Index: third_party/sqlite/amalgamation/sqlite3.02.c |
diff --git a/third_party/sqlite/amalgamation/sqlite3.02.c b/third_party/sqlite/amalgamation/sqlite3.02.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..d01160a6ada939e51a419ea448b6b1bced1467c6 |
--- /dev/null |
+++ b/third_party/sqlite/amalgamation/sqlite3.02.c |
@@ -0,0 +1,22365 @@ |
+/************** Begin file pager.c *******************************************/ |
+/* |
+** 2001 September 15 |
+** |
+** The author disclaims copyright to this source code. In place of |
+** a legal notice, here is a blessing: |
+** |
+** May you do good and not evil. |
+** May you find forgiveness for yourself and forgive others. |
+** May you share freely, never taking more than you give. |
+** |
+************************************************************************* |
+** This is the implementation of the page cache subsystem or "pager". |
+** |
+** The pager is used to access a database disk file. It implements |
+** atomic commit and rollback through the use of a journal file that |
+** is separate from the database file. The pager also implements file |
+** locking to prevent two processes from writing the same database |
+** file simultaneously, or one process from reading the database while |
+** another is writing. |
+*/ |
+#ifndef SQLITE_OMIT_DISKIO |
+/* #include "sqliteInt.h" */ |
+/************** Include wal.h in the middle of pager.c ***********************/ |
+/************** Begin file wal.h *********************************************/ |
+/* |
+** 2010 February 1 |
+** |
+** The author disclaims copyright to this source code. In place of |
+** a legal notice, here is a blessing: |
+** |
+** May you do good and not evil. |
+** May you find forgiveness for yourself and forgive others. |
+** May you share freely, never taking more than you give. |
+** |
+************************************************************************* |
+** This header file defines the interface to the write-ahead logging |
+** system. Refer to the comments below and the header comment attached to |
+** the implementation of each function in log.c for further details. |
+*/ |
+ |
+#ifndef _WAL_H_ |
+#define _WAL_H_ |
+ |
+/* #include "sqliteInt.h" */ |
+ |
+/* Additional values that can be added to the sync_flags argument of |
+** sqlite3WalFrames(): |
+*/ |
+#define WAL_SYNC_TRANSACTIONS 0x20 /* Sync at the end of each transaction */ |
+#define SQLITE_SYNC_MASK 0x13 /* Mask off the SQLITE_SYNC_* values */ |
+ |
+#ifdef SQLITE_OMIT_WAL |
+# define sqlite3WalOpen(x,y,z) 0 |
+# define sqlite3WalLimit(x,y) |
+# define sqlite3WalClose(w,x,y,z) 0 |
+# define sqlite3WalBeginReadTransaction(y,z) 0 |
+# define sqlite3WalEndReadTransaction(z) |
+# define sqlite3WalDbsize(y) 0 |
+# define sqlite3WalBeginWriteTransaction(y) 0 |
+# define sqlite3WalEndWriteTransaction(x) 0 |
+# define sqlite3WalUndo(x,y,z) 0 |
+# define sqlite3WalSavepoint(y,z) |
+# define sqlite3WalSavepointUndo(y,z) 0 |
+# define sqlite3WalFrames(u,v,w,x,y,z) 0 |
+# define sqlite3WalCheckpoint(r,s,t,u,v,w,x,y,z) 0 |
+# define sqlite3WalCallback(z) 0 |
+# define sqlite3WalExclusiveMode(y,z) 0 |
+# define sqlite3WalHeapMemory(z) 0 |
+# define sqlite3WalFramesize(z) 0 |
+# define sqlite3WalFindFrame(x,y,z) 0 |
+# define sqlite3WalFile(x) 0 |
+#else |
+ |
+#define WAL_SAVEPOINT_NDATA 4 |
+ |
+/* Connection to a write-ahead log (WAL) file. |
+** There is one object of this type for each pager. |
+*/ |
+typedef struct Wal Wal; |
+ |
+/* Open and close a connection to a write-ahead log. */ |
+SQLITE_PRIVATE int sqlite3WalOpen(sqlite3_vfs*, sqlite3_file*, const char *, int, i64, Wal**); |
+SQLITE_PRIVATE int sqlite3WalClose(Wal *pWal, int sync_flags, int, u8 *); |
+ |
+/* Set the limiting size of a WAL file. */ |
+SQLITE_PRIVATE void sqlite3WalLimit(Wal*, i64); |
+ |
+/* Used by readers to open (lock) and close (unlock) a snapshot. A |
+** snapshot is like a read-transaction. It is the state of the database |
+** at an instant in time. sqlite3WalOpenSnapshot gets a read lock and |
+** preserves the current state even if the other threads or processes |
+** write to or checkpoint the WAL. sqlite3WalCloseSnapshot() closes the |
+** transaction and releases the lock. |
+*/ |
+SQLITE_PRIVATE int sqlite3WalBeginReadTransaction(Wal *pWal, int *); |
+SQLITE_PRIVATE void sqlite3WalEndReadTransaction(Wal *pWal); |
+ |
+/* Read a page from the write-ahead log, if it is present. */ |
+SQLITE_PRIVATE int sqlite3WalFindFrame(Wal *, Pgno, u32 *); |
+SQLITE_PRIVATE int sqlite3WalReadFrame(Wal *, u32, int, u8 *); |
+ |
+/* If the WAL is not empty, return the size of the database. */ |
+SQLITE_PRIVATE Pgno sqlite3WalDbsize(Wal *pWal); |
+ |
+/* Obtain or release the WRITER lock. */ |
+SQLITE_PRIVATE int sqlite3WalBeginWriteTransaction(Wal *pWal); |
+SQLITE_PRIVATE int sqlite3WalEndWriteTransaction(Wal *pWal); |
+ |
+/* Undo any frames written (but not committed) to the log */ |
+SQLITE_PRIVATE int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx); |
+ |
+/* Return an integer that records the current (uncommitted) write |
+** position in the WAL */ |
+SQLITE_PRIVATE void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData); |
+ |
+/* Move the write position of the WAL back to iFrame. Called in |
+** response to a ROLLBACK TO command. */ |
+SQLITE_PRIVATE int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData); |
+ |
+/* Write a frame or frames to the log. */ |
+SQLITE_PRIVATE int sqlite3WalFrames(Wal *pWal, int, PgHdr *, Pgno, int, int); |
+ |
+/* Copy pages from the log to the database file */ |
+SQLITE_PRIVATE int sqlite3WalCheckpoint( |
+ Wal *pWal, /* Write-ahead log connection */ |
+ int eMode, /* One of PASSIVE, FULL and RESTART */ |
+ int (*xBusy)(void*), /* Function to call when busy */ |
+ void *pBusyArg, /* Context argument for xBusyHandler */ |
+ int sync_flags, /* Flags to sync db file with (or 0) */ |
+ int nBuf, /* Size of buffer nBuf */ |
+ u8 *zBuf, /* Temporary buffer to use */ |
+ int *pnLog, /* OUT: Number of frames in WAL */ |
+ int *pnCkpt /* OUT: Number of backfilled frames in WAL */ |
+); |
+ |
+/* Return the value to pass to a sqlite3_wal_hook callback, the |
+** number of frames in the WAL at the point of the last commit since |
+** sqlite3WalCallback() was called. If no commits have occurred since |
+** the last call, then return 0. |
+*/ |
+SQLITE_PRIVATE int sqlite3WalCallback(Wal *pWal); |
+ |
+/* Tell the wal layer that an EXCLUSIVE lock has been obtained (or released) |
+** by the pager layer on the database file. |
+*/ |
+SQLITE_PRIVATE int sqlite3WalExclusiveMode(Wal *pWal, int op); |
+ |
+/* Return true if the argument is non-NULL and the WAL module is using |
+** heap-memory for the wal-index. Otherwise, if the argument is NULL or the |
+** WAL module is using shared-memory, return false. |
+*/ |
+SQLITE_PRIVATE int sqlite3WalHeapMemory(Wal *pWal); |
+ |
+#ifdef SQLITE_ENABLE_SNAPSHOT |
+SQLITE_PRIVATE int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot); |
+SQLITE_PRIVATE void sqlite3WalSnapshotOpen(Wal *pWal, sqlite3_snapshot *pSnapshot); |
+#endif |
+ |
+#ifdef SQLITE_ENABLE_ZIPVFS |
+/* If the WAL file is not empty, return the number of bytes of content |
+** stored in each frame (i.e. the db page-size when the WAL was created). |
+*/ |
+SQLITE_PRIVATE int sqlite3WalFramesize(Wal *pWal); |
+#endif |
+ |
+/* Return the sqlite3_file object for the WAL file */ |
+SQLITE_PRIVATE sqlite3_file *sqlite3WalFile(Wal *pWal); |
+ |
+#endif /* ifndef SQLITE_OMIT_WAL */ |
+#endif /* _WAL_H_ */ |
+ |
+/************** End of wal.h *************************************************/ |
+/************** Continuing where we left off in pager.c **********************/ |
+ |
+ |
+/******************* NOTES ON THE DESIGN OF THE PAGER ************************ |
+** |
+** This comment block describes invariants that hold when using a rollback |
+** journal. These invariants do not apply for journal_mode=WAL, |
+** journal_mode=MEMORY, or journal_mode=OFF. |
+** |
+** Within this comment block, a page is deemed to have been synced |
+** automatically as soon as it is written when PRAGMA synchronous=OFF. |
+** Otherwise, the page is not synced until the xSync method of the VFS |
+** is called successfully on the file containing the page. |
+** |
+** Definition: A page of the database file is said to be "overwriteable" if |
+** one or more of the following are true about the page: |
+** |
+** (a) The original content of the page as it was at the beginning of |
+** the transaction has been written into the rollback journal and |
+** synced. |
+** |
+** (b) The page was a freelist leaf page at the start of the transaction. |
+** |
+** (c) The page number is greater than the largest page that existed in |
+** the database file at the start of the transaction. |
+** |
+** (1) A page of the database file is never overwritten unless one of the |
+** following are true: |
+** |
+** (a) The page and all other pages on the same sector are overwriteable. |
+** |
+** (b) The atomic page write optimization is enabled, and the entire |
+** transaction other than the update of the transaction sequence |
+** number consists of a single page change. |
+** |
+** (2) The content of a page written into the rollback journal exactly matches |
+** both the content in the database when the rollback journal was written |
+** and the content in the database at the beginning of the current |
+** transaction. |
+** |
+** (3) Writes to the database file are an integer multiple of the page size |
+** in length and are aligned on a page boundary. |
+** |
+** (4) Reads from the database file are either aligned on a page boundary and |
+** an integer multiple of the page size in length or are taken from the |
+** first 100 bytes of the database file. |
+** |
+** (5) All writes to the database file are synced prior to the rollback journal |
+** being deleted, truncated, or zeroed. |
+** |
+** (6) If a master journal file is used, then all writes to the database file |
+** are synced prior to the master journal being deleted. |
+** |
+** Definition: Two databases (or the same database at two points it time) |
+** are said to be "logically equivalent" if they give the same answer to |
+** all queries. Note in particular the content of freelist leaf |
+** pages can be changed arbitrarily without affecting the logical equivalence |
+** of the database. |
+** |
+** (7) At any time, if any subset, including the empty set and the total set, |
+** of the unsynced changes to a rollback journal are removed and the |
+** journal is rolled back, the resulting database file will be logically |
+** equivalent to the database file at the beginning of the transaction. |
+** |
+** (8) When a transaction is rolled back, the xTruncate method of the VFS |
+** is called to restore the database file to the same size it was at |
+** the beginning of the transaction. (In some VFSes, the xTruncate |
+** method is a no-op, but that does not change the fact the SQLite will |
+** invoke it.) |
+** |
+** (9) Whenever the database file is modified, at least one bit in the range |
+** of bytes from 24 through 39 inclusive will be changed prior to releasing |
+** the EXCLUSIVE lock, thus signaling other connections on the same |
+** database to flush their caches. |
+** |
+** (10) The pattern of bits in bytes 24 through 39 shall not repeat in less |
+** than one billion transactions. |
+** |
+** (11) A database file is well-formed at the beginning and at the conclusion |
+** of every transaction. |
+** |
+** (12) An EXCLUSIVE lock is held on the database file when writing to |
+** the database file. |
+** |
+** (13) A SHARED lock is held on the database file while reading any |
+** content out of the database file. |
+** |
+******************************************************************************/ |
+ |
+/* |
+** Macros for troubleshooting. Normally turned off |
+*/ |
+#if 0 |
+int sqlite3PagerTrace=1; /* True to enable tracing */ |
+#define sqlite3DebugPrintf printf |
+#define PAGERTRACE(X) if( sqlite3PagerTrace ){ sqlite3DebugPrintf X; } |
+#else |
+#define PAGERTRACE(X) |
+#endif |
+ |
+/* |
+** The following two macros are used within the PAGERTRACE() macros above |
+** to print out file-descriptors. |
+** |
+** PAGERID() takes a pointer to a Pager struct as its argument. The |
+** associated file-descriptor is returned. FILEHANDLEID() takes an sqlite3_file |
+** struct as its argument. |
+*/ |
+#define PAGERID(p) ((int)(p->fd)) |
+#define FILEHANDLEID(fd) ((int)fd) |
+ |
+/* |
+** The Pager.eState variable stores the current 'state' of a pager. A |
+** pager may be in any one of the seven states shown in the following |
+** state diagram. |
+** |
+** OPEN <------+------+ |
+** | | | |
+** V | | |
+** +---------> READER-------+ | |
+** | | | |
+** | V | |
+** |<-------WRITER_LOCKED------> ERROR |
+** | | ^ |
+** | V | |
+** |<------WRITER_CACHEMOD-------->| |
+** | | | |
+** | V | |
+** |<-------WRITER_DBMOD---------->| |
+** | | | |
+** | V | |
+** +<------WRITER_FINISHED-------->+ |
+** |
+** |
+** List of state transitions and the C [function] that performs each: |
+** |
+** OPEN -> READER [sqlite3PagerSharedLock] |
+** READER -> OPEN [pager_unlock] |
+** |
+** READER -> WRITER_LOCKED [sqlite3PagerBegin] |
+** WRITER_LOCKED -> WRITER_CACHEMOD [pager_open_journal] |
+** WRITER_CACHEMOD -> WRITER_DBMOD [syncJournal] |
+** WRITER_DBMOD -> WRITER_FINISHED [sqlite3PagerCommitPhaseOne] |
+** WRITER_*** -> READER [pager_end_transaction] |
+** |
+** WRITER_*** -> ERROR [pager_error] |
+** ERROR -> OPEN [pager_unlock] |
+** |
+** |
+** OPEN: |
+** |
+** The pager starts up in this state. Nothing is guaranteed in this |
+** state - the file may or may not be locked and the database size is |
+** unknown. The database may not be read or written. |
+** |
+** * No read or write transaction is active. |
+** * Any lock, or no lock at all, may be held on the database file. |
+** * The dbSize, dbOrigSize and dbFileSize variables may not be trusted. |
+** |
+** READER: |
+** |
+** In this state all the requirements for reading the database in |
+** rollback (non-WAL) mode are met. Unless the pager is (or recently |
+** was) in exclusive-locking mode, a user-level read transaction is |
+** open. The database size is known in this state. |
+** |
+** A connection running with locking_mode=normal enters this state when |
+** it opens a read-transaction on the database and returns to state |
+** OPEN after the read-transaction is completed. However a connection |
+** running in locking_mode=exclusive (including temp databases) remains in |
+** this state even after the read-transaction is closed. The only way |
+** a locking_mode=exclusive connection can transition from READER to OPEN |
+** is via the ERROR state (see below). |
+** |
+** * A read transaction may be active (but a write-transaction cannot). |
+** * A SHARED or greater lock is held on the database file. |
+** * The dbSize variable may be trusted (even if a user-level read |
+** transaction is not active). The dbOrigSize and dbFileSize variables |
+** may not be trusted at this point. |
+** * If the database is a WAL database, then the WAL connection is open. |
+** * Even if a read-transaction is not open, it is guaranteed that |
+** there is no hot-journal in the file-system. |
+** |
+** WRITER_LOCKED: |
+** |
+** The pager moves to this state from READER when a write-transaction |
+** is first opened on the database. In WRITER_LOCKED state, all locks |
+** required to start a write-transaction are held, but no actual |
+** modifications to the cache or database have taken place. |
+** |
+** In rollback mode, a RESERVED or (if the transaction was opened with |
+** BEGIN EXCLUSIVE) EXCLUSIVE lock is obtained on the database file when |
+** moving to this state, but the journal file is not written to or opened |
+** to in this state. If the transaction is committed or rolled back while |
+** in WRITER_LOCKED state, all that is required is to unlock the database |
+** file. |
+** |
+** IN WAL mode, WalBeginWriteTransaction() is called to lock the log file. |
+** If the connection is running with locking_mode=exclusive, an attempt |
+** is made to obtain an EXCLUSIVE lock on the database file. |
+** |
+** * A write transaction is active. |
+** * If the connection is open in rollback-mode, a RESERVED or greater |
+** lock is held on the database file. |
+** * If the connection is open in WAL-mode, a WAL write transaction |
+** is open (i.e. sqlite3WalBeginWriteTransaction() has been successfully |
+** called). |
+** * The dbSize, dbOrigSize and dbFileSize variables are all valid. |
+** * The contents of the pager cache have not been modified. |
+** * The journal file may or may not be open. |
+** * Nothing (not even the first header) has been written to the journal. |
+** |
+** WRITER_CACHEMOD: |
+** |
+** A pager moves from WRITER_LOCKED state to this state when a page is |
+** first modified by the upper layer. In rollback mode the journal file |
+** is opened (if it is not already open) and a header written to the |
+** start of it. The database file on disk has not been modified. |
+** |
+** * A write transaction is active. |
+** * A RESERVED or greater lock is held on the database file. |
+** * The journal file is open and the first header has been written |
+** to it, but the header has not been synced to disk. |
+** * The contents of the page cache have been modified. |
+** |
+** WRITER_DBMOD: |
+** |
+** The pager transitions from WRITER_CACHEMOD into WRITER_DBMOD state |
+** when it modifies the contents of the database file. WAL connections |
+** never enter this state (since they do not modify the database file, |
+** just the log file). |
+** |
+** * A write transaction is active. |
+** * An EXCLUSIVE or greater lock is held on the database file. |
+** * The journal file is open and the first header has been written |
+** and synced to disk. |
+** * The contents of the page cache have been modified (and possibly |
+** written to disk). |
+** |
+** WRITER_FINISHED: |
+** |
+** It is not possible for a WAL connection to enter this state. |
+** |
+** A rollback-mode pager changes to WRITER_FINISHED state from WRITER_DBMOD |
+** state after the entire transaction has been successfully written into the |
+** database file. In this state the transaction may be committed simply |
+** by finalizing the journal file. Once in WRITER_FINISHED state, it is |
+** not possible to modify the database further. At this point, the upper |
+** layer must either commit or rollback the transaction. |
+** |
+** * A write transaction is active. |
+** * An EXCLUSIVE or greater lock is held on the database file. |
+** * All writing and syncing of journal and database data has finished. |
+** If no error occurred, all that remains is to finalize the journal to |
+** commit the transaction. If an error did occur, the caller will need |
+** to rollback the transaction. |
+** |
+** ERROR: |
+** |
+** The ERROR state is entered when an IO or disk-full error (including |
+** SQLITE_IOERR_NOMEM) occurs at a point in the code that makes it |
+** difficult to be sure that the in-memory pager state (cache contents, |
+** db size etc.) are consistent with the contents of the file-system. |
+** |
+** Temporary pager files may enter the ERROR state, but in-memory pagers |
+** cannot. |
+** |
+** For example, if an IO error occurs while performing a rollback, |
+** the contents of the page-cache may be left in an inconsistent state. |
+** At this point it would be dangerous to change back to READER state |
+** (as usually happens after a rollback). Any subsequent readers might |
+** report database corruption (due to the inconsistent cache), and if |
+** they upgrade to writers, they may inadvertently corrupt the database |
+** file. To avoid this hazard, the pager switches into the ERROR state |
+** instead of READER following such an error. |
+** |
+** Once it has entered the ERROR state, any attempt to use the pager |
+** to read or write data returns an error. Eventually, once all |
+** outstanding transactions have been abandoned, the pager is able to |
+** transition back to OPEN state, discarding the contents of the |
+** page-cache and any other in-memory state at the same time. Everything |
+** is reloaded from disk (and, if necessary, hot-journal rollback peformed) |
+** when a read-transaction is next opened on the pager (transitioning |
+** the pager into READER state). At that point the system has recovered |
+** from the error. |
+** |
+** Specifically, the pager jumps into the ERROR state if: |
+** |
+** 1. An error occurs while attempting a rollback. This happens in |
+** function sqlite3PagerRollback(). |
+** |
+** 2. An error occurs while attempting to finalize a journal file |
+** following a commit in function sqlite3PagerCommitPhaseTwo(). |
+** |
+** 3. An error occurs while attempting to write to the journal or |
+** database file in function pagerStress() in order to free up |
+** memory. |
+** |
+** In other cases, the error is returned to the b-tree layer. The b-tree |
+** layer then attempts a rollback operation. If the error condition |
+** persists, the pager enters the ERROR state via condition (1) above. |
+** |
+** Condition (3) is necessary because it can be triggered by a read-only |
+** statement executed within a transaction. In this case, if the error |
+** code were simply returned to the user, the b-tree layer would not |
+** automatically attempt a rollback, as it assumes that an error in a |
+** read-only statement cannot leave the pager in an internally inconsistent |
+** state. |
+** |
+** * The Pager.errCode variable is set to something other than SQLITE_OK. |
+** * There are one or more outstanding references to pages (after the |
+** last reference is dropped the pager should move back to OPEN state). |
+** * The pager is not an in-memory pager. |
+** |
+** |
+** Notes: |
+** |
+** * A pager is never in WRITER_DBMOD or WRITER_FINISHED state if the |
+** connection is open in WAL mode. A WAL connection is always in one |
+** of the first four states. |
+** |
+** * Normally, a connection open in exclusive mode is never in PAGER_OPEN |
+** state. There are two exceptions: immediately after exclusive-mode has |
+** been turned on (and before any read or write transactions are |
+** executed), and when the pager is leaving the "error state". |
+** |
+** * See also: assert_pager_state(). |
+*/ |
+#define PAGER_OPEN 0 |
+#define PAGER_READER 1 |
+#define PAGER_WRITER_LOCKED 2 |
+#define PAGER_WRITER_CACHEMOD 3 |
+#define PAGER_WRITER_DBMOD 4 |
+#define PAGER_WRITER_FINISHED 5 |
+#define PAGER_ERROR 6 |
+ |
+/* |
+** The Pager.eLock variable is almost always set to one of the |
+** following locking-states, according to the lock currently held on |
+** the database file: NO_LOCK, SHARED_LOCK, RESERVED_LOCK or EXCLUSIVE_LOCK. |
+** This variable is kept up to date as locks are taken and released by |
+** the pagerLockDb() and pagerUnlockDb() wrappers. |
+** |
+** If the VFS xLock() or xUnlock() returns an error other than SQLITE_BUSY |
+** (i.e. one of the SQLITE_IOERR subtypes), it is not clear whether or not |
+** the operation was successful. In these circumstances pagerLockDb() and |
+** pagerUnlockDb() take a conservative approach - eLock is always updated |
+** when unlocking the file, and only updated when locking the file if the |
+** VFS call is successful. This way, the Pager.eLock variable may be set |
+** to a less exclusive (lower) value than the lock that is actually held |
+** at the system level, but it is never set to a more exclusive value. |
+** |
+** This is usually safe. If an xUnlock fails or appears to fail, there may |
+** be a few redundant xLock() calls or a lock may be held for longer than |
+** required, but nothing really goes wrong. |
+** |
+** The exception is when the database file is unlocked as the pager moves |
+** from ERROR to OPEN state. At this point there may be a hot-journal file |
+** in the file-system that needs to be rolled back (as part of an OPEN->SHARED |
+** transition, by the same pager or any other). If the call to xUnlock() |
+** fails at this point and the pager is left holding an EXCLUSIVE lock, this |
+** can confuse the call to xCheckReservedLock() call made later as part |
+** of hot-journal detection. |
+** |
+** xCheckReservedLock() is defined as returning true "if there is a RESERVED |
+** lock held by this process or any others". So xCheckReservedLock may |
+** return true because the caller itself is holding an EXCLUSIVE lock (but |
+** doesn't know it because of a previous error in xUnlock). If this happens |
+** a hot-journal may be mistaken for a journal being created by an active |
+** transaction in another process, causing SQLite to read from the database |
+** without rolling it back. |
+** |
+** To work around this, if a call to xUnlock() fails when unlocking the |
+** database in the ERROR state, Pager.eLock is set to UNKNOWN_LOCK. It |
+** is only changed back to a real locking state after a successful call |
+** to xLock(EXCLUSIVE). Also, the code to do the OPEN->SHARED state transition |
+** omits the check for a hot-journal if Pager.eLock is set to UNKNOWN_LOCK |
+** lock. Instead, it assumes a hot-journal exists and obtains an EXCLUSIVE |
+** lock on the database file before attempting to roll it back. See function |
+** PagerSharedLock() for more detail. |
+** |
+** Pager.eLock may only be set to UNKNOWN_LOCK when the pager is in |
+** PAGER_OPEN state. |
+*/ |
+#define UNKNOWN_LOCK (EXCLUSIVE_LOCK+1) |
+ |
+/* |
+** A macro used for invoking the codec if there is one |
+*/ |
+#ifdef SQLITE_HAS_CODEC |
+# define CODEC1(P,D,N,X,E) \ |
+ if( P->xCodec && P->xCodec(P->pCodec,D,N,X)==0 ){ E; } |
+# define CODEC2(P,D,N,X,E,O) \ |
+ if( P->xCodec==0 ){ O=(char*)D; }else \ |
+ if( (O=(char*)(P->xCodec(P->pCodec,D,N,X)))==0 ){ E; } |
+#else |
+# define CODEC1(P,D,N,X,E) /* NO-OP */ |
+# define CODEC2(P,D,N,X,E,O) O=(char*)D |
+#endif |
+ |
+/* |
+** The maximum allowed sector size. 64KiB. If the xSectorsize() method |
+** returns a value larger than this, then MAX_SECTOR_SIZE is used instead. |
+** This could conceivably cause corruption following a power failure on |
+** such a system. This is currently an undocumented limit. |
+*/ |
+#define MAX_SECTOR_SIZE 0x10000 |
+ |
+/* |
+** An instance of the following structure is allocated for each active |
+** savepoint and statement transaction in the system. All such structures |
+** are stored in the Pager.aSavepoint[] array, which is allocated and |
+** resized using sqlite3Realloc(). |
+** |
+** When a savepoint is created, the PagerSavepoint.iHdrOffset field is |
+** set to 0. If a journal-header is written into the main journal while |
+** the savepoint is active, then iHdrOffset is set to the byte offset |
+** immediately following the last journal record written into the main |
+** journal before the journal-header. This is required during savepoint |
+** rollback (see pagerPlaybackSavepoint()). |
+*/ |
+typedef struct PagerSavepoint PagerSavepoint; |
+struct PagerSavepoint { |
+ i64 iOffset; /* Starting offset in main journal */ |
+ i64 iHdrOffset; /* See above */ |
+ Bitvec *pInSavepoint; /* Set of pages in this savepoint */ |
+ Pgno nOrig; /* Original number of pages in file */ |
+ Pgno iSubRec; /* Index of first record in sub-journal */ |
+#ifndef SQLITE_OMIT_WAL |
+ u32 aWalData[WAL_SAVEPOINT_NDATA]; /* WAL savepoint context */ |
+#endif |
+}; |
+ |
+/* |
+** Bits of the Pager.doNotSpill flag. See further description below. |
+*/ |
+#define SPILLFLAG_OFF 0x01 /* Never spill cache. Set via pragma */ |
+#define SPILLFLAG_ROLLBACK 0x02 /* Current rolling back, so do not spill */ |
+#define SPILLFLAG_NOSYNC 0x04 /* Spill is ok, but do not sync */ |
+ |
+/* |
+** An open page cache is an instance of struct Pager. A description of |
+** some of the more important member variables follows: |
+** |
+** eState |
+** |
+** The current 'state' of the pager object. See the comment and state |
+** diagram above for a description of the pager state. |
+** |
+** eLock |
+** |
+** For a real on-disk database, the current lock held on the database file - |
+** NO_LOCK, SHARED_LOCK, RESERVED_LOCK or EXCLUSIVE_LOCK. |
+** |
+** For a temporary or in-memory database (neither of which require any |
+** locks), this variable is always set to EXCLUSIVE_LOCK. Since such |
+** databases always have Pager.exclusiveMode==1, this tricks the pager |
+** logic into thinking that it already has all the locks it will ever |
+** need (and no reason to release them). |
+** |
+** In some (obscure) circumstances, this variable may also be set to |
+** UNKNOWN_LOCK. See the comment above the #define of UNKNOWN_LOCK for |
+** details. |
+** |
+** changeCountDone |
+** |
+** This boolean variable is used to make sure that the change-counter |
+** (the 4-byte header field at byte offset 24 of the database file) is |
+** not updated more often than necessary. |
+** |
+** It is set to true when the change-counter field is updated, which |
+** can only happen if an exclusive lock is held on the database file. |
+** It is cleared (set to false) whenever an exclusive lock is |
+** relinquished on the database file. Each time a transaction is committed, |
+** The changeCountDone flag is inspected. If it is true, the work of |
+** updating the change-counter is omitted for the current transaction. |
+** |
+** This mechanism means that when running in exclusive mode, a connection |
+** need only update the change-counter once, for the first transaction |
+** committed. |
+** |
+** setMaster |
+** |
+** When PagerCommitPhaseOne() is called to commit a transaction, it may |
+** (or may not) specify a master-journal name to be written into the |
+** journal file before it is synced to disk. |
+** |
+** Whether or not a journal file contains a master-journal pointer affects |
+** the way in which the journal file is finalized after the transaction is |
+** committed or rolled back when running in "journal_mode=PERSIST" mode. |
+** If a journal file does not contain a master-journal pointer, it is |
+** finalized by overwriting the first journal header with zeroes. If |
+** it does contain a master-journal pointer the journal file is finalized |
+** by truncating it to zero bytes, just as if the connection were |
+** running in "journal_mode=truncate" mode. |
+** |
+** Journal files that contain master journal pointers cannot be finalized |
+** simply by overwriting the first journal-header with zeroes, as the |
+** master journal pointer could interfere with hot-journal rollback of any |
+** subsequently interrupted transaction that reuses the journal file. |
+** |
+** The flag is cleared as soon as the journal file is finalized (either |
+** by PagerCommitPhaseTwo or PagerRollback). If an IO error prevents the |
+** journal file from being successfully finalized, the setMaster flag |
+** is cleared anyway (and the pager will move to ERROR state). |
+** |
+** doNotSpill |
+** |
+** This variables control the behavior of cache-spills (calls made by |
+** the pcache module to the pagerStress() routine to write cached data |
+** to the file-system in order to free up memory). |
+** |
+** When bits SPILLFLAG_OFF or SPILLFLAG_ROLLBACK of doNotSpill are set, |
+** writing to the database from pagerStress() is disabled altogether. |
+** The SPILLFLAG_ROLLBACK case is done in a very obscure case that |
+** comes up during savepoint rollback that requires the pcache module |
+** to allocate a new page to prevent the journal file from being written |
+** while it is being traversed by code in pager_playback(). The SPILLFLAG_OFF |
+** case is a user preference. |
+** |
+** If the SPILLFLAG_NOSYNC bit is set, writing to the database from |
+** pagerStress() is permitted, but syncing the journal file is not. |
+** This flag is set by sqlite3PagerWrite() when the file-system sector-size |
+** is larger than the database page-size in order to prevent a journal sync |
+** from happening in between the journalling of two pages on the same sector. |
+** |
+** subjInMemory |
+** |
+** This is a boolean variable. If true, then any required sub-journal |
+** is opened as an in-memory journal file. If false, then in-memory |
+** sub-journals are only used for in-memory pager files. |
+** |
+** This variable is updated by the upper layer each time a new |
+** write-transaction is opened. |
+** |
+** dbSize, dbOrigSize, dbFileSize |
+** |
+** Variable dbSize is set to the number of pages in the database file. |
+** It is valid in PAGER_READER and higher states (all states except for |
+** OPEN and ERROR). |
+** |
+** dbSize is set based on the size of the database file, which may be |
+** larger than the size of the database (the value stored at offset |
+** 28 of the database header by the btree). If the size of the file |
+** is not an integer multiple of the page-size, the value stored in |
+** dbSize is rounded down (i.e. a 5KB file with 2K page-size has dbSize==2). |
+** Except, any file that is greater than 0 bytes in size is considered |
+** to have at least one page. (i.e. a 1KB file with 2K page-size leads |
+** to dbSize==1). |
+** |
+** During a write-transaction, if pages with page-numbers greater than |
+** dbSize are modified in the cache, dbSize is updated accordingly. |
+** Similarly, if the database is truncated using PagerTruncateImage(), |
+** dbSize is updated. |
+** |
+** Variables dbOrigSize and dbFileSize are valid in states |
+** PAGER_WRITER_LOCKED and higher. dbOrigSize is a copy of the dbSize |
+** variable at the start of the transaction. It is used during rollback, |
+** and to determine whether or not pages need to be journalled before |
+** being modified. |
+** |
+** Throughout a write-transaction, dbFileSize contains the size of |
+** the file on disk in pages. It is set to a copy of dbSize when the |
+** write-transaction is first opened, and updated when VFS calls are made |
+** to write or truncate the database file on disk. |
+** |
+** The only reason the dbFileSize variable is required is to suppress |
+** unnecessary calls to xTruncate() after committing a transaction. If, |
+** when a transaction is committed, the dbFileSize variable indicates |
+** that the database file is larger than the database image (Pager.dbSize), |
+** pager_truncate() is called. The pager_truncate() call uses xFilesize() |
+** to measure the database file on disk, and then truncates it if required. |
+** dbFileSize is not used when rolling back a transaction. In this case |
+** pager_truncate() is called unconditionally (which means there may be |
+** a call to xFilesize() that is not strictly required). In either case, |
+** pager_truncate() may cause the file to become smaller or larger. |
+** |
+** dbHintSize |
+** |
+** The dbHintSize variable is used to limit the number of calls made to |
+** the VFS xFileControl(FCNTL_SIZE_HINT) method. |
+** |
+** dbHintSize is set to a copy of the dbSize variable when a |
+** write-transaction is opened (at the same time as dbFileSize and |
+** dbOrigSize). If the xFileControl(FCNTL_SIZE_HINT) method is called, |
+** dbHintSize is increased to the number of pages that correspond to the |
+** size-hint passed to the method call. See pager_write_pagelist() for |
+** details. |
+** |
+** errCode |
+** |
+** The Pager.errCode variable is only ever used in PAGER_ERROR state. It |
+** is set to zero in all other states. In PAGER_ERROR state, Pager.errCode |
+** is always set to SQLITE_FULL, SQLITE_IOERR or one of the SQLITE_IOERR_XXX |
+** sub-codes. |
+*/ |
+struct Pager { |
+ sqlite3_vfs *pVfs; /* OS functions to use for IO */ |
+ u8 exclusiveMode; /* Boolean. True if locking_mode==EXCLUSIVE */ |
+ u8 journalMode; /* One of the PAGER_JOURNALMODE_* values */ |
+ u8 useJournal; /* Use a rollback journal on this file */ |
+ u8 noSync; /* Do not sync the journal if true */ |
+ u8 fullSync; /* Do extra syncs of the journal for robustness */ |
+ u8 ckptSyncFlags; /* SYNC_NORMAL or SYNC_FULL for checkpoint */ |
+ u8 walSyncFlags; /* SYNC_NORMAL or SYNC_FULL for wal writes */ |
+ u8 syncFlags; /* SYNC_NORMAL or SYNC_FULL otherwise */ |
+ u8 tempFile; /* zFilename is a temporary or immutable file */ |
+ u8 noLock; /* Do not lock (except in WAL mode) */ |
+ u8 readOnly; /* True for a read-only database */ |
+ u8 memDb; /* True to inhibit all file I/O */ |
+ |
+ /************************************************************************** |
+ ** The following block contains those class members that change during |
+ ** routine operation. Class members not in this block are either fixed |
+ ** when the pager is first created or else only change when there is a |
+ ** significant mode change (such as changing the page_size, locking_mode, |
+ ** or the journal_mode). From another view, these class members describe |
+ ** the "state" of the pager, while other class members describe the |
+ ** "configuration" of the pager. |
+ */ |
+ u8 eState; /* Pager state (OPEN, READER, WRITER_LOCKED..) */ |
+ u8 eLock; /* Current lock held on database file */ |
+ u8 changeCountDone; /* Set after incrementing the change-counter */ |
+ u8 setMaster; /* True if a m-j name has been written to jrnl */ |
+ u8 doNotSpill; /* Do not spill the cache when non-zero */ |
+ u8 subjInMemory; /* True to use in-memory sub-journals */ |
+ u8 bUseFetch; /* True to use xFetch() */ |
+ u8 hasHeldSharedLock; /* True if a shared lock has ever been held */ |
+ Pgno dbSize; /* Number of pages in the database */ |
+ Pgno dbOrigSize; /* dbSize before the current transaction */ |
+ Pgno dbFileSize; /* Number of pages in the database file */ |
+ Pgno dbHintSize; /* Value passed to FCNTL_SIZE_HINT call */ |
+ int errCode; /* One of several kinds of errors */ |
+ int nRec; /* Pages journalled since last j-header written */ |
+ u32 cksumInit; /* Quasi-random value added to every checksum */ |
+ u32 nSubRec; /* Number of records written to sub-journal */ |
+ Bitvec *pInJournal; /* One bit for each page in the database file */ |
+ sqlite3_file *fd; /* File descriptor for database */ |
+ sqlite3_file *jfd; /* File descriptor for main journal */ |
+ sqlite3_file *sjfd; /* File descriptor for sub-journal */ |
+ i64 journalOff; /* Current write offset in the journal file */ |
+ i64 journalHdr; /* Byte offset to previous journal header */ |
+ sqlite3_backup *pBackup; /* Pointer to list of ongoing backup processes */ |
+ PagerSavepoint *aSavepoint; /* Array of active savepoints */ |
+ int nSavepoint; /* Number of elements in aSavepoint[] */ |
+ u32 iDataVersion; /* Changes whenever database content changes */ |
+ char dbFileVers[16]; /* Changes whenever database file changes */ |
+ |
+ int nMmapOut; /* Number of mmap pages currently outstanding */ |
+ sqlite3_int64 szMmap; /* Desired maximum mmap size */ |
+ PgHdr *pMmapFreelist; /* List of free mmap page headers (pDirty) */ |
+ /* |
+ ** End of the routinely-changing class members |
+ ***************************************************************************/ |
+ |
+ u16 nExtra; /* Add this many bytes to each in-memory page */ |
+ i16 nReserve; /* Number of unused bytes at end of each page */ |
+ u32 vfsFlags; /* Flags for sqlite3_vfs.xOpen() */ |
+ u32 sectorSize; /* Assumed sector size during rollback */ |
+ int pageSize; /* Number of bytes in a page */ |
+ Pgno mxPgno; /* Maximum allowed size of the database */ |
+ i64 journalSizeLimit; /* Size limit for persistent journal files */ |
+ char *zFilename; /* Name of the database file */ |
+ char *zJournal; /* Name of the journal file */ |
+ int (*xBusyHandler)(void*); /* Function to call when busy */ |
+ void *pBusyHandlerArg; /* Context argument for xBusyHandler */ |
+ int aStat[3]; /* Total cache hits, misses and writes */ |
+#ifdef SQLITE_TEST |
+ int nRead; /* Database pages read */ |
+#endif |
+ void (*xReiniter)(DbPage*); /* Call this routine when reloading pages */ |
+#ifdef SQLITE_HAS_CODEC |
+ void *(*xCodec)(void*,void*,Pgno,int); /* Routine for en/decoding data */ |
+ void (*xCodecSizeChng)(void*,int,int); /* Notify of page size changes */ |
+ void (*xCodecFree)(void*); /* Destructor for the codec */ |
+ void *pCodec; /* First argument to xCodec... methods */ |
+#endif |
+ char *pTmpSpace; /* Pager.pageSize bytes of space for tmp use */ |
+ PCache *pPCache; /* Pointer to page cache object */ |
+#ifndef SQLITE_OMIT_WAL |
+ Wal *pWal; /* Write-ahead log used by "journal_mode=wal" */ |
+ char *zWal; /* File name for write-ahead log */ |
+#endif |
+}; |
+ |
+/* |
+** Indexes for use with Pager.aStat[]. The Pager.aStat[] array contains |
+** the values accessed by passing SQLITE_DBSTATUS_CACHE_HIT, CACHE_MISS |
+** or CACHE_WRITE to sqlite3_db_status(). |
+*/ |
+#define PAGER_STAT_HIT 0 |
+#define PAGER_STAT_MISS 1 |
+#define PAGER_STAT_WRITE 2 |
+ |
+/* |
+** The following global variables hold counters used for |
+** testing purposes only. These variables do not exist in |
+** a non-testing build. These variables are not thread-safe. |
+*/ |
+#ifdef SQLITE_TEST |
+SQLITE_API int sqlite3_pager_readdb_count = 0; /* Number of full pages read from DB */ |
+SQLITE_API int sqlite3_pager_writedb_count = 0; /* Number of full pages written to DB */ |
+SQLITE_API int sqlite3_pager_writej_count = 0; /* Number of pages written to journal */ |
+# define PAGER_INCR(v) v++ |
+#else |
+# define PAGER_INCR(v) |
+#endif |
+ |
+ |
+ |
+/* |
+** Journal files begin with the following magic string. The data |
+** was obtained from /dev/random. It is used only as a sanity check. |
+** |
+** Since version 2.8.0, the journal format contains additional sanity |
+** checking information. If the power fails while the journal is being |
+** written, semi-random garbage data might appear in the journal |
+** file after power is restored. If an attempt is then made |
+** to roll the journal back, the database could be corrupted. The additional |
+** sanity checking data is an attempt to discover the garbage in the |
+** journal and ignore it. |
+** |
+** The sanity checking information for the new journal format consists |
+** of a 32-bit checksum on each page of data. The checksum covers both |
+** the page number and the pPager->pageSize bytes of data for the page. |
+** This cksum is initialized to a 32-bit random value that appears in the |
+** journal file right after the header. The random initializer is important, |
+** because garbage data that appears at the end of a journal is likely |
+** data that was once in other files that have now been deleted. If the |
