonDecoder(CBC_ReedSolomonGF256* field) {
|
| - m_field = field;
|
| -}
|
| -CBC_ReedSolomonDecoder::~CBC_ReedSolomonDecoder() {}
|
| -void CBC_ReedSolomonDecoder::Decode(CFX_Int32Array* received,
|
| - int32_t twoS,
|
| - int32_t& e) {
|
| - CBC_ReedSolomonGF256Poly poly;
|
| - poly.Init(m_field, received, e);
|
| - BC_EXCEPTION_CHECK_ReturnVoid(e);
|
| - CFX_Int32Array syndromeCoefficients;
|
| - syndromeCoefficients.SetSize(twoS);
|
| - FX_BOOL dataMatrix = FALSE;
|
| - FX_BOOL noError = TRUE;
|
| - for (int32_t i = 0; i < twoS; i++) {
|
| - int32_t eval = poly.EvaluateAt(m_field->Exp(dataMatrix ? i + 1 : i));
|
| - syndromeCoefficients[twoS - 1 - i] = eval;
|
| - if (eval != 0) {
|
| - noError = FALSE;
|
| - }
|
| - }
|
| - if (noError) {
|
| - return;
|
| - }
|
| - CBC_ReedSolomonGF256Poly syndrome;
|
| - syndrome.Init(m_field, &syndromeCoefficients, e);
|
| - BC_EXCEPTION_CHECK_ReturnVoid(e);
|
| - CBC_ReedSolomonGF256Poly* rsg = m_field->BuildMonomial(twoS, 1, e);
|
| - BC_EXCEPTION_CHECK_ReturnVoid(e);
|
| - CBC_AutoPtr<CBC_ReedSolomonGF256Poly> temp(rsg);
|
| - CFX_PtrArray* pa = RunEuclideanAlgorithm(temp.get(), &syndrome, twoS, e);
|
| - BC_EXCEPTION_CHECK_ReturnVoid(e);
|
| - CBC_AutoPtr<CFX_PtrArray> sigmaOmega(pa);
|
| - CBC_AutoPtr<CBC_ReedSolomonGF256Poly> sigma(
|
| - (CBC_ReedSolomonGF256Poly*)(*sigmaOmega)[0]);
|
| - CBC_AutoPtr<CBC_ReedSolomonGF256Poly> omega(
|
| - (CBC_ReedSolomonGF256Poly*)(*sigmaOmega)[1]);
|
| - CFX_Int32Array* ia1 = FindErrorLocations(sigma.get(), e);
|
| - BC_EXCEPTION_CHECK_ReturnVoid(e);
|
| - CBC_AutoPtr<CFX_Int32Array> errorLocations(ia1);
|
| - CFX_Int32Array* ia2 =
|
| - FindErrorMagnitudes(omega.get(), errorLocations.get(), dataMatrix, e);
|
| - BC_EXCEPTION_CHECK_ReturnVoid(e);
|
| - CBC_AutoPtr<CFX_Int32Array> errorMagnitudes(ia2);
|
| - for (int32_t k = 0; k < errorLocations->GetSize(); k++) {
|
| - int32_t position =
|
| - received->GetSize() - 1 - m_field->Log((*errorLocations)[k], e);
|
| - BC_EXCEPTION_CHECK_ReturnVoid(e);
|
| - if (position < 0) {
|
| - e = BCExceptionBadErrorLocation;
|
| - BC_EXCEPTION_CHECK_ReturnVoid(e);
|
| - }
|
| - (*received)[position] = CBC_ReedSolomonGF256::AddOrSubtract(
|
| - (*received)[position], (*errorMagnitudes)[k]);
|
| - }
|
| -}
|
| -CFX_PtrArray* CBC_ReedSolomonDecoder::RunEuclideanAlgorithm(
|
| - CBC_ReedSolomonGF256Poly* a,
|
| - CBC_ReedSolomonGF256Poly* b,
|
| - int32_t R,
|
| - int32_t& e) {
|
| - if (a->GetDegree() < b->GetDegree()) {
|
| - CBC_ReedSolomonGF256Poly* temp = a;
|
| - a = b;
|
| - b = temp;
|
| - }
|
| - CBC_ReedSolomonGF256Poly* rsg1 = a->Clone(e);
|
| - BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
|
| - CBC_AutoPtr<CBC_ReedSolomonGF256Poly> rLast(rsg1);
|
| - CBC_ReedSolomonGF256Poly* rsg2 = b->Clone(e);
|
| - BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
|