+** garbage data came from an obsolete journal file, the checksums might |
+** be correct. But by initializing the checksum to random value which |
+** is different for every journal, we minimize that risk. |
+*/ |
+static const unsigned char aJournalMagic[] = { |
+ 0xd9, 0xd5, 0x05, 0xf9, 0x20, 0xa1, 0x63, 0xd7, |
+}; |
+ |
+/* |
+** The size of the of each page record in the journal is given by |
+** the following macro. |
+*/ |
+#define JOURNAL_PG_SZ(pPager) ((pPager->pageSize) + 8) |
+ |
+/* |
+** The journal header size for this pager. This is usually the same |
+** size as a single disk sector. See also setSectorSize(). |
+*/ |
+#define JOURNAL_HDR_SZ(pPager) (pPager->sectorSize) |
+ |
+/* |
+** The macro MEMDB is true if we are dealing with an in-memory database. |
+** We do this as a macro so that if the SQLITE_OMIT_MEMORYDB macro is set, |
+** the value of MEMDB will be a constant and the compiler will optimize |
+** out code that would never execute. |
+*/ |
+#ifdef SQLITE_OMIT_MEMORYDB |
+# define MEMDB 0 |
+#else |
+# define MEMDB pPager->memDb |
+#endif |
+ |
+/* |
+** The macro USEFETCH is true if we are allowed to use the xFetch and xUnfetch |
+** interfaces to access the database using memory-mapped I/O. |
+*/ |
+#if SQLITE_MAX_MMAP_SIZE>0 |
+# define USEFETCH(x) ((x)->bUseFetch) |
+#else |
+# define USEFETCH(x) 0 |
+#endif |
+ |
+/* |
+** The maximum legal page number is (2^31 - 1). |
+*/ |
+#define PAGER_MAX_PGNO 2147483647 |
+ |
+/* |
+** The argument to this macro is a file descriptor (type sqlite3_file*). |
+** Return 0 if it is not open, or non-zero (but not 1) if it is. |
+** |
+** This is so that expressions can be written as: |
+** |
+** if( isOpen(pPager->jfd) ){ ... |
+** |
+** instead of |
+** |
+** if( pPager->jfd->pMethods ){ ... |
+*/ |
+#define isOpen(pFd) ((pFd)->pMethods!=0) |
+ |
+/* |
+** Return true if this pager uses a write-ahead log instead of the usual |
+** rollback journal. Otherwise false. |
+*/ |
+#ifndef SQLITE_OMIT_WAL |
+static int pagerUseWal(Pager *pPager){ |
+ return (pPager->pWal!=0); |
+} |
+#else |
+# define pagerUseWal(x) 0 |
+# define pagerRollbackWal(x) 0 |
+# define pagerWalFrames(v,w,x,y) 0 |
+# define pagerOpenWalIfPresent(z) SQLITE_OK |
+# define pagerBeginReadTransaction(z) SQLITE_OK |
+#endif |
+ |
+#ifndef NDEBUG |
+/* |
+** Usage: |
+** |
+** assert( assert_pager_state(pPager) ); |
+** |
+** This function runs many asserts to try to find inconsistencies in |
+** the internal state of the Pager object. |
+*/ |
+static int assert_pager_state(Pager *p){ |
+ Pager *pPager = p; |
+ |
+ /* State must be valid. */ |
+ assert( p->eState==PAGER_OPEN |
+ || p->eState==PAGER_READER |
+ || p->eState==PAGER_WRITER_LOCKED |
+ || p->eState==PAGER_WRITER_CACHEMOD |
+ || p->eState==PAGER_WRITER_DBMOD |
+ || p->eState==PAGER_WRITER_FINISHED |
+ || p->eState==PAGER_ERROR |
+ ); |
+ |
+ /* Regardless of the current state, a temp-file connection always behaves |
+ ** as if it has an exclusive lock on the database file. It never updates |
+ ** the change-counter field, so the changeCountDone flag is always set. |
+ */ |
+ assert( p->tempFile==0 || p->eLock==EXCLUSIVE_LOCK ); |
+ assert( p->tempFile==0 || pPager->changeCountDone ); |
+ |
+ /* If the useJournal flag is clear, the journal-mode must be "OFF". |
+ ** And if the journal-mode is "OFF", the journal file must not be open. |
+ */ |
+ assert( p->journalMode==PAGER_JOURNALMODE_OFF || p->useJournal ); |
+ assert( p->journalMode!=PAGER_JOURNALMODE_OFF || !isOpen(p->jfd) ); |
+ |
+ /* Check that MEMDB implies noSync. And an in-memory journal. Since |
+ ** this means an in-memory pager performs no IO at all, it cannot encounter |
+ ** either SQLITE_IOERR or SQLITE_FULL during rollback or while finalizing |
+ ** a journal file. (although the in-memory journal implementation may |
+ ** return SQLITE_IOERR_NOMEM while the journal file is being written). It |
+ ** is therefore not possible for an in-memory pager to enter the ERROR |
+ ** state. |
+ */ |
+ if( MEMDB ){ |
+ assert( p->noSync ); |
+ assert( p->journalMode==PAGER_JOURNALMODE_OFF |
+ || p->journalMode==PAGER_JOURNALMODE_MEMORY |
+ ); |
+ assert( p->eState!=PAGER_ERROR && p->eState!=PAGER_OPEN ); |
+ assert( pagerUseWal(p)==0 ); |
+ } |
+ |
+ /* If changeCountDone is set, a RESERVED lock or greater must be held |
+ ** on the file. |
+ */ |
+ assert( pPager->changeCountDone==0 || pPager->eLock>=RESERVED_LOCK ); |
+ assert( p->eLock!=PENDING_LOCK ); |
+ |
+ switch( p->eState ){ |
+ case PAGER_OPEN: |
+ assert( !MEMDB ); |
+ assert( pPager->errCode==SQLITE_OK ); |
+ assert( sqlite3PcacheRefCount(pPager->pPCache)==0 || pPager->tempFile ); |
+ break; |
+ |
+ case PAGER_READER: |
+ assert( pPager->errCode==SQLITE_OK ); |
+ assert( p->eLock!=UNKNOWN_LOCK ); |
+ assert( p->eLock>=SHARED_LOCK ); |
+ break; |
+ |
+ case PAGER_WRITER_LOCKED: |
+ assert( p->eLock!=UNKNOWN_LOCK ); |
+ assert( pPager->errCode==SQLITE_OK ); |
+ if( !pagerUseWal(pPager) ){ |
+ assert( p->eLock>=RESERVED_LOCK ); |
+ } |
+ assert( pPager->dbSize==pPager->dbOrigSize ); |
+ assert( pPager->dbOrigSize==pPager->dbFileSize ); |
+ assert( pPager->dbOrigSize==pPager->dbHintSize ); |
+ assert( pPager->setMaster==0 ); |
+ break; |
+ |
+ case PAGER_WRITER_CACHEMOD: |
+ assert( p->eLock!=UNKNOWN_LOCK ); |
+ assert( pPager->errCode==SQLITE_OK ); |
+ if( !pagerUseWal(pPager) ){ |
+ /* It is possible that if journal_mode=wal here that neither the |
+ ** journal file nor the WAL file are open. This happens during |
+ ** a rollback transaction that switches from journal_mode=off |
+ ** to journal_mode=wal. |
+ */ |
+ assert( p->eLock>=RESERVED_LOCK ); |
+ assert( isOpen(p->jfd) |
+ || p->journalMode==PAGER_JOURNALMODE_OFF |
+ || p->journalMode==PAGER_JOURNALMODE_WAL |
+ ); |
+ } |
+ assert( pPager->dbOrigSize==pPager->dbFileSize ); |
+ assert( pPager->dbOrigSize==pPager->dbHintSize ); |
+ break; |
+ |
+ case PAGER_WRITER_DBMOD: |
+ assert( p->eLock==EXCLUSIVE_LOCK ); |
+ assert( pPager->errCode==SQLITE_OK ); |
+ assert( !pagerUseWal(pPager) ); |
+ assert( p->eLock>=EXCLUSIVE_LOCK ); |
+ assert( isOpen(p->jfd) |
+ || p->journalMode==PAGER_JOURNALMODE_OFF |
+ || p->journalMode==PAGER_JOURNALMODE_WAL |
+ ); |
+ assert( pPager->dbOrigSize<=pPager->dbHintSize ); |
+ break; |
+ |
+ case PAGER_WRITER_FINISHED: |
+ assert( p->eLock==EXCLUSIVE_LOCK ); |
+ assert( pPager->errCode==SQLITE_OK ); |
+ assert( !pagerUseWal(pPager) ); |
+ assert( isOpen(p->jfd) |
+ || p->journalMode==PAGER_JOURNALMODE_OFF |
+ || p->journalMode==PAGER_JOURNALMODE_WAL |
+ ); |
+ break; |
+ |
+ case PAGER_ERROR: |
+ /* There must be at least one outstanding reference to the pager if |
+ ** in ERROR state. Otherwise the pager should have already dropped |
+ ** back to OPEN state. |
+ */ |
+ assert( pPager->errCode!=SQLITE_OK ); |
+ assert( sqlite3PcacheRefCount(pPager->pPCache)>0 ); |
+ break; |
+ } |
+ |
+ return 1; |
+} |
+#endif /* ifndef NDEBUG */ |
+ |
+#ifdef SQLITE_DEBUG |
+/* |
+** Return a pointer to a human readable string in a static buffer |
+** containing the state of the Pager object passed as an argument. This |
+** is intended to be used within debuggers. For example, as an alternative |
+** to "print *pPager" in gdb: |
+** |
+** (gdb) printf "%s", print_pager_state(pPager) |
+*/ |
+static char *print_pager_state(Pager *p){ |
+ static char zRet[1024]; |
+ |
+ sqlite3_snprintf(1024, zRet, |
+ "Filename: %s\n" |
+ "State: %s errCode=%d\n" |
+ "Lock: %s\n" |
+ "Locking mode: locking_mode=%s\n" |
+ "Journal mode: journal_mode=%s\n" |
+ "Backing store: tempFile=%d memDb=%d useJournal=%d\n" |
+ "Journal: journalOff=%lld journalHdr=%lld\n" |
+ "Size: dbsize=%d dbOrigSize=%d dbFileSize=%d\n" |
+ , p->zFilename |
+ , p->eState==PAGER_OPEN ? "OPEN" : |
+ p->eState==PAGER_READER ? "READER" : |
+ p->eState==PAGER_WRITER_LOCKED ? "WRITER_LOCKED" : |
+ p->eState==PAGER_WRITER_CACHEMOD ? "WRITER_CACHEMOD" : |
+ p->eState==PAGER_WRITER_DBMOD ? "WRITER_DBMOD" : |
+ p->eState==PAGER_WRITER_FINISHED ? "WRITER_FINISHED" : |
+ p->eState==PAGER_ERROR ? "ERROR" : "?error?" |
+ , (int)p->errCode |
+ , p->eLock==NO_LOCK ? "NO_LOCK" : |
+ p->eLock==RESERVED_LOCK ? "RESERVED" : |
+ p->eLock==EXCLUSIVE_LOCK ? "EXCLUSIVE" : |
+ p->eLock==SHARED_LOCK ? "SHARED" : |
+ p->eLock==UNKNOWN_LOCK ? "UNKNOWN" : "?error?" |
+ , p->exclusiveMode ? "exclusive" : "normal" |
+ , p->journalMode==PAGER_JOURNALMODE_MEMORY ? "memory" : |
+ p->journalMode==PAGER_JOURNALMODE_OFF ? "off" : |
+ p->journalMode==PAGER_JOURNALMODE_DELETE ? "delete" : |
+ p->journalMode==PAGER_JOURNALMODE_PERSIST ? "persist" : |
+ p->journalMode==PAGER_JOURNALMODE_TRUNCATE ? "truncate" : |
+ p->journalMode==PAGER_JOURNALMODE_WAL ? "wal" : "?error?" |
+ , (int)p->tempFile, (int)p->memDb, (int)p->useJournal |
+ , p->journalOff, p->journalHdr |
+ , (int)p->dbSize, (int)p->dbOrigSize, (int)p->dbFileSize |
+ ); |
+ |
+ return zRet; |
+} |
+#endif |
+ |
+/* |
+** Return true if it is necessary to write page *pPg into the sub-journal. |
+** A page needs to be written into the sub-journal if there exists one |
+** or more open savepoints for which: |
+** |
+** * The page-number is less than or equal to PagerSavepoint.nOrig, and |
+** * The bit corresponding to the page-number is not set in |
+** PagerSavepoint.pInSavepoint. |
+*/ |
+static int subjRequiresPage(PgHdr *pPg){ |
+ Pager *pPager = pPg->pPager; |
+ PagerSavepoint *p; |
+ Pgno pgno = pPg->pgno; |
+ int i; |
+ for(i=0; i<pPager->nSavepoint; i++){ |
+ p = &pPager->aSavepoint[i]; |
+ if( p->nOrig>=pgno && 0==sqlite3BitvecTestNotNull(p->pInSavepoint, pgno) ){ |
+ return 1; |
+ } |
+ } |
+ return 0; |
+} |
+ |
+#ifdef SQLITE_DEBUG |
+/* |
+** Return true if the page is already in the journal file. |
+*/ |
+static int pageInJournal(Pager *pPager, PgHdr *pPg){ |
+ return sqlite3BitvecTest(pPager->pInJournal, pPg->pgno); |
+} |
+#endif |
+ |
+/* |
+** Read a 32-bit integer from the given file descriptor. Store the integer |
+** that is read in *pRes. Return SQLITE_OK if everything worked, or an |
+** error code is something goes wrong. |
+** |
+** All values are stored on disk as big-endian. |
+*/ |
+static int read32bits(sqlite3_file *fd, i64 offset, u32 *pRes){ |
+ unsigned char ac[4]; |
+ int rc = sqlite3OsRead(fd, ac, sizeof(ac), offset); |
+ if( rc==SQLITE_OK ){ |
+ *pRes = sqlite3Get4byte(ac); |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Write a 32-bit integer into a string buffer in big-endian byte order. |
+*/ |
+#define put32bits(A,B) sqlite3Put4byte((u8*)A,B) |
+ |
+ |
+/* |
+** Write a 32-bit integer into the given file descriptor. Return SQLITE_OK |
+** on success or an error code is something goes wrong. |
+*/ |
+static int write32bits(sqlite3_file *fd, i64 offset, u32 val){ |
+ char ac[4]; |
+ put32bits(ac, val); |
+ return sqlite3OsWrite(fd, ac, 4, offset); |
+} |
+ |
+/* |
+** Unlock the database file to level eLock, which must be either NO_LOCK |
+** or SHARED_LOCK. Regardless of whether or not the call to xUnlock() |
+** succeeds, set the Pager.eLock variable to match the (attempted) new lock. |
+** |
+** Except, if Pager.eLock is set to UNKNOWN_LOCK when this function is |
+** called, do not modify it. See the comment above the #define of |
+** UNKNOWN_LOCK for an explanation of this. |
+*/ |
+static int pagerUnlockDb(Pager *pPager, int eLock){ |
+ int rc = SQLITE_OK; |
+ |
+ assert( !pPager->exclusiveMode || pPager->eLock==eLock ); |
+ assert( eLock==NO_LOCK || eLock==SHARED_LOCK ); |
+ assert( eLock!=NO_LOCK || pagerUseWal(pPager)==0 ); |
+ if( isOpen(pPager->fd) ){ |
+ assert( pPager->eLock>=eLock ); |
+ rc = pPager->noLock ? SQLITE_OK : sqlite3OsUnlock(pPager->fd, eLock); |
+ if( pPager->eLock!=UNKNOWN_LOCK ){ |
+ pPager->eLock = (u8)eLock; |
+ } |
+ IOTRACE(("UNLOCK %p %d\n", pPager, eLock)) |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Lock the database file to level eLock, which must be either SHARED_LOCK, |
+** RESERVED_LOCK or EXCLUSIVE_LOCK. If the caller is successful, set the |
+** Pager.eLock variable to the new locking state. |
+** |
+** Except, if Pager.eLock is set to UNKNOWN_LOCK when this function is |
+** called, do not modify it unless the new locking state is EXCLUSIVE_LOCK. |
+** See the comment above the #define of UNKNOWN_LOCK for an explanation |
+** of this. |
+*/ |
+static int pagerLockDb(Pager *pPager, int eLock){ |
+ int rc = SQLITE_OK; |
+ |
+ assert( eLock==SHARED_LOCK || eLock==RESERVED_LOCK || eLock==EXCLUSIVE_LOCK ); |
+ if( pPager->eLock<eLock || pPager->eLock==UNKNOWN_LOCK ){ |
+ rc = pPager->noLock ? SQLITE_OK : sqlite3OsLock(pPager->fd, eLock); |
+ if( rc==SQLITE_OK && (pPager->eLock!=UNKNOWN_LOCK||eLock==EXCLUSIVE_LOCK) ){ |
+ pPager->eLock = (u8)eLock; |
+ IOTRACE(("LOCK %p %d\n", pPager, eLock)) |
+ } |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** This function determines whether or not the atomic-write optimization |
+** can be used with this pager. The optimization can be used if: |
+** |
+** (a) the value returned by OsDeviceCharacteristics() indicates that |
+** a database page may be written atomically, and |
+** (b) the value returned by OsSectorSize() is less than or equal |
+** to the page size. |
+** |
+** The optimization is also always enabled for temporary files. It is |
+** an error to call this function if pPager is opened on an in-memory |
+** database. |
+** |
+** If the optimization cannot be used, 0 is returned. If it can be used, |
+** then the value returned is the size of the journal file when it |
+** contains rollback data for exactly one page. |
+*/ |
+#ifdef SQLITE_ENABLE_ATOMIC_WRITE |
+static int jrnlBufferSize(Pager *pPager){ |
+ assert( !MEMDB ); |
+ if( !pPager->tempFile ){ |
+ int dc; /* Device characteristics */ |
+ int nSector; /* Sector size */ |
+ int szPage; /* Page size */ |
+ |
+ assert( isOpen(pPager->fd) ); |
+ dc = sqlite3OsDeviceCharacteristics(pPager->fd); |
+ nSector = pPager->sectorSize; |
+ szPage = pPager->pageSize; |
+ |
+ assert(SQLITE_IOCAP_ATOMIC512==(512>>8)); |
+ assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8)); |
+ if( 0==(dc&(SQLITE_IOCAP_ATOMIC|(szPage>>8)) || nSector>szPage) ){ |
+ return 0; |
+ } |
+ } |
+ |
+ return JOURNAL_HDR_SZ(pPager) + JOURNAL_PG_SZ(pPager); |
+} |
+#endif |
+ |
+/* |
+** If SQLITE_CHECK_PAGES is defined then we do some sanity checking |
+** on the cache using a hash function. This is used for testing |
+** and debugging only. |
+*/ |
+#ifdef SQLITE_CHECK_PAGES |
+/* |
+** Return a 32-bit hash of the page data for pPage. |
+*/ |
+static u32 pager_datahash(int nByte, unsigned char *pData){ |
+ u32 hash = 0; |
+ int i; |
+ for(i=0; i<nByte; i++){ |
+ hash = (hash*1039) + pData[i]; |
+ } |
+ return hash; |
+} |
+static u32 pager_pagehash(PgHdr *pPage){ |
+ return pager_datahash(pPage->pPager->pageSize, (unsigned char *)pPage->pData); |
+} |
+static void pager_set_pagehash(PgHdr *pPage){ |
+ pPage->pageHash = pager_pagehash(pPage); |
+} |
+ |
+/* |
+** The CHECK_PAGE macro takes a PgHdr* as an argument. If SQLITE_CHECK_PAGES |
+** is defined, and NDEBUG is not defined, an assert() statement checks |
+** that the page is either dirty or still matches the calculated page-hash. |
+*/ |
+#define CHECK_PAGE(x) checkPage(x) |
+static void checkPage(PgHdr *pPg){ |
+ Pager *pPager = pPg->pPager; |
+ assert( pPager->eState!=PAGER_ERROR ); |
+ assert( (pPg->flags&PGHDR_DIRTY) || pPg->pageHash==pager_pagehash(pPg) ); |
+} |
+ |
+#else |
+#define pager_datahash(X,Y) 0 |
+#define pager_pagehash(X) 0 |
+#define pager_set_pagehash(X) |
+#define CHECK_PAGE(x) |
+#endif /* SQLITE_CHECK_PAGES */ |
+ |
+/* |
+** When this is called the journal file for pager pPager must be open. |
+** This function attempts to read a master journal file name from the |
+** end of the file and, if successful, copies it into memory supplied |
+** by the caller. See comments above writeMasterJournal() for the format |
+** used to store a master journal file name at the end of a journal file. |
+** |
+** zMaster must point to a buffer of at least nMaster bytes allocated by |
+** the caller. This should be sqlite3_vfs.mxPathname+1 (to ensure there is |
+** enough space to write the master journal name). If the master journal |
+** name in the journal is longer than nMaster bytes (including a |
+** nul-terminator), then this is handled as if no master journal name |
+** were present in the journal. |
+** |
+** If a master journal file name is present at the end of the journal |
+** file, then it is copied into the buffer pointed to by zMaster. A |
+** nul-terminator byte is appended to the buffer following the master |
+** journal file name. |
+** |
+** If it is determined that no master journal file name is present |
+** zMaster[0] is set to 0 and SQLITE_OK returned. |
+** |
+** If an error occurs while reading from the journal file, an SQLite |
+** error code is returned. |
+*/ |
+static int readMasterJournal(sqlite3_file *pJrnl, char *zMaster, u32 nMaster){ |
+ int rc; /* Return code */ |
+ u32 len; /* Length in bytes of master journal name */ |
+ i64 szJ; /* Total size in bytes of journal file pJrnl */ |
+ u32 cksum; /* MJ checksum value read from journal */ |
+ u32 u; /* Unsigned loop counter */ |
+ unsigned char aMagic[8]; /* A buffer to hold the magic header */ |
+ zMaster[0] = '\0'; |
+ |
+ if( SQLITE_OK!=(rc = sqlite3OsFileSize(pJrnl, &szJ)) |
+ || szJ<16 |
+ || SQLITE_OK!=(rc = read32bits(pJrnl, szJ-16, &len)) |
+ || len>=nMaster |
+ || len==0 |
+ || SQLITE_OK!=(rc = read32bits(pJrnl, szJ-12, &cksum)) |
+ || SQLITE_OK!=(rc = sqlite3OsRead(pJrnl, aMagic, 8, szJ-8)) |
+ || memcmp(aMagic, aJournalMagic, 8) |
+ || SQLITE_OK!=(rc = sqlite3OsRead(pJrnl, zMaster, len, szJ-16-len)) |
+ ){ |
+ return rc; |
+ } |
+ |
+ /* See if the checksum matches the master journal name */ |
+ for(u=0; u<len; u++){ |
+ cksum -= zMaster[u]; |
+ } |
+ if( cksum ){ |
+ /* If the checksum doesn't add up, then one or more of the disk sectors |
+ ** containing the master journal filename is corrupted. This means |
+ ** definitely roll back, so just return SQLITE_OK and report a (nul) |
+ ** master-journal filename. |
+ */ |
+ len = 0; |
+ } |
+ zMaster[len] = '\0'; |
+ |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Return the offset of the sector boundary at or immediately |
+** following the value in pPager->journalOff, assuming a sector |
+** size of pPager->sectorSize bytes. |
+** |
+** i.e for a sector size of 512: |
+** |
+** Pager.journalOff Return value |
+** --------------------------------------- |
+** 0 0 |
+** 512 512 |
+** 100 512 |
+** 2000 2048 |
+** |
+*/ |
+static i64 journalHdrOffset(Pager *pPager){ |
+ i64 offset = 0; |
+ i64 c = pPager->journalOff; |
+ if( c ){ |
+ offset = ((c-1)/JOURNAL_HDR_SZ(pPager) + 1) * JOURNAL_HDR_SZ(pPager); |
+ } |
+ assert( offset%JOURNAL_HDR_SZ(pPager)==0 ); |
+ assert( offset>=c ); |
+ assert( (offset-c)<JOURNAL_HDR_SZ(pPager) ); |
+ return offset; |
+} |
+ |
+/* |
+** The journal file must be open when this function is called. |
+** |
+** This function is a no-op if the journal file has not been written to |
+** within the current transaction (i.e. if Pager.journalOff==0). |
+** |
+** If doTruncate is non-zero or the Pager.journalSizeLimit variable is |
+** set to 0, then truncate the journal file to zero bytes in size. Otherwise, |
+** zero the 28-byte header at the start of the journal file. In either case, |
+** if the pager is not in no-sync mode, sync the journal file immediately |
+** after writing or truncating it. |
+** |
+** If Pager.journalSizeLimit is set to a positive, non-zero value, and |
+** following the truncation or zeroing described above the size of the |
+** journal file in bytes is larger than this value, then truncate the |
+** journal file to Pager.journalSizeLimit bytes. The journal file does |
+** not need to be synced following this operation. |
+** |
+** If an IO error occurs, abandon processing and return the IO error code. |
+** Otherwise, return SQLITE_OK. |
+*/ |
+static int zeroJournalHdr(Pager *pPager, int doTruncate){ |
+ int rc = SQLITE_OK; /* Return code */ |
+ assert( isOpen(pPager->jfd) ); |
+ if( pPager->journalOff ){ |
+ const i64 iLimit = pPager->journalSizeLimit; /* Local cache of jsl */ |
+ |
+ IOTRACE(("JZEROHDR %p\n", pPager)) |
+ if( doTruncate || iLimit==0 ){ |
+ rc = sqlite3OsTruncate(pPager->jfd, 0); |
+ }else{ |
+ static const char zeroHdr[28] = {0}; |
+ rc = sqlite3OsWrite(pPager->jfd, zeroHdr, sizeof(zeroHdr), 0); |
+ } |
+ if( rc==SQLITE_OK && !pPager->noSync ){ |
+ rc = sqlite3OsSync(pPager->jfd, SQLITE_SYNC_DATAONLY|pPager->syncFlags); |
+ } |
+ |
+ /* At this point the transaction is committed but the write lock |
+ ** is still held on the file. If there is a size limit configured for |
+ ** the persistent journal and the journal file currently consumes more |
+ ** space than that limit allows for, truncate it now. There is no need |
+ ** to sync the file following this operation. |
+ */ |
+ if( rc==SQLITE_OK && iLimit>0 ){ |
+ i64 sz; |
+ rc = sqlite3OsFileSize(pPager->jfd, &sz); |
+ if( rc==SQLITE_OK && sz>iLimit ){ |
+ rc = sqlite3OsTruncate(pPager->jfd, iLimit); |
+ } |
+ } |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** The journal file must be open when this routine is called. A journal |
+** header (JOURNAL_HDR_SZ bytes) is written into the journal file at the |
+** current location. |
+** |
+** The format for the journal header is as follows: |
+** - 8 bytes: Magic identifying journal format. |
+** - 4 bytes: Number of records in journal, or -1 no-sync mode is on. |
+** - 4 bytes: Random number used for page hash. |
+** - 4 bytes: Initial database page count. |
+** - 4 bytes: Sector size used by the process that wrote this journal. |
+** - 4 bytes: Database page size. |
+** |
+** Followed by (JOURNAL_HDR_SZ - 28) bytes of unused space. |
+*/ |
+static int writeJournalHdr(Pager *pPager){ |
+ int rc = SQLITE_OK; /* Return code */ |
+ char *zHeader = pPager->pTmpSpace; /* Temporary space used to build header */ |
+ u32 nHeader = (u32)pPager->pageSize;/* Size of buffer pointed to by zHeader */ |
+ u32 nWrite; /* Bytes of header sector written */ |
+ int ii; /* Loop counter */ |
+ |
+ assert( isOpen(pPager->jfd) ); /* Journal file must be open. */ |
+ |
+ if( nHeader>JOURNAL_HDR_SZ(pPager) ){ |
+ nHeader = JOURNAL_HDR_SZ(pPager); |
+ } |
+ |
+ /* If there are active savepoints and any of them were created |
+ ** since the most recent journal header was written, update the |
+ ** PagerSavepoint.iHdrOffset fields now. |
+ */ |
+ for(ii=0; ii<pPager->nSavepoint; ii++){ |
+ if( pPager->aSavepoint[ii].iHdrOffset==0 ){ |
+ pPager->aSavepoint[ii].iHdrOffset = pPager->journalOff; |
+ } |
+ } |
+ |
+ pPager->journalHdr = pPager->journalOff = journalHdrOffset(pPager); |
+ |
+ /* |
+ ** Write the nRec Field - the number of page records that follow this |
+ ** journal header. Normally, zero is written to this value at this time. |
+ ** After the records are added to the journal (and the journal synced, |
+ ** if in full-sync mode), the zero is overwritten with the true number |
+ ** of records (see syncJournal()). |
+ ** |
+ ** A faster alternative is to write 0xFFFFFFFF to the nRec field. When |
+ ** reading the journal this value tells SQLite to assume that the |
+ ** rest of the journal file contains valid page records. This assumption |
+ ** is dangerous, as if a failure occurred whilst writing to the journal |
+ ** file it may contain some garbage data. There are two scenarios |
+ ** where this risk can be ignored: |
+ ** |
+ ** * When the pager is in no-sync mode. Corruption can follow a |
+ ** power failure in this case anyway. |
+ ** |
+ ** * When the SQLITE_IOCAP_SAFE_APPEND flag is set. This guarantees |
+ ** that garbage data is never appended to the journal file. |
+ */ |
+ assert( isOpen(pPager->fd) || pPager->noSync ); |
+ if( pPager->noSync || (pPager->journalMode==PAGER_JOURNALMODE_MEMORY) |
+ || (sqlite3OsDeviceCharacteristics(pPager->fd)&SQLITE_IOCAP_SAFE_APPEND) |
+ ){ |
+ memcpy(zHeader, aJournalMagic, sizeof(aJournalMagic)); |
+ put32bits(&zHeader[sizeof(aJournalMagic)], 0xffffffff); |
+ }else{ |
+ memset(zHeader, 0, sizeof(aJournalMagic)+4); |
+ } |
+ |
+ /* The random check-hash initializer */ |
+ sqlite3_randomness(sizeof(pPager->cksumInit), &pPager->cksumInit); |
+ put32bits(&zHeader[sizeof(aJournalMagic)+4], pPager->cksumInit); |
+ /* The initial database size */ |
+ put32bits(&zHeader[sizeof(aJournalMagic)+8], pPager->dbOrigSize); |
+ /* The assumed sector size for this process */ |
+ put32bits(&zHeader[sizeof(aJournalMagic)+12], pPager->sectorSize); |
+ |
+ /* The page size */ |
+ put32bits(&zHeader[sizeof(aJournalMagic)+16], pPager->pageSize); |
+ |
+ /* Initializing the tail of the buffer is not necessary. Everything |
+ ** works find if the following memset() is omitted. But initializing |
+ ** the memory prevents valgrind from complaining, so we are willing to |
+ ** take the performance hit. |
+ */ |
+ memset(&zHeader[sizeof(aJournalMagic)+20], 0, |
+ nHeader-(sizeof(aJournalMagic)+20)); |
+ |
+ /* In theory, it is only necessary to write the 28 bytes that the |
+ ** journal header consumes to the journal file here. Then increment the |
+ ** Pager.journalOff variable by JOURNAL_HDR_SZ so that the next |
+ ** record is written to the following sector (leaving a gap in the file |
+ ** that will be implicitly filled in by the OS). |
+ ** |
+ ** However it has been discovered that on some systems this pattern can |
+ ** be significantly slower than contiguously writing data to the file, |
+ ** even if that means explicitly writing data to the block of |
+ ** (JOURNAL_HDR_SZ - 28) bytes that will not be used. So that is what |
+ ** is done. |
+ ** |
+ ** The loop is required here in case the sector-size is larger than the |
+ ** database page size. Since the zHeader buffer is only Pager.pageSize |
+ ** bytes in size, more than one call to sqlite3OsWrite() may be required |
+ ** to populate the entire journal header sector. |
+ */ |
+ for(nWrite=0; rc==SQLITE_OK&&nWrite<JOURNAL_HDR_SZ(pPager); nWrite+=nHeader){ |
+ IOTRACE(("JHDR %p %lld %d\n", pPager, pPager->journalHdr, nHeader)) |
+ rc = sqlite3OsWrite(pPager->jfd, zHeader, nHeader, pPager->journalOff); |
+ assert( pPager->journalHdr <= pPager->journalOff ); |
+ pPager->journalOff += nHeader; |
+ } |
+ |
+ return rc; |
+} |
+ |
+/* |
+** The journal file must be open when this is called. A journal header file |
+** (JOURNAL_HDR_SZ bytes) is read from the current location in the journal |
+** file. The current location in the journal file is given by |
+** pPager->journalOff. See comments above function writeJournalHdr() for |
+** a description of the journal header format. |
+** |
+** If the header is read successfully, *pNRec is set to the number of |
+** page records following this header and *pDbSize is set to the size of the |
+** database before the transaction began, in pages. Also, pPager->cksumInit |
+** is set to the value read from the journal header. SQLITE_OK is returned |
+** in this case. |
+** |
+** If the journal header file appears to be corrupted, SQLITE_DONE is |
+** returned and *pNRec and *PDbSize are undefined. If JOURNAL_HDR_SZ bytes |
+** cannot be read from the journal file an error code is returned. |
+*/ |
+static int readJournalHdr( |
+ Pager *pPager, /* Pager object */ |
+ int isHot, |
+ i64 journalSize, /* Size of the open journal file in bytes */ |
+ u32 *pNRec, /* OUT: Value read from the nRec field */ |
+ u32 *pDbSize /* OUT: Value of original database size field */ |
+){ |
+ int rc; /* Return code */ |
+ unsigned char aMagic[8]; /* A buffer to hold the magic header */ |
+ i64 iHdrOff; /* Offset of journal header being read */ |
+ |
+ assert( isOpen(pPager->jfd) ); /* Journal file must be open. */ |
+ |
+ /* Advance Pager.journalOff to the start of the next sector. If the |
+ ** journal file is too small for there to be a header stored at this |
+ ** point, return SQLITE_DONE. |
+ */ |
+ pPager->journalOff = journalHdrOffset(pPager); |
+ if( pPager->journalOff+JOURNAL_HDR_SZ(pPager) > journalSize ){ |
+ return SQLITE_DONE; |
+ } |
+ iHdrOff = pPager->journalOff; |
+ |
+ /* Read in the first 8 bytes of the journal header. If they do not match |
+ ** the magic string found at the start of each journal header, return |
+ ** SQLITE_DONE. If an IO error occurs, return an error code. Otherwise, |
+ ** proceed. |
+ */ |
+ if( isHot || iHdrOff!=pPager->journalHdr ){ |
+ rc = sqlite3OsRead(pPager->jfd, aMagic, sizeof(aMagic), iHdrOff); |
+ if( rc ){ |
+ return rc; |
+ } |
+ if( memcmp(aMagic, aJournalMagic, sizeof(aMagic))!=0 ){ |
+ return SQLITE_DONE; |
+ } |
+ } |
+ |
+ /* Read the first three 32-bit fields of the journal header: The nRec |
+ ** field, the checksum-initializer and the database size at the start |
+ ** of the transaction. Return an error code if anything goes wrong. |
+ */ |
+ if( SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+8, pNRec)) |
+ || SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+12, &pPager->cksumInit)) |
+ || SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+16, pDbSize)) |
+ ){ |
+ return rc; |
+ } |
+ |
+ if( pPager->journalOff==0 ){ |
+ u32 iPageSize; /* Page-size field of journal header */ |
+ u32 iSectorSize; /* Sector-size field of journal header */ |
+ |
+ /* Read the page-size and sector-size journal header fields. */ |
+ if( SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+20, &iSectorSize)) |
+ || SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+24, &iPageSize)) |
+ ){ |
+ return rc; |
+ } |
+ |
+ /* Versions of SQLite prior to 3.5.8 set the page-size field of the |
+ ** journal header to zero. In this case, assume that the Pager.pageSize |
+ ** variable is already set to the correct page size. |
+ */ |
+ if( iPageSize==0 ){ |
+ iPageSize = pPager->pageSize; |
+ } |
+ |
+ /* Check that the values read from the page-size and sector-size fields |
+ ** are within range. To be 'in range', both values need to be a power |
+ ** of two greater than or equal to 512 or 32, and not greater than their |
+ ** respective compile time maximum limits. |
+ */ |
+ if( iPageSize<512 || iSectorSize<32 |
+ || iPageSize>SQLITE_MAX_PAGE_SIZE || iSectorSize>MAX_SECTOR_SIZE |
+ || ((iPageSize-1)&iPageSize)!=0 || ((iSectorSize-1)&iSectorSize)!=0 |
+ ){ |
+ /* If the either the page-size or sector-size in the journal-header is |
+ ** invalid, then the process that wrote the journal-header must have |
+ ** crashed before the header was synced. In this case stop reading |
+ ** the journal file here. |
+ */ |
+ return SQLITE_DONE; |
+ } |
+ |
+ /* Update the page-size to match the value read from the journal. |
+ ** Use a testcase() macro to make sure that malloc failure within |
+ ** PagerSetPagesize() is tested. |
+ */ |
+ rc = sqlite3PagerSetPagesize(pPager, &iPageSize, -1); |
+ testcase( rc!=SQLITE_OK ); |
+ |
+ /* Update the assumed sector-size to match the value used by |
+ ** the process that created this journal. If this journal was |
+ ** created by a process other than this one, then this routine |
+ ** is being called from within pager_playback(). The local value |
+ ** of Pager.sectorSize is restored at the end of that routine. |
+ */ |
+ pPager->sectorSize = iSectorSize; |
+ } |
+ |
+ pPager->journalOff += JOURNAL_HDR_SZ(pPager); |
+ return rc; |
+} |
+ |
+ |
+/* |
+** Write the supplied master journal name into the journal file for pager |
+** pPager at the current location. The master journal name must be the last |
+** thing written to a journal file. If the pager is in full-sync mode, the |
+** journal file descriptor is advanced to the next sector boundary before |
+** anything is written. The format is: |
+** |
+** + 4 bytes: PAGER_MJ_PGNO. |
+** + N bytes: Master journal filename in utf-8. |
+** + 4 bytes: N (length of master journal name in bytes, no nul-terminator). |
+** + 4 bytes: Master journal name checksum. |
+** + 8 bytes: aJournalMagic[]. |
+** |
+** The master journal page checksum is the sum of the bytes in the master |
+** journal name, where each byte is interpreted as a signed 8-bit integer. |
+** |
+** If zMaster is a NULL pointer (occurs for a single database transaction), |
+** this call is a no-op. |
+*/ |
+static int writeMasterJournal(Pager *pPager, const char *zMaster){ |
+ int rc; /* Return code */ |
+ int nMaster; /* Length of string zMaster */ |
+ i64 iHdrOff; /* Offset of header in journal file */ |
+ i64 jrnlSize; /* Size of journal file on disk */ |
+ u32 cksum = 0; /* Checksum of string zMaster */ |
+ |
+ assert( pPager->setMaster==0 ); |
+ assert( !pagerUseWal(pPager) ); |
+ |
+ if( !zMaster |
+ || pPager->journalMode==PAGER_JOURNALMODE_MEMORY |
+ || !isOpen(pPager->jfd) |
+ ){ |
+ return SQLITE_OK; |
+ } |
+ pPager->setMaster = 1; |
+ assert( pPager->journalHdr <= pPager->journalOff ); |
+ |
+ /* Calculate the length in bytes and the checksum of zMaster */ |
+ for(nMaster=0; zMaster[nMaster]; nMaster++){ |
+ cksum += zMaster[nMaster]; |
+ } |
+ |
+ /* If in full-sync mode, advance to the next disk sector before writing |
+ ** the master journal name. This is in case the previous page written to |
+ ** the journal has already been synced. |
+ */ |
+ if( pPager->fullSync ){ |
+ pPager->journalOff = journalHdrOffset(pPager); |
+ } |
+ iHdrOff = pPager->journalOff; |
+ |
+ /* Write the master journal data to the end of the journal file. If |
+ ** an error occurs, return the error code to the caller. |
+ */ |
+ if( (0 != (rc = write32bits(pPager->jfd, iHdrOff, PAGER_MJ_PGNO(pPager)))) |
+ || (0 != (rc = sqlite3OsWrite(pPager->jfd, zMaster, nMaster, iHdrOff+4))) |
+ || (0 != (rc = write32bits(pPager->jfd, iHdrOff+4+nMaster, nMaster))) |
+ || (0 != (rc = write32bits(pPager->jfd, iHdrOff+4+nMaster+4, cksum))) |
+ || (0 != (rc = sqlite3OsWrite(pPager->jfd, aJournalMagic, 8, |
+ iHdrOff+4+nMaster+8))) |
+ ){ |
+ return rc; |
+ } |
+ pPager->journalOff += (nMaster+20); |
+ |
+ /* If the pager is in peristent-journal mode, then the physical |
+ ** journal-file may extend past the end of the master-journal name |
+ ** and 8 bytes of magic data just written to the file. This is |
+ ** dangerous because the code to rollback a hot-journal file |
+ ** will not be able to find the master-journal name to determine |
+ ** whether or not the journal is hot. |
+ ** |
+ ** Easiest thing to do in this scenario is to truncate the journal |
+ ** file to the required size. |
+ */ |
+ if( SQLITE_OK==(rc = sqlite3OsFileSize(pPager->jfd, &jrnlSize)) |
+ && jrnlSize>pPager->journalOff |
+ ){ |
+ rc = sqlite3OsTruncate(pPager->jfd, pPager->journalOff); |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Discard the entire contents of the in-memory page-cache. |
+*/ |
+static void pager_reset(Pager *pPager){ |
+ pPager->iDataVersion++; |
+ sqlite3BackupRestart(pPager->pBackup); |
+ sqlite3PcacheClear(pPager->pPCache); |
+} |
+ |
+/* |
+** Return the pPager->iDataVersion value |
+*/ |
+SQLITE_PRIVATE u32 sqlite3PagerDataVersion(Pager *pPager){ |
+ assert( pPager->eState>PAGER_OPEN ); |
+ return pPager->iDataVersion; |
+} |
+ |
+/* |
+** Free all structures in the Pager.aSavepoint[] array and set both |
+** Pager.aSavepoint and Pager.nSavepoint to zero. Close the sub-journal |
+** if it is open and the pager is not in exclusive mode. |
+*/ |
+static void releaseAllSavepoints(Pager *pPager){ |
+ int ii; /* Iterator for looping through Pager.aSavepoint */ |
+ for(ii=0; ii<pPager->nSavepoint; ii++){ |
+ sqlite3BitvecDestroy(pPager->aSavepoint[ii].pInSavepoint); |
+ } |
+ if( !pPager->exclusiveMode || sqlite3IsMemJournal(pPager->sjfd) ){ |
+ sqlite3OsClose(pPager->sjfd); |
+ } |
+ sqlite3_free(pPager->aSavepoint); |
+ pPager->aSavepoint = 0; |
+ pPager->nSavepoint = 0; |
+ pPager->nSubRec = 0; |
+} |
+ |
+/* |
+** Set the bit number pgno in the PagerSavepoint.pInSavepoint |
+** bitvecs of all open savepoints. Return SQLITE_OK if successful |
+** or SQLITE_NOMEM if a malloc failure occurs. |
+*/ |
+static int addToSavepointBitvecs(Pager *pPager, Pgno pgno){ |
+ int ii; /* Loop counter */ |
+ int rc = SQLITE_OK; /* Result code */ |
+ |
+ for(ii=0; ii<pPager->nSavepoint; ii++){ |
+ PagerSavepoint *p = &pPager->aSavepoint[ii]; |
+ if( pgno<=p->nOrig ){ |
+ rc |= sqlite3BitvecSet(p->pInSavepoint, pgno); |
+ testcase( rc==SQLITE_NOMEM ); |
+ assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); |
+ } |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** This function is a no-op if the pager is in exclusive mode and not |
+** in the ERROR state. Otherwise, it switches the pager to PAGER_OPEN |
+** state. |
+** |
+** If the pager is not in exclusive-access mode, the database file is |
+** completely unlocked. If the file is unlocked and the file-system does |
+** not exhibit the UNDELETABLE_WHEN_OPEN property, the journal file is |
+** closed (if it is open). |
+** |
+** If the pager is in ERROR state when this function is called, the |
+** contents of the pager cache are discarded before switching back to |
+** the OPEN state. Regardless of whether the pager is in exclusive-mode |
+** or not, any journal file left in the file-system will be treated |
+** as a hot-journal and rolled back the next time a read-transaction |
+** is opened (by this or by any other connection). |
+*/ |
+static void pager_unlock(Pager *pPager){ |
+ |
+ assert( pPager->eState==PAGER_READER |
+ || pPager->eState==PAGER_OPEN |
+ || pPager->eState==PAGER_ERROR |
+ ); |
+ |
+ sqlite3BitvecDestroy(pPager->pInJournal); |
+ pPager->pInJournal = 0; |
+ releaseAllSavepoints(pPager); |
+ |
+ if( pagerUseWal(pPager) ){ |
+ assert( !isOpen(pPager->jfd) ); |
+ sqlite3WalEndReadTransaction(pPager->pWal); |
+ pPager->eState = PAGER_OPEN; |
+ }else if( !pPager->exclusiveMode ){ |
+ int rc; /* Error code returned by pagerUnlockDb() */ |
+ int iDc = isOpen(pPager->fd)?sqlite3OsDeviceCharacteristics(pPager->fd):0; |
+ |
+ /* If the operating system support deletion of open files, then |
+ ** close the journal file when dropping the database lock. Otherwise |
+ ** another connection with journal_mode=delete might delete the file |
+ ** out from under us. |
+ */ |
+ assert( (PAGER_JOURNALMODE_MEMORY & 5)!=1 ); |
+ assert( (PAGER_JOURNALMODE_OFF & 5)!=1 ); |
+ assert( (PAGER_JOURNALMODE_WAL & 5)!=1 ); |
+ assert( (PAGER_JOURNALMODE_DELETE & 5)!=1 ); |
+ assert( (PAGER_JOURNALMODE_TRUNCATE & 5)==1 ); |
+ assert( (PAGER_JOURNALMODE_PERSIST & 5)==1 ); |
+ if( 0==(iDc & SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN) |
+ || 1!=(pPager->journalMode & 5) |
+ ){ |
+ sqlite3OsClose(pPager->jfd); |
+ } |
+ |
+ /* If the pager is in the ERROR state and the call to unlock the database |
+ ** file fails, set the current lock to UNKNOWN_LOCK. See the comment |
+ ** above the #define for UNKNOWN_LOCK for an explanation of why this |
+ ** is necessary. |
+ */ |
+ rc = pagerUnlockDb(pPager, NO_LOCK); |
+ if( rc!=SQLITE_OK && pPager->eState==PAGER_ERROR ){ |
+ pPager->eLock = UNKNOWN_LOCK; |
+ } |
+ |
+ /* The pager state may be changed from PAGER_ERROR to PAGER_OPEN here |
+ ** without clearing the error code. This is intentional - the error |
+ ** code is cleared and the cache reset in the block below. |
+ */ |
+ assert( pPager->errCode || pPager->eState!=PAGER_ERROR ); |
+ pPager->changeCountDone = 0; |
+ pPager->eState = PAGER_OPEN; |
+ } |
+ |
+ /* If Pager.errCode is set, the contents of the pager cache cannot be |
+ ** trusted. Now that there are no outstanding references to the pager, |
+ ** it can safely move back to PAGER_OPEN state. This happens in both |
+ ** normal and exclusive-locking mode. |
+ */ |
+ if( pPager->errCode ){ |
+ assert( !MEMDB ); |
+ pager_reset(pPager); |
+ pPager->changeCountDone = pPager->tempFile; |
+ pPager->eState = PAGER_OPEN; |
+ pPager->errCode = SQLITE_OK; |
+ if( USEFETCH(pPager) ) sqlite3OsUnfetch(pPager->fd, 0, 0); |
+ } |
+ |
+ pPager->journalOff = 0; |
+ pPager->journalHdr = 0; |
+ pPager->setMaster = 0; |
+} |
+ |
+/* |
+** This function is called whenever an IOERR or FULL error that requires |
+** the pager to transition into the ERROR state may ahve occurred. |
+** The first argument is a pointer to the pager structure, the second |
+** the error-code about to be returned by a pager API function. The |
+** value returned is a copy of the second argument to this function. |
+** |
+** If the second argument is SQLITE_FULL, SQLITE_IOERR or one of the |
+** IOERR sub-codes, the pager enters the ERROR state and the error code |
+** is stored in Pager.errCode. While the pager remains in the ERROR state, |
+** all major API calls on the Pager will immediately return Pager.errCode. |
+** |
+** The ERROR state indicates that the contents of the pager-cache |
+** cannot be trusted. This state can be cleared by completely discarding |
+** the contents of the pager-cache. If a transaction was active when |
+** the persistent error occurred, then the rollback journal may need |
+** to be replayed to restore the contents of the database file (as if |
+** it were a hot-journal). |
+*/ |
+static int pager_error(Pager *pPager, int rc){ |
+ int rc2 = rc & 0xff; |
+ assert( rc==SQLITE_OK || !MEMDB ); |
+ assert( |
+ pPager->errCode==SQLITE_FULL || |
+ pPager->errCode==SQLITE_OK || |
+ (pPager->errCode & 0xff)==SQLITE_IOERR |
+ ); |
+ if( rc2==SQLITE_FULL || rc2==SQLITE_IOERR ){ |
+ pPager->errCode = rc; |
+ pPager->eState = PAGER_ERROR; |
+ } |
+ return rc; |
+} |
+ |
+static int pager_truncate(Pager *pPager, Pgno nPage); |
+ |
+/* |
+** This routine ends a transaction. A transaction is usually ended by |
+** either a COMMIT or a ROLLBACK operation. This routine may be called |
+** after rollback of a hot-journal, or if an error occurs while opening |
+** the journal file or writing the very first journal-header of a |
+** database transaction. |
+** |
+** This routine is never called in PAGER_ERROR state. If it is called |
+** in PAGER_NONE or PAGER_SHARED state and the lock held is less |
+** exclusive than a RESERVED lock, it is a no-op. |
+** |
+** Otherwise, any active savepoints are released. |
+** |
+** If the journal file is open, then it is "finalized". Once a journal |
+** file has been finalized it is not possible to use it to roll back a |
+** transaction. Nor will it be considered to be a hot-journal by this |
+** or any other database connection. Exactly how a journal is finalized |
+** depends on whether or not the pager is running in exclusive mode and |
+** the current journal-mode (Pager.journalMode value), as follows: |
+** |
+** journalMode==MEMORY |
+** Journal file descriptor is simply closed. This destroys an |