| - CBC_AutoPtr<CBC_ReedSolomonGF256Poly> r(rsg2);
|
| - CBC_ReedSolomonGF256Poly* rsg3 = m_field->GetOne()->Clone(e);
|
| - BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
|
| - CBC_AutoPtr<CBC_ReedSolomonGF256Poly> sLast(rsg3);
|
| - CBC_ReedSolomonGF256Poly* rsg4 = m_field->GetZero()->Clone(e);
|
| - BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
|
| - CBC_AutoPtr<CBC_ReedSolomonGF256Poly> s(rsg4);
|
| - CBC_ReedSolomonGF256Poly* rsg5 = m_field->GetZero()->Clone(e);
|
| - BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
|
| - CBC_AutoPtr<CBC_ReedSolomonGF256Poly> tLast(rsg5);
|
| - CBC_ReedSolomonGF256Poly* rsg6 = m_field->GetOne()->Clone(e);
|
| - BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
|
| - CBC_AutoPtr<CBC_ReedSolomonGF256Poly> t(rsg6);
|
| - while (r->GetDegree() >= R / 2) {
|
| - CBC_AutoPtr<CBC_ReedSolomonGF256Poly> rLastLast = rLast;
|
| - CBC_AutoPtr<CBC_ReedSolomonGF256Poly> sLastLast = sLast;
|
| - CBC_AutoPtr<CBC_ReedSolomonGF256Poly> tLastlast = tLast;
|
| - rLast = r;
|
| - sLast = s;
|
| - tLast = t;
|
| - if (rLast->IsZero()) {
|
| - e = BCExceptionR_I_1IsZero;
|
| - BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
|
| - }
|
| - CBC_ReedSolomonGF256Poly* rsg7 = rLastLast->Clone(e);
|
| - BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
|
| - CBC_AutoPtr<CBC_ReedSolomonGF256Poly> rTemp(rsg7);
|
| - r = rTemp;
|
| - CBC_ReedSolomonGF256Poly* rsg8 = m_field->GetZero()->Clone(e);
|
| - BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
|
| - CBC_AutoPtr<CBC_ReedSolomonGF256Poly> q(rsg8);
|
| - int32_t denominatorLeadingTerm = rLast->GetCoefficients(rLast->GetDegree());
|
| - int32_t dltInverse = m_field->Inverse(denominatorLeadingTerm, e);
|
| - BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
|
| - while (r->GetDegree() >= rLast->GetDegree() && !(r->IsZero())) {
|
| - int32_t degreeDiff = r->GetDegree() - rLast->GetDegree();
|
| - int32_t scale =
|
| - m_field->Multiply(r->GetCoefficients(r->GetDegree()), dltInverse);
|
| - CBC_ReedSolomonGF256Poly* rsgp1 =
|
| - m_field->BuildMonomial(degreeDiff, scale, e);
|
| - BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
|
| - CBC_AutoPtr<CBC_ReedSolomonGF256Poly> build(rsgp1);
|
| - CBC_ReedSolomonGF256Poly* rsgp2 = q->AddOrSubtract(build.get(), e);
|
| - BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
|
| - CBC_AutoPtr<CBC_ReedSolomonGF256Poly> temp(rsgp2);
|
| - q = temp;
|
| - CBC_ReedSolomonGF256Poly* rsgp3 =
|
| - rLast->MultiplyByMonomial(degreeDiff, scale, e);
|
| - BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
|
| - CBC_AutoPtr<CBC_ReedSolomonGF256Poly> multiply(rsgp3);
|
| - CBC_ReedSolomonGF256Poly* rsgp4 = r->AddOrSubtract(multiply.get(), e);
|
| - BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
|
| - CBC_AutoPtr<CBC_ReedSolomonGF256Poly> temp3(rsgp4);