+** in-memory journal. |
+** |
+** journalMode==TRUNCATE |
+** Journal file is truncated to zero bytes in size. |
+** |
+** journalMode==PERSIST |
+** The first 28 bytes of the journal file are zeroed. This invalidates |
+** the first journal header in the file, and hence the entire journal |
+** file. An invalid journal file cannot be rolled back. |
+** |
+** journalMode==DELETE |
+** The journal file is closed and deleted using sqlite3OsDelete(). |
+** |
+** If the pager is running in exclusive mode, this method of finalizing |
+** the journal file is never used. Instead, if the journalMode is |
+** DELETE and the pager is in exclusive mode, the method described under |
+** journalMode==PERSIST is used instead. |
+** |
+** After the journal is finalized, the pager moves to PAGER_READER state. |
+** If running in non-exclusive rollback mode, the lock on the file is |
+** downgraded to a SHARED_LOCK. |
+** |
+** SQLITE_OK is returned if no error occurs. If an error occurs during |
+** any of the IO operations to finalize the journal file or unlock the |
+** database then the IO error code is returned to the user. If the |
+** operation to finalize the journal file fails, then the code still |
+** tries to unlock the database file if not in exclusive mode. If the |
+** unlock operation fails as well, then the first error code related |
+** to the first error encountered (the journal finalization one) is |
+** returned. |
+*/ |
+static int pager_end_transaction(Pager *pPager, int hasMaster, int bCommit){ |
+ int rc = SQLITE_OK; /* Error code from journal finalization operation */ |
+ int rc2 = SQLITE_OK; /* Error code from db file unlock operation */ |
+ |
+ /* Do nothing if the pager does not have an open write transaction |
+ ** or at least a RESERVED lock. This function may be called when there |
+ ** is no write-transaction active but a RESERVED or greater lock is |
+ ** held under two circumstances: |
+ ** |
+ ** 1. After a successful hot-journal rollback, it is called with |
+ ** eState==PAGER_NONE and eLock==EXCLUSIVE_LOCK. |
+ ** |
+ ** 2. If a connection with locking_mode=exclusive holding an EXCLUSIVE |
+ ** lock switches back to locking_mode=normal and then executes a |
+ ** read-transaction, this function is called with eState==PAGER_READER |
+ ** and eLock==EXCLUSIVE_LOCK when the read-transaction is closed. |
+ */ |
+ assert( assert_pager_state(pPager) ); |
+ assert( pPager->eState!=PAGER_ERROR ); |
+ if( pPager->eState<PAGER_WRITER_LOCKED && pPager->eLock<RESERVED_LOCK ){ |
+ return SQLITE_OK; |
+ } |
+ |
+ releaseAllSavepoints(pPager); |
+ assert( isOpen(pPager->jfd) || pPager->pInJournal==0 ); |
+ if( isOpen(pPager->jfd) ){ |
+ assert( !pagerUseWal(pPager) ); |
+ |
+ /* Finalize the journal file. */ |
+ if( sqlite3IsMemJournal(pPager->jfd) ){ |
+ assert( pPager->journalMode==PAGER_JOURNALMODE_MEMORY ); |
+ sqlite3OsClose(pPager->jfd); |
+ }else if( pPager->journalMode==PAGER_JOURNALMODE_TRUNCATE ){ |
+ if( pPager->journalOff==0 ){ |
+ rc = SQLITE_OK; |
+ }else{ |
+ rc = sqlite3OsTruncate(pPager->jfd, 0); |
+ if( rc==SQLITE_OK && pPager->fullSync ){ |
+ /* Make sure the new file size is written into the inode right away. |
+ ** Otherwise the journal might resurrect following a power loss and |
+ ** cause the last transaction to roll back. See |
+ ** https://bugzilla.mozilla.org/show_bug.cgi?id=1072773 |
+ */ |
+ rc = sqlite3OsSync(pPager->jfd, pPager->syncFlags); |
+ } |
+ } |
+ pPager->journalOff = 0; |
+ }else if( pPager->journalMode==PAGER_JOURNALMODE_PERSIST |
+ || (pPager->exclusiveMode && pPager->journalMode!=PAGER_JOURNALMODE_WAL) |
+ ){ |
+ rc = zeroJournalHdr(pPager, hasMaster); |
+ pPager->journalOff = 0; |
+ }else{ |
+ /* This branch may be executed with Pager.journalMode==MEMORY if |
+ ** a hot-journal was just rolled back. In this case the journal |
+ ** file should be closed and deleted. If this connection writes to |
+ ** the database file, it will do so using an in-memory journal. |
+ */ |
+ int bDelete = (!pPager->tempFile && sqlite3JournalExists(pPager->jfd)); |
+ assert( pPager->journalMode==PAGER_JOURNALMODE_DELETE |
+ || pPager->journalMode==PAGER_JOURNALMODE_MEMORY |
+ || pPager->journalMode==PAGER_JOURNALMODE_WAL |
+ ); |
+ sqlite3OsClose(pPager->jfd); |
+ if( bDelete ){ |
+ rc = sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0); |
+ } |
+ } |
+ } |
+ |
+#ifdef SQLITE_CHECK_PAGES |
+ sqlite3PcacheIterateDirty(pPager->pPCache, pager_set_pagehash); |
+ if( pPager->dbSize==0 && sqlite3PcacheRefCount(pPager->pPCache)>0 ){ |
+ PgHdr *p = sqlite3PagerLookup(pPager, 1); |
+ if( p ){ |
+ p->pageHash = 0; |
+ sqlite3PagerUnrefNotNull(p); |
+ } |
+ } |
+#endif |
+ |
+ sqlite3BitvecDestroy(pPager->pInJournal); |
+ pPager->pInJournal = 0; |
+ pPager->nRec = 0; |
+ sqlite3PcacheCleanAll(pPager->pPCache); |
+ sqlite3PcacheTruncate(pPager->pPCache, pPager->dbSize); |
+ |
+ if( pagerUseWal(pPager) ){ |
+ /* Drop the WAL write-lock, if any. Also, if the connection was in |
+ ** locking_mode=exclusive mode but is no longer, drop the EXCLUSIVE |
+ ** lock held on the database file. |
+ */ |
+ rc2 = sqlite3WalEndWriteTransaction(pPager->pWal); |
+ assert( rc2==SQLITE_OK ); |
+ }else if( rc==SQLITE_OK && bCommit && pPager->dbFileSize>pPager->dbSize ){ |
+ /* This branch is taken when committing a transaction in rollback-journal |
+ ** mode if the database file on disk is larger than the database image. |
+ ** At this point the journal has been finalized and the transaction |
+ ** successfully committed, but the EXCLUSIVE lock is still held on the |
+ ** file. So it is safe to truncate the database file to its minimum |
+ ** required size. */ |
+ assert( pPager->eLock==EXCLUSIVE_LOCK ); |
+ rc = pager_truncate(pPager, pPager->dbSize); |
+ } |
+ |
+ if( rc==SQLITE_OK && bCommit && isOpen(pPager->fd) ){ |
+ rc = sqlite3OsFileControl(pPager->fd, SQLITE_FCNTL_COMMIT_PHASETWO, 0); |
+ if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK; |
+ } |
+ |
+ if( !pPager->exclusiveMode |
+ && (!pagerUseWal(pPager) || sqlite3WalExclusiveMode(pPager->pWal, 0)) |
+ ){ |
+ rc2 = pagerUnlockDb(pPager, SHARED_LOCK); |
+ pPager->changeCountDone = 0; |
+ } |
+ pPager->eState = PAGER_READER; |
+ pPager->setMaster = 0; |
+ |
+ return (rc==SQLITE_OK?rc2:rc); |
+} |
+ |
+/* |
+** Execute a rollback if a transaction is active and unlock the |
+** database file. |
+** |
+** If the pager has already entered the ERROR state, do not attempt |
+** the rollback at this time. Instead, pager_unlock() is called. The |
+** call to pager_unlock() will discard all in-memory pages, unlock |
+** the database file and move the pager back to OPEN state. If this |
+** means that there is a hot-journal left in the file-system, the next |
+** connection to obtain a shared lock on the pager (which may be this one) |
+** will roll it back. |
+** |
+** If the pager has not already entered the ERROR state, but an IO or |
+** malloc error occurs during a rollback, then this will itself cause |
+** the pager to enter the ERROR state. Which will be cleared by the |
+** call to pager_unlock(), as described above. |
+*/ |
+static void pagerUnlockAndRollback(Pager *pPager){ |
+ if( pPager->eState!=PAGER_ERROR && pPager->eState!=PAGER_OPEN ){ |
+ assert( assert_pager_state(pPager) ); |
+ if( pPager->eState>=PAGER_WRITER_LOCKED ){ |
+ sqlite3BeginBenignMalloc(); |
+ sqlite3PagerRollback(pPager); |
+ sqlite3EndBenignMalloc(); |
+ }else if( !pPager->exclusiveMode ){ |
+ assert( pPager->eState==PAGER_READER ); |
+ pager_end_transaction(pPager, 0, 0); |
+ } |
+ } |
+ pager_unlock(pPager); |
+} |
+ |
+/* |
+** Parameter aData must point to a buffer of pPager->pageSize bytes |
+** of data. Compute and return a checksum based ont the contents of the |
+** page of data and the current value of pPager->cksumInit. |
+** |
+** This is not a real checksum. It is really just the sum of the |
+** random initial value (pPager->cksumInit) and every 200th byte |
+** of the page data, starting with byte offset (pPager->pageSize%200). |
+** Each byte is interpreted as an 8-bit unsigned integer. |
+** |
+** Changing the formula used to compute this checksum results in an |
+** incompatible journal file format. |
+** |
+** If journal corruption occurs due to a power failure, the most likely |
+** scenario is that one end or the other of the record will be changed. |
+** It is much less likely that the two ends of the journal record will be |
+** correct and the middle be corrupt. Thus, this "checksum" scheme, |
+** though fast and simple, catches the mostly likely kind of corruption. |
+*/ |
+static u32 pager_cksum(Pager *pPager, const u8 *aData){ |
+ u32 cksum = pPager->cksumInit; /* Checksum value to return */ |
+ int i = pPager->pageSize-200; /* Loop counter */ |
+ while( i>0 ){ |
+ cksum += aData[i]; |
+ i -= 200; |
+ } |
+ return cksum; |
+} |
+ |
+/* |
+** Report the current page size and number of reserved bytes back |
+** to the codec. |
+*/ |
+#ifdef SQLITE_HAS_CODEC |
+static void pagerReportSize(Pager *pPager){ |
+ if( pPager->xCodecSizeChng ){ |
+ pPager->xCodecSizeChng(pPager->pCodec, pPager->pageSize, |
+ (int)pPager->nReserve); |
+ } |
+} |
+#else |
+# define pagerReportSize(X) /* No-op if we do not support a codec */ |
+#endif |
+ |
+#ifdef SQLITE_HAS_CODEC |
+/* |
+** Make sure the number of reserved bits is the same in the destination |
+** pager as it is in the source. This comes up when a VACUUM changes the |
+** number of reserved bits to the "optimal" amount. |
+*/ |
+SQLITE_PRIVATE void sqlite3PagerAlignReserve(Pager *pDest, Pager *pSrc){ |
+ if( pDest->nReserve!=pSrc->nReserve ){ |
+ pDest->nReserve = pSrc->nReserve; |
+ pagerReportSize(pDest); |
+ } |
+} |
+#endif |
+ |
+/* |
+** Read a single page from either the journal file (if isMainJrnl==1) or |
+** from the sub-journal (if isMainJrnl==0) and playback that page. |
+** The page begins at offset *pOffset into the file. The *pOffset |
+** value is increased to the start of the next page in the journal. |
+** |
+** The main rollback journal uses checksums - the statement journal does |
+** not. |
+** |
+** If the page number of the page record read from the (sub-)journal file |
+** is greater than the current value of Pager.dbSize, then playback is |
+** skipped and SQLITE_OK is returned. |
+** |
+** If pDone is not NULL, then it is a record of pages that have already |
+** been played back. If the page at *pOffset has already been played back |
+** (if the corresponding pDone bit is set) then skip the playback. |
+** Make sure the pDone bit corresponding to the *pOffset page is set |
+** prior to returning. |
+** |
+** If the page record is successfully read from the (sub-)journal file |
+** and played back, then SQLITE_OK is returned. If an IO error occurs |
+** while reading the record from the (sub-)journal file or while writing |
+** to the database file, then the IO error code is returned. If data |
+** is successfully read from the (sub-)journal file but appears to be |
+** corrupted, SQLITE_DONE is returned. Data is considered corrupted in |
+** two circumstances: |
+** |
+** * If the record page-number is illegal (0 or PAGER_MJ_PGNO), or |
+** * If the record is being rolled back from the main journal file |
+** and the checksum field does not match the record content. |
+** |
+** Neither of these two scenarios are possible during a savepoint rollback. |
+** |
+** If this is a savepoint rollback, then memory may have to be dynamically |
+** allocated by this function. If this is the case and an allocation fails, |
+** SQLITE_NOMEM is returned. |
+*/ |
+static int pager_playback_one_page( |
+ Pager *pPager, /* The pager being played back */ |
+ i64 *pOffset, /* Offset of record to playback */ |
+ Bitvec *pDone, /* Bitvec of pages already played back */ |
+ int isMainJrnl, /* 1 -> main journal. 0 -> sub-journal. */ |
+ int isSavepnt /* True for a savepoint rollback */ |
+){ |
+ int rc; |
+ PgHdr *pPg; /* An existing page in the cache */ |
+ Pgno pgno; /* The page number of a page in journal */ |
+ u32 cksum; /* Checksum used for sanity checking */ |
+ char *aData; /* Temporary storage for the page */ |
+ sqlite3_file *jfd; /* The file descriptor for the journal file */ |
+ int isSynced; /* True if journal page is synced */ |
+ |
+ assert( (isMainJrnl&~1)==0 ); /* isMainJrnl is 0 or 1 */ |
+ assert( (isSavepnt&~1)==0 ); /* isSavepnt is 0 or 1 */ |
+ assert( isMainJrnl || pDone ); /* pDone always used on sub-journals */ |
+ assert( isSavepnt || pDone==0 ); /* pDone never used on non-savepoint */ |
+ |
+ aData = pPager->pTmpSpace; |
+ assert( aData ); /* Temp storage must have already been allocated */ |
+ assert( pagerUseWal(pPager)==0 || (!isMainJrnl && isSavepnt) ); |
+ |
+ /* Either the state is greater than PAGER_WRITER_CACHEMOD (a transaction |
+ ** or savepoint rollback done at the request of the caller) or this is |
+ ** a hot-journal rollback. If it is a hot-journal rollback, the pager |
+ ** is in state OPEN and holds an EXCLUSIVE lock. Hot-journal rollback |
+ ** only reads from the main journal, not the sub-journal. |
+ */ |
+ assert( pPager->eState>=PAGER_WRITER_CACHEMOD |
+ || (pPager->eState==PAGER_OPEN && pPager->eLock==EXCLUSIVE_LOCK) |
+ ); |
+ assert( pPager->eState>=PAGER_WRITER_CACHEMOD || isMainJrnl ); |
+ |
+ /* Read the page number and page data from the journal or sub-journal |
+ ** file. Return an error code to the caller if an IO error occurs. |
+ */ |
+ jfd = isMainJrnl ? pPager->jfd : pPager->sjfd; |
+ rc = read32bits(jfd, *pOffset, &pgno); |
+ if( rc!=SQLITE_OK ) return rc; |
+ rc = sqlite3OsRead(jfd, (u8*)aData, pPager->pageSize, (*pOffset)+4); |
+ if( rc!=SQLITE_OK ) return rc; |
+ *pOffset += pPager->pageSize + 4 + isMainJrnl*4; |
+ |
+ /* Sanity checking on the page. This is more important that I originally |
+ ** thought. If a power failure occurs while the journal is being written, |
+ ** it could cause invalid data to be written into the journal. We need to |
+ ** detect this invalid data (with high probability) and ignore it. |
+ */ |
+ if( pgno==0 || pgno==PAGER_MJ_PGNO(pPager) ){ |
+ assert( !isSavepnt ); |
+ return SQLITE_DONE; |
+ } |
+ if( pgno>(Pgno)pPager->dbSize || sqlite3BitvecTest(pDone, pgno) ){ |
+ return SQLITE_OK; |
+ } |
+ if( isMainJrnl ){ |
+ rc = read32bits(jfd, (*pOffset)-4, &cksum); |
+ if( rc ) return rc; |
+ if( !isSavepnt && pager_cksum(pPager, (u8*)aData)!=cksum ){ |
+ return SQLITE_DONE; |
+ } |
+ } |
+ |
+ /* If this page has already been played back before during the current |
+ ** rollback, then don't bother to play it back again. |
+ */ |
+ if( pDone && (rc = sqlite3BitvecSet(pDone, pgno))!=SQLITE_OK ){ |
+ return rc; |
+ } |
+ |
+ /* When playing back page 1, restore the nReserve setting |
+ */ |
+ if( pgno==1 && pPager->nReserve!=((u8*)aData)[20] ){ |
+ pPager->nReserve = ((u8*)aData)[20]; |
+ pagerReportSize(pPager); |
+ } |
+ |
+ /* If the pager is in CACHEMOD state, then there must be a copy of this |
+ ** page in the pager cache. In this case just update the pager cache, |
+ ** not the database file. The page is left marked dirty in this case. |
+ ** |
+ ** An exception to the above rule: If the database is in no-sync mode |
+ ** and a page is moved during an incremental vacuum then the page may |
+ ** not be in the pager cache. Later: if a malloc() or IO error occurs |
+ ** during a Movepage() call, then the page may not be in the cache |
+ ** either. So the condition described in the above paragraph is not |
+ ** assert()able. |
+ ** |
+ ** If in WRITER_DBMOD, WRITER_FINISHED or OPEN state, then we update the |
+ ** pager cache if it exists and the main file. The page is then marked |
+ ** not dirty. Since this code is only executed in PAGER_OPEN state for |
+ ** a hot-journal rollback, it is guaranteed that the page-cache is empty |
+ ** if the pager is in OPEN state. |
+ ** |
+ ** Ticket #1171: The statement journal might contain page content that is |
+ ** different from the page content at the start of the transaction. |
+ ** This occurs when a page is changed prior to the start of a statement |
+ ** then changed again within the statement. When rolling back such a |
+ ** statement we must not write to the original database unless we know |
+ ** for certain that original page contents are synced into the main rollback |
+ ** journal. Otherwise, a power loss might leave modified data in the |
+ ** database file without an entry in the rollback journal that can |
+ ** restore the database to its original form. Two conditions must be |
+ ** met before writing to the database files. (1) the database must be |
+ ** locked. (2) we know that the original page content is fully synced |
+ ** in the main journal either because the page is not in cache or else |
+ ** the page is marked as needSync==0. |
+ ** |
+ ** 2008-04-14: When attempting to vacuum a corrupt database file, it |
+ ** is possible to fail a statement on a database that does not yet exist. |
+ ** Do not attempt to write if database file has never been opened. |
+ */ |
+ if( pagerUseWal(pPager) ){ |
+ pPg = 0; |
+ }else{ |
+ pPg = sqlite3PagerLookup(pPager, pgno); |
+ } |
+ assert( pPg || !MEMDB ); |
+ assert( pPager->eState!=PAGER_OPEN || pPg==0 ); |
+ PAGERTRACE(("PLAYBACK %d page %d hash(%08x) %s\n", |
+ PAGERID(pPager), pgno, pager_datahash(pPager->pageSize, (u8*)aData), |
+ (isMainJrnl?"main-journal":"sub-journal") |
+ )); |
+ if( isMainJrnl ){ |
+ isSynced = pPager->noSync || (*pOffset <= pPager->journalHdr); |
+ }else{ |
+ isSynced = (pPg==0 || 0==(pPg->flags & PGHDR_NEED_SYNC)); |
+ } |
+ if( isOpen(pPager->fd) |
+ && (pPager->eState>=PAGER_WRITER_DBMOD || pPager->eState==PAGER_OPEN) |
+ && isSynced |
+ ){ |
+ i64 ofst = (pgno-1)*(i64)pPager->pageSize; |
+ testcase( !isSavepnt && pPg!=0 && (pPg->flags&PGHDR_NEED_SYNC)!=0 ); |
+ assert( !pagerUseWal(pPager) ); |
+ rc = sqlite3OsWrite(pPager->fd, (u8 *)aData, pPager->pageSize, ofst); |
+ if( pgno>pPager->dbFileSize ){ |
+ pPager->dbFileSize = pgno; |
+ } |
+ if( pPager->pBackup ){ |
+ CODEC1(pPager, aData, pgno, 3, rc=SQLITE_NOMEM); |
+ sqlite3BackupUpdate(pPager->pBackup, pgno, (u8*)aData); |
+ CODEC2(pPager, aData, pgno, 7, rc=SQLITE_NOMEM, aData); |
+ } |
+ }else if( !isMainJrnl && pPg==0 ){ |
+ /* If this is a rollback of a savepoint and data was not written to |
+ ** the database and the page is not in-memory, there is a potential |
+ ** problem. When the page is next fetched by the b-tree layer, it |
+ ** will be read from the database file, which may or may not be |
+ ** current. |
+ ** |
+ ** There are a couple of different ways this can happen. All are quite |
+ ** obscure. When running in synchronous mode, this can only happen |
+ ** if the page is on the free-list at the start of the transaction, then |
+ ** populated, then moved using sqlite3PagerMovepage(). |
+ ** |
+ ** The solution is to add an in-memory page to the cache containing |
+ ** the data just read from the sub-journal. Mark the page as dirty |
+ ** and if the pager requires a journal-sync, then mark the page as |
+ ** requiring a journal-sync before it is written. |
+ */ |
+ assert( isSavepnt ); |
+ assert( (pPager->doNotSpill & SPILLFLAG_ROLLBACK)==0 ); |
+ pPager->doNotSpill |= SPILLFLAG_ROLLBACK; |
+ rc = sqlite3PagerGet(pPager, pgno, &pPg, 1); |
+ assert( (pPager->doNotSpill & SPILLFLAG_ROLLBACK)!=0 ); |
+ pPager->doNotSpill &= ~SPILLFLAG_ROLLBACK; |
+ if( rc!=SQLITE_OK ) return rc; |
+ pPg->flags &= ~PGHDR_NEED_READ; |
+ sqlite3PcacheMakeDirty(pPg); |
+ } |
+ if( pPg ){ |
+ /* No page should ever be explicitly rolled back that is in use, except |
+ ** for page 1 which is held in use in order to keep the lock on the |
+ ** database active. However such a page may be rolled back as a result |
+ ** of an internal error resulting in an automatic call to |
+ ** sqlite3PagerRollback(). |
+ */ |
+ void *pData; |
+ pData = pPg->pData; |
+ memcpy(pData, (u8*)aData, pPager->pageSize); |
+ pPager->xReiniter(pPg); |
+ if( isMainJrnl && (!isSavepnt || *pOffset<=pPager->journalHdr) ){ |
+ /* If the contents of this page were just restored from the main |
+ ** journal file, then its content must be as they were when the |
+ ** transaction was first opened. In this case we can mark the page |
+ ** as clean, since there will be no need to write it out to the |
+ ** database. |
+ ** |
+ ** There is one exception to this rule. If the page is being rolled |
+ ** back as part of a savepoint (or statement) rollback from an |
+ ** unsynced portion of the main journal file, then it is not safe |
+ ** to mark the page as clean. This is because marking the page as |
+ ** clean will clear the PGHDR_NEED_SYNC flag. Since the page is |
+ ** already in the journal file (recorded in Pager.pInJournal) and |
+ ** the PGHDR_NEED_SYNC flag is cleared, if the page is written to |
+ ** again within this transaction, it will be marked as dirty but |
+ ** the PGHDR_NEED_SYNC flag will not be set. It could then potentially |
+ ** be written out into the database file before its journal file |
+ ** segment is synced. If a crash occurs during or following this, |
+ ** database corruption may ensue. |
+ */ |
+ assert( !pagerUseWal(pPager) ); |
+ sqlite3PcacheMakeClean(pPg); |
+ } |
+ pager_set_pagehash(pPg); |
+ |
+ /* If this was page 1, then restore the value of Pager.dbFileVers. |
+ ** Do this before any decoding. */ |
+ if( pgno==1 ){ |
+ memcpy(&pPager->dbFileVers, &((u8*)pData)[24],sizeof(pPager->dbFileVers)); |
+ } |
+ |
+ /* Decode the page just read from disk */ |
+ CODEC1(pPager, pData, pPg->pgno, 3, rc=SQLITE_NOMEM); |
+ sqlite3PcacheRelease(pPg); |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Parameter zMaster is the name of a master journal file. A single journal |
+** file that referred to the master journal file has just been rolled back. |
+** This routine checks if it is possible to delete the master journal file, |
+** and does so if it is. |
+** |
+** Argument zMaster may point to Pager.pTmpSpace. So that buffer is not |
+** available for use within this function. |
+** |
+** When a master journal file is created, it is populated with the names |
+** of all of its child journals, one after another, formatted as utf-8 |
+** encoded text. The end of each child journal file is marked with a |
+** nul-terminator byte (0x00). i.e. the entire contents of a master journal |
+** file for a transaction involving two databases might be: |
+** |
+** "/home/bill/a.db-journal\x00/home/bill/b.db-journal\x00" |
+** |
+** A master journal file may only be deleted once all of its child |
+** journals have been rolled back. |
+** |
+** This function reads the contents of the master-journal file into |
+** memory and loops through each of the child journal names. For |
+** each child journal, it checks if: |
+** |
+** * if the child journal exists, and if so |
+** * if the child journal contains a reference to master journal |
+** file zMaster |
+** |
+** If a child journal can be found that matches both of the criteria |
+** above, this function returns without doing anything. Otherwise, if |
+** no such child journal can be found, file zMaster is deleted from |
+** the file-system using sqlite3OsDelete(). |
+** |
+** If an IO error within this function, an error code is returned. This |
+** function allocates memory by calling sqlite3Malloc(). If an allocation |
+** fails, SQLITE_NOMEM is returned. Otherwise, if no IO or malloc errors |
+** occur, SQLITE_OK is returned. |
+** |
+** TODO: This function allocates a single block of memory to load |
+** the entire contents of the master journal file. This could be |
+** a couple of kilobytes or so - potentially larger than the page |
+** size. |
+*/ |
+static int pager_delmaster(Pager *pPager, const char *zMaster){ |
+ sqlite3_vfs *pVfs = pPager->pVfs; |
+ int rc; /* Return code */ |
+ sqlite3_file *pMaster; /* Malloc'd master-journal file descriptor */ |
+ sqlite3_file *pJournal; /* Malloc'd child-journal file descriptor */ |
+ char *zMasterJournal = 0; /* Contents of master journal file */ |
+ i64 nMasterJournal; /* Size of master journal file */ |
+ char *zJournal; /* Pointer to one journal within MJ file */ |
+ char *zMasterPtr; /* Space to hold MJ filename from a journal file */ |
+ int nMasterPtr; /* Amount of space allocated to zMasterPtr[] */ |
+ |
+ /* Allocate space for both the pJournal and pMaster file descriptors. |
+ ** If successful, open the master journal file for reading. |
+ */ |
+ pMaster = (sqlite3_file *)sqlite3MallocZero(pVfs->szOsFile * 2); |
+ pJournal = (sqlite3_file *)(((u8 *)pMaster) + pVfs->szOsFile); |
+ if( !pMaster ){ |
+ rc = SQLITE_NOMEM; |
+ }else{ |
+ const int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_MASTER_JOURNAL); |
+ rc = sqlite3OsOpen(pVfs, zMaster, pMaster, flags, 0); |
+ } |
+ if( rc!=SQLITE_OK ) goto delmaster_out; |
+ |
+ /* Load the entire master journal file into space obtained from |
+ ** sqlite3_malloc() and pointed to by zMasterJournal. Also obtain |
+ ** sufficient space (in zMasterPtr) to hold the names of master |
+ ** journal files extracted from regular rollback-journals. |
+ */ |
+ rc = sqlite3OsFileSize(pMaster, &nMasterJournal); |
+ if( rc!=SQLITE_OK ) goto delmaster_out; |
+ nMasterPtr = pVfs->mxPathname+1; |
+ zMasterJournal = sqlite3Malloc(nMasterJournal + nMasterPtr + 1); |
+ if( !zMasterJournal ){ |
+ rc = SQLITE_NOMEM; |
+ goto delmaster_out; |
+ } |
+ zMasterPtr = &zMasterJournal[nMasterJournal+1]; |
+ rc = sqlite3OsRead(pMaster, zMasterJournal, (int)nMasterJournal, 0); |
+ if( rc!=SQLITE_OK ) goto delmaster_out; |
+ zMasterJournal[nMasterJournal] = 0; |
+ |
+ zJournal = zMasterJournal; |
+ while( (zJournal-zMasterJournal)<nMasterJournal ){ |
+ int exists; |
+ rc = sqlite3OsAccess(pVfs, zJournal, SQLITE_ACCESS_EXISTS, &exists); |
+ if( rc!=SQLITE_OK ){ |
+ goto delmaster_out; |
+ } |
+ if( exists ){ |
+ /* One of the journals pointed to by the master journal exists. |
+ ** Open it and check if it points at the master journal. If |
+ ** so, return without deleting the master journal file. |
+ */ |
+ int c; |
+ int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_MAIN_JOURNAL); |
+ rc = sqlite3OsOpen(pVfs, zJournal, pJournal, flags, 0); |
+ if( rc!=SQLITE_OK ){ |
+ goto delmaster_out; |
+ } |
+ |
+ rc = readMasterJournal(pJournal, zMasterPtr, nMasterPtr); |
+ sqlite3OsClose(pJournal); |
+ if( rc!=SQLITE_OK ){ |
+ goto delmaster_out; |
+ } |
+ |
+ c = zMasterPtr[0]!=0 && strcmp(zMasterPtr, zMaster)==0; |
+ if( c ){ |
+ /* We have a match. Do not delete the master journal file. */ |
+ goto delmaster_out; |
+ } |
+ } |
+ zJournal += (sqlite3Strlen30(zJournal)+1); |
+ } |
+ |
+ sqlite3OsClose(pMaster); |
+ rc = sqlite3OsDelete(pVfs, zMaster, 0); |
+ |
+delmaster_out: |
+ sqlite3_free(zMasterJournal); |
+ if( pMaster ){ |
+ sqlite3OsClose(pMaster); |
+ assert( !isOpen(pJournal) ); |
+ sqlite3_free(pMaster); |
+ } |
+ return rc; |
+} |
+ |
+ |
+/* |
+** This function is used to change the actual size of the database |
+** file in the file-system. This only happens when committing a transaction, |
+** or rolling back a transaction (including rolling back a hot-journal). |
+** |
+** If the main database file is not open, or the pager is not in either |
+** DBMOD or OPEN state, this function is a no-op. Otherwise, the size |
+** of the file is changed to nPage pages (nPage*pPager->pageSize bytes). |
+** If the file on disk is currently larger than nPage pages, then use the VFS |
+** xTruncate() method to truncate it. |
+** |
+** Or, it might be the case that the file on disk is smaller than |
+** nPage pages. Some operating system implementations can get confused if |
+** you try to truncate a file to some size that is larger than it |
+** currently is, so detect this case and write a single zero byte to |
+** the end of the new file instead. |
+** |
+** If successful, return SQLITE_OK. If an IO error occurs while modifying |
+** the database file, return the error code to the caller. |
+*/ |
+static int pager_truncate(Pager *pPager, Pgno nPage){ |
+ int rc = SQLITE_OK; |
+ assert( pPager->eState!=PAGER_ERROR ); |
+ assert( pPager->eState!=PAGER_READER ); |
+ |
+ if( isOpen(pPager->fd) |
+ && (pPager->eState>=PAGER_WRITER_DBMOD || pPager->eState==PAGER_OPEN) |
+ ){ |
+ i64 currentSize, newSize; |
+ int szPage = pPager->pageSize; |
+ assert( pPager->eLock==EXCLUSIVE_LOCK ); |
+ /* TODO: Is it safe to use Pager.dbFileSize here? */ |
+ rc = sqlite3OsFileSize(pPager->fd, ¤tSize); |
+ newSize = szPage*(i64)nPage; |
+ if( rc==SQLITE_OK && currentSize!=newSize ){ |
+ if( currentSize>newSize ){ |
+ rc = sqlite3OsTruncate(pPager->fd, newSize); |
+ }else if( (currentSize+szPage)<=newSize ){ |
+ char *pTmp = pPager->pTmpSpace; |
+ memset(pTmp, 0, szPage); |
+ testcase( (newSize-szPage) == currentSize ); |
+ testcase( (newSize-szPage) > currentSize ); |
+ rc = sqlite3OsWrite(pPager->fd, pTmp, szPage, newSize-szPage); |
+ } |
+ if( rc==SQLITE_OK ){ |
+ pPager->dbFileSize = nPage; |
+ } |
+ } |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Return a sanitized version of the sector-size of OS file pFile. The |
+** return value is guaranteed to lie between 32 and MAX_SECTOR_SIZE. |
+*/ |
+SQLITE_PRIVATE int sqlite3SectorSize(sqlite3_file *pFile){ |
+ int iRet = sqlite3OsSectorSize(pFile); |
+ if( iRet<32 ){ |
+ iRet = 512; |
+ }else if( iRet>MAX_SECTOR_SIZE ){ |
+ assert( MAX_SECTOR_SIZE>=512 ); |
+ iRet = MAX_SECTOR_SIZE; |
+ } |
+ return iRet; |
+} |
+ |
+/* |
+** Set the value of the Pager.sectorSize variable for the given |
+** pager based on the value returned by the xSectorSize method |
+** of the open database file. The sector size will be used |
+** to determine the size and alignment of journal header and |
+** master journal pointers within created journal files. |
+** |
+** For temporary files the effective sector size is always 512 bytes. |
+** |
+** Otherwise, for non-temporary files, the effective sector size is |
+** the value returned by the xSectorSize() method rounded up to 32 if |
+** it is less than 32, or rounded down to MAX_SECTOR_SIZE if it |
+** is greater than MAX_SECTOR_SIZE. |
+** |
+** If the file has the SQLITE_IOCAP_POWERSAFE_OVERWRITE property, then set |
+** the effective sector size to its minimum value (512). The purpose of |
+** pPager->sectorSize is to define the "blast radius" of bytes that |
+** might change if a crash occurs while writing to a single byte in |
+** that range. But with POWERSAFE_OVERWRITE, the blast radius is zero |
+** (that is what POWERSAFE_OVERWRITE means), so we minimize the sector |
+** size. For backwards compatibility of the rollback journal file format, |
+** we cannot reduce the effective sector size below 512. |
+*/ |
+static void setSectorSize(Pager *pPager){ |
+ assert( isOpen(pPager->fd) || pPager->tempFile ); |
+ |
+ if( pPager->tempFile |
+ || (sqlite3OsDeviceCharacteristics(pPager->fd) & |
+ SQLITE_IOCAP_POWERSAFE_OVERWRITE)!=0 |
+ ){ |
+ /* Sector size doesn't matter for temporary files. Also, the file |
+ ** may not have been opened yet, in which case the OsSectorSize() |
+ ** call will segfault. */ |
+ pPager->sectorSize = 512; |
+ }else{ |
+ pPager->sectorSize = sqlite3SectorSize(pPager->fd); |
+ } |
+} |
+ |
+/* |
+** Playback the journal and thus restore the database file to |
+** the state it was in before we started making changes. |
+** |
+** The journal file format is as follows: |
+** |
+** (1) 8 byte prefix. A copy of aJournalMagic[]. |
+** (2) 4 byte big-endian integer which is the number of valid page records |
+** in the journal. If this value is 0xffffffff, then compute the |
+** number of page records from the journal size. |
+** (3) 4 byte big-endian integer which is the initial value for the |
+** sanity checksum. |
+** (4) 4 byte integer which is the number of pages to truncate the |
+** database to during a rollback. |
+** (5) 4 byte big-endian integer which is the sector size. The header |
+** is this many bytes in size. |
+** (6) 4 byte big-endian integer which is the page size. |
+** (7) zero padding out to the next sector size. |
+** (8) Zero or more pages instances, each as follows: |
+** + 4 byte page number. |
+** + pPager->pageSize bytes of data. |
+** + 4 byte checksum |
+** |
+** When we speak of the journal header, we mean the first 7 items above. |
+** Each entry in the journal is an instance of the 8th item. |
+** |
+** Call the value from the second bullet "nRec". nRec is the number of |
+** valid page entries in the journal. In most cases, you can compute the |
+** value of nRec from the size of the journal file. But if a power |
+** failure occurred while the journal was being written, it could be the |
+** case that the size of the journal file had already been increased but |
+** the extra entries had not yet made it safely to disk. In such a case, |
+** the value of nRec computed from the file size would be too large. For |
+** that reason, we always use the nRec value in the header. |
+** |
+** If the nRec value is 0xffffffff it means that nRec should be computed |
+** from the file size. This value is used when the user selects the |
+** no-sync option for the journal. A power failure could lead to corruption |
+** in this case. But for things like temporary table (which will be |
+** deleted when the power is restored) we don't care. |
+** |
+** If the file opened as the journal file is not a well-formed |
+** journal file then all pages up to the first corrupted page are rolled |
+** back (or no pages if the journal header is corrupted). The journal file |
+** is then deleted and SQLITE_OK returned, just as if no corruption had |
+** been encountered. |
+** |
+** If an I/O or malloc() error occurs, the journal-file is not deleted |
+** and an error code is returned. |
+** |
+** The isHot parameter indicates that we are trying to rollback a journal |
+** that might be a hot journal. Or, it could be that the journal is |
+** preserved because of JOURNALMODE_PERSIST or JOURNALMODE_TRUNCATE. |
+** If the journal really is hot, reset the pager cache prior rolling |
+** back any content. If the journal is merely persistent, no reset is |
+** needed. |
+*/ |
+static int pager_playback(Pager *pPager, int isHot){ |
+ sqlite3_vfs *pVfs = pPager->pVfs; |
+ i64 szJ; /* Size of the journal file in bytes */ |
+ u32 nRec; /* Number of Records in the journal */ |
+ u32 u; /* Unsigned loop counter */ |
+ Pgno mxPg = 0; /* Size of the original file in pages */ |
+ int rc; /* Result code of a subroutine */ |
+ int res = 1; /* Value returned by sqlite3OsAccess() */ |
+ char *zMaster = 0; /* Name of master journal file if any */ |
+ int needPagerReset; /* True to reset page prior to first page rollback */ |
+ int nPlayback = 0; /* Total number of pages restored from journal */ |
+ |
+ /* Figure out how many records are in the journal. Abort early if |
+ ** the journal is empty. |
+ */ |
+ assert( isOpen(pPager->jfd) ); |
+ rc = sqlite3OsFileSize(pPager->jfd, &szJ); |
+ if( rc!=SQLITE_OK ){ |
+ goto end_playback; |
+ } |
+ |
+ /* Read the master journal name from the journal, if it is present. |
+ ** If a master journal file name is specified, but the file is not |
+ ** present on disk, then the journal is not hot and does not need to be |
+ ** played back. |
+ ** |
+ ** TODO: Technically the following is an error because it assumes that |
+ ** buffer Pager.pTmpSpace is (mxPathname+1) bytes or larger. i.e. that |
+ ** (pPager->pageSize >= pPager->pVfs->mxPathname+1). Using os_unix.c, |
+ ** mxPathname is 512, which is the same as the minimum allowable value |
+ ** for pageSize. |
+ */ |
+ zMaster = pPager->pTmpSpace; |
+ rc = readMasterJournal(pPager->jfd, zMaster, pPager->pVfs->mxPathname+1); |
+ if( rc==SQLITE_OK && zMaster[0] ){ |
+ rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res); |
+ } |
+ zMaster = 0; |
+ if( rc!=SQLITE_OK || !res ){ |
+ goto end_playback; |
+ } |
+ pPager->journalOff = 0; |
+ needPagerReset = isHot; |
+ |
+ /* This loop terminates either when a readJournalHdr() or |
+ ** pager_playback_one_page() call returns SQLITE_DONE or an IO error |
+ ** occurs. |
+ */ |
+ while( 1 ){ |
+ /* Read the next journal header from the journal file. If there are |
+ ** not enough bytes left in the journal file for a complete header, or |
+ ** it is corrupted, then a process must have failed while writing it. |
+ ** This indicates nothing more needs to be rolled back. |
+ */ |
+ rc = readJournalHdr(pPager, isHot, szJ, &nRec, &mxPg); |
+ if( rc!=SQLITE_OK ){ |
+ if( rc==SQLITE_DONE ){ |
+ rc = SQLITE_OK; |
+ } |
+ goto end_playback; |
+ } |
+ |
+ /* If nRec is 0xffffffff, then this journal was created by a process |
+ ** working in no-sync mode. This means that the rest of the journal |
+ ** file consists of pages, there are no more journal headers. Compute |
+ ** the value of nRec based on this assumption. |
+ */ |
+ if( nRec==0xffffffff ){ |
+ assert( pPager->journalOff==JOURNAL_HDR_SZ(pPager) ); |
+ nRec = (int)((szJ - JOURNAL_HDR_SZ(pPager))/JOURNAL_PG_SZ(pPager)); |
+ } |
+ |
+ /* If nRec is 0 and this rollback is of a transaction created by this |
+ ** process and if this is the final header in the journal, then it means |
+ ** that this part of the journal was being filled but has not yet been |
+ ** synced to disk. Compute the number of pages based on the remaining |
+ ** size of the file. |
+ ** |
+ ** The third term of the test was added to fix ticket #2565. |
+ ** When rolling back a hot journal, nRec==0 always means that the next |
+ ** chunk of the journal contains zero pages to be rolled back. But |
+ ** when doing a ROLLBACK and the nRec==0 chunk is the last chunk in |
+ ** the journal, it means that the journal might contain additional |
+ ** pages that need to be rolled back and that the number of pages |
+ ** should be computed based on the journal file size. |
+ */ |
+ if( nRec==0 && !isHot && |
+ pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff ){ |
+ nRec = (int)((szJ - pPager->journalOff) / JOURNAL_PG_SZ(pPager)); |
+ } |
+ |
+ /* If this is the first header read from the journal, truncate the |
+ ** database file back to its original size. |
+ */ |
+ if( pPager->journalOff==JOURNAL_HDR_SZ(pPager) ){ |
+ rc = pager_truncate(pPager, mxPg); |
+ if( rc!=SQLITE_OK ){ |
+ goto end_playback; |
+ } |
+ pPager->dbSize = mxPg; |
+ } |
+ |
+ /* Copy original pages out of the journal and back into the |
+ ** database file and/or page cache. |
+ */ |
+ for(u=0; u<nRec; u++){ |
+ if( needPagerReset ){ |
+ pager_reset(pPager); |
+ needPagerReset = 0; |
+ } |
+ rc = pager_playback_one_page(pPager,&pPager->journalOff,0,1,0); |
+ if( rc==SQLITE_OK ){ |
+ nPlayback++; |
+ }else{ |
+ if( rc==SQLITE_DONE ){ |
+ pPager->journalOff = szJ; |
+ break; |
+ }else if( rc==SQLITE_IOERR_SHORT_READ ){ |
+ /* If the journal has been truncated, simply stop reading and |
+ ** processing the journal. This might happen if the journal was |
+ ** not completely written and synced prior to a crash. In that |
+ ** case, the database should have never been written in the |
+ ** first place so it is OK to simply abandon the rollback. */ |
+ rc = SQLITE_OK; |
+ goto end_playback; |
+ }else{ |
+ /* If we are unable to rollback, quit and return the error |
+ ** code. This will cause the pager to enter the error state |
+ ** so that no further harm will be done. Perhaps the next |
+ ** process to come along will be able to rollback the database. |
+ */ |
+ goto end_playback; |
+ } |
+ } |
+ } |
+ } |
+ /*NOTREACHED*/ |
+ assert( 0 ); |
+ |
+end_playback: |
+ /* Following a rollback, the database file should be back in its original |
+ ** state prior to the start of the transaction, so invoke the |
+ ** SQLITE_FCNTL_DB_UNCHANGED file-control method to disable the |
+ ** assertion that the transaction counter was modified. |
+ */ |
+#ifdef SQLITE_DEBUG |
+ if( pPager->fd->pMethods ){ |
+ sqlite3OsFileControlHint(pPager->fd,SQLITE_FCNTL_DB_UNCHANGED,0); |
+ } |
+#endif |
+ |
+ /* If this playback is happening automatically as a result of an IO or |
+ ** malloc error that occurred after the change-counter was updated but |
+ ** before the transaction was committed, then the change-counter |
+ ** modification may just have been reverted. If this happens in exclusive |
+ ** mode, then subsequent transactions performed by the connection will not |
+ ** update the change-counter at all. This may lead to cache inconsistency |
+ ** problems for other processes at some point in the future. So, just |
+ ** in case this has happened, clear the changeCountDone flag now. |
+ */ |
+ pPager->changeCountDone = pPager->tempFile; |
+ |
+ if( rc==SQLITE_OK ){ |
+ zMaster = pPager->pTmpSpace; |
+ rc = readMasterJournal(pPager->jfd, zMaster, pPager->pVfs->mxPathname+1); |
+ testcase( rc!=SQLITE_OK ); |
+ } |
+ if( rc==SQLITE_OK |
+ && (pPager->eState>=PAGER_WRITER_DBMOD || pPager->eState==PAGER_OPEN) |
+ ){ |
+ rc = sqlite3PagerSync(pPager, 0); |
+ } |
+ if( rc==SQLITE_OK ){ |
+ rc = pager_end_transaction(pPager, zMaster[0]!='\0', 0); |
+ testcase( rc!=SQLITE_OK ); |
+ } |
+ if( rc==SQLITE_OK && zMaster[0] && res ){ |
+ /* If there was a master journal and this routine will return success, |
+ ** see if it is possible to delete the master journal. |
+ */ |
+ rc = pager_delmaster(pPager, zMaster); |
+ testcase( rc!=SQLITE_OK ); |
+ } |
+ if( isHot && nPlayback ){ |
+ sqlite3_log(SQLITE_NOTICE_RECOVER_ROLLBACK, "recovered %d pages from %s", |
+ nPlayback, pPager->zJournal); |
+ } |
+ |
+ /* The Pager.sectorSize variable may have been updated while rolling |
+ ** back a journal created by a process with a different sector size |
+ ** value. Reset it to the correct value for this process. |
+ */ |
+ setSectorSize(pPager); |
+ return rc; |
+} |
+ |
+ |
+/* |
+** Read the content for page pPg out of the database file and into |
+** pPg->pData. A shared lock or greater must be held on the database |
+** file before this function is called. |
+** |
+** If page 1 is read, then the value of Pager.dbFileVers[] is set to |
+** the value read from the database file. |
+** |
+** If an IO error occurs, then the IO error is returned to the caller. |
+** Otherwise, SQLITE_OK is returned. |
+*/ |
+static int readDbPage(PgHdr *pPg, u32 iFrame){ |
+ Pager *pPager = pPg->pPager; /* Pager object associated with page pPg */ |
+ Pgno pgno = pPg->pgno; /* Page number to read */ |
+ int rc = SQLITE_OK; /* Return code */ |
+ int pgsz = pPager->pageSize; /* Number of bytes to read */ |
+ |
+ assert( pPager->eState>=PAGER_READER && !MEMDB ); |
+ assert( isOpen(pPager->fd) ); |
+ |
+#ifndef SQLITE_OMIT_WAL |
+ if( iFrame ){ |
+ /* Try to pull the page from the write-ahead log. */ |
+ rc = sqlite3WalReadFrame(pPager->pWal, iFrame, pgsz, pPg->pData); |
+ }else |
+#endif |
+ { |
+ i64 iOffset = (pgno-1)*(i64)pPager->pageSize; |
+ rc = sqlite3OsRead(pPager->fd, pPg->pData, pgsz, iOffset); |
+ if( rc==SQLITE_IOERR_SHORT_READ ){ |
+ rc = SQLITE_OK; |
+ } |
+ } |
+ |
+ if( pgno==1 ){ |
+ if( rc ){ |
+ /* If the read is unsuccessful, set the dbFileVers[] to something |
+ ** that will never be a valid file version. dbFileVers[] is a copy |
+ ** of bytes 24..39 of the database. Bytes 28..31 should always be |
+ ** zero or the size of the database in page. Bytes 32..35 and 35..39 |
+ ** should be page numbers which are never 0xffffffff. So filling |
+ ** pPager->dbFileVers[] with all 0xff bytes should suffice. |
+ ** |
+ ** For an encrypted database, the situation is more complex: bytes |
+ ** 24..39 of the database are white noise. But the probability of |
+ ** white noise equaling 16 bytes of 0xff is vanishingly small so |
+ ** we should still be ok. |
+ */ |
+ memset(pPager->dbFileVers, 0xff, sizeof(pPager->dbFileVers)); |
+ }else{ |
+ u8 *dbFileVers = &((u8*)pPg->pData)[24]; |
+ memcpy(&pPager->dbFileVers, dbFileVers, sizeof(pPager->dbFileVers)); |
+ } |
+ } |
+ CODEC1(pPager, pPg->pData, pgno, 3, rc = SQLITE_NOMEM); |
+ |
+ PAGER_INCR(sqlite3_pager_readdb_count); |
+ PAGER_INCR(pPager->nRead); |
+ IOTRACE(("PGIN %p %d\n", pPager, pgno)); |
+ PAGERTRACE(("FETCH %d page %d hash(%08x)\n", |
+ PAGERID(pPager), pgno, pager_pagehash(pPg))); |
+ |
+ return rc; |
+} |
+ |
+/* |
+** Update the value of the change-counter at offsets 24 and 92 in |
+** the header and the sqlite version number at offset 96. |
+** |
+** This is an unconditional update. See also the pager_incr_changecounter() |
+** routine which only updates the change-counter if the update is actually |
+** needed, as determined by the pPager->changeCountDone state variable. |
+*/ |
+static void pager_write_changecounter(PgHdr *pPg){ |
+ u32 change_counter; |
+ |
+ /* Increment the value just read and write it back to byte 24. */ |
+ change_counter = sqlite3Get4byte((u8*)pPg->pPager->dbFileVers)+1; |
+ put32bits(((char*)pPg->pData)+24, change_counter); |
+ |
+ /* Also store the SQLite version number in bytes 96..99 and in |
+ ** bytes 92..95 store the change counter for which the version number |
+ ** is valid. */ |
+ put32bits(((char*)pPg->pData)+92, change_counter); |
+ put32bits(((char*)pPg->pData)+96, SQLITE_VERSION_NUMBER); |
+} |
+ |
+#ifndef SQLITE_OMIT_WAL |
+/* |
+** This function is invoked once for each page that has already been |
+** written into the log file when a WAL transaction is rolled back. |
+** Parameter iPg is the page number of said page. The pCtx argument |
+** is actually a pointer to the Pager structure. |
+** |
+** If page iPg is present in the cache, and has no outstanding references, |
+** it is discarded. Otherwise, if there are one or more outstanding |
+** references, the page content is reloaded from the database. If the |
+** attempt to reload content from the database is required and fails, |
+** return an SQLite error code. Otherwise, SQLITE_OK. |
+*/ |
+static int pagerUndoCallback(void *pCtx, Pgno iPg){ |
+ int rc = SQLITE_OK; |
+ Pager *pPager = (Pager *)pCtx; |
+ PgHdr *pPg; |
+ |
+ assert( pagerUseWal(pPager) ); |
+ pPg = sqlite3PagerLookup(pPager, iPg); |
+ if( pPg ){ |
+ if( sqlite3PcachePageRefcount(pPg)==1 ){ |
+ sqlite3PcacheDrop(pPg); |
+ }else{ |
+ u32 iFrame = 0; |
+ rc = sqlite3WalFindFrame(pPager->pWal, pPg->pgno, &iFrame); |
+ if( rc==SQLITE_OK ){ |
+ rc = readDbPage(pPg, iFrame); |
+ } |
+ if( rc==SQLITE_OK ){ |
+ pPager->xReiniter(pPg); |
+ } |
+ sqlite3PagerUnrefNotNull(pPg); |
+ } |
+ } |
+ |
+ /* Normally, if a transaction is rolled back, any backup processes are |
+ ** updated as data is copied out of the rollback journal and into the |
+ ** database. This is not generally possible with a WAL database, as |
+ ** rollback involves simply truncating the log file. Therefore, if one |
+ ** or more frames have already been written to the log (and therefore |
+ ** also copied into the backup databases) as part of this transaction, |
+ ** the backups must be restarted. |
+ */ |
+ sqlite3BackupRestart(pPager->pBackup); |
+ |
+ return rc; |
+} |
+ |
+/* |
+** This function is called to rollback a transaction on a WAL database. |
+*/ |
+static int pagerRollbackWal(Pager *pPager){ |
+ int rc; /* Return Code */ |
+ PgHdr *pList; /* List of dirty pages to revert */ |
+ |
+ /* For all pages in the cache that are currently dirty or have already |
+ ** been written (but not committed) to the log file, do one of the |
+ ** following: |
+ ** |
+ ** + Discard the cached page (if refcount==0), or |
+ ** + Reload page content from the database (if refcount>0). |
+ */ |
+ pPager->dbSize = pPager->dbOrigSize; |
+ rc = sqlite3WalUndo(pPager->pWal, pagerUndoCallback, (void *)pPager); |
+ pList = sqlite3PcacheDirtyList(pPager->pPCache); |
+ while( pList && rc==SQLITE_OK ){ |
+ PgHdr *pNext = pList->pDirty; |
+ rc = pagerUndoCallback((void *)pPager, pList->pgno); |
+ pList = pNext; |
+ } |
+ |
+ return rc; |
+} |
+ |
+/* |
+** This function is a wrapper around sqlite3WalFrames(). As well as logging |
+** the contents of the list of pages headed by pList (connected by pDirty), |
+** this function notifies any active backup processes that the pages have |
+** changed. |
+** |
+** The list of pages passed into this routine is always sorted by page number. |
+** Hence, if page 1 appears anywhere on the list, it will be the first page. |
+*/ |
+static int pagerWalFrames( |
+ Pager *pPager, /* Pager object */ |
+ PgHdr *pList, /* List of frames to log */ |
+ Pgno nTruncate, /* Database size after this commit */ |
+ int isCommit /* True if this is a commit */ |
+){ |
+ int rc; /* Return code */ |
+ int nList; /* Number of pages in pList */ |
+ PgHdr *p; /* For looping over pages */ |
+ |
+ assert( pPager->pWal ); |
+ assert( pList ); |
+#ifdef SQLITE_DEBUG |
+ /* Verify that the page list is in accending order */ |
+ for(p=pList; p && p->pDirty; p=p->pDirty){ |
+ assert( p->pgno < p->pDirty->pgno ); |
+ } |
+#endif |
+ |
+ assert( pList->pDirty==0 || isCommit ); |
+ if( isCommit ){ |
+ /* If a WAL transaction is being committed, there is no point in writing |
+ ** any pages with page numbers greater than nTruncate into the WAL file. |
+ ** They will never be read by any client. So remove them from the pDirty |
+ ** list here. */ |
+ PgHdr **ppNext = &pList; |
+ nList = 0; |
+ for(p=pList; (*ppNext = p)!=0; p=p->pDirty){ |
+ if( p->pgno<=nTruncate ){ |
+ ppNext = &p->pDirty; |
+ nList++; |
+ } |
+ } |
+ assert( pList ); |
+ }else{ |
+ nList = 1; |
+ } |
+ pPager->aStat[PAGER_STAT_WRITE] += nList; |
+ |
+ if( pList->pgno==1 ) pager_write_changecounter(pList); |
+ rc = sqlite3WalFrames(pPager->pWal, |
+ pPager->pageSize, pList, nTruncate, isCommit, pPager->walSyncFlags |
+ ); |
+ if( rc==SQLITE_OK && pPager->pBackup ){ |
+ for(p=pList; p; p=p->pDirty){ |
+ sqlite3BackupUpdate(pPager->pBackup, p->pgno, (u8 *)p->pData); |
+ } |
+ } |
+ |
+#ifdef SQLITE_CHECK_PAGES |
+ pList = sqlite3PcacheDirtyList(pPager->pPCache); |
+ for(p=pList; p; p=p->pDirty){ |
+ pager_set_pagehash(p); |
+ } |
+#endif |
+ |
+ return rc; |
+} |
+ |
+/* |
+** Begin a read transaction on the WAL. |
+** |
+** This routine used to be called "pagerOpenSnapshot()" because it essentially |
+** makes a snapshot of the database at the current point in time and preserves |
+** that snapshot for use by the reader in spite of concurrently changes by |
+** other writers or checkpointers. |
+*/ |
+static int pagerBeginReadTransaction(Pager *pPager){ |
+ int rc; /* Return code */ |
+ int changed = 0; /* True if cache must be reset */ |
+ |
+ assert( pagerUseWal(pPager) ); |
+ assert( pPager->eState==PAGER_OPEN || pPager->eState==PAGER_READER ); |
+ |
+ /* sqlite3WalEndReadTransaction() was not called for the previous |
+ ** transaction in locking_mode=EXCLUSIVE. So call it now. If we |
+ ** are in locking_mode=NORMAL and EndRead() was previously called, |
+ ** the duplicate call is harmless. |
+ */ |
+ sqlite3WalEndReadTransaction(pPager->pWal); |
+ |
+ rc = sqlite3WalBeginReadTransaction(pPager->pWal, &changed); |
+ if( rc!=SQLITE_OK || changed ){ |
+ pager_reset(pPager); |
+ if( USEFETCH(pPager) ) sqlite3OsUnfetch(pPager->fd, 0, 0); |
+ } |
+ |
+ return rc; |
+} |
+#endif |
+ |
+/* |
+** This function is called as part of the transition from PAGER_OPEN |
+** to PAGER_READER state to determine the size of the database file |
+** in pages (assuming the page size currently stored in Pager.pageSize). |
+** |
+** If no error occurs, SQLITE_OK is returned and the size of the database |
+** in pages is stored in *pnPage. Otherwise, an error code (perhaps |
+** SQLITE_IOERR_FSTAT) is returned and *pnPage is left unmodified. |
+*/ |
+static int pagerPagecount(Pager *pPager, Pgno *pnPage){ |
+ Pgno nPage; /* Value to return via *pnPage */ |
+ |
+ /* Query the WAL sub-system for the database size. The WalDbsize() |
+ ** function returns zero if the WAL is not open (i.e. Pager.pWal==0), or |
+ ** if the database size is not available. The database size is not |
+ ** available from the WAL sub-system if the log file is empty or |
+ ** contains no valid committed transactions. |
+ */ |
+ assert( pPager->eState==PAGER_OPEN ); |
+ assert( pPager->eLock>=SHARED_LOCK ); |
+ nPage = sqlite3WalDbsize(pPager->pWal); |
+ |
+ /* If the number of pages in the database is not available from the |
+ ** WAL sub-system, determine the page counte based on the size of |
+ ** the database file. If the size of the database file is not an |
+ ** integer multiple of the page-size, round up the result. |
+ */ |
+ if( nPage==0 ){ |
+ i64 n = 0; /* Size of db file in bytes */ |
+ assert( isOpen(pPager->fd) || pPager->tempFile ); |
+ if( isOpen(pPager->fd) ){ |
+ int rc = sqlite3OsFileSize(pPager->fd, &n); |
+ if( rc!=SQLITE_OK ){ |
+ return rc; |
+ } |
+ } |
+ nPage = (Pgno)((n+pPager->pageSize-1) / pPager->pageSize); |
+ } |
+ |
+ /* If the current number of pages in the file is greater than the |
+ ** configured maximum pager number, increase the allowed limit so |
+ ** that the file can be read. |
+ */ |
+ if( nPage>pPager->mxPgno ){ |
+ pPager->mxPgno = (Pgno)nPage; |
+ } |
+ |
+ *pnPage = nPage; |
+ return SQLITE_OK; |
+} |
+ |
+#ifndef SQLITE_OMIT_WAL |
+/* |
+** Check if the *-wal file that corresponds to the database opened by pPager |
+** exists if the database is not empy, or verify that the *-wal file does |
+** not exist (by deleting it) if the database file is empty. |
+** |
+** If the database is not empty and the *-wal file exists, open the pager |
+** in WAL mode. If the database is empty or if no *-wal file exists and |
+** if no error occurs, make sure Pager.journalMode is not set to |
+** PAGER_JOURNALMODE_WAL. |
+** |
+** Return SQLITE_OK or an error code. |
+** |
+** The caller must hold a SHARED lock on the database file to call this |
+** function. Because an EXCLUSIVE lock on the db file is required to delete |
+** a WAL on a none-empty database, this ensures there is no race condition |
+** between the xAccess() below and an xDelete() being executed by some |
+** other connection. |
+*/ |
+static int pagerOpenWalIfPresent(Pager *pPager){ |
+ int rc = SQLITE_OK; |
+ assert( pPager->eState==PAGER_OPEN ); |
+ assert( pPager->eLock>=SHARED_LOCK ); |
+ |
+ if( !pPager->tempFile ){ |
+ int isWal; /* True if WAL file exists */ |
+ Pgno nPage; /* Size of the database file */ |
+ |
+ rc = pagerPagecount(pPager, &nPage); |
+ if( rc ) return rc; |
+ if( nPage==0 ){ |
+ rc = sqlite3OsDelete(pPager->pVfs, pPager->zWal, 0); |
+ if( rc==SQLITE_IOERR_DELETE_NOENT ) rc = SQLITE_OK; |
+ isWal = 0; |
+ }else{ |
+ rc = sqlite3OsAccess( |
+ pPager->pVfs, pPager->zWal, SQLITE_ACCESS_EXISTS, &isWal |
+ ); |
+ } |
+ if( rc==SQLITE_OK ){ |
+ if( isWal ){ |
+ testcase( sqlite3PcachePagecount(pPager->pPCache)==0 ); |
+ rc = sqlite3PagerOpenWal(pPager, 0); |
+ }else if( pPager->journalMode==PAGER_JOURNALMODE_WAL ){ |
+ pPager->journalMode = PAGER_JOURNALMODE_DELETE; |
+ } |
+ } |
+ } |
+ return rc; |
+} |
+#endif |
+ |
+/* |
+** Playback savepoint pSavepoint. Or, if pSavepoint==NULL, then playback |
+** the entire master journal file. The case pSavepoint==NULL occurs when |
+** a ROLLBACK TO command is invoked on a SAVEPOINT that is a transaction |
+** savepoint. |
+** |
+** When pSavepoint is not NULL (meaning a non-transaction savepoint is |
+** being rolled back), then the rollback consists of up to three stages, |
+** performed in the order specified: |
+** |
+** * Pages are played back from the main journal starting at byte |
+** offset PagerSavepoint.iOffset and continuing to |
+** PagerSavepoint.iHdrOffset, or to the end of the main journal |
+** file if PagerSavepoint.iHdrOffset is zero. |
+** |
+** * If PagerSavepoint.iHdrOffset is not zero, then pages are played |
+** back starting from the journal header immediately following |
+** PagerSavepoint.iHdrOffset to the end of the main journal file. |
+** |
+** * Pages are then played back from the sub-journal file, starting |
+** with the PagerSavepoint.iSubRec and continuing to the end of |
+** the journal file. |
+** |
+** Throughout the rollback process, each time a page is rolled back, the |
+** corresponding bit is set in a bitvec structure (variable pDone in the |
+** implementation below). This is used to ensure that a page is only |
+** rolled back the first time it is encountered in either journal. |
+** |
+** If pSavepoint is NULL, then pages are only played back from the main |
+** journal file. There is no need for a bitvec in this case. |
+** |
+** In either case, before playback commences the Pager.dbSize variable |
+** is reset to the value that it held at the start of the savepoint |
+** (or transaction). No page with a page-number greater than this value |
+** is played back. If one is encountered it is simply skipped. |
+*/ |
+static int pagerPlaybackSavepoint(Pager *pPager, PagerSavepoint *pSavepoint){ |
+ i64 szJ; /* Effective size of the main journal */ |
+ i64 iHdrOff; /* End of first segment of main-journal records */ |
+ int rc = SQLITE_OK; /* Return code */ |
+ Bitvec *pDone = 0; /* Bitvec to ensure pages played back only once */ |
+ |
+ assert( pPager->eState!=PAGER_ERROR ); |
+ assert( pPager->eState>=PAGER_WRITER_LOCKED ); |
+ |
+ /* Allocate a bitvec to use to store the set of pages rolled back */ |
+ if( pSavepoint ){ |
+ pDone = sqlite3BitvecCreate(pSavepoint->nOrig); |
+ if( !pDone ){ |
+ return SQLITE_NOMEM; |
+ } |
+ } |
+ |
+ /* Set the database size back to the value it was before the savepoint |
+ ** being reverted was opened. |
+ */ |
+ pPager->dbSize = pSavepoint ? pSavepoint->nOrig : pPager->dbOrigSize; |
+ pPager->changeCountDone = pPager->tempFile; |
+ |
+ if( !pSavepoint && pagerUseWal(pPager) ){ |
+ return pagerRollbackWal(pPager); |
+ } |
+ |
+ /* Use pPager->journalOff as the effective size of the main rollback |
+ ** journal. The actual file might be larger than this in |
+ ** PAGER_JOURNALMODE_TRUNCATE or PAGER_JOURNALMODE_PERSIST. But anything |
+ ** past pPager->journalOff is off-limits to us. |
+ */ |
+ szJ = pPager->journalOff; |
+ assert( pagerUseWal(pPager)==0 || szJ==0 ); |
+ |
+ /* Begin by rolling back records from the main journal starting at |
+ ** PagerSavepoint.iOffset and continuing to the next journal header. |
+ ** There might be records in the main journal that have a page number |
+ ** greater than the current database size (pPager->dbSize) but those |
+ ** will be skipped automatically. Pages are added to pDone as they |
+ ** are played back. |
+ */ |
+ if( pSavepoint && !pagerUseWal(pPager) ){ |
+ iHdrOff = pSavepoint->iHdrOffset ? pSavepoint->iHdrOffset : szJ; |
+ pPager->journalOff = pSavepoint->iOffset; |
+ while( rc==SQLITE_OK && pPager->journalOff<iHdrOff ){ |
+ rc = pager_playback_one_page(pPager, &pPager->journalOff, pDone, 1, 1); |
+ } |
+ assert( rc!=SQLITE_DONE ); |
+ }else{ |
+ pPager->journalOff = 0; |
+ } |
+ |
+ /* Continue rolling back records out of the main journal starting at |
+ ** the first journal header seen and continuing until the effective end |
+ ** of the main journal file. Continue to skip out-of-range pages and |
+ ** continue adding pages rolled back to pDone. |
+ */ |
+ while( rc==SQLITE_OK && pPager->journalOff<szJ ){ |
+ u32 ii; /* Loop counter */ |
+ u32 nJRec = 0; /* Number of Journal Records */ |
+ u32 dummy; |
+ rc = readJournalHdr(pPager, 0, szJ, &nJRec, &dummy); |
+ assert( rc!=SQLITE_DONE ); |
+ |
+ /* |
+ ** The "pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff" |
+ ** test is related to ticket #2565. See the discussion in the |
+ ** pager_playback() function for additional information. |
+ */ |
+ if( nJRec==0 |
+ && pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff |
+ ){ |
+ nJRec = (u32)((szJ - pPager->journalOff)/JOURNAL_PG_SZ(pPager)); |
+ } |
+ for(ii=0; rc==SQLITE_OK && ii<nJRec && pPager->journalOff<szJ; ii++){ |
+ rc = pager_playback_one_page(pPager, &pPager->journalOff, pDone, 1, 1); |
+ } |
+ assert( rc!=SQLITE_DONE ); |
+ } |
+ assert( rc!=SQLITE_OK || pPager->journalOff>=szJ ); |
+ |
+ /* Finally, rollback pages from the sub-journal. Page that were |
+ ** previously rolled back out of the main journal (and are hence in pDone) |
+ ** will be skipped. Out-of-range pages are also skipped. |
+ */ |
+ if( pSavepoint ){ |
+ u32 ii; /* Loop counter */ |
+ i64 offset = (i64)pSavepoint->iSubRec*(4+pPager->pageSize); |
+ |
+ if( pagerUseWal(pPager) ){ |
+ rc = sqlite3WalSavepointUndo(pPager->pWal, pSavepoint->aWalData); |
+ } |
+ for(ii=pSavepoint->iSubRec; rc==SQLITE_OK && ii<pPager->nSubRec; ii++){ |
+ assert( offset==(i64)ii*(4+pPager->pageSize) ); |
+ rc = pager_playback_one_page(pPager, &offset, pDone, 0, 1); |
+ } |
+ assert( rc!=SQLITE_DONE ); |
+ } |
+ |
+ sqlite3BitvecDestroy(pDone); |
+ if( rc==SQLITE_OK ){ |
+ pPager->journalOff = szJ; |
+ } |
+ |
+ return rc; |
+} |
+ |
+/* |
+** Change the maximum number of in-memory pages that are allowed |
+** before attempting to recycle clean and unused pages. |
+*/ |
+SQLITE_PRIVATE void sqlite3PagerSetCachesize(Pager *pPager, int mxPage){ |
+ sqlite3PcacheSetCachesize(pPager->pPCache, mxPage); |
+} |
+ |
+/* |
+** Change the maximum number of in-memory pages that are allowed |
+** before attempting to spill pages to journal. |
+*/ |
+SQLITE_PRIVATE int sqlite3PagerSetSpillsize(Pager *pPager, int mxPage){ |
+ return sqlite3PcacheSetSpillsize(pPager->pPCache, mxPage); |
+} |
+ |
+/* |
+** Invoke SQLITE_FCNTL_MMAP_SIZE based on the current value of szMmap. |
+*/ |
+static void pagerFixMaplimit(Pager *pPager){ |
+#if SQLITE_MAX_MMAP_SIZE>0 |
+ sqlite3_file *fd = pPager->fd; |
+ if( isOpen(fd) && fd->pMethods->iVersion>=3 ){ |
+ sqlite3_int64 sz; |
+ sz = pPager->szMmap; |
+ pPager->bUseFetch = (sz>0); |
+ sqlite3OsFileControlHint(pPager->fd, SQLITE_FCNTL_MMAP_SIZE, &sz); |
+ } |
+#endif |
+} |
+ |
+/* |
+** Change the maximum size of any memory mapping made of the database file. |
+*/ |
+SQLITE_PRIVATE void sqlite3PagerSetMmapLimit(Pager *pPager, sqlite3_int64 szMmap){ |
+ pPager->szMmap = szMmap; |
+ pagerFixMaplimit(pPager); |
+} |
+ |
+/* |
+** Free as much memory as possible from the pager. |
+*/ |
+SQLITE_PRIVATE void sqlite3PagerShrink(Pager *pPager){ |
+ sqlite3PcacheShrink(pPager->pPCache); |
+} |
+ |
+/* |
+** Adjust settings of the pager to those specified in the pgFlags parameter. |
+** |
+** The "level" in pgFlags & PAGER_SYNCHRONOUS_MASK sets the robustness |
+** of the database to damage due to OS crashes or power failures by |
+** changing the number of syncs()s when writing the journals. |
+** There are three levels: |
+** |
+** OFF sqlite3OsSync() is never called. This is the default |
+** for temporary and transient files. |
+** |
+** NORMAL The journal is synced once before writes begin on the |
+** database. This is normally adequate protection, but |
+** it is theoretically possible, though very unlikely, |
+** that an inopertune power failure could leave the journal |
+** in a state which would cause damage to the database |
+** when it is rolled back. |
+** |
+** FULL The journal is synced twice before writes begin on the |
+** database (with some additional information - the nRec field |
+** of the journal header - being written in between the two |
+** syncs). If we assume that writing a |
+** single disk sector is atomic, then this mode provides |
+** assurance that the journal will not be corrupted to the |
+** point of causing damage to the database during rollback. |
+** |
+** The above is for a rollback-journal mode. For WAL mode, OFF continues |
+** to mean that no syncs ever occur. NORMAL means that the WAL is synced |
+** prior to the start of checkpoint and that the database file is synced |
+** at the conclusion of the checkpoint if the entire content of the WAL |
+** was written back into the database. But no sync operations occur for |
+** an ordinary commit in NORMAL mode with WAL. FULL means that the WAL |
+** file is synced following each commit operation, in addition to the |
+** syncs associated with NORMAL. |
+** |
+** Do not confuse synchronous=FULL with SQLITE_SYNC_FULL. The |
+** SQLITE_SYNC_FULL macro means to use the MacOSX-style full-fsync |
+** using fcntl(F_FULLFSYNC). SQLITE_SYNC_NORMAL means to do an |
+** ordinary fsync() call. There is no difference between SQLITE_SYNC_FULL |
+** and SQLITE_SYNC_NORMAL on platforms other than MacOSX. But the |
+** synchronous=FULL versus synchronous=NORMAL setting determines when |
+** the xSync primitive is called and is relevant to all platforms. |
+** |
+** Numeric values associated with these states are OFF==1, NORMAL=2, |
+** and FULL=3. |
+*/ |
+#ifndef SQLITE_OMIT_PAGER_PRAGMAS |
+SQLITE_PRIVATE void sqlite3PagerSetFlags( |
+ Pager *pPager, /* The pager to set safety level for */ |
+ unsigned pgFlags /* Various flags */ |
+){ |
+ unsigned level = pgFlags & PAGER_SYNCHRONOUS_MASK; |
+ assert( level>=1 && level<=3 ); |
+ pPager->noSync = (level==1 || pPager->tempFile) ?1:0; |
+ pPager->fullSync = (level==3 && !pPager->tempFile) ?1:0; |
+ if( pPager->noSync ){ |
+ pPager->syncFlags = 0; |
+ pPager->ckptSyncFlags = 0; |
+ }else if( pgFlags & PAGER_FULLFSYNC ){ |
+ pPager->syncFlags = SQLITE_SYNC_FULL; |
+ pPager->ckptSyncFlags = SQLITE_SYNC_FULL; |
+ }else if( pgFlags & PAGER_CKPT_FULLFSYNC ){ |
+ pPager->syncFlags = SQLITE_SYNC_NORMAL; |
+ pPager->ckptSyncFlags = SQLITE_SYNC_FULL; |
+ }else{ |
+ pPager->syncFlags = SQLITE_SYNC_NORMAL; |
+ pPager->ckptSyncFlags = SQLITE_SYNC_NORMAL; |
+ } |
+ pPager->walSyncFlags = pPager->syncFlags; |
+ if( pPager->fullSync ){ |
+ pPager->walSyncFlags |= WAL_SYNC_TRANSACTIONS; |
+ } |
+ if( pgFlags & PAGER_CACHESPILL ){ |
+ pPager->doNotSpill &= ~SPILLFLAG_OFF; |
+ }else{ |
+ pPager->doNotSpill |= SPILLFLAG_OFF; |
+ } |
+} |
+#endif |
+ |
+/* |
+** The following global variable is incremented whenever the library |
+** attempts to open a temporary file. This information is used for |
+** testing and analysis only. |
+*/ |
+#ifdef SQLITE_TEST |
+SQLITE_API int sqlite3_opentemp_count = 0; |
+#endif |
+ |
+/* |
+** Open a temporary file. |
+** |
+** Write the file descriptor into *pFile. Return SQLITE_OK on success |
+** or some other error code if we fail. The OS will automatically |
+** delete the temporary file when it is closed. |
+** |
+** The flags passed to the VFS layer xOpen() call are those specified |
+** by parameter vfsFlags ORed with the following: |
+** |
+** SQLITE_OPEN_READWRITE |
+** SQLITE_OPEN_CREATE |
+** SQLITE_OPEN_EXCLUSIVE |
+** SQLITE_OPEN_DELETEONCLOSE |
+*/ |
+static int pagerOpentemp( |
+ Pager *pPager, /* The pager object */ |
+ sqlite3_file *pFile, /* Write the file descriptor here */ |
+ int vfsFlags /* Flags passed through to the VFS */ |
+){ |
+ int rc; /* Return code */ |
+ |
+#ifdef SQLITE_TEST |
+ sqlite3_opentemp_count++; /* Used for testing and analysis only */ |
+#endif |
+ |
+ vfsFlags |= SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE | |
+ SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE; |
+ rc = sqlite3OsOpen(pPager->pVfs, 0, pFile, vfsFlags, 0); |
+ assert( rc!=SQLITE_OK || isOpen(pFile) ); |
+ return rc; |
+} |
+ |
+/* |
+** Set the busy handler function. |
+** |
+** The pager invokes the busy-handler if sqlite3OsLock() returns |
+** SQLITE_BUSY when trying to upgrade from no-lock to a SHARED lock, |
+** or when trying to upgrade from a RESERVED lock to an EXCLUSIVE |
+** lock. It does *not* invoke the busy handler when upgrading from |
+** SHARED to RESERVED, or when upgrading from SHARED to EXCLUSIVE |
+** (which occurs during hot-journal rollback). Summary: |
+** |
+** Transition | Invokes xBusyHandler |
+** -------------------------------------------------------- |
+** NO_LOCK -> SHARED_LOCK | Yes |
+** SHARED_LOCK -> RESERVED_LOCK | No |
+** SHARED_LOCK -> EXCLUSIVE_LOCK | No |
+** RESERVED_LOCK -> EXCLUSIVE_LOCK | Yes |
+** |
+** If the busy-handler callback returns non-zero, the lock is |
+** retried. If it returns zero, then the SQLITE_BUSY error is |
+** returned to the caller of the pager API function. |
+*/ |
+SQLITE_PRIVATE void sqlite3PagerSetBusyhandler( |
+ Pager *pPager, /* Pager object */ |
+ int (*xBusyHandler)(void *), /* Pointer to busy-handler function */ |
+ void *pBusyHandlerArg /* Argument to pass to xBusyHandler */ |
+){ |
+ pPager->xBusyHandler = xBusyHandler; |
+ pPager->pBusyHandlerArg = pBusyHandlerArg; |
+ |
+ if( isOpen(pPager->fd) ){ |
+ void **ap = (void **)&pPager->xBusyHandler; |
+ assert( ((int(*)(void *))(ap[0]))==xBusyHandler ); |
+ assert( ap[1]==pBusyHandlerArg ); |
+ sqlite3OsFileControlHint(pPager->fd, SQLITE_FCNTL_BUSYHANDLER, (void *)ap); |
+ } |
+} |
+ |
+/* |
+** Change the page size used by the Pager object. The new page size |
+** is passed in *pPageSize. |
+** |
+** If the pager is in the error state when this function is called, it |
+** is a no-op. The value returned is the error state error code (i.e. |
+** one of SQLITE_IOERR, an SQLITE_IOERR_xxx sub-code or SQLITE_FULL). |
+** |
+** Otherwise, if all of the following are true: |
+** |
+** * the new page size (value of *pPageSize) is valid (a power |
+** of two between 512 and SQLITE_MAX_PAGE_SIZE, inclusive), and |
+** |
+** * there are no outstanding page references, and |
+** |
+** * the database is either not an in-memory database or it is |
+** an in-memory database that currently consists of zero pages. |
+** |
+** then the pager object page size is set to *pPageSize. |
+** |
+** If the page size is changed, then this function uses sqlite3PagerMalloc() |
+** to obtain a new Pager.pTmpSpace buffer. If this allocation attempt |
+** fails, SQLITE_NOMEM is returned and the page size remains unchanged. |
+** In all other cases, SQLITE_OK is returned. |
+** |
+** If the page size is not changed, either because one of the enumerated |
+** conditions above is not true, the pager was in error state when this |
+** function was called, or because the memory allocation attempt failed, |
+** then *pPageSize is set to the old, retained page size before returning. |
+*/ |
+SQLITE_PRIVATE int sqlite3PagerSetPagesize(Pager *pPager, u32 *pPageSize, int nReserve){ |
+ int rc = SQLITE_OK; |
+ |
+ /* It is not possible to do a full assert_pager_state() here, as this |
+ ** function may be called from within PagerOpen(), before the state |
+ ** of the Pager object is internally consistent. |
+ ** |
+ ** At one point this function returned an error if the pager was in |
+ ** PAGER_ERROR state. But since PAGER_ERROR state guarantees that |
+ ** there is at least one outstanding page reference, this function |
+ ** is a no-op for that case anyhow. |
+ */ |
+ |
+ u32 pageSize = *pPageSize; |
+ assert( pageSize==0 || (pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE) ); |
+ if( (pPager->memDb==0 || pPager->dbSize==0) |
+ && sqlite3PcacheRefCount(pPager->pPCache)==0 |
+ && pageSize && pageSize!=(u32)pPager->pageSize |
+ ){ |
+ char *pNew = NULL; /* New temp space */ |
+ i64 nByte = 0; |
+ |
+ if( pPager->eState>PAGER_OPEN && isOpen(pPager->fd) ){ |
+ rc = sqlite3OsFileSize(pPager->fd, &nByte); |
+ } |
+ if( rc==SQLITE_OK ){ |
+ pNew = (char *)sqlite3PageMalloc(pageSize); |
+ if( !pNew ) rc = SQLITE_NOMEM; |
+ } |
+ |
+ if( rc==SQLITE_OK ){ |
+ pager_reset(pPager); |
+ rc = sqlite3PcacheSetPageSize(pPager->pPCache, pageSize); |
+ } |
+ if( rc==SQLITE_OK ){ |
+ sqlite3PageFree(pPager->pTmpSpace); |
+ pPager->pTmpSpace = pNew; |
+ pPager->dbSize = (Pgno)((nByte+pageSize-1)/pageSize); |
+ pPager->pageSize = pageSize; |
+ }else{ |
+ sqlite3PageFree(pNew); |
+ } |
+ } |
+ |
+ *pPageSize = pPager->pageSize; |
+ if( rc==SQLITE_OK ){ |
+ if( nReserve<0 ) nReserve = pPager->nReserve; |
+ assert( nReserve>=0 && nReserve<1000 ); |
+ pPager->nReserve = (i16)nReserve; |
+ pagerReportSize(pPager); |
+ pagerFixMaplimit(pPager); |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Return a pointer to the "temporary page" buffer held internally |
+** by the pager. This is a buffer that is big enough to hold the |
+** entire content of a database page. This buffer is used internally |
+** during rollback and will be overwritten whenever a rollback |
+** occurs. But other modules are free to use it too, as long as |
+** no rollbacks are happening. |
+*/ |
+SQLITE_PRIVATE void *sqlite3PagerTempSpace(Pager *pPager){ |
+ return pPager->pTmpSpace; |
+} |
+ |
+/* |
+** Attempt to set the maximum database page count if mxPage is positive. |
+** Make no changes if mxPage is zero or negative. And never reduce the |
+** maximum page count below the current size of the database. |
+** |
+** Regardless of mxPage, return the current maximum page count. |
+*/ |
+SQLITE_PRIVATE int sqlite3PagerMaxPageCount(Pager *pPager, int mxPage){ |
+ if( mxPage>0 ){ |
+ pPager->mxPgno = mxPage; |
+ } |
+ assert( pPager->eState!=PAGER_OPEN ); /* Called only by OP_MaxPgcnt */ |
+ assert( pPager->mxPgno>=pPager->dbSize ); /* OP_MaxPgcnt enforces this */ |
+ return pPager->mxPgno; |
+} |
+ |
+/* |
+** The following set of routines are used to disable the simulated |
+** I/O error mechanism. These routines are used to avoid simulated |
+** errors in places where we do not care about errors. |
+** |
+** Unless -DSQLITE_TEST=1 is used, these routines are all no-ops |
+** and generate no code. |
+*/ |
+#ifdef SQLITE_TEST |
+SQLITE_API extern int sqlite3_io_error_pending; |
+SQLITE_API extern int sqlite3_io_error_hit; |
+static int saved_cnt; |
+void disable_simulated_io_errors(void){ |
+ saved_cnt = sqlite3_io_error_pending; |
+ sqlite3_io_error_pending = -1; |
+} |
+void enable_simulated_io_errors(void){ |
+ sqlite3_io_error_pending = saved_cnt; |
+} |
+#else |
+# define disable_simulated_io_errors() |
+# define enable_simulated_io_errors() |
+#endif |
+ |
+/* |
+** Read the first N bytes from the beginning of the file into memory |
+** that pDest points to. |
+** |
+** If the pager was opened on a transient file (zFilename==""), or |
+** opened on a file less than N bytes in size, the output buffer is |
+** zeroed and SQLITE_OK returned. The rationale for this is that this |
+** function is used to read database headers, and a new transient or |
+** zero sized database has a header than consists entirely of zeroes. |
+** |
+** If any IO error apart from SQLITE_IOERR_SHORT_READ is encountered, |
+** the error code is returned to the caller and the contents of the |
+** output buffer undefined. |
+*/ |
+SQLITE_PRIVATE int sqlite3PagerReadFileheader(Pager *pPager, int N, unsigned char *pDest){ |
+ int rc = SQLITE_OK; |
+ memset(pDest, 0, N); |
+ assert( isOpen(pPager->fd) || pPager->tempFile ); |
+ |
+ /* This routine is only called by btree immediately after creating |
+ ** the Pager object. There has not been an opportunity to transition |
+ ** to WAL mode yet. |
+ */ |
+ assert( !pagerUseWal(pPager) ); |
+ |
+ if( isOpen(pPager->fd) ){ |
+ IOTRACE(("DBHDR %p 0 %d\n", pPager, N)) |
+ rc = sqlite3OsRead(pPager->fd, pDest, N, 0); |
+ if( rc==SQLITE_IOERR_SHORT_READ ){ |
+ rc = SQLITE_OK; |
+ } |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** This function may only be called when a read-transaction is open on |
+** the pager. It returns the total number of pages in the database. |
+** |
+** However, if the file is between 1 and <page-size> bytes in size, then |
+** this is considered a 1 page file. |
+*/ |
+SQLITE_PRIVATE void sqlite3PagerPagecount(Pager *pPager, int *pnPage){ |
+ assert( pPager->eState>=PAGER_READER ); |
+ assert( pPager->eState!=PAGER_WRITER_FINISHED ); |
+ *pnPage = (int)pPager->dbSize; |
+} |
+ |
+ |
+/* |
+** Try to obtain a lock of type locktype on the database file. If |
+** a similar or greater lock is already held, this function is a no-op |
+** (returning SQLITE_OK immediately). |
+** |
+** Otherwise, attempt to obtain the lock using sqlite3OsLock(). Invoke |
+** the busy callback if the lock is currently not available. Repeat |
+** until the busy callback returns false or until the attempt to |
+** obtain the lock succeeds. |
+** |
+** Return SQLITE_OK on success and an error code if we cannot obtain |
+** the lock. If the lock is obtained successfully, set the Pager.state |
+** variable to locktype before returning. |
+*/ |
+static int pager_wait_on_lock(Pager *pPager, int locktype){ |
+ int rc; /* Return code */ |
+ |
+ /* Check that this is either a no-op (because the requested lock is |
+ ** already held), or one of the transitions that the busy-handler |
+ ** may be invoked during, according to the comment above |
+ ** sqlite3PagerSetBusyhandler(). |
+ */ |
+ assert( (pPager->eLock>=locktype) |
+ || (pPager->eLock==NO_LOCK && locktype==SHARED_LOCK) |
+ || (pPager->eLock==RESERVED_LOCK && locktype==EXCLUSIVE_LOCK) |
+ ); |
+ |
+ do { |
+ rc = pagerLockDb(pPager, locktype); |
+ }while( rc==SQLITE_BUSY && pPager->xBusyHandler(pPager->pBusyHandlerArg) ); |
+ return rc; |
+} |
+ |
+/* |
+** Function assertTruncateConstraint(pPager) checks that one of the |
+** following is true for all dirty pages currently in the page-cache: |
+** |
+** a) The page number is less than or equal to the size of the |
+** current database image, in pages, OR |
+** |
+** b) if the page content were written at this time, it would not |
+** be necessary to write the current content out to the sub-journal |
+** (as determined by function subjRequiresPage()). |
+** |
+** If the condition asserted by this function were not true, and the |
+** dirty page were to be discarded from the cache via the pagerStress() |
+** routine, pagerStress() would not write the current page content to |
+** the database file. If a savepoint transaction were rolled back after |
+** this happened, the correct behavior would be to restore the current |
+** content of the page. However, since this content is not present in either |
+** the database file or the portion of the rollback journal and |
+** sub-journal rolled back the content could not be restored and the |
+** database image would become corrupt. It is therefore fortunate that |
+** this circumstance cannot arise. |
+*/ |
+#if defined(SQLITE_DEBUG) |
+static void assertTruncateConstraintCb(PgHdr *pPg){ |
+ assert( pPg->flags&PGHDR_DIRTY ); |
+ assert( !subjRequiresPage(pPg) || pPg->pgno<=pPg->pPager->dbSize ); |
+} |
+static void assertTruncateConstraint(Pager *pPager){ |
+ sqlite3PcacheIterateDirty(pPager->pPCache, assertTruncateConstraintCb); |
+} |
+#else |
+# define assertTruncateConstraint(pPager) |
+#endif |
+ |
+/* |
+** Truncate the in-memory database file image to nPage pages. This |
+** function does not actually modify the database file on disk. It |
+** just sets the internal state of the pager object so that the |
+** truncation will be done when the current transaction is committed. |
+** |
+** This function is only called right before committing a transaction. |
+** Once this function has been called, the transaction must either be |
+** rolled back or committed. It is not safe to call this function and |
+** then continue writing to the database. |
+*/ |
+SQLITE_PRIVATE void sqlite3PagerTruncateImage(Pager *pPager, Pgno nPage){ |
+ assert( pPager->dbSize>=nPage ); |
+ assert( pPager->eState>=PAGER_WRITER_CACHEMOD ); |
+ pPager->dbSize = nPage; |
+ |
+ /* At one point the code here called assertTruncateConstraint() to |
+ ** ensure that all pages being truncated away by this operation are, |
+ ** if one or more savepoints are open, present in the savepoint |
+ ** journal so that they can be restored if the savepoint is rolled |
+ ** back. This is no longer necessary as this function is now only |
+ ** called right before committing a transaction. So although the |
+ ** Pager object may still have open savepoints (Pager.nSavepoint!=0), |
+ ** they cannot be rolled back. So the assertTruncateConstraint() call |
+ ** is no longer correct. */ |
+} |
+ |
+ |
+/* |
+** This function is called before attempting a hot-journal rollback. It |
+** syncs the journal file to disk, then sets pPager->journalHdr to the |
+** size of the journal file so that the pager_playback() routine knows |
+** that the entire journal file has been synced. |
+** |
+** Syncing a hot-journal to disk before attempting to roll it back ensures |
+** that if a power-failure occurs during the rollback, the process that |
+** attempts rollback following system recovery sees the same journal |
+** content as this process. |
+** |
+** If everything goes as planned, SQLITE_OK is returned. Otherwise, |
+** an SQLite error code. |
+*/ |
+static int pagerSyncHotJournal(Pager *pPager){ |
+ int rc = SQLITE_OK; |
+ if( !pPager->noSync ){ |
+ rc = sqlite3OsSync(pPager->jfd, SQLITE_SYNC_NORMAL); |
+ } |
+ if( rc==SQLITE_OK ){ |
+ rc = sqlite3OsFileSize(pPager->jfd, &pPager->journalHdr); |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Obtain a reference to a memory mapped page object for page number pgno. |
+** The new object will use the pointer pData, obtained from xFetch(). |
+** If successful, set *ppPage to point to the new page reference |
+** and return SQLITE_OK. Otherwise, return an SQLite error code and set |
+** *ppPage to zero. |
+** |
+** Page references obtained by calling this function should be released |
+** by calling pagerReleaseMapPage(). |
+*/ |
+static int pagerAcquireMapPage( |
+ Pager *pPager, /* Pager object */ |
+ Pgno pgno, /* Page number */ |
+ void *pData, /* xFetch()'d data for this page */ |
+ PgHdr **ppPage /* OUT: Acquired page object */ |
+){ |
+ PgHdr *p; /* Memory mapped page to return */ |
+ |
+ if( pPager->pMmapFreelist ){ |
+ *ppPage = p = pPager->pMmapFreelist; |
+ pPager->pMmapFreelist = p->pDirty; |
+ p->pDirty = 0; |
+ memset(p->pExtra, 0, pPager->nExtra); |
+ }else{ |
+ *ppPage = p = (PgHdr *)sqlite3MallocZero(sizeof(PgHdr) + pPager->nExtra); |
+ if( p==0 ){ |
+ sqlite3OsUnfetch(pPager->fd, (i64)(pgno-1) * pPager->pageSize, pData); |
+ return SQLITE_NOMEM; |
+ } |
+ p->pExtra = (void *)&p[1]; |
+ p->flags = PGHDR_MMAP; |
+ p->nRef = 1; |
+ p->pPager = pPager; |
+ } |
+ |
+ assert( p->pExtra==(void *)&p[1] ); |
+ assert( p->pPage==0 ); |
+ assert( p->flags==PGHDR_MMAP ); |
+ assert( p->pPager==pPager ); |
+ assert( p->nRef==1 ); |
+ |
+ p->pgno = pgno; |
+ p->pData = pData; |
+ pPager->nMmapOut++; |
+ |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Release a reference to page pPg. pPg must have been returned by an |
+** earlier call to pagerAcquireMapPage(). |
+*/ |
+static void pagerReleaseMapPage(PgHdr *pPg){ |
+ Pager *pPager = pPg->pPager; |
+ pPager->nMmapOut--; |
+ pPg->pDirty = pPager->pMmapFreelist; |
+ pPager->pMmapFreelist = pPg; |
+ |
+ assert( pPager->fd->pMethods->iVersion>=3 ); |
+ sqlite3OsUnfetch(pPager->fd, (i64)(pPg->pgno-1)*pPager->pageSize, pPg->pData); |
+} |
+ |
+/* |
+** Free all PgHdr objects stored in the Pager.pMmapFreelist list. |
+*/ |
+static void pagerFreeMapHdrs(Pager *pPager){ |
+ PgHdr *p; |
+ PgHdr *pNext; |
+ for(p=pPager->pMmapFreelist; p; p=pNext){ |
+ pNext = p->pDirty; |
+ sqlite3_free(p); |
+ } |
+} |
+ |
+ |
+/* |
+** Shutdown the page cache. Free all memory and close all files. |
+** |
+** If a transaction was in progress when this routine is called, that |
+** transaction is rolled back. All outstanding pages are invalidated |
+** and their memory is freed. Any attempt to use a page associated |
+** with this page cache after this function returns will likely |
+** result in a coredump. |
+** |
+** This function always succeeds. If a transaction is active an attempt |
+** is made to roll it back. If an error occurs during the rollback |
+** a hot journal may be left in the filesystem but no error is returned |
+** to the caller. |
+*/ |
+SQLITE_PRIVATE int sqlite3PagerClose(Pager *pPager){ |
+ u8 *pTmp = (u8 *)pPager->pTmpSpace; |
+ |
+ assert( assert_pager_state(pPager) ); |
+ disable_simulated_io_errors(); |
+ sqlite3BeginBenignMalloc(); |
+ pagerFreeMapHdrs(pPager); |
+ /* pPager->errCode = 0; */ |
+ pPager->exclusiveMode = 0; |
+#ifndef SQLITE_OMIT_WAL |
+ sqlite3WalClose(pPager->pWal, pPager->ckptSyncFlags, pPager->pageSize, pTmp); |
+ pPager->pWal = 0; |
+#endif |
+ pager_reset(pPager); |
+ if( MEMDB ){ |
+ pager_unlock(pPager); |
+ }else{ |
+ /* If it is open, sync the journal file before calling UnlockAndRollback. |
+ ** If this is not done, then an unsynced portion of the open journal |
+ ** file may be played back into the database. If a power failure occurs |
+ ** while this is happening, the database could become corrupt. |
+ ** |
+ ** If an error occurs while trying to sync the journal, shift the pager |
+ ** into the ERROR state. This causes UnlockAndRollback to unlock the |
+ ** database and close the journal file without attempting to roll it |
+ ** back or finalize it. The next database user will have to do hot-journal |
+ ** rollback before accessing the database file. |
+ */ |
+ if( isOpen(pPager->jfd) ){ |
+ pager_error(pPager, pagerSyncHotJournal(pPager)); |
+ } |
+ pagerUnlockAndRollback(pPager); |
+ } |
+ sqlite3EndBenignMalloc(); |
+ enable_simulated_io_errors(); |
+ PAGERTRACE(("CLOSE %d\n", PAGERID(pPager))); |
+ IOTRACE(("CLOSE %p\n", pPager)) |
+ sqlite3OsClose(pPager->jfd); |
+ sqlite3OsClose(pPager->fd); |
+ sqlite3PageFree(pTmp); |
+ sqlite3PcacheClose(pPager->pPCache); |
+ |
+#ifdef SQLITE_HAS_CODEC |
+ if( pPager->xCodecFree ) pPager->xCodecFree(pPager->pCodec); |
+#endif |
+ |
+ assert( !pPager->aSavepoint && !pPager->pInJournal ); |
+ assert( !isOpen(pPager->jfd) && !isOpen(pPager->sjfd) ); |
+ |