|
| - r = temp3;
|
| - }
|
| - CBC_ReedSolomonGF256Poly* rsg9 = q->Multiply(sLast.get(), e);
|
| - BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
|
| - CBC_AutoPtr<CBC_ReedSolomonGF256Poly> temp1(rsg9);
|
| - CBC_ReedSolomonGF256Poly* rsg10 = temp1->AddOrSubtract(sLastLast.get(), e);
|
| - BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
|
| - CBC_AutoPtr<CBC_ReedSolomonGF256Poly> temp2(rsg10);
|
| - s = temp2;
|
| - CBC_ReedSolomonGF256Poly* rsg11 = q->Multiply(tLast.get(), e);
|
| - BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
|
| - CBC_AutoPtr<CBC_ReedSolomonGF256Poly> temp5(rsg11);
|
| - CBC_ReedSolomonGF256Poly* rsg12 = temp5->AddOrSubtract(tLastlast.get(), e);
|
| - BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
|
| - CBC_AutoPtr<CBC_ReedSolomonGF256Poly> temp6(rsg12);
|
| - t = temp6;
|
| - }
|
| - int32_t sigmaTildeAtZero = t->GetCoefficients(0);
|
| - if (sigmaTildeAtZero == 0) {
|
| - e = BCExceptionIsZero;
|
| - BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
|
| - }
|
| - int32_t inverse = m_field->Inverse(sigmaTildeAtZero, e);
|
| - BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
|
| - CBC_ReedSolomonGF256Poly* rsg13 = t->Multiply(inverse, e);
|
| - BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
|
| - CBC_AutoPtr<CBC_ReedSolomonGF256Poly> sigma(rsg13);
|
| - CBC_ReedSolomonGF256Poly* rsg14 = r->Multiply(inverse, e);
|
| - BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
|
| - CBC_AutoPtr<CBC_ReedSolomonGF256Poly> omega(rsg14);
|
| - CFX_PtrArray* temp = new CFX_PtrArray;
|
| - temp->Add(sigma.release());
|
| - temp->Add(omega.release());
|
| - return temp;
|
| -}
|
| -CFX_Int32Array* CBC_ReedSolomonDecoder::FindErrorLocations(
|
| - CBC_ReedSolomonGF256Poly* errorLocator,
|
| - int32_t& e) {
|
| - int32_t numErrors = errorLocator->GetDegree();
|
| - if (numErrors == 1) {
|
| - CBC_AutoPtr<CFX_Int32Array> temp(new CFX_Int32Array);
|
| - temp->Add(errorLocator->GetCoefficients(1));
|
| - return temp.release();
|
| - }
|
| - CFX_Int32Array* tempT = new CFX_Int32Array;
|
| - tempT->SetSize(numErrors);
|
| - CBC_AutoPtr<CFX_Int32Array> result(tempT);
|
| - int32_t ie = 0;
|
| - for (int32_t i = 1; i < 256 && ie < numErrors; i++) {
|
| - if (errorLocator->EvaluateAt(i) == 0) {
|
| - (*result)[ie] = m_field->Inverse(i, ie);
|
| - BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
|
| - ie++;
|
| - }
|
| - }
|
| - if (ie != numErrors) {
|
| - e = BCExceptionDegreeNotMatchRoots;
|
| - BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
|
| - }
|
| - return result.release();
|
| -}
|
| -CFX_Int32Array* CBC_ReedSolomonDecoder::FindErrorMagnitudes(
|
| - CBC_ReedSolomonGF256Poly* errorEvaluator,
|
| - CFX_Int32Array* errorLocations,
|
| - FX_BOOL dataMatrix,
|
| - int32_t& e) {
|
| - int32_t s = errorLocations->GetSize();