+ sqlite3_free(pPager); |
+ return SQLITE_OK; |
+} |
+ |
+#if !defined(NDEBUG) || defined(SQLITE_TEST) |
+/* |
+** Return the page number for page pPg. |
+*/ |
+SQLITE_PRIVATE Pgno sqlite3PagerPagenumber(DbPage *pPg){ |
+ return pPg->pgno; |
+} |
+#endif |
+ |
+/* |
+** Increment the reference count for page pPg. |
+*/ |
+SQLITE_PRIVATE void sqlite3PagerRef(DbPage *pPg){ |
+ sqlite3PcacheRef(pPg); |
+} |
+ |
+/* |
+** Sync the journal. In other words, make sure all the pages that have |
+** been written to the journal have actually reached the surface of the |
+** disk and can be restored in the event of a hot-journal rollback. |
+** |
+** If the Pager.noSync flag is set, then this function is a no-op. |
+** Otherwise, the actions required depend on the journal-mode and the |
+** device characteristics of the file-system, as follows: |
+** |
+** * If the journal file is an in-memory journal file, no action need |
+** be taken. |
+** |
+** * Otherwise, if the device does not support the SAFE_APPEND property, |
+** then the nRec field of the most recently written journal header |
+** is updated to contain the number of journal records that have |
+** been written following it. If the pager is operating in full-sync |
+** mode, then the journal file is synced before this field is updated. |
+** |
+** * If the device does not support the SEQUENTIAL property, then |
+** journal file is synced. |
+** |
+** Or, in pseudo-code: |
+** |
+** if( NOT <in-memory journal> ){ |
+** if( NOT SAFE_APPEND ){ |
+** if( <full-sync mode> ) xSync(<journal file>); |
+** <update nRec field> |
+** } |
+** if( NOT SEQUENTIAL ) xSync(<journal file>); |
+** } |
+** |
+** If successful, this routine clears the PGHDR_NEED_SYNC flag of every |
+** page currently held in memory before returning SQLITE_OK. If an IO |
+** error is encountered, then the IO error code is returned to the caller. |
+*/ |
+static int syncJournal(Pager *pPager, int newHdr){ |
+ int rc; /* Return code */ |
+ |
+ assert( pPager->eState==PAGER_WRITER_CACHEMOD |
+ || pPager->eState==PAGER_WRITER_DBMOD |
+ ); |
+ assert( assert_pager_state(pPager) ); |
+ assert( !pagerUseWal(pPager) ); |
+ |
+ rc = sqlite3PagerExclusiveLock(pPager); |
+ if( rc!=SQLITE_OK ) return rc; |
+ |
+ if( !pPager->noSync ){ |
+ assert( !pPager->tempFile ); |
+ if( isOpen(pPager->jfd) && pPager->journalMode!=PAGER_JOURNALMODE_MEMORY ){ |
+ const int iDc = sqlite3OsDeviceCharacteristics(pPager->fd); |
+ assert( isOpen(pPager->jfd) ); |
+ |
+ if( 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){ |
+ /* This block deals with an obscure problem. If the last connection |
+ ** that wrote to this database was operating in persistent-journal |
+ ** mode, then the journal file may at this point actually be larger |
+ ** than Pager.journalOff bytes. If the next thing in the journal |
+ ** file happens to be a journal-header (written as part of the |
+ ** previous connection's transaction), and a crash or power-failure |
+ ** occurs after nRec is updated but before this connection writes |
+ ** anything else to the journal file (or commits/rolls back its |
+ ** transaction), then SQLite may become confused when doing the |
+ ** hot-journal rollback following recovery. It may roll back all |
+ ** of this connections data, then proceed to rolling back the old, |
+ ** out-of-date data that follows it. Database corruption. |
+ ** |
+ ** To work around this, if the journal file does appear to contain |
+ ** a valid header following Pager.journalOff, then write a 0x00 |
+ ** byte to the start of it to prevent it from being recognized. |
+ ** |
+ ** Variable iNextHdrOffset is set to the offset at which this |
+ ** problematic header will occur, if it exists. aMagic is used |
+ ** as a temporary buffer to inspect the first couple of bytes of |
+ ** the potential journal header. |
+ */ |
+ i64 iNextHdrOffset; |
+ u8 aMagic[8]; |
+ u8 zHeader[sizeof(aJournalMagic)+4]; |
+ |
+ memcpy(zHeader, aJournalMagic, sizeof(aJournalMagic)); |
+ put32bits(&zHeader[sizeof(aJournalMagic)], pPager->nRec); |
+ |
+ iNextHdrOffset = journalHdrOffset(pPager); |
+ rc = sqlite3OsRead(pPager->jfd, aMagic, 8, iNextHdrOffset); |
+ if( rc==SQLITE_OK && 0==memcmp(aMagic, aJournalMagic, 8) ){ |
+ static const u8 zerobyte = 0; |
+ rc = sqlite3OsWrite(pPager->jfd, &zerobyte, 1, iNextHdrOffset); |
+ } |
+ if( rc!=SQLITE_OK && rc!=SQLITE_IOERR_SHORT_READ ){ |
+ return rc; |
+ } |
+ |
+ /* Write the nRec value into the journal file header. If in |
+ ** full-synchronous mode, sync the journal first. This ensures that |
+ ** all data has really hit the disk before nRec is updated to mark |
+ ** it as a candidate for rollback. |
+ ** |
+ ** This is not required if the persistent media supports the |
+ ** SAFE_APPEND property. Because in this case it is not possible |
+ ** for garbage data to be appended to the file, the nRec field |
+ ** is populated with 0xFFFFFFFF when the journal header is written |
+ ** and never needs to be updated. |
+ */ |
+ if( pPager->fullSync && 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){ |
+ PAGERTRACE(("SYNC journal of %d\n", PAGERID(pPager))); |
+ IOTRACE(("JSYNC %p\n", pPager)) |
+ rc = sqlite3OsSync(pPager->jfd, pPager->syncFlags); |
+ if( rc!=SQLITE_OK ) return rc; |
+ } |
+ IOTRACE(("JHDR %p %lld\n", pPager, pPager->journalHdr)); |
+ rc = sqlite3OsWrite( |
+ pPager->jfd, zHeader, sizeof(zHeader), pPager->journalHdr |
+ ); |
+ if( rc!=SQLITE_OK ) return rc; |
+ } |
+ if( 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){ |
+ PAGERTRACE(("SYNC journal of %d\n", PAGERID(pPager))); |
+ IOTRACE(("JSYNC %p\n", pPager)) |
+ rc = sqlite3OsSync(pPager->jfd, pPager->syncFlags| |
+ (pPager->syncFlags==SQLITE_SYNC_FULL?SQLITE_SYNC_DATAONLY:0) |
+ ); |
+ if( rc!=SQLITE_OK ) return rc; |
+ } |
+ |
+ pPager->journalHdr = pPager->journalOff; |
+ if( newHdr && 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){ |
+ pPager->nRec = 0; |
+ rc = writeJournalHdr(pPager); |
+ if( rc!=SQLITE_OK ) return rc; |
+ } |
+ }else{ |
+ pPager->journalHdr = pPager->journalOff; |
+ } |
+ } |
+ |
+ /* Unless the pager is in noSync mode, the journal file was just |
+ ** successfully synced. Either way, clear the PGHDR_NEED_SYNC flag on |
+ ** all pages. |
+ */ |
+ sqlite3PcacheClearSyncFlags(pPager->pPCache); |
+ pPager->eState = PAGER_WRITER_DBMOD; |
+ assert( assert_pager_state(pPager) ); |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** The argument is the first in a linked list of dirty pages connected |
+** by the PgHdr.pDirty pointer. This function writes each one of the |
+** in-memory pages in the list to the database file. The argument may |
+** be NULL, representing an empty list. In this case this function is |
+** a no-op. |
+** |
+** The pager must hold at least a RESERVED lock when this function |
+** is called. Before writing anything to the database file, this lock |
+** is upgraded to an EXCLUSIVE lock. If the lock cannot be obtained, |
+** SQLITE_BUSY is returned and no data is written to the database file. |
+** |
+** If the pager is a temp-file pager and the actual file-system file |
+** is not yet open, it is created and opened before any data is |
+** written out. |
+** |
+** Once the lock has been upgraded and, if necessary, the file opened, |
+** the pages are written out to the database file in list order. Writing |
+** a page is skipped if it meets either of the following criteria: |
+** |
+** * The page number is greater than Pager.dbSize, or |
+** * The PGHDR_DONT_WRITE flag is set on the page. |
+** |
+** If writing out a page causes the database file to grow, Pager.dbFileSize |
+** is updated accordingly. If page 1 is written out, then the value cached |
+** in Pager.dbFileVers[] is updated to match the new value stored in |
+** the database file. |
+** |
+** If everything is successful, SQLITE_OK is returned. If an IO error |
+** occurs, an IO error code is returned. Or, if the EXCLUSIVE lock cannot |
+** be obtained, SQLITE_BUSY is returned. |
+*/ |
+static int pager_write_pagelist(Pager *pPager, PgHdr *pList){ |
+ int rc = SQLITE_OK; /* Return code */ |
+ |
+ /* This function is only called for rollback pagers in WRITER_DBMOD state. */ |
+ assert( !pagerUseWal(pPager) ); |
+ assert( pPager->eState==PAGER_WRITER_DBMOD ); |
+ assert( pPager->eLock==EXCLUSIVE_LOCK ); |
+ |
+ /* If the file is a temp-file has not yet been opened, open it now. It |
+ ** is not possible for rc to be other than SQLITE_OK if this branch |
+ ** is taken, as pager_wait_on_lock() is a no-op for temp-files. |
+ */ |
+ if( !isOpen(pPager->fd) ){ |
+ assert( pPager->tempFile && rc==SQLITE_OK ); |
+ rc = pagerOpentemp(pPager, pPager->fd, pPager->vfsFlags); |
+ } |
+ |
+ /* Before the first write, give the VFS a hint of what the final |
+ ** file size will be. |
+ */ |
+ assert( rc!=SQLITE_OK || isOpen(pPager->fd) ); |
+ if( rc==SQLITE_OK |
+ && pPager->dbHintSize<pPager->dbSize |
+ && (pList->pDirty || pList->pgno>pPager->dbHintSize) |
+ ){ |
+ sqlite3_int64 szFile = pPager->pageSize * (sqlite3_int64)pPager->dbSize; |
+ sqlite3OsFileControlHint(pPager->fd, SQLITE_FCNTL_SIZE_HINT, &szFile); |
+ pPager->dbHintSize = pPager->dbSize; |
+ } |
+ |
+ while( rc==SQLITE_OK && pList ){ |
+ Pgno pgno = pList->pgno; |
+ |
+ /* If there are dirty pages in the page cache with page numbers greater |
+ ** than Pager.dbSize, this means sqlite3PagerTruncateImage() was called to |
+ ** make the file smaller (presumably by auto-vacuum code). Do not write |
+ ** any such pages to the file. |
+ ** |
+ ** Also, do not write out any page that has the PGHDR_DONT_WRITE flag |
+ ** set (set by sqlite3PagerDontWrite()). |
+ */ |
+ if( pgno<=pPager->dbSize && 0==(pList->flags&PGHDR_DONT_WRITE) ){ |
+ i64 offset = (pgno-1)*(i64)pPager->pageSize; /* Offset to write */ |
+ char *pData; /* Data to write */ |
+ |
+ assert( (pList->flags&PGHDR_NEED_SYNC)==0 ); |
+ if( pList->pgno==1 ) pager_write_changecounter(pList); |
+ |
+ /* Encode the database */ |
+ CODEC2(pPager, pList->pData, pgno, 6, return SQLITE_NOMEM, pData); |
+ |
+ /* Write out the page data. */ |
+ rc = sqlite3OsWrite(pPager->fd, pData, pPager->pageSize, offset); |
+ |
+ /* If page 1 was just written, update Pager.dbFileVers to match |
+ ** the value now stored in the database file. If writing this |
+ ** page caused the database file to grow, update dbFileSize. |
+ */ |
+ if( pgno==1 ){ |
+ memcpy(&pPager->dbFileVers, &pData[24], sizeof(pPager->dbFileVers)); |
+ } |
+ if( pgno>pPager->dbFileSize ){ |
+ pPager->dbFileSize = pgno; |
+ } |
+ pPager->aStat[PAGER_STAT_WRITE]++; |
+ |
+ /* Update any backup objects copying the contents of this pager. */ |
+ sqlite3BackupUpdate(pPager->pBackup, pgno, (u8*)pList->pData); |
+ |
+ PAGERTRACE(("STORE %d page %d hash(%08x)\n", |
+ PAGERID(pPager), pgno, pager_pagehash(pList))); |
+ IOTRACE(("PGOUT %p %d\n", pPager, pgno)); |
+ PAGER_INCR(sqlite3_pager_writedb_count); |
+ }else{ |
+ PAGERTRACE(("NOSTORE %d page %d\n", PAGERID(pPager), pgno)); |
+ } |
+ pager_set_pagehash(pList); |
+ pList = pList->pDirty; |
+ } |
+ |
+ return rc; |
+} |
+ |
+/* |
+** Ensure that the sub-journal file is open. If it is already open, this |
+** function is a no-op. |
+** |
+** SQLITE_OK is returned if everything goes according to plan. An |
+** SQLITE_IOERR_XXX error code is returned if a call to sqlite3OsOpen() |
+** fails. |
+*/ |
+static int openSubJournal(Pager *pPager){ |
+ int rc = SQLITE_OK; |
+ if( !isOpen(pPager->sjfd) ){ |
+ if( pPager->journalMode==PAGER_JOURNALMODE_MEMORY || pPager->subjInMemory ){ |
+ sqlite3MemJournalOpen(pPager->sjfd); |
+ }else{ |
+ rc = pagerOpentemp(pPager, pPager->sjfd, SQLITE_OPEN_SUBJOURNAL); |
+ } |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Append a record of the current state of page pPg to the sub-journal. |
+** |
+** If successful, set the bit corresponding to pPg->pgno in the bitvecs |
+** for all open savepoints before returning. |
+** |
+** This function returns SQLITE_OK if everything is successful, an IO |
+** error code if the attempt to write to the sub-journal fails, or |
+** SQLITE_NOMEM if a malloc fails while setting a bit in a savepoint |
+** bitvec. |
+*/ |
+static int subjournalPage(PgHdr *pPg){ |
+ int rc = SQLITE_OK; |
+ Pager *pPager = pPg->pPager; |
+ if( pPager->journalMode!=PAGER_JOURNALMODE_OFF ){ |
+ |
+ /* Open the sub-journal, if it has not already been opened */ |
+ assert( pPager->useJournal ); |
+ assert( isOpen(pPager->jfd) || pagerUseWal(pPager) ); |
+ assert( isOpen(pPager->sjfd) || pPager->nSubRec==0 ); |
+ assert( pagerUseWal(pPager) |
+ || pageInJournal(pPager, pPg) |
+ || pPg->pgno>pPager->dbOrigSize |
+ ); |
+ rc = openSubJournal(pPager); |
+ |
+ /* If the sub-journal was opened successfully (or was already open), |
+ ** write the journal record into the file. */ |
+ if( rc==SQLITE_OK ){ |
+ void *pData = pPg->pData; |
+ i64 offset = (i64)pPager->nSubRec*(4+pPager->pageSize); |
+ char *pData2; |
+ |
+ CODEC2(pPager, pData, pPg->pgno, 7, return SQLITE_NOMEM, pData2); |
+ PAGERTRACE(("STMT-JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno)); |
+ rc = write32bits(pPager->sjfd, offset, pPg->pgno); |
+ if( rc==SQLITE_OK ){ |
+ rc = sqlite3OsWrite(pPager->sjfd, pData2, pPager->pageSize, offset+4); |
+ } |
+ } |
+ } |
+ if( rc==SQLITE_OK ){ |
+ pPager->nSubRec++; |
+ assert( pPager->nSavepoint>0 ); |
+ rc = addToSavepointBitvecs(pPager, pPg->pgno); |
+ } |
+ return rc; |
+} |
+static int subjournalPageIfRequired(PgHdr *pPg){ |
+ if( subjRequiresPage(pPg) ){ |
+ return subjournalPage(pPg); |
+ }else{ |
+ return SQLITE_OK; |
+ } |
+} |
+ |
+/* |
+** This function is called by the pcache layer when it has reached some |
+** soft memory limit. The first argument is a pointer to a Pager object |
+** (cast as a void*). The pager is always 'purgeable' (not an in-memory |
+** database). The second argument is a reference to a page that is |
+** currently dirty but has no outstanding references. The page |
+** is always associated with the Pager object passed as the first |
+** argument. |
+** |
+** The job of this function is to make pPg clean by writing its contents |
+** out to the database file, if possible. This may involve syncing the |
+** journal file. |
+** |
+** If successful, sqlite3PcacheMakeClean() is called on the page and |
+** SQLITE_OK returned. If an IO error occurs while trying to make the |
+** page clean, the IO error code is returned. If the page cannot be |
+** made clean for some other reason, but no error occurs, then SQLITE_OK |
+** is returned by sqlite3PcacheMakeClean() is not called. |
+*/ |
+static int pagerStress(void *p, PgHdr *pPg){ |
+ Pager *pPager = (Pager *)p; |
+ int rc = SQLITE_OK; |
+ |
+ assert( pPg->pPager==pPager ); |
+ assert( pPg->flags&PGHDR_DIRTY ); |
+ |
+ /* The doNotSpill NOSYNC bit is set during times when doing a sync of |
+ ** journal (and adding a new header) is not allowed. This occurs |
+ ** during calls to sqlite3PagerWrite() while trying to journal multiple |
+ ** pages belonging to the same sector. |
+ ** |
+ ** The doNotSpill ROLLBACK and OFF bits inhibits all cache spilling |
+ ** regardless of whether or not a sync is required. This is set during |
+ ** a rollback or by user request, respectively. |
+ ** |
+ ** Spilling is also prohibited when in an error state since that could |
+ ** lead to database corruption. In the current implementation it |
+ ** is impossible for sqlite3PcacheFetch() to be called with createFlag==3 |
+ ** while in the error state, hence it is impossible for this routine to |
+ ** be called in the error state. Nevertheless, we include a NEVER() |
+ ** test for the error state as a safeguard against future changes. |
+ */ |
+ if( NEVER(pPager->errCode) ) return SQLITE_OK; |
+ testcase( pPager->doNotSpill & SPILLFLAG_ROLLBACK ); |
+ testcase( pPager->doNotSpill & SPILLFLAG_OFF ); |
+ testcase( pPager->doNotSpill & SPILLFLAG_NOSYNC ); |
+ if( pPager->doNotSpill |
+ && ((pPager->doNotSpill & (SPILLFLAG_ROLLBACK|SPILLFLAG_OFF))!=0 |
+ || (pPg->flags & PGHDR_NEED_SYNC)!=0) |
+ ){ |
+ return SQLITE_OK; |
+ } |
+ |
+ pPg->pDirty = 0; |
+ if( pagerUseWal(pPager) ){ |
+ /* Write a single frame for this page to the log. */ |
+ rc = subjournalPageIfRequired(pPg); |
+ if( rc==SQLITE_OK ){ |
+ rc = pagerWalFrames(pPager, pPg, 0, 0); |
+ } |
+ }else{ |
+ |
+ /* Sync the journal file if required. */ |
+ if( pPg->flags&PGHDR_NEED_SYNC |
+ || pPager->eState==PAGER_WRITER_CACHEMOD |
+ ){ |
+ rc = syncJournal(pPager, 1); |
+ } |
+ |
+ /* Write the contents of the page out to the database file. */ |
+ if( rc==SQLITE_OK ){ |
+ assert( (pPg->flags&PGHDR_NEED_SYNC)==0 ); |
+ rc = pager_write_pagelist(pPager, pPg); |
+ } |
+ } |
+ |
+ /* Mark the page as clean. */ |
+ if( rc==SQLITE_OK ){ |
+ PAGERTRACE(("STRESS %d page %d\n", PAGERID(pPager), pPg->pgno)); |
+ sqlite3PcacheMakeClean(pPg); |
+ } |
+ |
+ return pager_error(pPager, rc); |
+} |
+ |
+/* |
+** Flush all unreferenced dirty pages to disk. |
+*/ |
+SQLITE_PRIVATE int sqlite3PagerFlush(Pager *pPager){ |
+ int rc = pPager->errCode; |
+ if( !MEMDB ){ |
+ PgHdr *pList = sqlite3PcacheDirtyList(pPager->pPCache); |
+ assert( assert_pager_state(pPager) ); |
+ while( rc==SQLITE_OK && pList ){ |
+ PgHdr *pNext = pList->pDirty; |
+ if( pList->nRef==0 ){ |
+ rc = pagerStress((void*)pPager, pList); |
+ } |
+ pList = pNext; |
+ } |
+ } |
+ |
+ return rc; |
+} |
+ |
+/* |
+** Allocate and initialize a new Pager object and put a pointer to it |
+** in *ppPager. The pager should eventually be freed by passing it |
+** to sqlite3PagerClose(). |
+** |
+** The zFilename argument is the path to the database file to open. |
+** If zFilename is NULL then a randomly-named temporary file is created |
+** and used as the file to be cached. Temporary files are be deleted |
+** automatically when they are closed. If zFilename is ":memory:" then |
+** all information is held in cache. It is never written to disk. |
+** This can be used to implement an in-memory database. |
+** |
+** The nExtra parameter specifies the number of bytes of space allocated |
+** along with each page reference. This space is available to the user |
+** via the sqlite3PagerGetExtra() API. |
+** |
+** The flags argument is used to specify properties that affect the |
+** operation of the pager. It should be passed some bitwise combination |
+** of the PAGER_* flags. |
+** |
+** The vfsFlags parameter is a bitmask to pass to the flags parameter |
+** of the xOpen() method of the supplied VFS when opening files. |
+** |
+** If the pager object is allocated and the specified file opened |
+** successfully, SQLITE_OK is returned and *ppPager set to point to |
+** the new pager object. If an error occurs, *ppPager is set to NULL |
+** and error code returned. This function may return SQLITE_NOMEM |
+** (sqlite3Malloc() is used to allocate memory), SQLITE_CANTOPEN or |
+** various SQLITE_IO_XXX errors. |
+*/ |
+SQLITE_PRIVATE int sqlite3PagerOpen( |
+ sqlite3_vfs *pVfs, /* The virtual file system to use */ |
+ Pager **ppPager, /* OUT: Return the Pager structure here */ |
+ const char *zFilename, /* Name of the database file to open */ |
+ int nExtra, /* Extra bytes append to each in-memory page */ |
+ int flags, /* flags controlling this file */ |
+ int vfsFlags, /* flags passed through to sqlite3_vfs.xOpen() */ |
+ void (*xReinit)(DbPage*) /* Function to reinitialize pages */ |
+){ |
+ u8 *pPtr; |
+ Pager *pPager = 0; /* Pager object to allocate and return */ |
+ int rc = SQLITE_OK; /* Return code */ |
+ int tempFile = 0; /* True for temp files (incl. in-memory files) */ |
+ int memDb = 0; /* True if this is an in-memory file */ |
+ int readOnly = 0; /* True if this is a read-only file */ |
+ int journalFileSize; /* Bytes to allocate for each journal fd */ |
+ char *zPathname = 0; /* Full path to database file */ |
+ int nPathname = 0; /* Number of bytes in zPathname */ |
+ int useJournal = (flags & PAGER_OMIT_JOURNAL)==0; /* False to omit journal */ |
+ int pcacheSize = sqlite3PcacheSize(); /* Bytes to allocate for PCache */ |
+ u32 szPageDflt = SQLITE_DEFAULT_PAGE_SIZE; /* Default page size */ |
+ const char *zUri = 0; /* URI args to copy */ |
+ int nUri = 0; /* Number of bytes of URI args at *zUri */ |
+ |
+ /* Figure out how much space is required for each journal file-handle |
+ ** (there are two of them, the main journal and the sub-journal). This |
+ ** is the maximum space required for an in-memory journal file handle |
+ ** and a regular journal file-handle. Note that a "regular journal-handle" |
+ ** may be a wrapper capable of caching the first portion of the journal |
+ ** file in memory to implement the atomic-write optimization (see |
+ ** source file journal.c). |
+ */ |
+ if( sqlite3JournalSize(pVfs)>sqlite3MemJournalSize() ){ |
+ journalFileSize = ROUND8(sqlite3JournalSize(pVfs)); |
+ }else{ |
+ journalFileSize = ROUND8(sqlite3MemJournalSize()); |
+ } |
+ |
+ /* Set the output variable to NULL in case an error occurs. */ |
+ *ppPager = 0; |
+ |
+#ifndef SQLITE_OMIT_MEMORYDB |
+ if( flags & PAGER_MEMORY ){ |
+ memDb = 1; |
+ if( zFilename && zFilename[0] ){ |
+ zPathname = sqlite3DbStrDup(0, zFilename); |
+ if( zPathname==0 ) return SQLITE_NOMEM; |
+ nPathname = sqlite3Strlen30(zPathname); |
+ zFilename = 0; |
+ } |
+ } |
+#endif |
+ |
+ /* Compute and store the full pathname in an allocated buffer pointed |
+ ** to by zPathname, length nPathname. Or, if this is a temporary file, |
+ ** leave both nPathname and zPathname set to 0. |
+ */ |
+ if( zFilename && zFilename[0] ){ |
+ const char *z; |
+ nPathname = pVfs->mxPathname+1; |
+ zPathname = sqlite3DbMallocRaw(0, nPathname*2); |
+ if( zPathname==0 ){ |
+ return SQLITE_NOMEM; |
+ } |
+ zPathname[0] = 0; /* Make sure initialized even if FullPathname() fails */ |
+ rc = sqlite3OsFullPathname(pVfs, zFilename, nPathname, zPathname); |
+ nPathname = sqlite3Strlen30(zPathname); |
+ z = zUri = &zFilename[sqlite3Strlen30(zFilename)+1]; |
+ while( *z ){ |
+ z += sqlite3Strlen30(z)+1; |
+ z += sqlite3Strlen30(z)+1; |
+ } |
+ nUri = (int)(&z[1] - zUri); |
+ assert( nUri>=0 ); |
+ if( rc==SQLITE_OK && nPathname+8>pVfs->mxPathname ){ |
+ /* This branch is taken when the journal path required by |
+ ** the database being opened will be more than pVfs->mxPathname |
+ ** bytes in length. This means the database cannot be opened, |
+ ** as it will not be possible to open the journal file or even |
+ ** check for a hot-journal before reading. |
+ */ |
+ rc = SQLITE_CANTOPEN_BKPT; |
+ } |
+ if( rc!=SQLITE_OK ){ |
+ sqlite3DbFree(0, zPathname); |
+ return rc; |
+ } |
+ } |
+ |
+ /* Allocate memory for the Pager structure, PCache object, the |
+ ** three file descriptors, the database file name and the journal |
+ ** file name. The layout in memory is as follows: |
+ ** |
+ ** Pager object (sizeof(Pager) bytes) |
+ ** PCache object (sqlite3PcacheSize() bytes) |
+ ** Database file handle (pVfs->szOsFile bytes) |
+ ** Sub-journal file handle (journalFileSize bytes) |
+ ** Main journal file handle (journalFileSize bytes) |
+ ** Database file name (nPathname+1 bytes) |
+ ** Journal file name (nPathname+8+1 bytes) |
+ */ |
+ pPtr = (u8 *)sqlite3MallocZero( |
+ ROUND8(sizeof(*pPager)) + /* Pager structure */ |
+ ROUND8(pcacheSize) + /* PCache object */ |
+ ROUND8(pVfs->szOsFile) + /* The main db file */ |
+ journalFileSize * 2 + /* The two journal files */ |
+ nPathname + 1 + nUri + /* zFilename */ |
+ nPathname + 8 + 2 /* zJournal */ |
+#ifndef SQLITE_OMIT_WAL |
+ + nPathname + 4 + 2 /* zWal */ |
+#endif |
+ ); |
+ assert( EIGHT_BYTE_ALIGNMENT(SQLITE_INT_TO_PTR(journalFileSize)) ); |
+ if( !pPtr ){ |
+ sqlite3DbFree(0, zPathname); |
+ return SQLITE_NOMEM; |
+ } |
+ pPager = (Pager*)(pPtr); |
+ pPager->pPCache = (PCache*)(pPtr += ROUND8(sizeof(*pPager))); |
+ pPager->fd = (sqlite3_file*)(pPtr += ROUND8(pcacheSize)); |
+ pPager->sjfd = (sqlite3_file*)(pPtr += ROUND8(pVfs->szOsFile)); |
+ pPager->jfd = (sqlite3_file*)(pPtr += journalFileSize); |
+ pPager->zFilename = (char*)(pPtr += journalFileSize); |
+ assert( EIGHT_BYTE_ALIGNMENT(pPager->jfd) ); |
+ |
+ /* Fill in the Pager.zFilename and Pager.zJournal buffers, if required. */ |
+ if( zPathname ){ |
+ assert( nPathname>0 ); |
+ pPager->zJournal = (char*)(pPtr += nPathname + 1 + nUri); |
+ memcpy(pPager->zFilename, zPathname, nPathname); |
+ if( nUri ) memcpy(&pPager->zFilename[nPathname+1], zUri, nUri); |
+ memcpy(pPager->zJournal, zPathname, nPathname); |
+ memcpy(&pPager->zJournal[nPathname], "-journal\000", 8+2); |
+ sqlite3FileSuffix3(pPager->zFilename, pPager->zJournal); |
+#ifndef SQLITE_OMIT_WAL |
+ pPager->zWal = &pPager->zJournal[nPathname+8+1]; |
+ memcpy(pPager->zWal, zPathname, nPathname); |
+ memcpy(&pPager->zWal[nPathname], "-wal\000", 4+1); |
+ sqlite3FileSuffix3(pPager->zFilename, pPager->zWal); |
+#endif |
+ sqlite3DbFree(0, zPathname); |
+ } |
+ pPager->pVfs = pVfs; |
+ pPager->vfsFlags = vfsFlags; |
+ |
+ /* Open the pager file. |
+ */ |
+ if( zFilename && zFilename[0] ){ |
+ int fout = 0; /* VFS flags returned by xOpen() */ |
+ rc = sqlite3OsOpen(pVfs, pPager->zFilename, pPager->fd, vfsFlags, &fout); |
+ assert( !memDb ); |
+ readOnly = (fout&SQLITE_OPEN_READONLY); |
+ |
+ /* If the file was successfully opened for read/write access, |
+ ** choose a default page size in case we have to create the |
+ ** database file. The default page size is the maximum of: |
+ ** |
+ ** + SQLITE_DEFAULT_PAGE_SIZE, |
+ ** + The value returned by sqlite3OsSectorSize() |
+ ** + The largest page size that can be written atomically. |
+ */ |
+ if( rc==SQLITE_OK ){ |
+ int iDc = sqlite3OsDeviceCharacteristics(pPager->fd); |
+ if( !readOnly ){ |
+ setSectorSize(pPager); |
+ assert(SQLITE_DEFAULT_PAGE_SIZE<=SQLITE_MAX_DEFAULT_PAGE_SIZE); |
+ if( szPageDflt<pPager->sectorSize ){ |
+ if( pPager->sectorSize>SQLITE_MAX_DEFAULT_PAGE_SIZE ){ |
+ szPageDflt = SQLITE_MAX_DEFAULT_PAGE_SIZE; |
+ }else{ |
+ szPageDflt = (u32)pPager->sectorSize; |
+ } |
+ } |
+#ifdef SQLITE_ENABLE_ATOMIC_WRITE |
+ { |
+ int ii; |
+ assert(SQLITE_IOCAP_ATOMIC512==(512>>8)); |
+ assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8)); |
+ assert(SQLITE_MAX_DEFAULT_PAGE_SIZE<=65536); |
+ for(ii=szPageDflt; ii<=SQLITE_MAX_DEFAULT_PAGE_SIZE; ii=ii*2){ |
+ if( iDc&(SQLITE_IOCAP_ATOMIC|(ii>>8)) ){ |
+ szPageDflt = ii; |
+ } |
+ } |
+ } |
+#endif |
+ } |
+ pPager->noLock = sqlite3_uri_boolean(zFilename, "nolock", 0); |
+ if( (iDc & SQLITE_IOCAP_IMMUTABLE)!=0 |
+ || sqlite3_uri_boolean(zFilename, "immutable", 0) ){ |
+ vfsFlags |= SQLITE_OPEN_READONLY; |
+ goto act_like_temp_file; |
+ } |
+ } |
+ }else{ |
+ /* If a temporary file is requested, it is not opened immediately. |
+ ** In this case we accept the default page size and delay actually |
+ ** opening the file until the first call to OsWrite(). |
+ ** |
+ ** This branch is also run for an in-memory database. An in-memory |
+ ** database is the same as a temp-file that is never written out to |
+ ** disk and uses an in-memory rollback journal. |
+ ** |
+ ** This branch also runs for files marked as immutable. |
+ */ |
+act_like_temp_file: |
+ tempFile = 1; |
+ pPager->eState = PAGER_READER; /* Pretend we already have a lock */ |
+ pPager->eLock = EXCLUSIVE_LOCK; /* Pretend we are in EXCLUSIVE mode */ |
+ pPager->noLock = 1; /* Do no locking */ |
+ readOnly = (vfsFlags&SQLITE_OPEN_READONLY); |
+ } |
+ |
+ /* The following call to PagerSetPagesize() serves to set the value of |
+ ** Pager.pageSize and to allocate the Pager.pTmpSpace buffer. |
+ */ |
+ if( rc==SQLITE_OK ){ |
+ assert( pPager->memDb==0 ); |
+ rc = sqlite3PagerSetPagesize(pPager, &szPageDflt, -1); |
+ testcase( rc!=SQLITE_OK ); |
+ } |
+ |
+ /* Initialize the PCache object. */ |
+ if( rc==SQLITE_OK ){ |
+ assert( nExtra<1000 ); |
+ nExtra = ROUND8(nExtra); |
+ rc = sqlite3PcacheOpen(szPageDflt, nExtra, !memDb, |
+ !memDb?pagerStress:0, (void *)pPager, pPager->pPCache); |
+ } |
+ |
+ /* If an error occurred above, free the Pager structure and close the file. |
+ */ |
+ if( rc!=SQLITE_OK ){ |
+ sqlite3OsClose(pPager->fd); |
+ sqlite3PageFree(pPager->pTmpSpace); |
+ sqlite3_free(pPager); |
+ return rc; |
+ } |
+ |
+ PAGERTRACE(("OPEN %d %s\n", FILEHANDLEID(pPager->fd), pPager->zFilename)); |
+ IOTRACE(("OPEN %p %s\n", pPager, pPager->zFilename)) |
+ |
+ pPager->useJournal = (u8)useJournal; |
+ /* pPager->stmtOpen = 0; */ |
+ /* pPager->stmtInUse = 0; */ |
+ /* pPager->nRef = 0; */ |
+ /* pPager->stmtSize = 0; */ |
+ /* pPager->stmtJSize = 0; */ |
+ /* pPager->nPage = 0; */ |
+ pPager->mxPgno = SQLITE_MAX_PAGE_COUNT; |
+ /* pPager->state = PAGER_UNLOCK; */ |
+ /* pPager->errMask = 0; */ |
+ pPager->tempFile = (u8)tempFile; |
+ assert( tempFile==PAGER_LOCKINGMODE_NORMAL |
+ || tempFile==PAGER_LOCKINGMODE_EXCLUSIVE ); |
+ assert( PAGER_LOCKINGMODE_EXCLUSIVE==1 ); |
+ pPager->exclusiveMode = (u8)tempFile; |
+ pPager->changeCountDone = pPager->tempFile; |
+ pPager->memDb = (u8)memDb; |
+ pPager->readOnly = (u8)readOnly; |
+ assert( useJournal || pPager->tempFile ); |
+ pPager->noSync = pPager->tempFile; |
+ if( pPager->noSync ){ |
+ assert( pPager->fullSync==0 ); |
+ assert( pPager->syncFlags==0 ); |
+ assert( pPager->walSyncFlags==0 ); |
+ assert( pPager->ckptSyncFlags==0 ); |
+ }else{ |
+ pPager->fullSync = 1; |
+ pPager->syncFlags = SQLITE_SYNC_NORMAL; |
+ pPager->walSyncFlags = SQLITE_SYNC_NORMAL | WAL_SYNC_TRANSACTIONS; |
+ pPager->ckptSyncFlags = SQLITE_SYNC_NORMAL; |
+ } |
+ /* pPager->pFirst = 0; */ |
+ /* pPager->pFirstSynced = 0; */ |
+ /* pPager->pLast = 0; */ |
+ pPager->nExtra = (u16)nExtra; |
+ pPager->journalSizeLimit = SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT; |
+ assert( isOpen(pPager->fd) || tempFile ); |
+ setSectorSize(pPager); |
+ if( !useJournal ){ |
+ pPager->journalMode = PAGER_JOURNALMODE_OFF; |
+ }else if( memDb ){ |
+ pPager->journalMode = PAGER_JOURNALMODE_MEMORY; |
+ } |
+ /* pPager->xBusyHandler = 0; */ |
+ /* pPager->pBusyHandlerArg = 0; */ |
+ pPager->xReiniter = xReinit; |
+ /* memset(pPager->aHash, 0, sizeof(pPager->aHash)); */ |
+ /* pPager->szMmap = SQLITE_DEFAULT_MMAP_SIZE // will be set by btree.c */ |
+ |
+ *ppPager = pPager; |
+ return SQLITE_OK; |
+} |
+ |
+ |
+/* Verify that the database file has not be deleted or renamed out from |
+** under the pager. Return SQLITE_OK if the database is still were it ought |
+** to be on disk. Return non-zero (SQLITE_READONLY_DBMOVED or some other error |
+** code from sqlite3OsAccess()) if the database has gone missing. |
+*/ |
+static int databaseIsUnmoved(Pager *pPager){ |
+ int bHasMoved = 0; |
+ int rc; |
+ |
+ if( pPager->tempFile ) return SQLITE_OK; |
+ if( pPager->dbSize==0 ) return SQLITE_OK; |
+ assert( pPager->zFilename && pPager->zFilename[0] ); |
+ rc = sqlite3OsFileControl(pPager->fd, SQLITE_FCNTL_HAS_MOVED, &bHasMoved); |
+ if( rc==SQLITE_NOTFOUND ){ |
+ /* If the HAS_MOVED file-control is unimplemented, assume that the file |
+ ** has not been moved. That is the historical behavior of SQLite: prior to |
+ ** version 3.8.3, it never checked */ |
+ rc = SQLITE_OK; |
+ }else if( rc==SQLITE_OK && bHasMoved ){ |
+ rc = SQLITE_READONLY_DBMOVED; |
+ } |
+ return rc; |
+} |
+ |
+ |
+/* |
+** This function is called after transitioning from PAGER_UNLOCK to |
+** PAGER_SHARED state. It tests if there is a hot journal present in |
+** the file-system for the given pager. A hot journal is one that |
+** needs to be played back. According to this function, a hot-journal |
+** file exists if the following criteria are met: |
+** |
+** * The journal file exists in the file system, and |
+** * No process holds a RESERVED or greater lock on the database file, and |
+** * The database file itself is greater than 0 bytes in size, and |
+** * The first byte of the journal file exists and is not 0x00. |
+** |
+** If the current size of the database file is 0 but a journal file |
+** exists, that is probably an old journal left over from a prior |
+** database with the same name. In this case the journal file is |
+** just deleted using OsDelete, *pExists is set to 0 and SQLITE_OK |
+** is returned. |
+** |
+** This routine does not check if there is a master journal filename |
+** at the end of the file. If there is, and that master journal file |
+** does not exist, then the journal file is not really hot. In this |
+** case this routine will return a false-positive. The pager_playback() |
+** routine will discover that the journal file is not really hot and |
+** will not roll it back. |
+** |
+** If a hot-journal file is found to exist, *pExists is set to 1 and |
+** SQLITE_OK returned. If no hot-journal file is present, *pExists is |
+** set to 0 and SQLITE_OK returned. If an IO error occurs while trying |
+** to determine whether or not a hot-journal file exists, the IO error |
+** code is returned and the value of *pExists is undefined. |
+*/ |
+static int hasHotJournal(Pager *pPager, int *pExists){ |
+ sqlite3_vfs * const pVfs = pPager->pVfs; |
+ int rc = SQLITE_OK; /* Return code */ |
+ int exists = 1; /* True if a journal file is present */ |
+ int jrnlOpen = !!isOpen(pPager->jfd); |
+ |
+ assert( pPager->useJournal ); |
+ assert( isOpen(pPager->fd) ); |
+ assert( pPager->eState==PAGER_OPEN ); |
+ |
+ assert( jrnlOpen==0 || ( sqlite3OsDeviceCharacteristics(pPager->jfd) & |
+ SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN |
+ )); |
+ |
+ *pExists = 0; |
+ if( !jrnlOpen ){ |
+ rc = sqlite3OsAccess(pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS, &exists); |
+ } |
+ if( rc==SQLITE_OK && exists ){ |
+ int locked = 0; /* True if some process holds a RESERVED lock */ |
+ |
+ /* Race condition here: Another process might have been holding the |
+ ** the RESERVED lock and have a journal open at the sqlite3OsAccess() |
+ ** call above, but then delete the journal and drop the lock before |
+ ** we get to the following sqlite3OsCheckReservedLock() call. If that |
+ ** is the case, this routine might think there is a hot journal when |
+ ** in fact there is none. This results in a false-positive which will |
+ ** be dealt with by the playback routine. Ticket #3883. |
+ */ |
+ rc = sqlite3OsCheckReservedLock(pPager->fd, &locked); |
+ if( rc==SQLITE_OK && !locked ){ |
+ Pgno nPage; /* Number of pages in database file */ |
+ |
+ rc = pagerPagecount(pPager, &nPage); |
+ if( rc==SQLITE_OK ){ |
+ /* If the database is zero pages in size, that means that either (1) the |
+ ** journal is a remnant from a prior database with the same name where |
+ ** the database file but not the journal was deleted, or (2) the initial |
+ ** transaction that populates a new database is being rolled back. |
+ ** In either case, the journal file can be deleted. However, take care |
+ ** not to delete the journal file if it is already open due to |
+ ** journal_mode=PERSIST. |
+ */ |
+ if( nPage==0 && !jrnlOpen ){ |
+ sqlite3BeginBenignMalloc(); |
+ if( pagerLockDb(pPager, RESERVED_LOCK)==SQLITE_OK ){ |
+ sqlite3OsDelete(pVfs, pPager->zJournal, 0); |
+ if( !pPager->exclusiveMode ) pagerUnlockDb(pPager, SHARED_LOCK); |
+ } |
+ sqlite3EndBenignMalloc(); |
+ }else{ |
+ /* The journal file exists and no other connection has a reserved |
+ ** or greater lock on the database file. Now check that there is |
+ ** at least one non-zero bytes at the start of the journal file. |
+ ** If there is, then we consider this journal to be hot. If not, |
+ ** it can be ignored. |
+ */ |
+ if( !jrnlOpen ){ |
+ int f = SQLITE_OPEN_READONLY|SQLITE_OPEN_MAIN_JOURNAL; |
+ rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, f, &f); |
+ } |
+ if( rc==SQLITE_OK ){ |
+ u8 first = 0; |
+ rc = sqlite3OsRead(pPager->jfd, (void *)&first, 1, 0); |
+ if( rc==SQLITE_IOERR_SHORT_READ ){ |
+ rc = SQLITE_OK; |
+ } |
+ if( !jrnlOpen ){ |
+ sqlite3OsClose(pPager->jfd); |
+ } |
+ *pExists = (first!=0); |
+ }else if( rc==SQLITE_CANTOPEN ){ |
+ /* If we cannot open the rollback journal file in order to see if |
+ ** it has a zero header, that might be due to an I/O error, or |
+ ** it might be due to the race condition described above and in |
+ ** ticket #3883. Either way, assume that the journal is hot. |
+ ** This might be a false positive. But if it is, then the |
+ ** automatic journal playback and recovery mechanism will deal |
+ ** with it under an EXCLUSIVE lock where we do not need to |
+ ** worry so much with race conditions. |
+ */ |
+ *pExists = 1; |
+ rc = SQLITE_OK; |
+ } |
+ } |
+ } |
+ } |
+ } |
+ |
+ return rc; |
+} |
+ |
+/* |
+** This function is called to obtain a shared lock on the database file. |
+** It is illegal to call sqlite3PagerGet() until after this function |
+** has been successfully called. If a shared-lock is already held when |
+** this function is called, it is a no-op. |
+** |
+** The following operations are also performed by this function. |
+** |
+** 1) If the pager is currently in PAGER_OPEN state (no lock held |
+** on the database file), then an attempt is made to obtain a |
+** SHARED lock on the database file. Immediately after obtaining |
+** the SHARED lock, the file-system is checked for a hot-journal, |
+** which is played back if present. Following any hot-journal |
+** rollback, the contents of the cache are validated by checking |
+** the 'change-counter' field of the database file header and |
+** discarded if they are found to be invalid. |
+** |
+** 2) If the pager is running in exclusive-mode, and there are currently |
+** no outstanding references to any pages, and is in the error state, |
+** then an attempt is made to clear the error state by discarding |
+** the contents of the page cache and rolling back any open journal |
+** file. |
+** |
+** If everything is successful, SQLITE_OK is returned. If an IO error |
+** occurs while locking the database, checking for a hot-journal file or |
+** rolling back a journal file, the IO error code is returned. |
+*/ |
+SQLITE_PRIVATE int sqlite3PagerSharedLock(Pager *pPager){ |
+ int rc = SQLITE_OK; /* Return code */ |
+ |
+ /* This routine is only called from b-tree and only when there are no |
+ ** outstanding pages. This implies that the pager state should either |
+ ** be OPEN or READER. READER is only possible if the pager is or was in |
+ ** exclusive access mode. |
+ */ |
+ assert( sqlite3PcacheRefCount(pPager->pPCache)==0 ); |
+ assert( assert_pager_state(pPager) ); |
+ assert( pPager->eState==PAGER_OPEN || pPager->eState==PAGER_READER ); |
+ if( NEVER(MEMDB && pPager->errCode) ){ return pPager->errCode; } |
+ |
+ if( !pagerUseWal(pPager) && pPager->eState==PAGER_OPEN ){ |
+ int bHotJournal = 1; /* True if there exists a hot journal-file */ |
+ |
+ assert( !MEMDB ); |
+ |
+ rc = pager_wait_on_lock(pPager, SHARED_LOCK); |
+ if( rc!=SQLITE_OK ){ |
+ assert( pPager->eLock==NO_LOCK || pPager->eLock==UNKNOWN_LOCK ); |
+ goto failed; |
+ } |
+ |
+ /* If a journal file exists, and there is no RESERVED lock on the |
+ ** database file, then it either needs to be played back or deleted. |
+ */ |
+ if( pPager->eLock<=SHARED_LOCK ){ |
+ rc = hasHotJournal(pPager, &bHotJournal); |
+ } |
+ if( rc!=SQLITE_OK ){ |
+ goto failed; |
+ } |
+ if( bHotJournal ){ |
+ if( pPager->readOnly ){ |
+ rc = SQLITE_READONLY_ROLLBACK; |
+ goto failed; |
+ } |
+ |
+ /* Get an EXCLUSIVE lock on the database file. At this point it is |
+ ** important that a RESERVED lock is not obtained on the way to the |
+ ** EXCLUSIVE lock. If it were, another process might open the |
+ ** database file, detect the RESERVED lock, and conclude that the |
+ ** database is safe to read while this process is still rolling the |
+ ** hot-journal back. |
+ ** |
+ ** Because the intermediate RESERVED lock is not requested, any |
+ ** other process attempting to access the database file will get to |
+ ** this point in the code and fail to obtain its own EXCLUSIVE lock |
+ ** on the database file. |
+ ** |
+ ** Unless the pager is in locking_mode=exclusive mode, the lock is |
+ ** downgraded to SHARED_LOCK before this function returns. |
+ */ |
+ rc = pagerLockDb(pPager, EXCLUSIVE_LOCK); |
+ if( rc!=SQLITE_OK ){ |
+ goto failed; |
+ } |
+ |
+ /* If it is not already open and the file exists on disk, open the |
+ ** journal for read/write access. Write access is required because |
+ ** in exclusive-access mode the file descriptor will be kept open |
+ ** and possibly used for a transaction later on. Also, write-access |
+ ** is usually required to finalize the journal in journal_mode=persist |
+ ** mode (and also for journal_mode=truncate on some systems). |
+ ** |
+ ** If the journal does not exist, it usually means that some |
+ ** other connection managed to get in and roll it back before |
+ ** this connection obtained the exclusive lock above. Or, it |
+ ** may mean that the pager was in the error-state when this |
+ ** function was called and the journal file does not exist. |
+ */ |
+ if( !isOpen(pPager->jfd) ){ |
+ sqlite3_vfs * const pVfs = pPager->pVfs; |
+ int bExists; /* True if journal file exists */ |
+ rc = sqlite3OsAccess( |
+ pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS, &bExists); |
+ if( rc==SQLITE_OK && bExists ){ |
+ int fout = 0; |
+ int f = SQLITE_OPEN_READWRITE|SQLITE_OPEN_MAIN_JOURNAL; |
+ assert( !pPager->tempFile ); |
+ rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, f, &fout); |
+ assert( rc!=SQLITE_OK || isOpen(pPager->jfd) ); |
+ if( rc==SQLITE_OK && fout&SQLITE_OPEN_READONLY ){ |
+ rc = SQLITE_CANTOPEN_BKPT; |
+ sqlite3OsClose(pPager->jfd); |
+ } |
+ } |
+ } |
+ |
+ /* Playback and delete the journal. Drop the database write |
+ ** lock and reacquire the read lock. Purge the cache before |
+ ** playing back the hot-journal so that we don't end up with |
+ ** an inconsistent cache. Sync the hot journal before playing |
+ ** it back since the process that crashed and left the hot journal |
+ ** probably did not sync it and we are required to always sync |
+ ** the journal before playing it back. |
+ */ |
+ if( isOpen(pPager->jfd) ){ |
+ assert( rc==SQLITE_OK ); |
+ rc = pagerSyncHotJournal(pPager); |
+ if( rc==SQLITE_OK ){ |
+ rc = pager_playback(pPager, 1); |
+ pPager->eState = PAGER_OPEN; |
+ } |
+ }else if( !pPager->exclusiveMode ){ |
+ pagerUnlockDb(pPager, SHARED_LOCK); |
+ } |
+ |
+ if( rc!=SQLITE_OK ){ |
+ /* This branch is taken if an error occurs while trying to open |
+ ** or roll back a hot-journal while holding an EXCLUSIVE lock. The |
+ ** pager_unlock() routine will be called before returning to unlock |
+ ** the file. If the unlock attempt fails, then Pager.eLock must be |
+ ** set to UNKNOWN_LOCK (see the comment above the #define for |
+ ** UNKNOWN_LOCK above for an explanation). |