|
| - CFX_Int32Array* temp = new CFX_Int32Array;
|
| - temp->SetSize(s);
|
| - CBC_AutoPtr<CFX_Int32Array> result(temp);
|
| - for (int32_t i = 0; i < s; i++) {
|
| - int32_t xiInverse = m_field->Inverse(errorLocations->operator[](i), e);
|
| - BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
|
| - int32_t denominator = 1;
|
| - for (int32_t j = 0; j < s; j++) {
|
| - if (i != j) {
|
| - denominator = m_field->Multiply(
|
| - denominator, CBC_ReedSolomonGF256::AddOrSubtract(
|
| - 1, m_field->Multiply(errorLocations->operator[](j),
|
| - xiInverse)));
|
| - }
|
| - }
|
| - int32_t temp = m_field->Inverse(denominator, temp);
|
| - BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
|
| - (*result)[i] =
|
| - m_field->Multiply(errorEvaluator->EvaluateAt(xiInverse), temp);
|
| - }
|
| - return result.release();
|
| -}
|
| +// Copyright 2014 PDFium Authors. All rights reserved.
|
| +// Use of this source code is governed by a BSD-style license that can be
|
| +// found in the LICENSE file.
|
| +
|
| +// Original code copyright 2014 Foxit Software Inc. http://www.foxitsoftware.com
|
| +// Original code is licensed as follows:
|
| +/*
|
| + * Copyright 2007 ZXing authors
|
| + *
|
| + * Licensed under the Apache License, Version 2.0 (the "License");
|
| + * you may not use this file except in compliance with the License.
|
| + * You may obtain a copy of the License at
|
| + *
|
| + * http://www.apache.org/licenses/LICENSE-2.0
|
| + *
|
| + * Unless required by applicable law or agreed to in writing, software
|
| + * distributed under the License is distributed on an "AS IS" BASIS,
|
| + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| + * See the License for the specific language governing permissions and
|
| + * limitations under the License.
|
| + */
|
| +
|
| +#include "xfa/src/fxbarcode/barcode.h"
|
| +#include "BC_ReedSolomonGF256.h"
|
| +#include "BC_ReedSolomonGF256Poly.h"
|
| +#include "BC_ReedSolomonDecoder.h"
|
| +CBC_ReedSolomonDecoder::CBC_ReedSolomonDecoder(CBC_ReedSolomonGF256* field) {
|
| + m_field = field;
|
| +}
|
| +CBC_ReedSolomonDecoder::~CBC_ReedSolomonDecoder() {}
|
| +void CBC_ReedSolomonDecoder::Decode(CFX_Int32Array* received,
|
| + int32_t twoS,
|
| + int32_t& e) {
|
| + CBC_ReedSolomonGF256Poly poly;
|
| + poly.Init(m_field, received, e);
|
| + BC_EXCEPTION_CHECK_ReturnVoid(e);
|
| + CFX_Int32Array syndromeCoefficients;
|
| + syndromeCoefficients.SetSize(twoS);
|
| + FX_BOOL dataMatrix = FALSE;
|
| + FX_BOOL noError = TRUE;
|
| + for (int32_t i = 0; i < twoS; i++) {
|
| + int32_t eval = poly.EvaluateAt(m_field->Exp(dataMatrix ? i + 1 : i));
|
| + syndromeCoefficients[twoS - 1 - i] = eval;
|
| + if (eval != 0) {
|
| + noError = FALSE;
|
| + }
|
| + }
|
| + if (noError) {
|
| + return;
|
| + }
|
| + CBC_ReedSolomonGF256Poly syndrome;
|