+ ** |
+ ** In order to get pager_unlock() to do this, set Pager.eState to |
+ ** PAGER_ERROR now. This is not actually counted as a transition |
+ ** to ERROR state in the state diagram at the top of this file, |
+ ** since we know that the same call to pager_unlock() will very |
+ ** shortly transition the pager object to the OPEN state. Calling |
+ ** assert_pager_state() would fail now, as it should not be possible |
+ ** to be in ERROR state when there are zero outstanding page |
+ ** references. |
+ */ |
+ pager_error(pPager, rc); |
+ goto failed; |
+ } |
+ |
+ assert( pPager->eState==PAGER_OPEN ); |
+ assert( (pPager->eLock==SHARED_LOCK) |
+ || (pPager->exclusiveMode && pPager->eLock>SHARED_LOCK) |
+ ); |
+ } |
+ |
+ if( !pPager->tempFile && pPager->hasHeldSharedLock ){ |
+ /* The shared-lock has just been acquired then check to |
+ ** see if the database has been modified. If the database has changed, |
+ ** flush the cache. The hasHeldSharedLock flag prevents this from |
+ ** occurring on the very first access to a file, in order to save a |
+ ** single unnecessary sqlite3OsRead() call at the start-up. |
+ ** |
+ ** Database changes are detected by looking at 15 bytes beginning |
+ ** at offset 24 into the file. The first 4 of these 16 bytes are |
+ ** a 32-bit counter that is incremented with each change. The |
+ ** other bytes change randomly with each file change when |
+ ** a codec is in use. |
+ ** |
+ ** There is a vanishingly small chance that a change will not be |
+ ** detected. The chance of an undetected change is so small that |
+ ** it can be neglected. |
+ */ |
+ Pgno nPage = 0; |
+ char dbFileVers[sizeof(pPager->dbFileVers)]; |
+ |
+ rc = pagerPagecount(pPager, &nPage); |
+ if( rc ) goto failed; |
+ |
+ if( nPage>0 ){ |
+ IOTRACE(("CKVERS %p %d\n", pPager, sizeof(dbFileVers))); |
+ rc = sqlite3OsRead(pPager->fd, &dbFileVers, sizeof(dbFileVers), 24); |
+ if( rc!=SQLITE_OK && rc!=SQLITE_IOERR_SHORT_READ ){ |
+ goto failed; |
+ } |
+ }else{ |
+ memset(dbFileVers, 0, sizeof(dbFileVers)); |
+ } |
+ |
+ if( memcmp(pPager->dbFileVers, dbFileVers, sizeof(dbFileVers))!=0 ){ |
+ pager_reset(pPager); |
+ |
+ /* Unmap the database file. It is possible that external processes |
+ ** may have truncated the database file and then extended it back |
+ ** to its original size while this process was not holding a lock. |
+ ** In this case there may exist a Pager.pMap mapping that appears |
+ ** to be the right size but is not actually valid. Avoid this |
+ ** possibility by unmapping the db here. */ |
+ if( USEFETCH(pPager) ){ |
+ sqlite3OsUnfetch(pPager->fd, 0, 0); |
+ } |
+ } |
+ } |
+ |
+ /* If there is a WAL file in the file-system, open this database in WAL |
+ ** mode. Otherwise, the following function call is a no-op. |
+ */ |
+ rc = pagerOpenWalIfPresent(pPager); |
+#ifndef SQLITE_OMIT_WAL |
+ assert( pPager->pWal==0 || rc==SQLITE_OK ); |
+#endif |
+ } |
+ |
+ if( pagerUseWal(pPager) ){ |
+ assert( rc==SQLITE_OK ); |
+ rc = pagerBeginReadTransaction(pPager); |
+ } |
+ |
+ if( pPager->eState==PAGER_OPEN && rc==SQLITE_OK ){ |
+ rc = pagerPagecount(pPager, &pPager->dbSize); |
+ } |
+ |
+ failed: |
+ if( rc!=SQLITE_OK ){ |
+ assert( !MEMDB ); |
+ pager_unlock(pPager); |
+ assert( pPager->eState==PAGER_OPEN ); |
+ }else{ |
+ pPager->eState = PAGER_READER; |
+ pPager->hasHeldSharedLock = 1; |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** If the reference count has reached zero, rollback any active |
+** transaction and unlock the pager. |
+** |
+** Except, in locking_mode=EXCLUSIVE when there is nothing to in |
+** the rollback journal, the unlock is not performed and there is |
+** nothing to rollback, so this routine is a no-op. |
+*/ |
+static void pagerUnlockIfUnused(Pager *pPager){ |
+ if( pPager->nMmapOut==0 && (sqlite3PcacheRefCount(pPager->pPCache)==0) ){ |
+ pagerUnlockAndRollback(pPager); |
+ } |
+} |
+ |
+/* |
+** Acquire a reference to page number pgno in pager pPager (a page |
+** reference has type DbPage*). If the requested reference is |
+** successfully obtained, it is copied to *ppPage and SQLITE_OK returned. |
+** |
+** If the requested page is already in the cache, it is returned. |
+** Otherwise, a new page object is allocated and populated with data |
+** read from the database file. In some cases, the pcache module may |
+** choose not to allocate a new page object and may reuse an existing |
+** object with no outstanding references. |
+** |
+** The extra data appended to a page is always initialized to zeros the |
+** first time a page is loaded into memory. If the page requested is |
+** already in the cache when this function is called, then the extra |
+** data is left as it was when the page object was last used. |
+** |
+** If the database image is smaller than the requested page or if a |
+** non-zero value is passed as the noContent parameter and the |
+** requested page is not already stored in the cache, then no |
+** actual disk read occurs. In this case the memory image of the |
+** page is initialized to all zeros. |
+** |
+** If noContent is true, it means that we do not care about the contents |
+** of the page. This occurs in two scenarios: |
+** |
+** a) When reading a free-list leaf page from the database, and |
+** |
+** b) When a savepoint is being rolled back and we need to load |
+** a new page into the cache to be filled with the data read |
+** from the savepoint journal. |
+** |
+** If noContent is true, then the data returned is zeroed instead of |
+** being read from the database. Additionally, the bits corresponding |
+** to pgno in Pager.pInJournal (bitvec of pages already written to the |
+** journal file) and the PagerSavepoint.pInSavepoint bitvecs of any open |
+** savepoints are set. This means if the page is made writable at any |
+** point in the future, using a call to sqlite3PagerWrite(), its contents |
+** will not be journaled. This saves IO. |
+** |
+** The acquisition might fail for several reasons. In all cases, |
+** an appropriate error code is returned and *ppPage is set to NULL. |
+** |
+** See also sqlite3PagerLookup(). Both this routine and Lookup() attempt |
+** to find a page in the in-memory cache first. If the page is not already |
+** in memory, this routine goes to disk to read it in whereas Lookup() |
+** just returns 0. This routine acquires a read-lock the first time it |
+** has to go to disk, and could also playback an old journal if necessary. |
+** Since Lookup() never goes to disk, it never has to deal with locks |
+** or journal files. |
+*/ |
+SQLITE_PRIVATE int sqlite3PagerGet( |
+ Pager *pPager, /* The pager open on the database file */ |
+ Pgno pgno, /* Page number to fetch */ |
+ DbPage **ppPage, /* Write a pointer to the page here */ |
+ int flags /* PAGER_GET_XXX flags */ |
+){ |
+ int rc = SQLITE_OK; |
+ PgHdr *pPg = 0; |
+ u32 iFrame = 0; /* Frame to read from WAL file */ |
+ const int noContent = (flags & PAGER_GET_NOCONTENT); |
+ |
+ /* It is acceptable to use a read-only (mmap) page for any page except |
+ ** page 1 if there is no write-transaction open or the ACQUIRE_READONLY |
+ ** flag was specified by the caller. And so long as the db is not a |
+ ** temporary or in-memory database. */ |
+ const int bMmapOk = (pgno>1 && USEFETCH(pPager) |
+ && (pPager->eState==PAGER_READER || (flags & PAGER_GET_READONLY)) |
+#ifdef SQLITE_HAS_CODEC |
+ && pPager->xCodec==0 |
+#endif |
+ ); |
+ |
+ /* Optimization note: Adding the "pgno<=1" term before "pgno==0" here |
+ ** allows the compiler optimizer to reuse the results of the "pgno>1" |
+ ** test in the previous statement, and avoid testing pgno==0 in the |
+ ** common case where pgno is large. */ |
+ if( pgno<=1 && pgno==0 ){ |
+ return SQLITE_CORRUPT_BKPT; |
+ } |
+ assert( pPager->eState>=PAGER_READER ); |
+ assert( assert_pager_state(pPager) ); |
+ assert( noContent==0 || bMmapOk==0 ); |
+ |
+ assert( pPager->hasHeldSharedLock==1 ); |
+ |
+ /* If the pager is in the error state, return an error immediately. |
+ ** Otherwise, request the page from the PCache layer. */ |
+ if( pPager->errCode!=SQLITE_OK ){ |
+ rc = pPager->errCode; |
+ }else{ |
+ if( bMmapOk && pagerUseWal(pPager) ){ |
+ rc = sqlite3WalFindFrame(pPager->pWal, pgno, &iFrame); |
+ if( rc!=SQLITE_OK ) goto pager_acquire_err; |
+ } |
+ |
+ if( bMmapOk && iFrame==0 ){ |
+ void *pData = 0; |
+ |
+ rc = sqlite3OsFetch(pPager->fd, |
+ (i64)(pgno-1) * pPager->pageSize, pPager->pageSize, &pData |
+ ); |
+ |
+ if( rc==SQLITE_OK && pData ){ |
+ if( pPager->eState>PAGER_READER ){ |
+ pPg = sqlite3PagerLookup(pPager, pgno); |
+ } |
+ if( pPg==0 ){ |
+ rc = pagerAcquireMapPage(pPager, pgno, pData, &pPg); |
+ }else{ |
+ sqlite3OsUnfetch(pPager->fd, (i64)(pgno-1)*pPager->pageSize, pData); |
+ } |
+ if( pPg ){ |
+ assert( rc==SQLITE_OK ); |
+ *ppPage = pPg; |
+ return SQLITE_OK; |
+ } |
+ } |
+ if( rc!=SQLITE_OK ){ |
+ goto pager_acquire_err; |
+ } |
+ } |
+ |
+ { |
+ sqlite3_pcache_page *pBase; |
+ pBase = sqlite3PcacheFetch(pPager->pPCache, pgno, 3); |
+ if( pBase==0 ){ |
+ rc = sqlite3PcacheFetchStress(pPager->pPCache, pgno, &pBase); |
+ if( rc!=SQLITE_OK ) goto pager_acquire_err; |
+ if( pBase==0 ){ |
+ pPg = *ppPage = 0; |
+ rc = SQLITE_NOMEM; |
+ goto pager_acquire_err; |
+ } |
+ } |
+ pPg = *ppPage = sqlite3PcacheFetchFinish(pPager->pPCache, pgno, pBase); |
+ assert( pPg!=0 ); |
+ } |
+ } |
+ |
+ if( rc!=SQLITE_OK ){ |
+ /* Either the call to sqlite3PcacheFetch() returned an error or the |
+ ** pager was already in the error-state when this function was called. |
+ ** Set pPg to 0 and jump to the exception handler. */ |
+ pPg = 0; |
+ goto pager_acquire_err; |
+ } |
+ assert( pPg==(*ppPage) ); |
+ assert( pPg->pgno==pgno ); |
+ assert( pPg->pPager==pPager || pPg->pPager==0 ); |
+ |
+ if( pPg->pPager && !noContent ){ |
+ /* In this case the pcache already contains an initialized copy of |
+ ** the page. Return without further ado. */ |
+ assert( pgno<=PAGER_MAX_PGNO && pgno!=PAGER_MJ_PGNO(pPager) ); |
+ pPager->aStat[PAGER_STAT_HIT]++; |
+ return SQLITE_OK; |
+ |
+ }else{ |
+ /* The pager cache has created a new page. Its content needs to |
+ ** be initialized. */ |
+ |
+ pPg->pPager = pPager; |
+ |
+ /* The maximum page number is 2^31. Return SQLITE_CORRUPT if a page |
+ ** number greater than this, or the unused locking-page, is requested. */ |
+ if( pgno>PAGER_MAX_PGNO || pgno==PAGER_MJ_PGNO(pPager) ){ |
+ rc = SQLITE_CORRUPT_BKPT; |
+ goto pager_acquire_err; |
+ } |
+ |
+ if( MEMDB || pPager->dbSize<pgno || noContent || !isOpen(pPager->fd) ){ |
+ if( pgno>pPager->mxPgno ){ |
+ rc = SQLITE_FULL; |
+ goto pager_acquire_err; |
+ } |
+ if( noContent ){ |
+ /* Failure to set the bits in the InJournal bit-vectors is benign. |
+ ** It merely means that we might do some extra work to journal a |
+ ** page that does not need to be journaled. Nevertheless, be sure |
+ ** to test the case where a malloc error occurs while trying to set |
+ ** a bit in a bit vector. |
+ */ |
+ sqlite3BeginBenignMalloc(); |
+ if( pgno<=pPager->dbOrigSize ){ |
+ TESTONLY( rc = ) sqlite3BitvecSet(pPager->pInJournal, pgno); |
+ testcase( rc==SQLITE_NOMEM ); |
+ } |
+ TESTONLY( rc = ) addToSavepointBitvecs(pPager, pgno); |
+ testcase( rc==SQLITE_NOMEM ); |
+ sqlite3EndBenignMalloc(); |
+ } |
+ memset(pPg->pData, 0, pPager->pageSize); |
+ IOTRACE(("ZERO %p %d\n", pPager, pgno)); |
+ }else{ |
+ if( pagerUseWal(pPager) && bMmapOk==0 ){ |
+ rc = sqlite3WalFindFrame(pPager->pWal, pgno, &iFrame); |
+ if( rc!=SQLITE_OK ) goto pager_acquire_err; |
+ } |
+ assert( pPg->pPager==pPager ); |
+ pPager->aStat[PAGER_STAT_MISS]++; |
+ rc = readDbPage(pPg, iFrame); |
+ if( rc!=SQLITE_OK ){ |
+ goto pager_acquire_err; |
+ } |
+ } |
+ pager_set_pagehash(pPg); |
+ } |
+ |
+ return SQLITE_OK; |
+ |
+pager_acquire_err: |
+ assert( rc!=SQLITE_OK ); |
+ if( pPg ){ |
+ sqlite3PcacheDrop(pPg); |
+ } |
+ pagerUnlockIfUnused(pPager); |
+ |
+ *ppPage = 0; |
+ return rc; |
+} |
+ |
+/* |
+** Acquire a page if it is already in the in-memory cache. Do |
+** not read the page from disk. Return a pointer to the page, |
+** or 0 if the page is not in cache. |
+** |
+** See also sqlite3PagerGet(). The difference between this routine |
+** and sqlite3PagerGet() is that _get() will go to the disk and read |
+** in the page if the page is not already in cache. This routine |
+** returns NULL if the page is not in cache or if a disk I/O error |
+** has ever happened. |
+*/ |
+SQLITE_PRIVATE DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno){ |
+ sqlite3_pcache_page *pPage; |
+ assert( pPager!=0 ); |
+ assert( pgno!=0 ); |
+ assert( pPager->pPCache!=0 ); |
+ pPage = sqlite3PcacheFetch(pPager->pPCache, pgno, 0); |
+ assert( pPage==0 || pPager->hasHeldSharedLock ); |
+ if( pPage==0 ) return 0; |
+ return sqlite3PcacheFetchFinish(pPager->pPCache, pgno, pPage); |
+} |
+ |
+/* |
+** Release a page reference. |
+** |
+** If the number of references to the page drop to zero, then the |
+** page is added to the LRU list. When all references to all pages |
+** are released, a rollback occurs and the lock on the database is |
+** removed. |
+*/ |
+SQLITE_PRIVATE void sqlite3PagerUnrefNotNull(DbPage *pPg){ |
+ Pager *pPager; |
+ assert( pPg!=0 ); |
+ pPager = pPg->pPager; |
+ if( pPg->flags & PGHDR_MMAP ){ |
+ pagerReleaseMapPage(pPg); |
+ }else{ |
+ sqlite3PcacheRelease(pPg); |
+ } |
+ pagerUnlockIfUnused(pPager); |
+} |
+SQLITE_PRIVATE void sqlite3PagerUnref(DbPage *pPg){ |
+ if( pPg ) sqlite3PagerUnrefNotNull(pPg); |
+} |
+ |
+#if defined(__APPLE__) |
+/* |
+** Create and return a CFURLRef given a cstring containing the path to a file. |
+*/ |
+static CFURLRef create_cfurl_from_cstring(const char* filePath){ |
+ CFStringRef urlString = CFStringCreateWithFileSystemRepresentation( |
+ kCFAllocatorDefault, filePath); |
+ CFURLRef urlRef = CFURLCreateWithFileSystemPath(kCFAllocatorDefault, |
+ urlString, kCFURLPOSIXPathStyle, FALSE); |
+ CFRelease(urlString); |
+ return urlRef; |
+} |
+#endif |
+ |
+/* |
+** This function is called at the start of every write transaction. |
+** There must already be a RESERVED or EXCLUSIVE lock on the database |
+** file when this routine is called. |
+** |
+** Open the journal file for pager pPager and write a journal header |
+** to the start of it. If there are active savepoints, open the sub-journal |
+** as well. This function is only used when the journal file is being |
+** opened to write a rollback log for a transaction. It is not used |
+** when opening a hot journal file to roll it back. |
+** |
+** If the journal file is already open (as it may be in exclusive mode), |
+** then this function just writes a journal header to the start of the |
+** already open file. |
+** |
+** Whether or not the journal file is opened by this function, the |
+** Pager.pInJournal bitvec structure is allocated. |
+** |
+** Return SQLITE_OK if everything is successful. Otherwise, return |
+** SQLITE_NOMEM if the attempt to allocate Pager.pInJournal fails, or |
+** an IO error code if opening or writing the journal file fails. |
+*/ |
+static int pager_open_journal(Pager *pPager){ |
+ int rc = SQLITE_OK; /* Return code */ |
+ sqlite3_vfs * const pVfs = pPager->pVfs; /* Local cache of vfs pointer */ |
+ |
+ assert( pPager->eState==PAGER_WRITER_LOCKED ); |
+ assert( assert_pager_state(pPager) ); |
+ assert( pPager->pInJournal==0 ); |
+ |
+ /* If already in the error state, this function is a no-op. But on |
+ ** the other hand, this routine is never called if we are already in |
+ ** an error state. */ |
+ if( NEVER(pPager->errCode) ) return pPager->errCode; |
+ |
+ if( !pagerUseWal(pPager) && pPager->journalMode!=PAGER_JOURNALMODE_OFF ){ |
+ pPager->pInJournal = sqlite3BitvecCreate(pPager->dbSize); |
+ if( pPager->pInJournal==0 ){ |
+ return SQLITE_NOMEM; |
+ } |
+ |
+ /* Open the journal file if it is not already open. */ |
+ if( !isOpen(pPager->jfd) ){ |
+ if( pPager->journalMode==PAGER_JOURNALMODE_MEMORY ){ |
+ sqlite3MemJournalOpen(pPager->jfd); |
+ }else{ |
+ const int flags = /* VFS flags to open journal file */ |
+ SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE| |
+ (pPager->tempFile ? |
+ (SQLITE_OPEN_DELETEONCLOSE|SQLITE_OPEN_TEMP_JOURNAL): |
+ (SQLITE_OPEN_MAIN_JOURNAL) |
+ ); |
+ |
+ /* Verify that the database still has the same name as it did when |
+ ** it was originally opened. */ |
+ rc = databaseIsUnmoved(pPager); |
+ if( rc==SQLITE_OK ){ |
+#ifdef SQLITE_ENABLE_ATOMIC_WRITE |
+ rc = sqlite3JournalOpen( |
+ pVfs, pPager->zJournal, pPager->jfd, flags, jrnlBufferSize(pPager) |
+ ); |
+#else |
+ rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, flags, 0); |
+#endif |
+#if defined(__APPLE__) |
+ /* Set the TimeMachine exclusion metadata for the journal if it has |
+ ** been set for the database. Only do this for unix-type vfs |
+ ** implementations. */ |
+ if( rc==SQLITE_OK && pPager->zFilename!=NULL |
+ && strlen(pPager->zFilename)>0 |
+ && strncmp(pVfs->zName, "unix", 4)==0 |
+ && ( pVfs->zName[4]=='-' || pVfs->zName[4]=='\0' ) ){ |
+ CFURLRef database = create_cfurl_from_cstring(pPager->zFilename); |
+ if( CSBackupIsItemExcluded(database, NULL) ){ |
+ CFURLRef journal = create_cfurl_from_cstring(pPager->zJournal); |
+ /* Ignore errors from the following exclusion call. */ |
+ CSBackupSetItemExcluded(journal, TRUE, FALSE); |
+ CFRelease(journal); |
+ } |
+ CFRelease(database); |
+ } |
+#endif |
+ } |
+ } |
+ assert( rc!=SQLITE_OK || isOpen(pPager->jfd) ); |
+ } |
+ |
+ |
+ /* Write the first journal header to the journal file and open |
+ ** the sub-journal if necessary. |
+ */ |
+ if( rc==SQLITE_OK ){ |
+ /* TODO: Check if all of these are really required. */ |
+ pPager->nRec = 0; |
+ pPager->journalOff = 0; |
+ pPager->setMaster = 0; |
+ pPager->journalHdr = 0; |
+ rc = writeJournalHdr(pPager); |
+ } |
+ } |
+ |
+ if( rc!=SQLITE_OK ){ |
+ sqlite3BitvecDestroy(pPager->pInJournal); |
+ pPager->pInJournal = 0; |
+ }else{ |
+ assert( pPager->eState==PAGER_WRITER_LOCKED ); |
+ pPager->eState = PAGER_WRITER_CACHEMOD; |
+ } |
+ |
+ return rc; |
+} |
+ |
+/* |
+** Begin a write-transaction on the specified pager object. If a |
+** write-transaction has already been opened, this function is a no-op. |
+** |
+** If the exFlag argument is false, then acquire at least a RESERVED |
+** lock on the database file. If exFlag is true, then acquire at least |
+** an EXCLUSIVE lock. If such a lock is already held, no locking |
+** functions need be called. |
+** |
+** If the subjInMemory argument is non-zero, then any sub-journal opened |
+** within this transaction will be opened as an in-memory file. This |
+** has no effect if the sub-journal is already opened (as it may be when |
+** running in exclusive mode) or if the transaction does not require a |
+** sub-journal. If the subjInMemory argument is zero, then any required |
+** sub-journal is implemented in-memory if pPager is an in-memory database, |
+** or using a temporary file otherwise. |
+*/ |
+SQLITE_PRIVATE int sqlite3PagerBegin(Pager *pPager, int exFlag, int subjInMemory){ |
+ int rc = SQLITE_OK; |
+ |
+ if( pPager->errCode ) return pPager->errCode; |
+ assert( pPager->eState>=PAGER_READER && pPager->eState<PAGER_ERROR ); |
+ pPager->subjInMemory = (u8)subjInMemory; |
+ |
+ if( ALWAYS(pPager->eState==PAGER_READER) ){ |
+ assert( pPager->pInJournal==0 ); |
+ |
+ if( pagerUseWal(pPager) ){ |
+ /* If the pager is configured to use locking_mode=exclusive, and an |
+ ** exclusive lock on the database is not already held, obtain it now. |
+ */ |
+ if( pPager->exclusiveMode && sqlite3WalExclusiveMode(pPager->pWal, -1) ){ |
+ rc = pagerLockDb(pPager, EXCLUSIVE_LOCK); |
+ if( rc!=SQLITE_OK ){ |
+ return rc; |
+ } |
+ (void)sqlite3WalExclusiveMode(pPager->pWal, 1); |
+ } |
+ |
+ /* Grab the write lock on the log file. If successful, upgrade to |
+ ** PAGER_RESERVED state. Otherwise, return an error code to the caller. |
+ ** The busy-handler is not invoked if another connection already |
+ ** holds the write-lock. If possible, the upper layer will call it. |
+ */ |
+ rc = sqlite3WalBeginWriteTransaction(pPager->pWal); |
+ }else{ |
+ /* Obtain a RESERVED lock on the database file. If the exFlag parameter |
+ ** is true, then immediately upgrade this to an EXCLUSIVE lock. The |
+ ** busy-handler callback can be used when upgrading to the EXCLUSIVE |
+ ** lock, but not when obtaining the RESERVED lock. |
+ */ |
+ rc = pagerLockDb(pPager, RESERVED_LOCK); |
+ if( rc==SQLITE_OK && exFlag ){ |
+ rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK); |
+ } |
+ } |
+ |
+ if( rc==SQLITE_OK ){ |
+ /* Change to WRITER_LOCKED state. |
+ ** |
+ ** WAL mode sets Pager.eState to PAGER_WRITER_LOCKED or CACHEMOD |
+ ** when it has an open transaction, but never to DBMOD or FINISHED. |
+ ** This is because in those states the code to roll back savepoint |
+ ** transactions may copy data from the sub-journal into the database |
+ ** file as well as into the page cache. Which would be incorrect in |
+ ** WAL mode. |
+ */ |
+ pPager->eState = PAGER_WRITER_LOCKED; |
+ pPager->dbHintSize = pPager->dbSize; |
+ pPager->dbFileSize = pPager->dbSize; |
+ pPager->dbOrigSize = pPager->dbSize; |
+ pPager->journalOff = 0; |
+ } |
+ |
+ assert( rc==SQLITE_OK || pPager->eState==PAGER_READER ); |
+ assert( rc!=SQLITE_OK || pPager->eState==PAGER_WRITER_LOCKED ); |
+ assert( assert_pager_state(pPager) ); |
+ } |
+ |
+ PAGERTRACE(("TRANSACTION %d\n", PAGERID(pPager))); |
+ return rc; |
+} |
+ |
+/* |
+** Write page pPg onto the end of the rollback journal. |
+*/ |
+static SQLITE_NOINLINE int pagerAddPageToRollbackJournal(PgHdr *pPg){ |
+ Pager *pPager = pPg->pPager; |
+ int rc; |
+ u32 cksum; |
+ char *pData2; |
+ i64 iOff = pPager->journalOff; |
+ |
+ /* We should never write to the journal file the page that |
+ ** contains the database locks. The following assert verifies |
+ ** that we do not. */ |
+ assert( pPg->pgno!=PAGER_MJ_PGNO(pPager) ); |
+ |
+ assert( pPager->journalHdr<=pPager->journalOff ); |
+ CODEC2(pPager, pPg->pData, pPg->pgno, 7, return SQLITE_NOMEM, pData2); |
+ cksum = pager_cksum(pPager, (u8*)pData2); |
+ |
+ /* Even if an IO or diskfull error occurs while journalling the |
+ ** page in the block above, set the need-sync flag for the page. |
+ ** Otherwise, when the transaction is rolled back, the logic in |
+ ** playback_one_page() will think that the page needs to be restored |
+ ** in the database file. And if an IO error occurs while doing so, |
+ ** then corruption may follow. |
+ */ |
+ pPg->flags |= PGHDR_NEED_SYNC; |
+ |
+ rc = write32bits(pPager->jfd, iOff, pPg->pgno); |
+ if( rc!=SQLITE_OK ) return rc; |
+ rc = sqlite3OsWrite(pPager->jfd, pData2, pPager->pageSize, iOff+4); |
+ if( rc!=SQLITE_OK ) return rc; |
+ rc = write32bits(pPager->jfd, iOff+pPager->pageSize+4, cksum); |
+ if( rc!=SQLITE_OK ) return rc; |
+ |
+ IOTRACE(("JOUT %p %d %lld %d\n", pPager, pPg->pgno, |
+ pPager->journalOff, pPager->pageSize)); |
+ PAGER_INCR(sqlite3_pager_writej_count); |
+ PAGERTRACE(("JOURNAL %d page %d needSync=%d hash(%08x)\n", |
+ PAGERID(pPager), pPg->pgno, |
+ ((pPg->flags&PGHDR_NEED_SYNC)?1:0), pager_pagehash(pPg))); |
+ |
+ pPager->journalOff += 8 + pPager->pageSize; |
+ pPager->nRec++; |
+ assert( pPager->pInJournal!=0 ); |
+ rc = sqlite3BitvecSet(pPager->pInJournal, pPg->pgno); |
+ testcase( rc==SQLITE_NOMEM ); |
+ assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); |
+ rc |= addToSavepointBitvecs(pPager, pPg->pgno); |
+ assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); |
+ return rc; |
+} |
+ |
+/* |
+** Mark a single data page as writeable. The page is written into the |
+** main journal or sub-journal as required. If the page is written into |
+** one of the journals, the corresponding bit is set in the |
+** Pager.pInJournal bitvec and the PagerSavepoint.pInSavepoint bitvecs |
+** of any open savepoints as appropriate. |
+*/ |
+static int pager_write(PgHdr *pPg){ |
+ Pager *pPager = pPg->pPager; |
+ int rc = SQLITE_OK; |
+ |
+ /* This routine is not called unless a write-transaction has already |
+ ** been started. The journal file may or may not be open at this point. |
+ ** It is never called in the ERROR state. |
+ */ |
+ assert( pPager->eState==PAGER_WRITER_LOCKED |
+ || pPager->eState==PAGER_WRITER_CACHEMOD |
+ || pPager->eState==PAGER_WRITER_DBMOD |
+ ); |
+ assert( assert_pager_state(pPager) ); |
+ assert( pPager->errCode==0 ); |
+ assert( pPager->readOnly==0 ); |
+ CHECK_PAGE(pPg); |
+ |
+ /* The journal file needs to be opened. Higher level routines have already |
+ ** obtained the necessary locks to begin the write-transaction, but the |
+ ** rollback journal might not yet be open. Open it now if this is the case. |
+ ** |
+ ** This is done before calling sqlite3PcacheMakeDirty() on the page. |
+ ** Otherwise, if it were done after calling sqlite3PcacheMakeDirty(), then |
+ ** an error might occur and the pager would end up in WRITER_LOCKED state |
+ ** with pages marked as dirty in the cache. |
+ */ |
+ if( pPager->eState==PAGER_WRITER_LOCKED ){ |
+ rc = pager_open_journal(pPager); |
+ if( rc!=SQLITE_OK ) return rc; |
+ } |
+ assert( pPager->eState>=PAGER_WRITER_CACHEMOD ); |
+ assert( assert_pager_state(pPager) ); |
+ |
+ /* Mark the page that is about to be modified as dirty. */ |
+ sqlite3PcacheMakeDirty(pPg); |
+ |
+ /* If a rollback journal is in use, them make sure the page that is about |
+ ** to change is in the rollback journal, or if the page is a new page off |
+ ** then end of the file, make sure it is marked as PGHDR_NEED_SYNC. |
+ */ |
+ assert( (pPager->pInJournal!=0) == isOpen(pPager->jfd) ); |
+ if( pPager->pInJournal!=0 |
+ && sqlite3BitvecTestNotNull(pPager->pInJournal, pPg->pgno)==0 |
+ ){ |
+ assert( pagerUseWal(pPager)==0 ); |
+ if( pPg->pgno<=pPager->dbOrigSize ){ |
+ rc = pagerAddPageToRollbackJournal(pPg); |
+ if( rc!=SQLITE_OK ){ |
+ return rc; |
+ } |
+ }else{ |
+ if( pPager->eState!=PAGER_WRITER_DBMOD ){ |
+ pPg->flags |= PGHDR_NEED_SYNC; |
+ } |
+ PAGERTRACE(("APPEND %d page %d needSync=%d\n", |
+ PAGERID(pPager), pPg->pgno, |
+ ((pPg->flags&PGHDR_NEED_SYNC)?1:0))); |
+ } |
+ } |
+ |
+ /* The PGHDR_DIRTY bit is set above when the page was added to the dirty-list |
+ ** and before writing the page into the rollback journal. Wait until now, |
+ ** after the page has been successfully journalled, before setting the |
+ ** PGHDR_WRITEABLE bit that indicates that the page can be safely modified. |
+ */ |
+ pPg->flags |= PGHDR_WRITEABLE; |
+ |
+ /* If the statement journal is open and the page is not in it, |
+ ** then write the page into the statement journal. |
+ */ |
+ if( pPager->nSavepoint>0 ){ |
+ rc = subjournalPageIfRequired(pPg); |
+ } |
+ |
+ /* Update the database size and return. */ |
+ if( pPager->dbSize<pPg->pgno ){ |
+ pPager->dbSize = pPg->pgno; |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** This is a variant of sqlite3PagerWrite() that runs when the sector size |
+** is larger than the page size. SQLite makes the (reasonable) assumption that |
+** all bytes of a sector are written together by hardware. Hence, all bytes of |
+** a sector need to be journalled in case of a power loss in the middle of |
+** a write. |
+** |
+** Usually, the sector size is less than or equal to the page size, in which |
+** case pages can be individually written. This routine only runs in the |
+** exceptional case where the page size is smaller than the sector size. |
+*/ |
+static SQLITE_NOINLINE int pagerWriteLargeSector(PgHdr *pPg){ |
+ int rc = SQLITE_OK; /* Return code */ |
+ Pgno nPageCount; /* Total number of pages in database file */ |
+ Pgno pg1; /* First page of the sector pPg is located on. */ |
+ int nPage = 0; /* Number of pages starting at pg1 to journal */ |
+ int ii; /* Loop counter */ |
+ int needSync = 0; /* True if any page has PGHDR_NEED_SYNC */ |
+ Pager *pPager = pPg->pPager; /* The pager that owns pPg */ |
+ Pgno nPagePerSector = (pPager->sectorSize/pPager->pageSize); |
+ |
+ /* Set the doNotSpill NOSYNC bit to 1. This is because we cannot allow |
+ ** a journal header to be written between the pages journaled by |
+ ** this function. |
+ */ |
+ assert( !MEMDB ); |
+ assert( (pPager->doNotSpill & SPILLFLAG_NOSYNC)==0 ); |
+ pPager->doNotSpill |= SPILLFLAG_NOSYNC; |
+ |
+ /* This trick assumes that both the page-size and sector-size are |
+ ** an integer power of 2. It sets variable pg1 to the identifier |
+ ** of the first page of the sector pPg is located on. |
+ */ |
+ pg1 = ((pPg->pgno-1) & ~(nPagePerSector-1)) + 1; |
+ |
+ nPageCount = pPager->dbSize; |
+ if( pPg->pgno>nPageCount ){ |
+ nPage = (pPg->pgno - pg1)+1; |
+ }else if( (pg1+nPagePerSector-1)>nPageCount ){ |
+ nPage = nPageCount+1-pg1; |
+ }else{ |
+ nPage = nPagePerSector; |
+ } |
+ assert(nPage>0); |
+ assert(pg1<=pPg->pgno); |
+ assert((pg1+nPage)>pPg->pgno); |
+ |
+ for(ii=0; ii<nPage && rc==SQLITE_OK; ii++){ |
+ Pgno pg = pg1+ii; |
+ PgHdr *pPage; |
+ if( pg==pPg->pgno || !sqlite3BitvecTest(pPager->pInJournal, pg) ){ |
+ if( pg!=PAGER_MJ_PGNO(pPager) ){ |
+ rc = sqlite3PagerGet(pPager, pg, &pPage, 0); |
+ if( rc==SQLITE_OK ){ |
+ rc = pager_write(pPage); |
+ if( pPage->flags&PGHDR_NEED_SYNC ){ |
+ needSync = 1; |
+ } |
+ sqlite3PagerUnrefNotNull(pPage); |
+ } |
+ } |
+ }else if( (pPage = sqlite3PagerLookup(pPager, pg))!=0 ){ |
+ if( pPage->flags&PGHDR_NEED_SYNC ){ |
+ needSync = 1; |
+ } |
+ sqlite3PagerUnrefNotNull(pPage); |
+ } |
+ } |
+ |
+ /* If the PGHDR_NEED_SYNC flag is set for any of the nPage pages |
+ ** starting at pg1, then it needs to be set for all of them. Because |
+ ** writing to any of these nPage pages may damage the others, the |
+ ** journal file must contain sync()ed copies of all of them |
+ ** before any of them can be written out to the database file. |
+ */ |
+ if( rc==SQLITE_OK && needSync ){ |
+ assert( !MEMDB ); |
+ for(ii=0; ii<nPage; ii++){ |
+ PgHdr *pPage = sqlite3PagerLookup(pPager, pg1+ii); |
+ if( pPage ){ |
+ pPage->flags |= PGHDR_NEED_SYNC; |
+ sqlite3PagerUnrefNotNull(pPage); |
+ } |
+ } |
+ } |
+ |
+ assert( (pPager->doNotSpill & SPILLFLAG_NOSYNC)!=0 ); |
+ pPager->doNotSpill &= ~SPILLFLAG_NOSYNC; |
+ return rc; |
+} |
+ |
+/* |
+** Mark a data page as writeable. This routine must be called before |
+** making changes to a page. The caller must check the return value |
+** of this function and be careful not to change any page data unless |
+** this routine returns SQLITE_OK. |
+** |
+** The difference between this function and pager_write() is that this |
+** function also deals with the special case where 2 or more pages |
+** fit on a single disk sector. In this case all co-resident pages |
+** must have been written to the journal file before returning. |
+** |
+** If an error occurs, SQLITE_NOMEM or an IO error code is returned |
+** as appropriate. Otherwise, SQLITE_OK. |
+*/ |
+SQLITE_PRIVATE int sqlite3PagerWrite(PgHdr *pPg){ |
+ Pager *pPager = pPg->pPager; |
+ assert( (pPg->flags & PGHDR_MMAP)==0 ); |
+ assert( pPager->eState>=PAGER_WRITER_LOCKED ); |
+ assert( assert_pager_state(pPager) ); |
+ if( pPager->errCode ){ |
+ return pPager->errCode; |
+ }else if( (pPg->flags & PGHDR_WRITEABLE)!=0 && pPager->dbSize>=pPg->pgno ){ |
+ if( pPager->nSavepoint ) return subjournalPageIfRequired(pPg); |
+ return SQLITE_OK; |
+ }else if( pPager->sectorSize > (u32)pPager->pageSize ){ |
+ return pagerWriteLargeSector(pPg); |
+ }else{ |
+ return pager_write(pPg); |
+ } |
+} |
+ |
+/* |
+** Return TRUE if the page given in the argument was previously passed |
+** to sqlite3PagerWrite(). In other words, return TRUE if it is ok |
+** to change the content of the page. |
+*/ |
+#ifndef NDEBUG |
+SQLITE_PRIVATE int sqlite3PagerIswriteable(DbPage *pPg){ |
+ return pPg->flags & PGHDR_WRITEABLE; |
+} |
+#endif |
+ |
+/* |
+** A call to this routine tells the pager that it is not necessary to |
+** write the information on page pPg back to the disk, even though |
+** that page might be marked as dirty. This happens, for example, when |
+** the page has been added as a leaf of the freelist and so its |
+** content no longer matters. |
+** |
+** The overlying software layer calls this routine when all of the data |
+** on the given page is unused. The pager marks the page as clean so |
+** that it does not get written to disk. |
+** |
+** Tests show that this optimization can quadruple the speed of large |
+** DELETE operations. |
+*/ |
+SQLITE_PRIVATE void sqlite3PagerDontWrite(PgHdr *pPg){ |
+ Pager *pPager = pPg->pPager; |
+ if( (pPg->flags&PGHDR_DIRTY) && pPager->nSavepoint==0 ){ |
+ PAGERTRACE(("DONT_WRITE page %d of %d\n", pPg->pgno, PAGERID(pPager))); |
+ IOTRACE(("CLEAN %p %d\n", pPager, pPg->pgno)) |
+ pPg->flags |= PGHDR_DONT_WRITE; |
+ pPg->flags &= ~PGHDR_WRITEABLE; |
+ pager_set_pagehash(pPg); |
+ } |
+} |
+ |
+/* |
+** This routine is called to increment the value of the database file |
+** change-counter, stored as a 4-byte big-endian integer starting at |
+** byte offset 24 of the pager file. The secondary change counter at |
+** 92 is also updated, as is the SQLite version number at offset 96. |
+** |
+** But this only happens if the pPager->changeCountDone flag is false. |
+** To avoid excess churning of page 1, the update only happens once. |
+** See also the pager_write_changecounter() routine that does an |
+** unconditional update of the change counters. |
+** |
+** If the isDirectMode flag is zero, then this is done by calling |
+** sqlite3PagerWrite() on page 1, then modifying the contents of the |
+** page data. In this case the file will be updated when the current |
+** transaction is committed. |
+** |
+** The isDirectMode flag may only be non-zero if the library was compiled |
+** with the SQLITE_ENABLE_ATOMIC_WRITE macro defined. In this case, |
+** if isDirect is non-zero, then the database file is updated directly |
+** by writing an updated version of page 1 using a call to the |
+** sqlite3OsWrite() function. |
+*/ |
+static int pager_incr_changecounter(Pager *pPager, int isDirectMode){ |
+ int rc = SQLITE_OK; |
+ |
+ assert( pPager->eState==PAGER_WRITER_CACHEMOD |
+ || pPager->eState==PAGER_WRITER_DBMOD |
+ ); |
+ assert( assert_pager_state(pPager) ); |
+ |
+ /* Declare and initialize constant integer 'isDirect'. If the |
+ ** atomic-write optimization is enabled in this build, then isDirect |
+ ** is initialized to the value passed as the isDirectMode parameter |
+ ** to this function. Otherwise, it is always set to zero. |
+ ** |
+ ** The idea is that if the atomic-write optimization is not |
+ ** enabled at compile time, the compiler can omit the tests of |
+ ** 'isDirect' below, as well as the block enclosed in the |
+ ** "if( isDirect )" condition. |
+ */ |
+#ifndef SQLITE_ENABLE_ATOMIC_WRITE |
+# define DIRECT_MODE 0 |
+ assert( isDirectMode==0 ); |
+ UNUSED_PARAMETER(isDirectMode); |
+#else |
+# define DIRECT_MODE isDirectMode |
+#endif |
+ |
+ if( !pPager->changeCountDone && ALWAYS(pPager->dbSize>0) ){ |
+ PgHdr *pPgHdr; /* Reference to page 1 */ |
+ |
+ assert( !pPager->tempFile && isOpen(pPager->fd) ); |
+ |
+ /* Open page 1 of the file for writing. */ |
+ rc = sqlite3PagerGet(pPager, 1, &pPgHdr, 0); |
+ assert( pPgHdr==0 || rc==SQLITE_OK ); |
+ |
+ /* If page one was fetched successfully, and this function is not |
+ ** operating in direct-mode, make page 1 writable. When not in |
+ ** direct mode, page 1 is always held in cache and hence the PagerGet() |
+ ** above is always successful - hence the ALWAYS on rc==SQLITE_OK. |
+ */ |
+ if( !DIRECT_MODE && ALWAYS(rc==SQLITE_OK) ){ |
+ rc = sqlite3PagerWrite(pPgHdr); |
+ } |
+ |
+ if( rc==SQLITE_OK ){ |
+ /* Actually do the update of the change counter */ |
+ pager_write_changecounter(pPgHdr); |
+ |
+ /* If running in direct mode, write the contents of page 1 to the file. */ |
+ if( DIRECT_MODE ){ |
+ const void *zBuf; |
+ assert( pPager->dbFileSize>0 ); |
+ CODEC2(pPager, pPgHdr->pData, 1, 6, rc=SQLITE_NOMEM, zBuf); |
+ if( rc==SQLITE_OK ){ |
+ rc = sqlite3OsWrite(pPager->fd, zBuf, pPager->pageSize, 0); |
+ pPager->aStat[PAGER_STAT_WRITE]++; |
+ } |
+ if( rc==SQLITE_OK ){ |
+ /* Update the pager's copy of the change-counter. Otherwise, the |
+ ** next time a read transaction is opened the cache will be |
+ ** flushed (as the change-counter values will not match). */ |
+ const void *pCopy = (const void *)&((const char *)zBuf)[24]; |
+ memcpy(&pPager->dbFileVers, pCopy, sizeof(pPager->dbFileVers)); |
+ pPager->changeCountDone = 1; |
+ } |
+ }else{ |
+ pPager->changeCountDone = 1; |
+ } |
+ } |
+ |
+ /* Release the page reference. */ |
+ sqlite3PagerUnref(pPgHdr); |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Sync the database file to disk. This is a no-op for in-memory databases |
+** or pages with the Pager.noSync flag set. |
+** |
+** If successful, or if called on a pager for which it is a no-op, this |
+** function returns SQLITE_OK. Otherwise, an IO error code is returned. |
+*/ |
+SQLITE_PRIVATE int sqlite3PagerSync(Pager *pPager, const char *zMaster){ |
+ int rc = SQLITE_OK; |
+ |
+ if( isOpen(pPager->fd) ){ |
+ void *pArg = (void*)zMaster; |
+ rc = sqlite3OsFileControl(pPager->fd, SQLITE_FCNTL_SYNC, pArg); |
+ if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK; |
+ } |
+ if( rc==SQLITE_OK && !pPager->noSync ){ |
+ assert( !MEMDB ); |
+ rc = sqlite3OsSync(pPager->fd, pPager->syncFlags); |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** This function may only be called while a write-transaction is active in |
+** rollback. If the connection is in WAL mode, this call is a no-op. |
+** Otherwise, if the connection does not already have an EXCLUSIVE lock on |
+** the database file, an attempt is made to obtain one. |
+** |
+** If the EXCLUSIVE lock is already held or the attempt to obtain it is |
+** successful, or the connection is in WAL mode, SQLITE_OK is returned. |
+** Otherwise, either SQLITE_BUSY or an SQLITE_IOERR_XXX error code is |
+** returned. |
+*/ |
+SQLITE_PRIVATE int sqlite3PagerExclusiveLock(Pager *pPager){ |
+ int rc = pPager->errCode; |
+ assert( assert_pager_state(pPager) ); |
+ if( rc==SQLITE_OK ){ |
+ assert( pPager->eState==PAGER_WRITER_CACHEMOD |
+ || pPager->eState==PAGER_WRITER_DBMOD |
+ || pPager->eState==PAGER_WRITER_LOCKED |
+ ); |
+ assert( assert_pager_state(pPager) ); |
+ if( 0==pagerUseWal(pPager) ){ |
+ rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK); |
+ } |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Sync the database file for the pager pPager. zMaster points to the name |
+** of a master journal file that should be written into the individual |
+** journal file. zMaster may be NULL, which is interpreted as no master |
+** journal (a single database transaction). |
+** |
+** This routine ensures that: |
+** |
+** * The database file change-counter is updated, |
+** * the journal is synced (unless the atomic-write optimization is used), |
+** * all dirty pages are written to the database file, |
+** * the database file is truncated (if required), and |
+** * the database file synced. |
+** |
+** The only thing that remains to commit the transaction is to finalize |
+** (delete, truncate or zero the first part of) the journal file (or |
+** delete the master journal file if specified). |
+** |
+** Note that if zMaster==NULL, this does not overwrite a previous value |
+** passed to an sqlite3PagerCommitPhaseOne() call. |
+** |
+** If the final parameter - noSync - is true, then the database file itself |
+** is not synced. The caller must call sqlite3PagerSync() directly to |
+** sync the database file before calling CommitPhaseTwo() to delete the |
+** journal file in this case. |
+*/ |
+SQLITE_PRIVATE int sqlite3PagerCommitPhaseOne( |
+ Pager *pPager, /* Pager object */ |
+ const char *zMaster, /* If not NULL, the master journal name */ |
+ int noSync /* True to omit the xSync on the db file */ |
+){ |
+ int rc = SQLITE_OK; /* Return code */ |
+ |
+ assert( pPager->eState==PAGER_WRITER_LOCKED |
+ || pPager->eState==PAGER_WRITER_CACHEMOD |
+ || pPager->eState==PAGER_WRITER_DBMOD |
+ || pPager->eState==PAGER_ERROR |
+ ); |
+ assert( assert_pager_state(pPager) ); |
+ |
+ /* If a prior error occurred, report that error again. */ |
+ if( NEVER(pPager->errCode) ) return pPager->errCode; |
+ |
+ PAGERTRACE(("DATABASE SYNC: File=%s zMaster=%s nSize=%d\n", |
+ pPager->zFilename, zMaster, pPager->dbSize)); |
+ |
+ /* If no database changes have been made, return early. */ |
+ if( pPager->eState<PAGER_WRITER_CACHEMOD ) return SQLITE_OK; |
+ |
+ if( MEMDB ){ |
+ /* If this is an in-memory db, or no pages have been written to, or this |
+ ** function has already been called, it is mostly a no-op. However, any |
+ ** backup in progress needs to be restarted. |
+ */ |
+ sqlite3BackupRestart(pPager->pBackup); |
+ }else{ |
+ if( pagerUseWal(pPager) ){ |
+ PgHdr *pList = sqlite3PcacheDirtyList(pPager->pPCache); |
+ PgHdr *pPageOne = 0; |
+ if( pList==0 ){ |
+ /* Must have at least one page for the WAL commit flag. |
+ ** Ticket [2d1a5c67dfc2363e44f29d9bbd57f] 2011-05-18 */ |
+ rc = sqlite3PagerGet(pPager, 1, &pPageOne, 0); |
+ pList = pPageOne; |
+ pList->pDirty = 0; |
+ } |
+ assert( rc==SQLITE_OK ); |
+ if( ALWAYS(pList) ){ |
+ rc = pagerWalFrames(pPager, pList, pPager->dbSize, 1); |
+ } |
+ sqlite3PagerUnref(pPageOne); |
+ if( rc==SQLITE_OK ){ |
+ sqlite3PcacheCleanAll(pPager->pPCache); |
+ } |
+ }else{ |
+ /* The following block updates the change-counter. Exactly how it |
+ ** does this depends on whether or not the atomic-update optimization |
+ ** was enabled at compile time, and if this transaction meets the |
+ ** runtime criteria to use the operation: |
+ ** |
+ ** * The file-system supports the atomic-write property for |
+ ** blocks of size page-size, and |
+ ** * This commit is not part of a multi-file transaction, and |
+ ** * Exactly one page has been modified and store in the journal file. |
+ ** |
+ ** If the optimization was not enabled at compile time, then the |
+ ** pager_incr_changecounter() function is called to update the change |
+ ** counter in 'indirect-mode'. If the optimization is compiled in but |
+ ** is not applicable to this transaction, call sqlite3JournalCreate() |
+ ** to make sure the journal file has actually been created, then call |
+ ** pager_incr_changecounter() to update the change-counter in indirect |
+ ** mode. |
+ ** |
+ ** Otherwise, if the optimization is both enabled and applicable, |
+ ** then call pager_incr_changecounter() to update the change-counter |
+ ** in 'direct' mode. In this case the journal file will never be |
+ ** created for this transaction. |