| + syndrome.Init(m_field, &syndromeCoefficients, e);
|
| + BC_EXCEPTION_CHECK_ReturnVoid(e);
|
| + CBC_ReedSolomonGF256Poly* rsg = m_field->BuildMonomial(twoS, 1, e);
|
| + BC_EXCEPTION_CHECK_ReturnVoid(e);
|
| + CBC_AutoPtr<CBC_ReedSolomonGF256Poly> temp(rsg);
|
| + CFX_PtrArray* pa = RunEuclideanAlgorithm(temp.get(), &syndrome, twoS, e);
|
| + BC_EXCEPTION_CHECK_ReturnVoid(e);
|
| + CBC_AutoPtr<CFX_PtrArray> sigmaOmega(pa);
|
| + CBC_AutoPtr<CBC_ReedSolomonGF256Poly> sigma(
|
| + (CBC_ReedSolomonGF256Poly*)(*sigmaOmega)[0]);
|
| + CBC_AutoPtr<CBC_ReedSolomonGF256Poly> omega(
|
| + (CBC_ReedSolomonGF256Poly*)(*sigmaOmega)[1]);
|
| + CFX_Int32Array* ia1 = FindErrorLocations(sigma.get(), e);
|
| + BC_EXCEPTION_CHECK_ReturnVoid(e);
|
| + CBC_AutoPtr<CFX_Int32Array> errorLocations(ia1);
|
| + CFX_Int32Array* ia2 =
|
| + FindErrorMagnitudes(omega.get(), errorLocations.get(), dataMatrix, e);
|
| + BC_EXCEPTION_CHECK_ReturnVoid(e);
|
| + CBC_AutoPtr<CFX_Int32Array> errorMagnitudes(ia2);
|
| + for (int32_t k = 0; k < errorLocations->GetSize(); k++) {
|
| + int32_t position =
|
| + received->GetSize() - 1 - m_field->Log((*errorLocations)[k], e);
|
| + BC_EXCEPTION_CHECK_ReturnVoid(e);
|
| + if (position < 0) {
|
| + e = BCExceptionBadErrorLocation;
|
| + BC_EXCEPTION_CHECK_ReturnVoid(e);
|
| + }
|
| + (*received)[position] = CBC_ReedSolomonGF256::AddOrSubtract(
|
| + (*received)[position], (*errorMagnitudes)[k]);
|
| + }
|
| +}
|
| +CFX_PtrArray* CBC_ReedSolomonDecoder::RunEuclideanAlgorithm(
|
| + CBC_ReedSolomonGF256Poly* a,
|
| + CBC_ReedSolomonGF256Poly* b,
|
| + int32_t R,
|
| + int32_t& e) {
|
| + if (a->GetDegree() < b->GetDegree()) {
|
| + CBC_ReedSolomonGF256Poly* temp = a;
|
| + a = b;
|
| + b = temp;
|
| + }
|
| + CBC_ReedSolomonGF256Poly* rsg1 = a->Clone(e);
|
| + BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
|
| + CBC_AutoPtr<CBC_ReedSolomonGF256Poly> rLast(rsg1);
|
| + CBC_ReedSolomonGF256Poly* rsg2 = b->Clone(e);
|
| + BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
|
| + CBC_AutoPtr<CBC_ReedSolomonGF256Poly> r(rsg2);
|
| + CBC_ReedSolomonGF256Poly* rsg3 = m_field->GetOne()->Clone(e);
|
| + BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
|
| + CBC_AutoPtr<CBC_ReedSolomonGF256Poly> sLast(rsg3);
|
| + CBC_ReedSolomonGF256Poly* rsg4 = m_field->GetZero()->Clone(e);
|
| + BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
|
| + CBC_AutoPtr<CBC_ReedSolomonGF256Poly> s(rsg4);
|
| + CBC_ReedSolomonGF256Poly* rsg5 = m_field->GetZero()->Clone(e);
|
| + BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
|
| + CBC_AutoPtr<CBC_ReedSolomonGF256Poly> tLast(rsg5);
|
| + CBC_ReedSolomonGF256Poly* rsg6 = m_field->GetOne()->Clone(e);
|
| + BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
|
| + CBC_AutoPtr<CBC_ReedSolomonGF256Poly> t(rsg6);
|
| + while (r->GetDegree() >= R / 2) {
|