+ */ |
+ #ifdef SQLITE_ENABLE_ATOMIC_WRITE |
+ PgHdr *pPg; |
+ assert( isOpen(pPager->jfd) |
+ || pPager->journalMode==PAGER_JOURNALMODE_OFF |
+ || pPager->journalMode==PAGER_JOURNALMODE_WAL |
+ ); |
+ if( !zMaster && isOpen(pPager->jfd) |
+ && pPager->journalOff==jrnlBufferSize(pPager) |
+ && pPager->dbSize>=pPager->dbOrigSize |
+ && (0==(pPg = sqlite3PcacheDirtyList(pPager->pPCache)) || 0==pPg->pDirty) |
+ ){ |
+ /* Update the db file change counter via the direct-write method. The |
+ ** following call will modify the in-memory representation of page 1 |
+ ** to include the updated change counter and then write page 1 |
+ ** directly to the database file. Because of the atomic-write |
+ ** property of the host file-system, this is safe. |
+ */ |
+ rc = pager_incr_changecounter(pPager, 1); |
+ }else{ |
+ rc = sqlite3JournalCreate(pPager->jfd); |
+ if( rc==SQLITE_OK ){ |
+ rc = pager_incr_changecounter(pPager, 0); |
+ } |
+ } |
+ #else |
+ rc = pager_incr_changecounter(pPager, 0); |
+ #endif |
+ if( rc!=SQLITE_OK ) goto commit_phase_one_exit; |
+ |
+ /* Write the master journal name into the journal file. If a master |
+ ** journal file name has already been written to the journal file, |
+ ** or if zMaster is NULL (no master journal), then this call is a no-op. |
+ */ |
+ rc = writeMasterJournal(pPager, zMaster); |
+ if( rc!=SQLITE_OK ) goto commit_phase_one_exit; |
+ |
+ /* Sync the journal file and write all dirty pages to the database. |
+ ** If the atomic-update optimization is being used, this sync will not |
+ ** create the journal file or perform any real IO. |
+ ** |
+ ** Because the change-counter page was just modified, unless the |
+ ** atomic-update optimization is used it is almost certain that the |
+ ** journal requires a sync here. However, in locking_mode=exclusive |
+ ** on a system under memory pressure it is just possible that this is |
+ ** not the case. In this case it is likely enough that the redundant |
+ ** xSync() call will be changed to a no-op by the OS anyhow. |
+ */ |
+ rc = syncJournal(pPager, 0); |
+ if( rc!=SQLITE_OK ) goto commit_phase_one_exit; |
+ |
+ rc = pager_write_pagelist(pPager,sqlite3PcacheDirtyList(pPager->pPCache)); |
+ if( rc!=SQLITE_OK ){ |
+ assert( rc!=SQLITE_IOERR_BLOCKED ); |
+ goto commit_phase_one_exit; |
+ } |
+ sqlite3PcacheCleanAll(pPager->pPCache); |
+ |
+ /* If the file on disk is smaller than the database image, use |
+ ** pager_truncate to grow the file here. This can happen if the database |
+ ** image was extended as part of the current transaction and then the |
+ ** last page in the db image moved to the free-list. In this case the |
+ ** last page is never written out to disk, leaving the database file |
+ ** undersized. Fix this now if it is the case. */ |
+ if( pPager->dbSize>pPager->dbFileSize ){ |
+ Pgno nNew = pPager->dbSize - (pPager->dbSize==PAGER_MJ_PGNO(pPager)); |
+ assert( pPager->eState==PAGER_WRITER_DBMOD ); |
+ rc = pager_truncate(pPager, nNew); |
+ if( rc!=SQLITE_OK ) goto commit_phase_one_exit; |
+ } |
+ |
+ /* Finally, sync the database file. */ |
+ if( !noSync ){ |
+ rc = sqlite3PagerSync(pPager, zMaster); |
+ } |
+ IOTRACE(("DBSYNC %p\n", pPager)) |
+ } |
+ } |
+ |
+commit_phase_one_exit: |
+ if( rc==SQLITE_OK && !pagerUseWal(pPager) ){ |
+ pPager->eState = PAGER_WRITER_FINISHED; |
+ } |
+ return rc; |
+} |
+ |
+ |
+/* |
+** When this function is called, the database file has been completely |
+** updated to reflect the changes made by the current transaction and |
+** synced to disk. The journal file still exists in the file-system |
+** though, and if a failure occurs at this point it will eventually |
+** be used as a hot-journal and the current transaction rolled back. |
+** |
+** This function finalizes the journal file, either by deleting, |
+** truncating or partially zeroing it, so that it cannot be used |
+** for hot-journal rollback. Once this is done the transaction is |
+** irrevocably committed. |
+** |
+** If an error occurs, an IO error code is returned and the pager |
+** moves into the error state. Otherwise, SQLITE_OK is returned. |
+*/ |
+SQLITE_PRIVATE int sqlite3PagerCommitPhaseTwo(Pager *pPager){ |
+ int rc = SQLITE_OK; /* Return code */ |
+ |
+ /* This routine should not be called if a prior error has occurred. |
+ ** But if (due to a coding error elsewhere in the system) it does get |
+ ** called, just return the same error code without doing anything. */ |
+ if( NEVER(pPager->errCode) ) return pPager->errCode; |
+ |
+ assert( pPager->eState==PAGER_WRITER_LOCKED |
+ || pPager->eState==PAGER_WRITER_FINISHED |
+ || (pagerUseWal(pPager) && pPager->eState==PAGER_WRITER_CACHEMOD) |
+ ); |
+ assert( assert_pager_state(pPager) ); |
+ |
+ /* An optimization. If the database was not actually modified during |
+ ** this transaction, the pager is running in exclusive-mode and is |
+ ** using persistent journals, then this function is a no-op. |
+ ** |
+ ** The start of the journal file currently contains a single journal |
+ ** header with the nRec field set to 0. If such a journal is used as |
+ ** a hot-journal during hot-journal rollback, 0 changes will be made |
+ ** to the database file. So there is no need to zero the journal |
+ ** header. Since the pager is in exclusive mode, there is no need |
+ ** to drop any locks either. |
+ */ |
+ if( pPager->eState==PAGER_WRITER_LOCKED |
+ && pPager->exclusiveMode |
+ && pPager->journalMode==PAGER_JOURNALMODE_PERSIST |
+ ){ |
+ assert( pPager->journalOff==JOURNAL_HDR_SZ(pPager) || !pPager->journalOff ); |
+ pPager->eState = PAGER_READER; |
+ return SQLITE_OK; |
+ } |
+ |
+ PAGERTRACE(("COMMIT %d\n", PAGERID(pPager))); |
+ pPager->iDataVersion++; |
+ rc = pager_end_transaction(pPager, pPager->setMaster, 1); |
+ return pager_error(pPager, rc); |
+} |
+ |
+/* |
+** If a write transaction is open, then all changes made within the |
+** transaction are reverted and the current write-transaction is closed. |
+** The pager falls back to PAGER_READER state if successful, or PAGER_ERROR |
+** state if an error occurs. |
+** |
+** If the pager is already in PAGER_ERROR state when this function is called, |
+** it returns Pager.errCode immediately. No work is performed in this case. |
+** |
+** Otherwise, in rollback mode, this function performs two functions: |
+** |
+** 1) It rolls back the journal file, restoring all database file and |
+** in-memory cache pages to the state they were in when the transaction |
+** was opened, and |
+** |
+** 2) It finalizes the journal file, so that it is not used for hot |
+** rollback at any point in the future. |
+** |
+** Finalization of the journal file (task 2) is only performed if the |
+** rollback is successful. |
+** |
+** In WAL mode, all cache-entries containing data modified within the |
+** current transaction are either expelled from the cache or reverted to |
+** their pre-transaction state by re-reading data from the database or |
+** WAL files. The WAL transaction is then closed. |
+*/ |
+SQLITE_PRIVATE int sqlite3PagerRollback(Pager *pPager){ |
+ int rc = SQLITE_OK; /* Return code */ |
+ PAGERTRACE(("ROLLBACK %d\n", PAGERID(pPager))); |
+ |
+ /* PagerRollback() is a no-op if called in READER or OPEN state. If |
+ ** the pager is already in the ERROR state, the rollback is not |
+ ** attempted here. Instead, the error code is returned to the caller. |
+ */ |
+ assert( assert_pager_state(pPager) ); |
+ if( pPager->eState==PAGER_ERROR ) return pPager->errCode; |
+ if( pPager->eState<=PAGER_READER ) return SQLITE_OK; |
+ |
+ if( pagerUseWal(pPager) ){ |
+ int rc2; |
+ rc = sqlite3PagerSavepoint(pPager, SAVEPOINT_ROLLBACK, -1); |
+ rc2 = pager_end_transaction(pPager, pPager->setMaster, 0); |
+ if( rc==SQLITE_OK ) rc = rc2; |
+ }else if( !isOpen(pPager->jfd) || pPager->eState==PAGER_WRITER_LOCKED ){ |
+ int eState = pPager->eState; |
+ rc = pager_end_transaction(pPager, 0, 0); |
+ if( !MEMDB && eState>PAGER_WRITER_LOCKED ){ |
+ /* This can happen using journal_mode=off. Move the pager to the error |
+ ** state to indicate that the contents of the cache may not be trusted. |
+ ** Any active readers will get SQLITE_ABORT. |
+ */ |
+ pPager->errCode = SQLITE_ABORT; |
+ pPager->eState = PAGER_ERROR; |
+ return rc; |
+ } |
+ }else{ |
+ rc = pager_playback(pPager, 0); |
+ } |
+ |
+ assert( pPager->eState==PAGER_READER || rc!=SQLITE_OK ); |
+ assert( rc==SQLITE_OK || rc==SQLITE_FULL || rc==SQLITE_CORRUPT |
+ || rc==SQLITE_NOMEM || (rc&0xFF)==SQLITE_IOERR |
+ || rc==SQLITE_CANTOPEN |
+ ); |
+ |
+ /* If an error occurs during a ROLLBACK, we can no longer trust the pager |
+ ** cache. So call pager_error() on the way out to make any error persistent. |
+ */ |
+ return pager_error(pPager, rc); |
+} |
+ |
+/* |
+** Return TRUE if the database file is opened read-only. Return FALSE |
+** if the database is (in theory) writable. |
+*/ |
+SQLITE_PRIVATE u8 sqlite3PagerIsreadonly(Pager *pPager){ |
+ return pPager->readOnly; |
+} |
+ |
+#ifdef SQLITE_DEBUG |
+/* |
+** Return the sum of the reference counts for all pages held by pPager. |
+*/ |
+SQLITE_PRIVATE int sqlite3PagerRefcount(Pager *pPager){ |
+ return sqlite3PcacheRefCount(pPager->pPCache); |
+} |
+#endif |
+ |
+/* |
+** Return the approximate number of bytes of memory currently |
+** used by the pager and its associated cache. |
+*/ |
+SQLITE_PRIVATE int sqlite3PagerMemUsed(Pager *pPager){ |
+ int perPageSize = pPager->pageSize + pPager->nExtra + sizeof(PgHdr) |
+ + 5*sizeof(void*); |
+ return perPageSize*sqlite3PcachePagecount(pPager->pPCache) |
+ + sqlite3MallocSize(pPager) |
+ + pPager->pageSize; |
+} |
+ |
+/* |
+** Return the number of references to the specified page. |
+*/ |
+SQLITE_PRIVATE int sqlite3PagerPageRefcount(DbPage *pPage){ |
+ return sqlite3PcachePageRefcount(pPage); |
+} |
+ |
+#ifdef SQLITE_TEST |
+/* |
+** This routine is used for testing and analysis only. |
+*/ |
+SQLITE_PRIVATE int *sqlite3PagerStats(Pager *pPager){ |
+ static int a[11]; |
+ a[0] = sqlite3PcacheRefCount(pPager->pPCache); |
+ a[1] = sqlite3PcachePagecount(pPager->pPCache); |
+ a[2] = sqlite3PcacheGetCachesize(pPager->pPCache); |
+ a[3] = pPager->eState==PAGER_OPEN ? -1 : (int) pPager->dbSize; |
+ a[4] = pPager->eState; |
+ a[5] = pPager->errCode; |
+ a[6] = pPager->aStat[PAGER_STAT_HIT]; |
+ a[7] = pPager->aStat[PAGER_STAT_MISS]; |
+ a[8] = 0; /* Used to be pPager->nOvfl */ |
+ a[9] = pPager->nRead; |
+ a[10] = pPager->aStat[PAGER_STAT_WRITE]; |
+ return a; |
+} |
+#endif |
+ |
+/* |
+** Parameter eStat must be either SQLITE_DBSTATUS_CACHE_HIT or |
+** SQLITE_DBSTATUS_CACHE_MISS. Before returning, *pnVal is incremented by the |
+** current cache hit or miss count, according to the value of eStat. If the |
+** reset parameter is non-zero, the cache hit or miss count is zeroed before |
+** returning. |
+*/ |
+SQLITE_PRIVATE void sqlite3PagerCacheStat(Pager *pPager, int eStat, int reset, int *pnVal){ |
+ |
+ assert( eStat==SQLITE_DBSTATUS_CACHE_HIT |
+ || eStat==SQLITE_DBSTATUS_CACHE_MISS |
+ || eStat==SQLITE_DBSTATUS_CACHE_WRITE |
+ ); |
+ |
+ assert( SQLITE_DBSTATUS_CACHE_HIT+1==SQLITE_DBSTATUS_CACHE_MISS ); |
+ assert( SQLITE_DBSTATUS_CACHE_HIT+2==SQLITE_DBSTATUS_CACHE_WRITE ); |
+ assert( PAGER_STAT_HIT==0 && PAGER_STAT_MISS==1 && PAGER_STAT_WRITE==2 ); |
+ |
+ *pnVal += pPager->aStat[eStat - SQLITE_DBSTATUS_CACHE_HIT]; |
+ if( reset ){ |
+ pPager->aStat[eStat - SQLITE_DBSTATUS_CACHE_HIT] = 0; |
+ } |
+} |
+ |
+/* |
+** Return true if this is an in-memory pager. |
+*/ |
+SQLITE_PRIVATE int sqlite3PagerIsMemdb(Pager *pPager){ |
+ return MEMDB; |
+} |
+ |
+/* |
+** Check that there are at least nSavepoint savepoints open. If there are |
+** currently less than nSavepoints open, then open one or more savepoints |
+** to make up the difference. If the number of savepoints is already |
+** equal to nSavepoint, then this function is a no-op. |
+** |
+** If a memory allocation fails, SQLITE_NOMEM is returned. If an error |
+** occurs while opening the sub-journal file, then an IO error code is |
+** returned. Otherwise, SQLITE_OK. |
+*/ |
+static SQLITE_NOINLINE int pagerOpenSavepoint(Pager *pPager, int nSavepoint){ |
+ int rc = SQLITE_OK; /* Return code */ |
+ int nCurrent = pPager->nSavepoint; /* Current number of savepoints */ |
+ int ii; /* Iterator variable */ |
+ PagerSavepoint *aNew; /* New Pager.aSavepoint array */ |
+ |
+ assert( pPager->eState>=PAGER_WRITER_LOCKED ); |
+ assert( assert_pager_state(pPager) ); |
+ assert( nSavepoint>nCurrent && pPager->useJournal ); |
+ |
+ /* Grow the Pager.aSavepoint array using realloc(). Return SQLITE_NOMEM |
+ ** if the allocation fails. Otherwise, zero the new portion in case a |
+ ** malloc failure occurs while populating it in the for(...) loop below. |
+ */ |
+ aNew = (PagerSavepoint *)sqlite3Realloc( |
+ pPager->aSavepoint, sizeof(PagerSavepoint)*nSavepoint |
+ ); |
+ if( !aNew ){ |
+ return SQLITE_NOMEM; |
+ } |
+ memset(&aNew[nCurrent], 0, (nSavepoint-nCurrent) * sizeof(PagerSavepoint)); |
+ pPager->aSavepoint = aNew; |
+ |
+ /* Populate the PagerSavepoint structures just allocated. */ |
+ for(ii=nCurrent; ii<nSavepoint; ii++){ |
+ aNew[ii].nOrig = pPager->dbSize; |
+ if( isOpen(pPager->jfd) && pPager->journalOff>0 ){ |
+ aNew[ii].iOffset = pPager->journalOff; |
+ }else{ |
+ aNew[ii].iOffset = JOURNAL_HDR_SZ(pPager); |
+ } |
+ aNew[ii].iSubRec = pPager->nSubRec; |
+ aNew[ii].pInSavepoint = sqlite3BitvecCreate(pPager->dbSize); |
+ if( !aNew[ii].pInSavepoint ){ |
+ return SQLITE_NOMEM; |
+ } |
+ if( pagerUseWal(pPager) ){ |
+ sqlite3WalSavepoint(pPager->pWal, aNew[ii].aWalData); |
+ } |
+ pPager->nSavepoint = ii+1; |
+ } |
+ assert( pPager->nSavepoint==nSavepoint ); |
+ assertTruncateConstraint(pPager); |
+ return rc; |
+} |
+SQLITE_PRIVATE int sqlite3PagerOpenSavepoint(Pager *pPager, int nSavepoint){ |
+ assert( pPager->eState>=PAGER_WRITER_LOCKED ); |
+ assert( assert_pager_state(pPager) ); |
+ |
+ if( nSavepoint>pPager->nSavepoint && pPager->useJournal ){ |
+ return pagerOpenSavepoint(pPager, nSavepoint); |
+ }else{ |
+ return SQLITE_OK; |
+ } |
+} |
+ |
+ |
+/* |
+** This function is called to rollback or release (commit) a savepoint. |
+** The savepoint to release or rollback need not be the most recently |
+** created savepoint. |
+** |
+** Parameter op is always either SAVEPOINT_ROLLBACK or SAVEPOINT_RELEASE. |
+** If it is SAVEPOINT_RELEASE, then release and destroy the savepoint with |
+** index iSavepoint. If it is SAVEPOINT_ROLLBACK, then rollback all changes |
+** that have occurred since the specified savepoint was created. |
+** |
+** The savepoint to rollback or release is identified by parameter |
+** iSavepoint. A value of 0 means to operate on the outermost savepoint |
+** (the first created). A value of (Pager.nSavepoint-1) means operate |
+** on the most recently created savepoint. If iSavepoint is greater than |
+** (Pager.nSavepoint-1), then this function is a no-op. |
+** |
+** If a negative value is passed to this function, then the current |
+** transaction is rolled back. This is different to calling |
+** sqlite3PagerRollback() because this function does not terminate |
+** the transaction or unlock the database, it just restores the |
+** contents of the database to its original state. |
+** |
+** In any case, all savepoints with an index greater than iSavepoint |
+** are destroyed. If this is a release operation (op==SAVEPOINT_RELEASE), |
+** then savepoint iSavepoint is also destroyed. |
+** |
+** This function may return SQLITE_NOMEM if a memory allocation fails, |
+** or an IO error code if an IO error occurs while rolling back a |
+** savepoint. If no errors occur, SQLITE_OK is returned. |
+*/ |
+SQLITE_PRIVATE int sqlite3PagerSavepoint(Pager *pPager, int op, int iSavepoint){ |
+ int rc = pPager->errCode; /* Return code */ |
+ |
+ assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK ); |
+ assert( iSavepoint>=0 || op==SAVEPOINT_ROLLBACK ); |
+ |
+ if( rc==SQLITE_OK && iSavepoint<pPager->nSavepoint ){ |
+ int ii; /* Iterator variable */ |
+ int nNew; /* Number of remaining savepoints after this op. */ |
+ |
+ /* Figure out how many savepoints will still be active after this |
+ ** operation. Store this value in nNew. Then free resources associated |
+ ** with any savepoints that are destroyed by this operation. |
+ */ |
+ nNew = iSavepoint + (( op==SAVEPOINT_RELEASE ) ? 0 : 1); |
+ for(ii=nNew; ii<pPager->nSavepoint; ii++){ |
+ sqlite3BitvecDestroy(pPager->aSavepoint[ii].pInSavepoint); |
+ } |
+ pPager->nSavepoint = nNew; |
+ |
+ /* If this is a release of the outermost savepoint, truncate |
+ ** the sub-journal to zero bytes in size. */ |
+ if( op==SAVEPOINT_RELEASE ){ |
+ if( nNew==0 && isOpen(pPager->sjfd) ){ |
+ /* Only truncate if it is an in-memory sub-journal. */ |
+ if( sqlite3IsMemJournal(pPager->sjfd) ){ |
+ rc = sqlite3OsTruncate(pPager->sjfd, 0); |
+ assert( rc==SQLITE_OK ); |
+ } |
+ pPager->nSubRec = 0; |
+ } |
+ } |
+ /* Else this is a rollback operation, playback the specified savepoint. |
+ ** If this is a temp-file, it is possible that the journal file has |
+ ** not yet been opened. In this case there have been no changes to |
+ ** the database file, so the playback operation can be skipped. |
+ */ |
+ else if( pagerUseWal(pPager) || isOpen(pPager->jfd) ){ |
+ PagerSavepoint *pSavepoint = (nNew==0)?0:&pPager->aSavepoint[nNew-1]; |
+ rc = pagerPlaybackSavepoint(pPager, pSavepoint); |
+ assert(rc!=SQLITE_DONE); |
+ } |
+ } |
+ |
+ return rc; |
+} |
+ |
+/* |
+** Return the full pathname of the database file. |
+** |
+** Except, if the pager is in-memory only, then return an empty string if |
+** nullIfMemDb is true. This routine is called with nullIfMemDb==1 when |
+** used to report the filename to the user, for compatibility with legacy |
+** behavior. But when the Btree needs to know the filename for matching to |
+** shared cache, it uses nullIfMemDb==0 so that in-memory databases can |
+** participate in shared-cache. |
+*/ |
+SQLITE_PRIVATE const char *sqlite3PagerFilename(Pager *pPager, int nullIfMemDb){ |
+ return (nullIfMemDb && pPager->memDb) ? "" : pPager->zFilename; |
+} |
+ |
+/* |
+** Return the VFS structure for the pager. |
+*/ |
+SQLITE_PRIVATE sqlite3_vfs *sqlite3PagerVfs(Pager *pPager){ |
+ return pPager->pVfs; |
+} |
+ |
+/* |
+** Return the file handle for the database file associated |
+** with the pager. This might return NULL if the file has |
+** not yet been opened. |
+*/ |
+SQLITE_PRIVATE sqlite3_file *sqlite3PagerFile(Pager *pPager){ |
+ return pPager->fd; |
+} |
+ |
+/* |
+** Return the file handle for the journal file (if it exists). |
+** This will be either the rollback journal or the WAL file. |
+*/ |
+SQLITE_PRIVATE sqlite3_file *sqlite3PagerJrnlFile(Pager *pPager){ |
+#if SQLITE_OMIT_WAL |
+ return pPager->jfd; |
+#else |
+ return pPager->pWal ? sqlite3WalFile(pPager->pWal) : pPager->jfd; |
+#endif |
+} |
+ |
+/* |
+** Return the full pathname of the journal file. |
+*/ |
+SQLITE_PRIVATE const char *sqlite3PagerJournalname(Pager *pPager){ |
+ return pPager->zJournal; |
+} |
+ |
+/* |
+** Return true if fsync() calls are disabled for this pager. Return FALSE |
+** if fsync()s are executed normally. |
+*/ |
+SQLITE_PRIVATE int sqlite3PagerNosync(Pager *pPager){ |
+ return pPager->noSync; |
+} |
+ |
+#ifdef SQLITE_HAS_CODEC |
+/* |
+** Set or retrieve the codec for this pager |
+*/ |
+SQLITE_PRIVATE void sqlite3PagerSetCodec( |
+ Pager *pPager, |
+ void *(*xCodec)(void*,void*,Pgno,int), |
+ void (*xCodecSizeChng)(void*,int,int), |
+ void (*xCodecFree)(void*), |
+ void *pCodec |
+){ |
+ if( pPager->xCodecFree ) pPager->xCodecFree(pPager->pCodec); |
+ pPager->xCodec = pPager->memDb ? 0 : xCodec; |
+ pPager->xCodecSizeChng = xCodecSizeChng; |
+ pPager->xCodecFree = xCodecFree; |
+ pPager->pCodec = pCodec; |
+ pagerReportSize(pPager); |
+} |
+SQLITE_PRIVATE void *sqlite3PagerGetCodec(Pager *pPager){ |
+ return pPager->pCodec; |
+} |
+ |
+/* |
+** This function is called by the wal module when writing page content |
+** into the log file. |
+** |
+** This function returns a pointer to a buffer containing the encrypted |
+** page content. If a malloc fails, this function may return NULL. |
+*/ |
+SQLITE_PRIVATE void *sqlite3PagerCodec(PgHdr *pPg){ |
+ void *aData = 0; |
+ CODEC2(pPg->pPager, pPg->pData, pPg->pgno, 6, return 0, aData); |
+ return aData; |
+} |
+ |
+/* |
+** Return the current pager state |
+*/ |
+SQLITE_PRIVATE int sqlite3PagerState(Pager *pPager){ |
+ return pPager->eState; |
+} |
+#endif /* SQLITE_HAS_CODEC */ |
+ |
+#ifndef SQLITE_OMIT_AUTOVACUUM |
+/* |
+** Move the page pPg to location pgno in the file. |
+** |
+** There must be no references to the page previously located at |
+** pgno (which we call pPgOld) though that page is allowed to be |
+** in cache. If the page previously located at pgno is not already |
+** in the rollback journal, it is not put there by by this routine. |
+** |
+** References to the page pPg remain valid. Updating any |
+** meta-data associated with pPg (i.e. data stored in the nExtra bytes |
+** allocated along with the page) is the responsibility of the caller. |
+** |
+** A transaction must be active when this routine is called. It used to be |
+** required that a statement transaction was not active, but this restriction |
+** has been removed (CREATE INDEX needs to move a page when a statement |
+** transaction is active). |
+** |
+** If the fourth argument, isCommit, is non-zero, then this page is being |
+** moved as part of a database reorganization just before the transaction |
+** is being committed. In this case, it is guaranteed that the database page |
+** pPg refers to will not be written to again within this transaction. |
+** |
+** This function may return SQLITE_NOMEM or an IO error code if an error |
+** occurs. Otherwise, it returns SQLITE_OK. |
+*/ |
+SQLITE_PRIVATE int sqlite3PagerMovepage(Pager *pPager, DbPage *pPg, Pgno pgno, int isCommit){ |
+ PgHdr *pPgOld; /* The page being overwritten. */ |
+ Pgno needSyncPgno = 0; /* Old value of pPg->pgno, if sync is required */ |
+ int rc; /* Return code */ |
+ Pgno origPgno; /* The original page number */ |
+ |
+ assert( pPg->nRef>0 ); |
+ assert( pPager->eState==PAGER_WRITER_CACHEMOD |
+ || pPager->eState==PAGER_WRITER_DBMOD |
+ ); |
+ assert( assert_pager_state(pPager) ); |
+ |
+ /* In order to be able to rollback, an in-memory database must journal |
+ ** the page we are moving from. |
+ */ |
+ if( MEMDB ){ |
+ rc = sqlite3PagerWrite(pPg); |
+ if( rc ) return rc; |
+ } |
+ |
+ /* If the page being moved is dirty and has not been saved by the latest |
+ ** savepoint, then save the current contents of the page into the |
+ ** sub-journal now. This is required to handle the following scenario: |
+ ** |
+ ** BEGIN; |
+ ** <journal page X, then modify it in memory> |
+ ** SAVEPOINT one; |
+ ** <Move page X to location Y> |
+ ** ROLLBACK TO one; |
+ ** |
+ ** If page X were not written to the sub-journal here, it would not |
+ ** be possible to restore its contents when the "ROLLBACK TO one" |
+ ** statement were is processed. |
+ ** |
+ ** subjournalPage() may need to allocate space to store pPg->pgno into |
+ ** one or more savepoint bitvecs. This is the reason this function |
+ ** may return SQLITE_NOMEM. |
+ */ |
+ if( (pPg->flags & PGHDR_DIRTY)!=0 |
+ && SQLITE_OK!=(rc = subjournalPageIfRequired(pPg)) |
+ ){ |
+ return rc; |
+ } |
+ |
+ PAGERTRACE(("MOVE %d page %d (needSync=%d) moves to %d\n", |
+ PAGERID(pPager), pPg->pgno, (pPg->flags&PGHDR_NEED_SYNC)?1:0, pgno)); |
+ IOTRACE(("MOVE %p %d %d\n", pPager, pPg->pgno, pgno)) |
+ |
+ /* If the journal needs to be sync()ed before page pPg->pgno can |
+ ** be written to, store pPg->pgno in local variable needSyncPgno. |
+ ** |
+ ** If the isCommit flag is set, there is no need to remember that |
+ ** the journal needs to be sync()ed before database page pPg->pgno |
+ ** can be written to. The caller has already promised not to write to it. |
+ */ |
+ if( (pPg->flags&PGHDR_NEED_SYNC) && !isCommit ){ |
+ needSyncPgno = pPg->pgno; |
+ assert( pPager->journalMode==PAGER_JOURNALMODE_OFF || |
+ pageInJournal(pPager, pPg) || pPg->pgno>pPager->dbOrigSize ); |
+ assert( pPg->flags&PGHDR_DIRTY ); |
+ } |
+ |
+ /* If the cache contains a page with page-number pgno, remove it |
+ ** from its hash chain. Also, if the PGHDR_NEED_SYNC flag was set for |
+ ** page pgno before the 'move' operation, it needs to be retained |
+ ** for the page moved there. |
+ */ |
+ pPg->flags &= ~PGHDR_NEED_SYNC; |
+ pPgOld = sqlite3PagerLookup(pPager, pgno); |
+ assert( !pPgOld || pPgOld->nRef==1 ); |
+ if( pPgOld ){ |
+ pPg->flags |= (pPgOld->flags&PGHDR_NEED_SYNC); |
+ if( MEMDB ){ |
+ /* Do not discard pages from an in-memory database since we might |
+ ** need to rollback later. Just move the page out of the way. */ |
+ sqlite3PcacheMove(pPgOld, pPager->dbSize+1); |
+ }else{ |
+ sqlite3PcacheDrop(pPgOld); |
+ } |
+ } |
+ |
+ origPgno = pPg->pgno; |
+ sqlite3PcacheMove(pPg, pgno); |
+ sqlite3PcacheMakeDirty(pPg); |
+ |
+ /* For an in-memory database, make sure the original page continues |
+ ** to exist, in case the transaction needs to roll back. Use pPgOld |
+ ** as the original page since it has already been allocated. |
+ */ |
+ if( MEMDB ){ |
+ assert( pPgOld ); |
+ sqlite3PcacheMove(pPgOld, origPgno); |
+ sqlite3PagerUnrefNotNull(pPgOld); |
+ } |
+ |
+ if( needSyncPgno ){ |
+ /* If needSyncPgno is non-zero, then the journal file needs to be |
+ ** sync()ed before any data is written to database file page needSyncPgno. |
+ ** Currently, no such page exists in the page-cache and the |
+ ** "is journaled" bitvec flag has been set. This needs to be remedied by |
+ ** loading the page into the pager-cache and setting the PGHDR_NEED_SYNC |
+ ** flag. |
+ ** |
+ ** If the attempt to load the page into the page-cache fails, (due |
+ ** to a malloc() or IO failure), clear the bit in the pInJournal[] |
+ ** array. Otherwise, if the page is loaded and written again in |
+ ** this transaction, it may be written to the database file before |
+ ** it is synced into the journal file. This way, it may end up in |
+ ** the journal file twice, but that is not a problem. |
+ */ |
+ PgHdr *pPgHdr; |
+ rc = sqlite3PagerGet(pPager, needSyncPgno, &pPgHdr, 0); |
+ if( rc!=SQLITE_OK ){ |
+ if( needSyncPgno<=pPager->dbOrigSize ){ |
+ assert( pPager->pTmpSpace!=0 ); |
+ sqlite3BitvecClear(pPager->pInJournal, needSyncPgno, pPager->pTmpSpace); |
+ } |
+ return rc; |
+ } |
+ pPgHdr->flags |= PGHDR_NEED_SYNC; |
+ sqlite3PcacheMakeDirty(pPgHdr); |
+ sqlite3PagerUnrefNotNull(pPgHdr); |
+ } |
+ |
+ return SQLITE_OK; |
+} |
+#endif |
+ |
+/* |
+** The page handle passed as the first argument refers to a dirty page |
+** with a page number other than iNew. This function changes the page's |
+** page number to iNew and sets the value of the PgHdr.flags field to |
+** the value passed as the third parameter. |
+*/ |
+SQLITE_PRIVATE void sqlite3PagerRekey(DbPage *pPg, Pgno iNew, u16 flags){ |
+ assert( pPg->pgno!=iNew ); |
+ pPg->flags = flags; |
+ sqlite3PcacheMove(pPg, iNew); |
+} |
+ |
+/* |
+** Return a pointer to the data for the specified page. |
+*/ |
+SQLITE_PRIVATE void *sqlite3PagerGetData(DbPage *pPg){ |
+ assert( pPg->nRef>0 || pPg->pPager->memDb ); |
+ return pPg->pData; |
+} |
+ |
+/* |
+** Return a pointer to the Pager.nExtra bytes of "extra" space |
+** allocated along with the specified page. |
+*/ |
+SQLITE_PRIVATE void *sqlite3PagerGetExtra(DbPage *pPg){ |
+ return pPg->pExtra; |
+} |
+ |
+/* |
+** Get/set the locking-mode for this pager. Parameter eMode must be one |
+** of PAGER_LOCKINGMODE_QUERY, PAGER_LOCKINGMODE_NORMAL or |
+** PAGER_LOCKINGMODE_EXCLUSIVE. If the parameter is not _QUERY, then |
+** the locking-mode is set to the value specified. |
+** |
+** The returned value is either PAGER_LOCKINGMODE_NORMAL or |
+** PAGER_LOCKINGMODE_EXCLUSIVE, indicating the current (possibly updated) |
+** locking-mode. |
+*/ |
+SQLITE_PRIVATE int sqlite3PagerLockingMode(Pager *pPager, int eMode){ |
+ assert( eMode==PAGER_LOCKINGMODE_QUERY |
+ || eMode==PAGER_LOCKINGMODE_NORMAL |
+ || eMode==PAGER_LOCKINGMODE_EXCLUSIVE ); |
+ assert( PAGER_LOCKINGMODE_QUERY<0 ); |
+ assert( PAGER_LOCKINGMODE_NORMAL>=0 && PAGER_LOCKINGMODE_EXCLUSIVE>=0 ); |
+ assert( pPager->exclusiveMode || 0==sqlite3WalHeapMemory(pPager->pWal) ); |
+ if( eMode>=0 && !pPager->tempFile && !sqlite3WalHeapMemory(pPager->pWal) ){ |
+ pPager->exclusiveMode = (u8)eMode; |
+ } |
+ return (int)pPager->exclusiveMode; |
+} |
+ |
+/* |
+** Set the journal-mode for this pager. Parameter eMode must be one of: |
+** |
+** PAGER_JOURNALMODE_DELETE |
+** PAGER_JOURNALMODE_TRUNCATE |
+** PAGER_JOURNALMODE_PERSIST |
+** PAGER_JOURNALMODE_OFF |
+** PAGER_JOURNALMODE_MEMORY |
+** PAGER_JOURNALMODE_WAL |
+** |
+** The journalmode is set to the value specified if the change is allowed. |
+** The change may be disallowed for the following reasons: |
+** |
+** * An in-memory database can only have its journal_mode set to _OFF |
+** or _MEMORY. |
+** |
+** * Temporary databases cannot have _WAL journalmode. |
+** |
+** The returned indicate the current (possibly updated) journal-mode. |
+*/ |
+SQLITE_PRIVATE int sqlite3PagerSetJournalMode(Pager *pPager, int eMode){ |
+ u8 eOld = pPager->journalMode; /* Prior journalmode */ |
+ |
+#ifdef SQLITE_DEBUG |
+ /* The print_pager_state() routine is intended to be used by the debugger |
+ ** only. We invoke it once here to suppress a compiler warning. */ |
+ print_pager_state(pPager); |
+#endif |
+ |
+ |
+ /* The eMode parameter is always valid */ |
+ assert( eMode==PAGER_JOURNALMODE_DELETE |
+ || eMode==PAGER_JOURNALMODE_TRUNCATE |
+ || eMode==PAGER_JOURNALMODE_PERSIST |
+ || eMode==PAGER_JOURNALMODE_OFF |
+ || eMode==PAGER_JOURNALMODE_WAL |
+ || eMode==PAGER_JOURNALMODE_MEMORY ); |
+ |
+ /* This routine is only called from the OP_JournalMode opcode, and |
+ ** the logic there will never allow a temporary file to be changed |
+ ** to WAL mode. |
+ */ |
+ assert( pPager->tempFile==0 || eMode!=PAGER_JOURNALMODE_WAL ); |
+ |
+ /* Do allow the journalmode of an in-memory database to be set to |
+ ** anything other than MEMORY or OFF |
+ */ |
+ if( MEMDB ){ |
+ assert( eOld==PAGER_JOURNALMODE_MEMORY || eOld==PAGER_JOURNALMODE_OFF ); |
+ if( eMode!=PAGER_JOURNALMODE_MEMORY && eMode!=PAGER_JOURNALMODE_OFF ){ |
+ eMode = eOld; |
+ } |
+ } |
+ |
+ if( eMode!=eOld ){ |
+ |
+ /* Change the journal mode. */ |
+ assert( pPager->eState!=PAGER_ERROR ); |
+ pPager->journalMode = (u8)eMode; |
+ |
+ /* When transistioning from TRUNCATE or PERSIST to any other journal |
+ ** mode except WAL, unless the pager is in locking_mode=exclusive mode, |
+ ** delete the journal file. |
+ */ |
+ assert( (PAGER_JOURNALMODE_TRUNCATE & 5)==1 ); |
+ assert( (PAGER_JOURNALMODE_PERSIST & 5)==1 ); |
+ assert( (PAGER_JOURNALMODE_DELETE & 5)==0 ); |
+ assert( (PAGER_JOURNALMODE_MEMORY & 5)==4 ); |
+ assert( (PAGER_JOURNALMODE_OFF & 5)==0 ); |
+ assert( (PAGER_JOURNALMODE_WAL & 5)==5 ); |
+ |
+ assert( isOpen(pPager->fd) || pPager->exclusiveMode ); |
+ if( !pPager->exclusiveMode && (eOld & 5)==1 && (eMode & 1)==0 ){ |
+ |
+ /* In this case we would like to delete the journal file. If it is |
+ ** not possible, then that is not a problem. Deleting the journal file |
+ ** here is an optimization only. |
+ ** |
+ ** Before deleting the journal file, obtain a RESERVED lock on the |
+ ** database file. This ensures that the journal file is not deleted |
+ ** while it is in use by some other client. |
+ */ |
+ sqlite3OsClose(pPager->jfd); |
+ if( pPager->eLock>=RESERVED_LOCK ){ |
+ sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0); |
+ }else{ |
+ int rc = SQLITE_OK; |
+ int state = pPager->eState; |
+ assert( state==PAGER_OPEN || state==PAGER_READER ); |
+ if( state==PAGER_OPEN ){ |
+ rc = sqlite3PagerSharedLock(pPager); |
+ } |
+ if( pPager->eState==PAGER_READER ){ |
+ assert( rc==SQLITE_OK ); |
+ rc = pagerLockDb(pPager, RESERVED_LOCK); |
+ } |
+ if( rc==SQLITE_OK ){ |
+ sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0); |
+ } |
+ if( rc==SQLITE_OK && state==PAGER_READER ){ |
+ pagerUnlockDb(pPager, SHARED_LOCK); |
+ }else if( state==PAGER_OPEN ){ |
+ pager_unlock(pPager); |
+ } |
+ assert( state==pPager->eState ); |
+ } |
+ }else if( eMode==PAGER_JOURNALMODE_OFF ){ |
+ sqlite3OsClose(pPager->jfd); |
+ } |
+ } |
+ |
+ /* Return the new journal mode */ |
+ return (int)pPager->journalMode; |
+} |
+ |
+/* |
+** Return the current journal mode. |
+*/ |
+SQLITE_PRIVATE int sqlite3PagerGetJournalMode(Pager *pPager){ |
+ return (int)pPager->journalMode; |
+} |
+ |
+/* |
+** Return TRUE if the pager is in a state where it is OK to change the |
+** journalmode. Journalmode changes can only happen when the database |
+** is unmodified. |
+*/ |
+SQLITE_PRIVATE int sqlite3PagerOkToChangeJournalMode(Pager *pPager){ |
+ assert( assert_pager_state(pPager) ); |
+ if( pPager->eState>=PAGER_WRITER_CACHEMOD ) return 0; |
+ if( NEVER(isOpen(pPager->jfd) && pPager->journalOff>0) ) return 0; |
+ return 1; |
+} |
+ |
+/* |
+** Get/set the size-limit used for persistent journal files. |
+** |
+** Setting the size limit to -1 means no limit is enforced. |
+** An attempt to set a limit smaller than -1 is a no-op. |
+*/ |
+SQLITE_PRIVATE i64 sqlite3PagerJournalSizeLimit(Pager *pPager, i64 iLimit){ |
+ if( iLimit>=-1 ){ |
+ pPager->journalSizeLimit = iLimit; |
+ sqlite3WalLimit(pPager->pWal, iLimit); |
+ } |
+ return pPager->journalSizeLimit; |
+} |
+ |
+/* |
+** Return a pointer to the pPager->pBackup variable. The backup module |
+** in backup.c maintains the content of this variable. This module |
+** uses it opaquely as an argument to sqlite3BackupRestart() and |
+** sqlite3BackupUpdate() only. |
+*/ |
+SQLITE_PRIVATE sqlite3_backup **sqlite3PagerBackupPtr(Pager *pPager){ |
+ return &pPager->pBackup; |
+} |
+ |
+#ifndef SQLITE_OMIT_VACUUM |
+/* |
+** Unless this is an in-memory or temporary database, clear the pager cache. |
+*/ |
+SQLITE_PRIVATE void sqlite3PagerClearCache(Pager *pPager){ |
+ if( !MEMDB && pPager->tempFile==0 ) pager_reset(pPager); |
+} |
+#endif |
+ |
+#ifndef SQLITE_OMIT_WAL |
+/* |
+** This function is called when the user invokes "PRAGMA wal_checkpoint", |
+** "PRAGMA wal_blocking_checkpoint" or calls the sqlite3_wal_checkpoint() |
+** or wal_blocking_checkpoint() API functions. |
+** |
+** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART. |
+*/ |
+SQLITE_PRIVATE int sqlite3PagerCheckpoint(Pager *pPager, int eMode, int *pnLog, int *pnCkpt){ |
+ int rc = SQLITE_OK; |
+ if( pPager->pWal ){ |
+ rc = sqlite3WalCheckpoint(pPager->pWal, eMode, |
+ (eMode==SQLITE_CHECKPOINT_PASSIVE ? 0 : pPager->xBusyHandler), |
+ pPager->pBusyHandlerArg, |
+ pPager->ckptSyncFlags, pPager->pageSize, (u8 *)pPager->pTmpSpace, |
+ pnLog, pnCkpt |
+ ); |
+ } |
+ return rc; |
+} |
+ |
+SQLITE_PRIVATE int sqlite3PagerWalCallback(Pager *pPager){ |
+ return sqlite3WalCallback(pPager->pWal); |
+} |
+ |
+/* |
+** Return true if the underlying VFS for the given pager supports the |
+** primitives necessary for write-ahead logging. |
+*/ |
+SQLITE_PRIVATE int sqlite3PagerWalSupported(Pager *pPager){ |
+ const sqlite3_io_methods *pMethods = pPager->fd->pMethods; |
+ return pPager->exclusiveMode || (pMethods->iVersion>=2 && pMethods->xShmMap); |
+} |
+ |
+/* |
+** Attempt to take an exclusive lock on the database file. If a PENDING lock |
+** is obtained instead, immediately release it. |
+*/ |
+static int pagerExclusiveLock(Pager *pPager){ |
+ int rc; /* Return code */ |
+ |
+ assert( pPager->eLock==SHARED_LOCK || pPager->eLock==EXCLUSIVE_LOCK ); |
+ rc = pagerLockDb(pPager, EXCLUSIVE_LOCK); |
+ if( rc!=SQLITE_OK ){ |
+ /* If the attempt to grab the exclusive lock failed, release the |
+ ** pending lock that may have been obtained instead. */ |
+ pagerUnlockDb(pPager, SHARED_LOCK); |
+ } |
+ |
+ return rc; |
+} |
+ |
+/* |
+** Call sqlite3WalOpen() to open the WAL handle. If the pager is in |
+** exclusive-locking mode when this function is called, take an EXCLUSIVE |
+** lock on the database file and use heap-memory to store the wal-index |
+** in. Otherwise, use the normal shared-memory. |
+*/ |
+static int pagerOpenWal(Pager *pPager){ |
+ int rc = SQLITE_OK; |
+ |
+ assert( pPager->pWal==0 && pPager->tempFile==0 ); |
+ assert( pPager->eLock==SHARED_LOCK || pPager->eLock==EXCLUSIVE_LOCK ); |
+ |
+ /* If the pager is already in exclusive-mode, the WAL module will use |
+ ** heap-memory for the wal-index instead of the VFS shared-memory |
+ ** implementation. Take the exclusive lock now, before opening the WAL |
+ ** file, to make sure this is safe. |
+ */ |
+ if( pPager->exclusiveMode ){ |
+ rc = pagerExclusiveLock(pPager); |
+ } |
+ |
+ /* Open the connection to the log file. If this operation fails, |
+ ** (e.g. due to malloc() failure), return an error code. |
+ */ |
+ if( rc==SQLITE_OK ){ |
+ rc = sqlite3WalOpen(pPager->pVfs, |
+ pPager->fd, pPager->zWal, pPager->exclusiveMode, |
+ pPager->journalSizeLimit, &pPager->pWal |
+ ); |
+ } |
+ pagerFixMaplimit(pPager); |
+ |
+ return rc; |
+} |
+ |
+ |
+/* |
+** The caller must be holding a SHARED lock on the database file to call |
+** this function. |
+** |
+** If the pager passed as the first argument is open on a real database |
+** file (not a temp file or an in-memory database), and the WAL file |
+** is not already open, make an attempt to open it now. If successful, |
+** return SQLITE_OK. If an error occurs or the VFS used by the pager does |
+** not support the xShmXXX() methods, return an error code. *pbOpen is |
+** not modified in either case. |
+** |
+** If the pager is open on a temp-file (or in-memory database), or if |
+** the WAL file is already open, set *pbOpen to 1 and return SQLITE_OK |
+** without doing anything. |
+*/ |
+SQLITE_PRIVATE int sqlite3PagerOpenWal( |
+ Pager *pPager, /* Pager object */ |
+ int *pbOpen /* OUT: Set to true if call is a no-op */ |
+){ |
+ int rc = SQLITE_OK; /* Return code */ |
+ |
+ assert( assert_pager_state(pPager) ); |
+ assert( pPager->eState==PAGER_OPEN || pbOpen ); |
+ assert( pPager->eState==PAGER_READER || !pbOpen ); |
+ assert( pbOpen==0 || *pbOpen==0 ); |
+ assert( pbOpen!=0 || (!pPager->tempFile && !pPager->pWal) ); |
+ |
+ if( !pPager->tempFile && !pPager->pWal ){ |
+ if( !sqlite3PagerWalSupported(pPager) ) return SQLITE_CANTOPEN; |
+ |
+ /* Close any rollback journal previously open */ |
+ sqlite3OsClose(pPager->jfd); |
+ |
+ rc = pagerOpenWal(pPager); |
+ if( rc==SQLITE_OK ){ |
+ pPager->journalMode = PAGER_JOURNALMODE_WAL; |
+ pPager->eState = PAGER_OPEN; |
+ } |
+ }else{ |
+ *pbOpen = 1; |
+ } |
+ |
+ return rc; |
+} |
+ |
+/* |
+** This function is called to close the connection to the log file prior |
+** to switching from WAL to rollback mode. |
+** |
+** Before closing the log file, this function attempts to take an |
+** EXCLUSIVE lock on the database file. If this cannot be obtained, an |
+** error (SQLITE_BUSY) is returned and the log connection is not closed. |
+** If successful, the EXCLUSIVE lock is not released before returning. |
+*/ |
+SQLITE_PRIVATE int sqlite3PagerCloseWal(Pager *pPager){ |
+ int rc = SQLITE_OK; |
+ |
+ assert( pPager->journalMode==PAGER_JOURNALMODE_WAL ); |
+ |
+ /* If the log file is not already open, but does exist in the file-system, |
+ ** it may need to be checkpointed before the connection can switch to |
+ ** rollback mode. Open it now so this can happen. |
+ */ |
+ if( !pPager->pWal ){ |
+ int logexists = 0; |
+ rc = pagerLockDb(pPager, SHARED_LOCK); |
+ if( rc==SQLITE_OK ){ |
+ rc = sqlite3OsAccess( |
+ pPager->pVfs, pPager->zWal, SQLITE_ACCESS_EXISTS, &logexists |
+ ); |
+ } |
+ if( rc==SQLITE_OK && logexists ){ |
+ rc = pagerOpenWal(pPager); |
+ } |
+ } |
+ |
+ /* Checkpoint and close the log. Because an EXCLUSIVE lock is held on |
+ ** the database file, the log and log-summary files will be deleted. |
+ */ |
+ if( rc==SQLITE_OK && pPager->pWal ){ |
+ rc = pagerExclusiveLock(pPager); |
+ if( rc==SQLITE_OK ){ |
+ rc = sqlite3WalClose(pPager->pWal, pPager->ckptSyncFlags, |
+ pPager->pageSize, (u8*)pPager->pTmpSpace); |
+ pPager->pWal = 0; |
+ pagerFixMaplimit(pPager); |
+ } |
+ } |
+ return rc; |
+} |
+ |
+#ifdef SQLITE_ENABLE_SNAPSHOT |
+/* |
+** If this is a WAL database, obtain a snapshot handle for the snapshot |
+** currently open. Otherwise, return an error. |
+*/ |
+SQLITE_PRIVATE int sqlite3PagerSnapshotGet(Pager *pPager, sqlite3_snapshot **ppSnapshot){ |
+ int rc = SQLITE_ERROR; |
+ if( pPager->pWal ){ |
+ rc = sqlite3WalSnapshotGet(pPager->pWal, ppSnapshot); |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** If this is a WAL database, store a pointer to pSnapshot. Next time a |
+** read transaction is opened, attempt to read from the snapshot it |
+** identifies. If this is not a WAL database, return an error. |
+*/ |
+SQLITE_PRIVATE int sqlite3PagerSnapshotOpen(Pager *pPager, sqlite3_snapshot *pSnapshot){ |
+ int rc = SQLITE_OK; |
+ if( pPager->pWal ){ |
+ sqlite3WalSnapshotOpen(pPager->pWal, pSnapshot); |
+ }else{ |
+ rc = SQLITE_ERROR; |
+ } |
+ return rc; |
+} |
+#endif /* SQLITE_ENABLE_SNAPSHOT */ |
+#endif /* !SQLITE_OMIT_WAL */ |
+ |
+#ifdef SQLITE_ENABLE_ZIPVFS |
+/* |
+** A read-lock must be held on the pager when this function is called. If |
+** the pager is in WAL mode and the WAL file currently contains one or more |
+** frames, return the size in bytes of the page images stored within the |
+** WAL frames. Otherwise, if this is not a WAL database or the WAL file |
+** is empty, return 0. |
+*/ |
+SQLITE_PRIVATE int sqlite3PagerWalFramesize(Pager *pPager){ |
+ assert( pPager->eState>=PAGER_READER ); |
+ return sqlite3WalFramesize(pPager->pWal); |
+} |
+#endif |
+ |
+ |
+#endif /* SQLITE_OMIT_DISKIO */ |
+ |
+/************** End of pager.c ***********************************************/ |
+/************** Begin file wal.c *********************************************/ |
+/* |
+** 2010 February 1 |
+** |
+** The author disclaims copyright to this source code. In place of |
+** a legal notice, here is a blessing: |
+** |
+** May you do good and not evil. |
+** May you find forgiveness for yourself and forgive others. |
+** May you share freely, never taking more than you give. |
+** |
+************************************************************************* |
+** |
+** This file contains the implementation of a write-ahead log (WAL) used in |
+** "journal_mode=WAL" mode. |
+** |
+** WRITE-AHEAD LOG (WAL) FILE FORMAT |
+** |
+** A WAL file consists of a header followed by zero or more "frames". |