| + CBC_AutoPtr<CBC_ReedSolomonGF256Poly> rLastLast = rLast;
|
| + CBC_AutoPtr<CBC_ReedSolomonGF256Poly> sLastLast = sLast;
|
| + CBC_AutoPtr<CBC_ReedSolomonGF256Poly> tLastlast = tLast;
|
| + rLast = r;
|
| + sLast = s;
|
| + tLast = t;
|
| + if (rLast->IsZero()) {
|
| + e = BCExceptionR_I_1IsZero;
|
| + BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
|
| + }
|
| + CBC_ReedSolomonGF256Poly* rsg7 = rLastLast->Clone(e);
|
| + BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
|
| + CBC_AutoPtr<CBC_ReedSolomonGF256Poly> rTemp(rsg7);
|
| + r = rTemp;
|
| + CBC_ReedSolomonGF256Poly* rsg8 = m_field->GetZero()->Clone(e);
|
| + BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
|
| + CBC_AutoPtr<CBC_ReedSolomonGF256Poly> q(rsg8);
|
| + int32_t denominatorLeadingTerm = rLast->GetCoefficients(rLast->GetDegree());
|
| + int32_t dltInverse = m_field->Inverse(denominatorLeadingTerm, e);
|
| + BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
|
| + while (r->GetDegree() >= rLast->GetDegree() && !(r->IsZero())) {
|
| + int32_t degreeDiff = r->GetDegree() - rLast->GetDegree();
|
| + int32_t scale =
|
| + m_field->Multiply(r->GetCoefficients(r->GetDegree()), dltInverse);
|
| + CBC_ReedSolomonGF256Poly* rsgp1 =
|
| + m_field->BuildMonomial(degreeDiff, scale, e);
|
| + BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
|
| + CBC_AutoPtr<CBC_ReedSolomonGF256Poly> build(rsgp1);
|
| + CBC_ReedSolomonGF256Poly* rsgp2 = q->AddOrSubtract(build.get(), e);
|
| + BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
|
| + CBC_AutoPtr<CBC_ReedSolomonGF256Poly> temp(rsgp2);
|
| + q = temp;
|
| + CBC_ReedSolomonGF256Poly* rsgp3 =
|
| + rLast->MultiplyByMonomial(degreeDiff, scale, e);
|
| + BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
|
| + CBC_AutoPtr<CBC_ReedSolomonGF256Poly> multiply(rsgp3);
|
| + CBC_ReedSolomonGF256Poly* rsgp4 = r->AddOrSubtract(multiply.get(), e);
|
| + BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
|
| + CBC_AutoPtr<CBC_ReedSolomonGF256Poly> temp3(rsgp4);
|
| + r = temp3;
|
| + }
|
| + CBC_ReedSolomonGF256Poly* rsg9 = q->Multiply(sLast.get(), e);
|
| + BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
|
| + CBC_AutoPtr<CBC_ReedSolomonGF256Poly> temp1(rsg9);
|
| + CBC_ReedSolomonGF256Poly* rsg10 = temp1->AddOrSubtract(sLastLast.get(), e);
|
| + BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
|
| + CBC_AutoPtr<CBC_ReedSolomonGF256Poly> temp2(rsg10);
|
| + s = temp2;
|
| + CBC_ReedSolomonGF256Poly* rsg11 = q->Multiply(tLast.get(), e);
|
| + BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
|
| + CBC_AutoPtr<CBC_ReedSolomonGF256Poly> temp5(rsg11);
|
| + CBC_ReedSolomonGF256Poly* rsg12 = temp5->AddOrSubtract(tLastlast.get(), e);
|
| + BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
|
| + CBC_AutoPtr<CBC_ReedSolomonGF256Poly> temp6(rsg12);
|
| + t = temp6;
|
| + }
|
| + int32_t sigmaTildeAtZero = t->GetCoefficients(0);
|
| + if (sigmaTildeAtZero == 0) {
|
| + e = BCExceptionIsZero;
|
| + BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
|
| + }
|
| + int32_t inverse = m_field->Inverse(sigmaTildeAtZero, e);
|
| + BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
|
| + CBC_ReedSolomonGF256Poly* rsg13 = t->Multiply(inverse, e);
|
| + BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
|
| + CBC_AutoPtr<CBC_ReedSolomonGF256Poly> sigma(rsg13);
|
| + CBC_ReedSolomonGF256Poly* rsg14 = r->Multiply(inverse, e);
|
| + BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
|
| + CBC_AutoPtr<CBC_ReedSolomonGF256Poly> omega(rsg14);
|
| + CFX_PtrArray* temp = new CFX_PtrArray;
|
| + temp->Add(sigma.release());
|
| + temp->Add(omega.release());
|
| + return temp;
|
| +}
|
| +CFX_Int32Array* CBC_ReedSolomonDecoder::FindErrorLocations(
|
| + CBC_ReedSolomonGF256Poly* errorLocator,
|
| + int32_t& e) {
|
| + int32_t numErrors = errorLocator->GetDegree();
|
| + if (numErrors == 1) {
|
| + CBC_AutoPtr<CFX_Int32Array> temp(new CFX_Int32Array);
|
| + temp->Add(errorLocator->GetCoefficients(1));
|
| + return temp.release();
|
| + }
|
| + CFX_Int32Array* tempT = new CFX_Int32Array;
|
| + tempT->SetSize(numErrors);
|
| + CBC_AutoPtr<CFX_Int32Array> result(tempT);
|
| + int32_t ie = 0;
|
| + for (int32_t i = 1; i < 256 && ie < numErrors; i++) {
|
| + if (errorLocator->EvaluateAt(i) == 0) {
|
| + (*result)[ie] = m_field->Inverse(i, ie);
|
| + BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
|
| + ie++;
|
| + }
|
| + }
|
| + if (ie != numErrors) {
|
| + e = BCExceptionDegreeNotMatchRoots;
|
| + BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
|
| + }
|
| + return result.release();
|
| +}
|
| +CFX_Int32Array* CBC_ReedSolomonDecoder::FindErrorMagnitudes(
|
| + CBC_ReedSolomonGF256Poly* errorEvaluator,
|
| + CFX_Int32Array* errorLocations,
|
| + FX_BOOL dataMatrix,
|
| + int32_t& e) {
|
| + int32_t s = errorLocations->GetSize();
|
| + CFX_Int32Array* temp = new CFX_Int32Array;
|
| + temp->SetSize(s);
|
| + CBC_AutoPtr<CFX_Int32Array> result(temp);
|
| + for (int32_t i = 0; i < s; i++) {
|
| + int32_t xiInverse = m_field->Inverse(errorLocations->operator[](i), e);
|
| + BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
|
| + int32_t denominator = 1;
|
| + for (int32_t j = 0; j < s; j++) {
|
| + if (i != j) {
|
| + denominator = m_field->Multiply(
|
| + denominator, CBC_ReedSolomonGF256::AddOrSubtract(
|
| + 1, m_field->Multiply(errorLocations->operator[](j),
|
| + xiInverse)));
|
| + }
|
| + }
|
| + int32_t temp = m_field->Inverse(denominator, temp);
|
| + BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
|
| + (*result)[i] =
|
| + m_field->Multiply(errorEvaluator->EvaluateAt(xiInverse), temp);
|
| + }
|
| + return result.release();
|
| +}
|
|
|