+** Each frame records the revised content of a single page from the |
+** database file. All changes to the database are recorded by writing |
+** frames into the WAL. Transactions commit when a frame is written that |
+** contains a commit marker. A single WAL can and usually does record |
+** multiple transactions. Periodically, the content of the WAL is |
+** transferred back into the database file in an operation called a |
+** "checkpoint". |
+** |
+** A single WAL file can be used multiple times. In other words, the |
+** WAL can fill up with frames and then be checkpointed and then new |
+** frames can overwrite the old ones. A WAL always grows from beginning |
+** toward the end. Checksums and counters attached to each frame are |
+** used to determine which frames within the WAL are valid and which |
+** are leftovers from prior checkpoints. |
+** |
+** The WAL header is 32 bytes in size and consists of the following eight |
+** big-endian 32-bit unsigned integer values: |
+** |
+** 0: Magic number. 0x377f0682 or 0x377f0683 |
+** 4: File format version. Currently 3007000 |
+** 8: Database page size. Example: 1024 |
+** 12: Checkpoint sequence number |
+** 16: Salt-1, random integer incremented with each checkpoint |
+** 20: Salt-2, a different random integer changing with each ckpt |
+** 24: Checksum-1 (first part of checksum for first 24 bytes of header). |
+** 28: Checksum-2 (second part of checksum for first 24 bytes of header). |
+** |
+** Immediately following the wal-header are zero or more frames. Each |
+** frame consists of a 24-byte frame-header followed by a <page-size> bytes |
+** of page data. The frame-header is six big-endian 32-bit unsigned |
+** integer values, as follows: |
+** |
+** 0: Page number. |
+** 4: For commit records, the size of the database image in pages |
+** after the commit. For all other records, zero. |
+** 8: Salt-1 (copied from the header) |
+** 12: Salt-2 (copied from the header) |
+** 16: Checksum-1. |
+** 20: Checksum-2. |
+** |
+** A frame is considered valid if and only if the following conditions are |
+** true: |
+** |
+** (1) The salt-1 and salt-2 values in the frame-header match |
+** salt values in the wal-header |
+** |
+** (2) The checksum values in the final 8 bytes of the frame-header |
+** exactly match the checksum computed consecutively on the |
+** WAL header and the first 8 bytes and the content of all frames |
+** up to and including the current frame. |
+** |
+** The checksum is computed using 32-bit big-endian integers if the |
+** magic number in the first 4 bytes of the WAL is 0x377f0683 and it |
+** is computed using little-endian if the magic number is 0x377f0682. |
+** The checksum values are always stored in the frame header in a |
+** big-endian format regardless of which byte order is used to compute |
+** the checksum. The checksum is computed by interpreting the input as |
+** an even number of unsigned 32-bit integers: x[0] through x[N]. The |
+** algorithm used for the checksum is as follows: |
+** |
+** for i from 0 to n-1 step 2: |
+** s0 += x[i] + s1; |
+** s1 += x[i+1] + s0; |
+** endfor |
+** |
+** Note that s0 and s1 are both weighted checksums using fibonacci weights |
+** in reverse order (the largest fibonacci weight occurs on the first element |
+** of the sequence being summed.) The s1 value spans all 32-bit |
+** terms of the sequence whereas s0 omits the final term. |
+** |
+** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the |
+** WAL is transferred into the database, then the database is VFS.xSync-ed. |
+** The VFS.xSync operations serve as write barriers - all writes launched |
+** before the xSync must complete before any write that launches after the |
+** xSync begins. |
+** |
+** After each checkpoint, the salt-1 value is incremented and the salt-2 |
+** value is randomized. This prevents old and new frames in the WAL from |
+** being considered valid at the same time and being checkpointing together |
+** following a crash. |
+** |
+** READER ALGORITHM |
+** |
+** To read a page from the database (call it page number P), a reader |
+** first checks the WAL to see if it contains page P. If so, then the |
+** last valid instance of page P that is a followed by a commit frame |
+** or is a commit frame itself becomes the value read. If the WAL |
+** contains no copies of page P that are valid and which are a commit |
+** frame or are followed by a commit frame, then page P is read from |
+** the database file. |
+** |
+** To start a read transaction, the reader records the index of the last |
+** valid frame in the WAL. The reader uses this recorded "mxFrame" value |
+** for all subsequent read operations. New transactions can be appended |
+** to the WAL, but as long as the reader uses its original mxFrame value |
+** and ignores the newly appended content, it will see a consistent snapshot |
+** of the database from a single point in time. This technique allows |
+** multiple concurrent readers to view different versions of the database |
+** content simultaneously. |
+** |
+** The reader algorithm in the previous paragraphs works correctly, but |
+** because frames for page P can appear anywhere within the WAL, the |
+** reader has to scan the entire WAL looking for page P frames. If the |
+** WAL is large (multiple megabytes is typical) that scan can be slow, |
+** and read performance suffers. To overcome this problem, a separate |
+** data structure called the wal-index is maintained to expedite the |
+** search for frames of a particular page. |
+** |
+** WAL-INDEX FORMAT |
+** |
+** Conceptually, the wal-index is shared memory, though VFS implementations |
+** might choose to implement the wal-index using a mmapped file. Because |
+** the wal-index is shared memory, SQLite does not support journal_mode=WAL |
+** on a network filesystem. All users of the database must be able to |
+** share memory. |
+** |
+** The wal-index is transient. After a crash, the wal-index can (and should |
+** be) reconstructed from the original WAL file. In fact, the VFS is required |
+** to either truncate or zero the header of the wal-index when the last |
+** connection to it closes. Because the wal-index is transient, it can |
+** use an architecture-specific format; it does not have to be cross-platform. |
+** Hence, unlike the database and WAL file formats which store all values |
+** as big endian, the wal-index can store multi-byte values in the native |
+** byte order of the host computer. |
+** |
+** The purpose of the wal-index is to answer this question quickly: Given |
+** a page number P and a maximum frame index M, return the index of the |
+** last frame in the wal before frame M for page P in the WAL, or return |
+** NULL if there are no frames for page P in the WAL prior to M. |
+** |
+** The wal-index consists of a header region, followed by an one or |
+** more index blocks. |
+** |
+** The wal-index header contains the total number of frames within the WAL |
+** in the mxFrame field. |
+** |
+** Each index block except for the first contains information on |
+** HASHTABLE_NPAGE frames. The first index block contains information on |
+** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and |
+** HASHTABLE_NPAGE are selected so that together the wal-index header and |
+** first index block are the same size as all other index blocks in the |
+** wal-index. |
+** |
+** Each index block contains two sections, a page-mapping that contains the |
+** database page number associated with each wal frame, and a hash-table |
+** that allows readers to query an index block for a specific page number. |
+** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE |
+** for the first index block) 32-bit page numbers. The first entry in the |
+** first index-block contains the database page number corresponding to the |
+** first frame in the WAL file. The first entry in the second index block |
+** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in |
+** the log, and so on. |
+** |
+** The last index block in a wal-index usually contains less than the full |
+** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers, |
+** depending on the contents of the WAL file. This does not change the |
+** allocated size of the page-mapping array - the page-mapping array merely |
+** contains unused entries. |
+** |
+** Even without using the hash table, the last frame for page P |
+** can be found by scanning the page-mapping sections of each index block |
+** starting with the last index block and moving toward the first, and |
+** within each index block, starting at the end and moving toward the |
+** beginning. The first entry that equals P corresponds to the frame |
+** holding the content for that page. |
+** |
+** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers. |
+** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the |
+** hash table for each page number in the mapping section, so the hash |
+** table is never more than half full. The expected number of collisions |
+** prior to finding a match is 1. Each entry of the hash table is an |
+** 1-based index of an entry in the mapping section of the same |
+** index block. Let K be the 1-based index of the largest entry in |
+** the mapping section. (For index blocks other than the last, K will |
+** always be exactly HASHTABLE_NPAGE (4096) and for the last index block |
+** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table |
+** contain a value of 0. |
+** |
+** To look for page P in the hash table, first compute a hash iKey on |
+** P as follows: |
+** |
+** iKey = (P * 383) % HASHTABLE_NSLOT |
+** |
+** Then start scanning entries of the hash table, starting with iKey |
+** (wrapping around to the beginning when the end of the hash table is |
+** reached) until an unused hash slot is found. Let the first unused slot |
+** be at index iUnused. (iUnused might be less than iKey if there was |
+** wrap-around.) Because the hash table is never more than half full, |
+** the search is guaranteed to eventually hit an unused entry. Let |
+** iMax be the value between iKey and iUnused, closest to iUnused, |
+** where aHash[iMax]==P. If there is no iMax entry (if there exists |
+** no hash slot such that aHash[i]==p) then page P is not in the |
+** current index block. Otherwise the iMax-th mapping entry of the |
+** current index block corresponds to the last entry that references |
+** page P. |
+** |
+** A hash search begins with the last index block and moves toward the |
+** first index block, looking for entries corresponding to page P. On |
+** average, only two or three slots in each index block need to be |
+** examined in order to either find the last entry for page P, or to |
+** establish that no such entry exists in the block. Each index block |
+** holds over 4000 entries. So two or three index blocks are sufficient |
+** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10 |
+** comparisons (on average) suffice to either locate a frame in the |
+** WAL or to establish that the frame does not exist in the WAL. This |
+** is much faster than scanning the entire 10MB WAL. |
+** |
+** Note that entries are added in order of increasing K. Hence, one |
+** reader might be using some value K0 and a second reader that started |
+** at a later time (after additional transactions were added to the WAL |
+** and to the wal-index) might be using a different value K1, where K1>K0. |
+** Both readers can use the same hash table and mapping section to get |
+** the correct result. There may be entries in the hash table with |
+** K>K0 but to the first reader, those entries will appear to be unused |
+** slots in the hash table and so the first reader will get an answer as |
+** if no values greater than K0 had ever been inserted into the hash table |
+** in the first place - which is what reader one wants. Meanwhile, the |
+** second reader using K1 will see additional values that were inserted |
+** later, which is exactly what reader two wants. |
+** |
+** When a rollback occurs, the value of K is decreased. Hash table entries |
+** that correspond to frames greater than the new K value are removed |
+** from the hash table at this point. |
+*/ |
+#ifndef SQLITE_OMIT_WAL |
+ |
+/* #include "wal.h" */ |
+ |
+/* |
+** Trace output macros |
+*/ |
+#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) |
+SQLITE_PRIVATE int sqlite3WalTrace = 0; |
+# define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X |
+#else |
+# define WALTRACE(X) |
+#endif |
+ |
+/* |
+** The maximum (and only) versions of the wal and wal-index formats |
+** that may be interpreted by this version of SQLite. |
+** |
+** If a client begins recovering a WAL file and finds that (a) the checksum |
+** values in the wal-header are correct and (b) the version field is not |
+** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN. |
+** |
+** Similarly, if a client successfully reads a wal-index header (i.e. the |
+** checksum test is successful) and finds that the version field is not |
+** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite |
+** returns SQLITE_CANTOPEN. |
+*/ |
+#define WAL_MAX_VERSION 3007000 |
+#define WALINDEX_MAX_VERSION 3007000 |
+ |
+/* |
+** Indices of various locking bytes. WAL_NREADER is the number |
+** of available reader locks and should be at least 3. The default |
+** is SQLITE_SHM_NLOCK==8 and WAL_NREADER==5. |
+*/ |
+#define WAL_WRITE_LOCK 0 |
+#define WAL_ALL_BUT_WRITE 1 |
+#define WAL_CKPT_LOCK 1 |
+#define WAL_RECOVER_LOCK 2 |
+#define WAL_READ_LOCK(I) (3+(I)) |
+#define WAL_NREADER (SQLITE_SHM_NLOCK-3) |
+ |
+ |
+/* Object declarations */ |
+typedef struct WalIndexHdr WalIndexHdr; |
+typedef struct WalIterator WalIterator; |
+typedef struct WalCkptInfo WalCkptInfo; |
+ |
+ |
+/* |
+** The following object holds a copy of the wal-index header content. |
+** |
+** The actual header in the wal-index consists of two copies of this |
+** object followed by one instance of the WalCkptInfo object. |
+** For all versions of SQLite through 3.10.0 and probably beyond, |
+** the locking bytes (WalCkptInfo.aLock) start at offset 120 and |
+** the total header size is 136 bytes. |
+** |
+** The szPage value can be any power of 2 between 512 and 32768, inclusive. |
+** Or it can be 1 to represent a 65536-byte page. The latter case was |
+** added in 3.7.1 when support for 64K pages was added. |
+*/ |
+struct WalIndexHdr { |
+ u32 iVersion; /* Wal-index version */ |
+ u32 unused; /* Unused (padding) field */ |
+ u32 iChange; /* Counter incremented each transaction */ |
+ u8 isInit; /* 1 when initialized */ |
+ u8 bigEndCksum; /* True if checksums in WAL are big-endian */ |
+ u16 szPage; /* Database page size in bytes. 1==64K */ |
+ u32 mxFrame; /* Index of last valid frame in the WAL */ |
+ u32 nPage; /* Size of database in pages */ |
+ u32 aFrameCksum[2]; /* Checksum of last frame in log */ |
+ u32 aSalt[2]; /* Two salt values copied from WAL header */ |
+ u32 aCksum[2]; /* Checksum over all prior fields */ |
+}; |
+ |
+/* |
+** A copy of the following object occurs in the wal-index immediately |
+** following the second copy of the WalIndexHdr. This object stores |
+** information used by checkpoint. |
+** |
+** nBackfill is the number of frames in the WAL that have been written |
+** back into the database. (We call the act of moving content from WAL to |
+** database "backfilling".) The nBackfill number is never greater than |
+** WalIndexHdr.mxFrame. nBackfill can only be increased by threads |
+** holding the WAL_CKPT_LOCK lock (which includes a recovery thread). |
+** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from |
+** mxFrame back to zero when the WAL is reset. |
+** |
+** nBackfillAttempted is the largest value of nBackfill that a checkpoint |
+** has attempted to achieve. Normally nBackfill==nBackfillAtempted, however |
+** the nBackfillAttempted is set before any backfilling is done and the |
+** nBackfill is only set after all backfilling completes. So if a checkpoint |
+** crashes, nBackfillAttempted might be larger than nBackfill. The |
+** WalIndexHdr.mxFrame must never be less than nBackfillAttempted. |
+** |
+** The aLock[] field is a set of bytes used for locking. These bytes should |
+** never be read or written. |
+** |
+** There is one entry in aReadMark[] for each reader lock. If a reader |
+** holds read-lock K, then the value in aReadMark[K] is no greater than |
+** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff) |
+** for any aReadMark[] means that entry is unused. aReadMark[0] is |
+** a special case; its value is never used and it exists as a place-holder |
+** to avoid having to offset aReadMark[] indexs by one. Readers holding |
+** WAL_READ_LOCK(0) always ignore the entire WAL and read all content |
+** directly from the database. |
+** |
+** The value of aReadMark[K] may only be changed by a thread that |
+** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of |
+** aReadMark[K] cannot changed while there is a reader is using that mark |
+** since the reader will be holding a shared lock on WAL_READ_LOCK(K). |
+** |
+** The checkpointer may only transfer frames from WAL to database where |
+** the frame numbers are less than or equal to every aReadMark[] that is |
+** in use (that is, every aReadMark[j] for which there is a corresponding |
+** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the |
+** largest value and will increase an unused aReadMark[] to mxFrame if there |
+** is not already an aReadMark[] equal to mxFrame. The exception to the |
+** previous sentence is when nBackfill equals mxFrame (meaning that everything |
+** in the WAL has been backfilled into the database) then new readers |
+** will choose aReadMark[0] which has value 0 and hence such reader will |
+** get all their all content directly from the database file and ignore |
+** the WAL. |
+** |
+** Writers normally append new frames to the end of the WAL. However, |
+** if nBackfill equals mxFrame (meaning that all WAL content has been |
+** written back into the database) and if no readers are using the WAL |
+** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then |
+** the writer will first "reset" the WAL back to the beginning and start |
+** writing new content beginning at frame 1. |
+** |
+** We assume that 32-bit loads are atomic and so no locks are needed in |
+** order to read from any aReadMark[] entries. |
+*/ |
+struct WalCkptInfo { |
+ u32 nBackfill; /* Number of WAL frames backfilled into DB */ |
+ u32 aReadMark[WAL_NREADER]; /* Reader marks */ |
+ u8 aLock[SQLITE_SHM_NLOCK]; /* Reserved space for locks */ |
+ u32 nBackfillAttempted; /* WAL frames perhaps written, or maybe not */ |
+ u32 notUsed0; /* Available for future enhancements */ |
+}; |
+#define READMARK_NOT_USED 0xffffffff |
+ |
+ |
+/* A block of WALINDEX_LOCK_RESERVED bytes beginning at |
+** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems |
+** only support mandatory file-locks, we do not read or write data |
+** from the region of the file on which locks are applied. |
+*/ |
+#define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2+offsetof(WalCkptInfo,aLock)) |
+#define WALINDEX_HDR_SIZE (sizeof(WalIndexHdr)*2+sizeof(WalCkptInfo)) |
+ |
+/* Size of header before each frame in wal */ |
+#define WAL_FRAME_HDRSIZE 24 |
+ |
+/* Size of write ahead log header, including checksum. */ |
+/* #define WAL_HDRSIZE 24 */ |
+#define WAL_HDRSIZE 32 |
+ |
+/* WAL magic value. Either this value, or the same value with the least |
+** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit |
+** big-endian format in the first 4 bytes of a WAL file. |
+** |
+** If the LSB is set, then the checksums for each frame within the WAL |
+** file are calculated by treating all data as an array of 32-bit |
+** big-endian words. Otherwise, they are calculated by interpreting |
+** all data as 32-bit little-endian words. |
+*/ |
+#define WAL_MAGIC 0x377f0682 |
+ |
+/* |
+** Return the offset of frame iFrame in the write-ahead log file, |
+** assuming a database page size of szPage bytes. The offset returned |
+** is to the start of the write-ahead log frame-header. |
+*/ |
+#define walFrameOffset(iFrame, szPage) ( \ |
+ WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE) \ |
+) |
+ |
+/* |
+** An open write-ahead log file is represented by an instance of the |
+** following object. |
+*/ |
+struct Wal { |
+ sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */ |
+ sqlite3_file *pDbFd; /* File handle for the database file */ |
+ sqlite3_file *pWalFd; /* File handle for WAL file */ |
+ u32 iCallback; /* Value to pass to log callback (or 0) */ |
+ i64 mxWalSize; /* Truncate WAL to this size upon reset */ |
+ int nWiData; /* Size of array apWiData */ |
+ int szFirstBlock; /* Size of first block written to WAL file */ |
+ volatile u32 **apWiData; /* Pointer to wal-index content in memory */ |
+ u32 szPage; /* Database page size */ |
+ i16 readLock; /* Which read lock is being held. -1 for none */ |
+ u8 syncFlags; /* Flags to use to sync header writes */ |
+ u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */ |
+ u8 writeLock; /* True if in a write transaction */ |
+ u8 ckptLock; /* True if holding a checkpoint lock */ |
+ u8 readOnly; /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */ |
+ u8 truncateOnCommit; /* True to truncate WAL file on commit */ |
+ u8 syncHeader; /* Fsync the WAL header if true */ |
+ u8 padToSectorBoundary; /* Pad transactions out to the next sector */ |
+ WalIndexHdr hdr; /* Wal-index header for current transaction */ |
+ u32 minFrame; /* Ignore wal frames before this one */ |
+ const char *zWalName; /* Name of WAL file */ |
+ u32 nCkpt; /* Checkpoint sequence counter in the wal-header */ |
+#ifdef SQLITE_DEBUG |
+ u8 lockError; /* True if a locking error has occurred */ |
+#endif |
+#ifdef SQLITE_ENABLE_SNAPSHOT |
+ WalIndexHdr *pSnapshot; /* Start transaction here if not NULL */ |
+#endif |
+}; |
+ |
+/* |
+** Candidate values for Wal.exclusiveMode. |
+*/ |
+#define WAL_NORMAL_MODE 0 |
+#define WAL_EXCLUSIVE_MODE 1 |
+#define WAL_HEAPMEMORY_MODE 2 |
+ |
+/* |
+** Possible values for WAL.readOnly |
+*/ |
+#define WAL_RDWR 0 /* Normal read/write connection */ |
+#define WAL_RDONLY 1 /* The WAL file is readonly */ |
+#define WAL_SHM_RDONLY 2 /* The SHM file is readonly */ |
+ |
+/* |
+** Each page of the wal-index mapping contains a hash-table made up of |
+** an array of HASHTABLE_NSLOT elements of the following type. |
+*/ |
+typedef u16 ht_slot; |
+ |
+/* |
+** This structure is used to implement an iterator that loops through |
+** all frames in the WAL in database page order. Where two or more frames |
+** correspond to the same database page, the iterator visits only the |
+** frame most recently written to the WAL (in other words, the frame with |
+** the largest index). |
+** |
+** The internals of this structure are only accessed by: |
+** |
+** walIteratorInit() - Create a new iterator, |
+** walIteratorNext() - Step an iterator, |
+** walIteratorFree() - Free an iterator. |
+** |
+** This functionality is used by the checkpoint code (see walCheckpoint()). |
+*/ |
+struct WalIterator { |
+ int iPrior; /* Last result returned from the iterator */ |
+ int nSegment; /* Number of entries in aSegment[] */ |
+ struct WalSegment { |
+ int iNext; /* Next slot in aIndex[] not yet returned */ |
+ ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */ |
+ u32 *aPgno; /* Array of page numbers. */ |
+ int nEntry; /* Nr. of entries in aPgno[] and aIndex[] */ |
+ int iZero; /* Frame number associated with aPgno[0] */ |
+ } aSegment[1]; /* One for every 32KB page in the wal-index */ |
+}; |
+ |
+/* |
+** Define the parameters of the hash tables in the wal-index file. There |
+** is a hash-table following every HASHTABLE_NPAGE page numbers in the |
+** wal-index. |
+** |
+** Changing any of these constants will alter the wal-index format and |
+** create incompatibilities. |
+*/ |
+#define HASHTABLE_NPAGE 4096 /* Must be power of 2 */ |
+#define HASHTABLE_HASH_1 383 /* Should be prime */ |
+#define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */ |
+ |
+/* |
+** The block of page numbers associated with the first hash-table in a |
+** wal-index is smaller than usual. This is so that there is a complete |
+** hash-table on each aligned 32KB page of the wal-index. |
+*/ |
+#define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32))) |
+ |
+/* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */ |
+#define WALINDEX_PGSZ ( \ |
+ sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \ |
+) |
+ |
+/* |
+** Obtain a pointer to the iPage'th page of the wal-index. The wal-index |
+** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are |
+** numbered from zero. |
+** |
+** If this call is successful, *ppPage is set to point to the wal-index |
+** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs, |
+** then an SQLite error code is returned and *ppPage is set to 0. |
+*/ |
+static int walIndexPage(Wal *pWal, int iPage, volatile u32 **ppPage){ |
+ int rc = SQLITE_OK; |
+ |
+ /* Enlarge the pWal->apWiData[] array if required */ |
+ if( pWal->nWiData<=iPage ){ |
+ int nByte = sizeof(u32*)*(iPage+1); |
+ volatile u32 **apNew; |
+ apNew = (volatile u32 **)sqlite3_realloc64((void *)pWal->apWiData, nByte); |
+ if( !apNew ){ |
+ *ppPage = 0; |
+ return SQLITE_NOMEM; |
+ } |
+ memset((void*)&apNew[pWal->nWiData], 0, |
+ sizeof(u32*)*(iPage+1-pWal->nWiData)); |
+ pWal->apWiData = apNew; |
+ pWal->nWiData = iPage+1; |
+ } |
+ |
+ /* Request a pointer to the required page from the VFS */ |
+ if( pWal->apWiData[iPage]==0 ){ |
+ if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){ |
+ pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ); |
+ if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM; |
+ }else{ |
+ rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ, |
+ pWal->writeLock, (void volatile **)&pWal->apWiData[iPage] |
+ ); |
+ if( rc==SQLITE_READONLY ){ |
+ pWal->readOnly |= WAL_SHM_RDONLY; |
+ rc = SQLITE_OK; |
+ } |
+ } |
+ } |
+ |
+ *ppPage = pWal->apWiData[iPage]; |
+ assert( iPage==0 || *ppPage || rc!=SQLITE_OK ); |
+ return rc; |
+} |
+ |
+/* |
+** Return a pointer to the WalCkptInfo structure in the wal-index. |
+*/ |
+static volatile WalCkptInfo *walCkptInfo(Wal *pWal){ |
+ assert( pWal->nWiData>0 && pWal->apWiData[0] ); |
+ return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]); |
+} |
+ |
+/* |
+** Return a pointer to the WalIndexHdr structure in the wal-index. |
+*/ |
+static volatile WalIndexHdr *walIndexHdr(Wal *pWal){ |
+ assert( pWal->nWiData>0 && pWal->apWiData[0] ); |
+ return (volatile WalIndexHdr*)pWal->apWiData[0]; |
+} |
+ |
+/* |
+** The argument to this macro must be of type u32. On a little-endian |
+** architecture, it returns the u32 value that results from interpreting |
+** the 4 bytes as a big-endian value. On a big-endian architecture, it |
+** returns the value that would be produced by interpreting the 4 bytes |
+** of the input value as a little-endian integer. |
+*/ |
+#define BYTESWAP32(x) ( \ |
+ (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \ |
+ + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \ |
+) |
+ |
+/* |
+** Generate or extend an 8 byte checksum based on the data in |
+** array aByte[] and the initial values of aIn[0] and aIn[1] (or |
+** initial values of 0 and 0 if aIn==NULL). |
+** |
+** The checksum is written back into aOut[] before returning. |
+** |
+** nByte must be a positive multiple of 8. |
+*/ |
+static void walChecksumBytes( |
+ int nativeCksum, /* True for native byte-order, false for non-native */ |
+ u8 *a, /* Content to be checksummed */ |
+ int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */ |
+ const u32 *aIn, /* Initial checksum value input */ |
+ u32 *aOut /* OUT: Final checksum value output */ |
+){ |
+ u32 s1, s2; |
+ u32 *aData = (u32 *)a; |
+ u32 *aEnd = (u32 *)&a[nByte]; |
+ |
+ if( aIn ){ |
+ s1 = aIn[0]; |
+ s2 = aIn[1]; |
+ }else{ |
+ s1 = s2 = 0; |
+ } |
+ |
+ assert( nByte>=8 ); |
+ assert( (nByte&0x00000007)==0 ); |
+ |
+ if( nativeCksum ){ |
+ do { |
+ s1 += *aData++ + s2; |
+ s2 += *aData++ + s1; |
+ }while( aData<aEnd ); |
+ }else{ |
+ do { |
+ s1 += BYTESWAP32(aData[0]) + s2; |
+ s2 += BYTESWAP32(aData[1]) + s1; |
+ aData += 2; |
+ }while( aData<aEnd ); |
+ } |
+ |
+ aOut[0] = s1; |
+ aOut[1] = s2; |
+} |
+ |
+static void walShmBarrier(Wal *pWal){ |
+ if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){ |
+ sqlite3OsShmBarrier(pWal->pDbFd); |
+ } |
+} |
+ |
+/* |
+** Write the header information in pWal->hdr into the wal-index. |
+** |
+** The checksum on pWal->hdr is updated before it is written. |
+*/ |
+static void walIndexWriteHdr(Wal *pWal){ |
+ volatile WalIndexHdr *aHdr = walIndexHdr(pWal); |
+ const int nCksum = offsetof(WalIndexHdr, aCksum); |
+ |
+ assert( pWal->writeLock ); |
+ pWal->hdr.isInit = 1; |
+ pWal->hdr.iVersion = WALINDEX_MAX_VERSION; |
+ walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum); |
+ memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr)); |
+ walShmBarrier(pWal); |
+ memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr)); |
+} |
+ |
+/* |
+** This function encodes a single frame header and writes it to a buffer |
+** supplied by the caller. A frame-header is made up of a series of |
+** 4-byte big-endian integers, as follows: |
+** |
+** 0: Page number. |
+** 4: For commit records, the size of the database image in pages |
+** after the commit. For all other records, zero. |
+** 8: Salt-1 (copied from the wal-header) |
+** 12: Salt-2 (copied from the wal-header) |
+** 16: Checksum-1. |
+** 20: Checksum-2. |
+*/ |
+static void walEncodeFrame( |
+ Wal *pWal, /* The write-ahead log */ |
+ u32 iPage, /* Database page number for frame */ |
+ u32 nTruncate, /* New db size (or 0 for non-commit frames) */ |
+ u8 *aData, /* Pointer to page data */ |
+ u8 *aFrame /* OUT: Write encoded frame here */ |
+){ |
+ int nativeCksum; /* True for native byte-order checksums */ |
+ u32 *aCksum = pWal->hdr.aFrameCksum; |
+ assert( WAL_FRAME_HDRSIZE==24 ); |
+ sqlite3Put4byte(&aFrame[0], iPage); |
+ sqlite3Put4byte(&aFrame[4], nTruncate); |
+ memcpy(&aFrame[8], pWal->hdr.aSalt, 8); |
+ |
+ nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN); |
+ walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum); |
+ walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum); |
+ |
+ sqlite3Put4byte(&aFrame[16], aCksum[0]); |
+ sqlite3Put4byte(&aFrame[20], aCksum[1]); |
+} |
+ |
+/* |
+** Check to see if the frame with header in aFrame[] and content |
+** in aData[] is valid. If it is a valid frame, fill *piPage and |
+** *pnTruncate and return true. Return if the frame is not valid. |
+*/ |
+static int walDecodeFrame( |
+ Wal *pWal, /* The write-ahead log */ |
+ u32 *piPage, /* OUT: Database page number for frame */ |
+ u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */ |
+ u8 *aData, /* Pointer to page data (for checksum) */ |
+ u8 *aFrame /* Frame data */ |
+){ |
+ int nativeCksum; /* True for native byte-order checksums */ |
+ u32 *aCksum = pWal->hdr.aFrameCksum; |
+ u32 pgno; /* Page number of the frame */ |
+ assert( WAL_FRAME_HDRSIZE==24 ); |
+ |
+ /* A frame is only valid if the salt values in the frame-header |
+ ** match the salt values in the wal-header. |
+ */ |
+ if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){ |
+ return 0; |
+ } |
+ |
+ /* A frame is only valid if the page number is creater than zero. |
+ */ |
+ pgno = sqlite3Get4byte(&aFrame[0]); |
+ if( pgno==0 ){ |
+ return 0; |
+ } |
+ |
+ /* A frame is only valid if a checksum of the WAL header, |
+ ** all prior frams, the first 16 bytes of this frame-header, |
+ ** and the frame-data matches the checksum in the last 8 |
+ ** bytes of this frame-header. |
+ */ |
+ nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN); |
+ walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum); |
+ walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum); |
+ if( aCksum[0]!=sqlite3Get4byte(&aFrame[16]) |
+ || aCksum[1]!=sqlite3Get4byte(&aFrame[20]) |
+ ){ |
+ /* Checksum failed. */ |
+ return 0; |
+ } |
+ |
+ /* If we reach this point, the frame is valid. Return the page number |
+ ** and the new database size. |
+ */ |
+ *piPage = pgno; |
+ *pnTruncate = sqlite3Get4byte(&aFrame[4]); |
+ return 1; |
+} |
+ |
+ |
+#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) |
+/* |
+** Names of locks. This routine is used to provide debugging output and is not |
+** a part of an ordinary build. |
+*/ |
+static const char *walLockName(int lockIdx){ |
+ if( lockIdx==WAL_WRITE_LOCK ){ |
+ return "WRITE-LOCK"; |
+ }else if( lockIdx==WAL_CKPT_LOCK ){ |
+ return "CKPT-LOCK"; |
+ }else if( lockIdx==WAL_RECOVER_LOCK ){ |
+ return "RECOVER-LOCK"; |
+ }else{ |
+ static char zName[15]; |
+ sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]", |
+ lockIdx-WAL_READ_LOCK(0)); |
+ return zName; |
+ } |
+} |
+#endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */ |
+ |
+ |
+/* |
+** Set or release locks on the WAL. Locks are either shared or exclusive. |
+** A lock cannot be moved directly between shared and exclusive - it must go |
+** through the unlocked state first. |
+** |
+** In locking_mode=EXCLUSIVE, all of these routines become no-ops. |
+*/ |
+static int walLockShared(Wal *pWal, int lockIdx){ |
+ int rc; |
+ if( pWal->exclusiveMode ) return SQLITE_OK; |
+ rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, |
+ SQLITE_SHM_LOCK | SQLITE_SHM_SHARED); |
+ WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal, |
+ walLockName(lockIdx), rc ? "failed" : "ok")); |
+ VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); ) |
+ return rc; |
+} |
+static void walUnlockShared(Wal *pWal, int lockIdx){ |
+ if( pWal->exclusiveMode ) return; |
+ (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, |
+ SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED); |
+ WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx))); |
+} |
+static int walLockExclusive(Wal *pWal, int lockIdx, int n){ |
+ int rc; |
+ if( pWal->exclusiveMode ) return SQLITE_OK; |
+ rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, |
+ SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE); |
+ WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal, |
+ walLockName(lockIdx), n, rc ? "failed" : "ok")); |
+ VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); ) |
+ return rc; |
+} |
+static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){ |
+ if( pWal->exclusiveMode ) return; |
+ (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, |
+ SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE); |
+ WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal, |
+ walLockName(lockIdx), n)); |
+} |
+ |
+/* |
+** Compute a hash on a page number. The resulting hash value must land |
+** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances |
+** the hash to the next value in the event of a collision. |
+*/ |
+static int walHash(u32 iPage){ |
+ assert( iPage>0 ); |
+ assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 ); |
+ return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1); |
+} |
+static int walNextHash(int iPriorHash){ |
+ return (iPriorHash+1)&(HASHTABLE_NSLOT-1); |
+} |
+ |
+/* |
+** Return pointers to the hash table and page number array stored on |
+** page iHash of the wal-index. The wal-index is broken into 32KB pages |
+** numbered starting from 0. |
+** |
+** Set output variable *paHash to point to the start of the hash table |
+** in the wal-index file. Set *piZero to one less than the frame |
+** number of the first frame indexed by this hash table. If a |
+** slot in the hash table is set to N, it refers to frame number |
+** (*piZero+N) in the log. |
+** |
+** Finally, set *paPgno so that *paPgno[1] is the page number of the |
+** first frame indexed by the hash table, frame (*piZero+1). |
+*/ |
+static int walHashGet( |
+ Wal *pWal, /* WAL handle */ |
+ int iHash, /* Find the iHash'th table */ |
+ volatile ht_slot **paHash, /* OUT: Pointer to hash index */ |
+ volatile u32 **paPgno, /* OUT: Pointer to page number array */ |
+ u32 *piZero /* OUT: Frame associated with *paPgno[0] */ |
+){ |
+ int rc; /* Return code */ |
+ volatile u32 *aPgno; |
+ |
+ rc = walIndexPage(pWal, iHash, &aPgno); |
+ assert( rc==SQLITE_OK || iHash>0 ); |
+ |
+ if( rc==SQLITE_OK ){ |
+ u32 iZero; |
+ volatile ht_slot *aHash; |
+ |
+ aHash = (volatile ht_slot *)&aPgno[HASHTABLE_NPAGE]; |
+ if( iHash==0 ){ |
+ aPgno = &aPgno[WALINDEX_HDR_SIZE/sizeof(u32)]; |
+ iZero = 0; |
+ }else{ |
+ iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE; |
+ } |
+ |
+ *paPgno = &aPgno[-1]; |
+ *paHash = aHash; |
+ *piZero = iZero; |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Return the number of the wal-index page that contains the hash-table |
+** and page-number array that contain entries corresponding to WAL frame |
+** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages |
+** are numbered starting from 0. |
+*/ |
+static int walFramePage(u32 iFrame){ |
+ int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE; |
+ assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE) |
+ && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE) |
+ && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)) |
+ && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE) |
+ && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE)) |
+ ); |
+ return iHash; |
+} |
+ |
+/* |
+** Return the page number associated with frame iFrame in this WAL. |
+*/ |
+static u32 walFramePgno(Wal *pWal, u32 iFrame){ |
+ int iHash = walFramePage(iFrame); |
+ if( iHash==0 ){ |
+ return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1]; |
+ } |
+ return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE]; |
+} |
+ |
+/* |
+** Remove entries from the hash table that point to WAL slots greater |
+** than pWal->hdr.mxFrame. |
+** |
+** This function is called whenever pWal->hdr.mxFrame is decreased due |
+** to a rollback or savepoint. |
+** |
+** At most only the hash table containing pWal->hdr.mxFrame needs to be |
+** updated. Any later hash tables will be automatically cleared when |
+** pWal->hdr.mxFrame advances to the point where those hash tables are |
+** actually needed. |
+*/ |
+static void walCleanupHash(Wal *pWal){ |
+ volatile ht_slot *aHash = 0; /* Pointer to hash table to clear */ |
+ volatile u32 *aPgno = 0; /* Page number array for hash table */ |
+ u32 iZero = 0; /* frame == (aHash[x]+iZero) */ |
+ int iLimit = 0; /* Zero values greater than this */ |
+ int nByte; /* Number of bytes to zero in aPgno[] */ |
+ int i; /* Used to iterate through aHash[] */ |
+ |
+ assert( pWal->writeLock ); |
+ testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 ); |
+ testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE ); |
+ testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 ); |
+ |
+ if( pWal->hdr.mxFrame==0 ) return; |
+ |
+ /* Obtain pointers to the hash-table and page-number array containing |
+ ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed |
+ ** that the page said hash-table and array reside on is already mapped. |
+ */ |
+ assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) ); |
+ assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] ); |
+ walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &aHash, &aPgno, &iZero); |
+ |
+ /* Zero all hash-table entries that correspond to frame numbers greater |
+ ** than pWal->hdr.mxFrame. |
+ */ |
+ iLimit = pWal->hdr.mxFrame - iZero; |
+ assert( iLimit>0 ); |
+ for(i=0; i<HASHTABLE_NSLOT; i++){ |
+ if( aHash[i]>iLimit ){ |
+ aHash[i] = 0; |
+ } |
+ } |
+ |
+ /* Zero the entries in the aPgno array that correspond to frames with |
+ ** frame numbers greater than pWal->hdr.mxFrame. |
+ */ |
+ nByte = (int)((char *)aHash - (char *)&aPgno[iLimit+1]); |
+ memset((void *)&aPgno[iLimit+1], 0, nByte); |
+ |
+#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT |
+ /* Verify that the every entry in the mapping region is still reachable |
+ ** via the hash table even after the cleanup. |
+ */ |
+ if( iLimit ){ |
+ int j; /* Loop counter */ |
+ int iKey; /* Hash key */ |
+ for(j=1; j<=iLimit; j++){ |
+ for(iKey=walHash(aPgno[j]); aHash[iKey]; iKey=walNextHash(iKey)){ |
+ if( aHash[iKey]==j ) break; |
+ } |
+ assert( aHash[iKey]==j ); |
+ } |
+ } |
+#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */ |
+} |
+ |
+ |
+/* |
+** Set an entry in the wal-index that will map database page number |
+** pPage into WAL frame iFrame. |
+*/ |
+static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){ |
+ int rc; /* Return code */ |
+ u32 iZero = 0; /* One less than frame number of aPgno[1] */ |
+ volatile u32 *aPgno = 0; /* Page number array */ |
+ volatile ht_slot *aHash = 0; /* Hash table */ |
+ |
+ rc = walHashGet(pWal, walFramePage(iFrame), &aHash, &aPgno, &iZero); |
+ |
+ /* Assuming the wal-index file was successfully mapped, populate the |
+ ** page number array and hash table entry. |
+ */ |
+ if( rc==SQLITE_OK ){ |
+ int iKey; /* Hash table key */ |
+ int idx; /* Value to write to hash-table slot */ |
+ int nCollide; /* Number of hash collisions */ |
+ |
+ idx = iFrame - iZero; |
+ assert( idx <= HASHTABLE_NSLOT/2 + 1 ); |
+ |
+ /* If this is the first entry to be added to this hash-table, zero the |
+ ** entire hash table and aPgno[] array before proceeding. |
+ */ |
+ if( idx==1 ){ |
+ int nByte = (int)((u8 *)&aHash[HASHTABLE_NSLOT] - (u8 *)&aPgno[1]); |
+ memset((void*)&aPgno[1], 0, nByte); |
+ } |
+ |
+ /* If the entry in aPgno[] is already set, then the previous writer |
+ ** must have exited unexpectedly in the middle of a transaction (after |
+ ** writing one or more dirty pages to the WAL to free up memory). |
+ ** Remove the remnants of that writers uncommitted transaction from |
+ ** the hash-table before writing any new entries. |
+ */ |
+ if( aPgno[idx] ){ |
+ walCleanupHash(pWal); |
+ assert( !aPgno[idx] ); |
+ } |
+ |
+ /* Write the aPgno[] array entry and the hash-table slot. */ |
+ nCollide = idx; |
+ for(iKey=walHash(iPage); aHash[iKey]; iKey=walNextHash(iKey)){ |
+ if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT; |
+ } |
+ aPgno[idx] = iPage; |
+ aHash[iKey] = (ht_slot)idx; |
+ |
+#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT |
+ /* Verify that the number of entries in the hash table exactly equals |
+ ** the number of entries in the mapping region. |
+ */ |
+ { |
+ int i; /* Loop counter */ |
+ int nEntry = 0; /* Number of entries in the hash table */ |
+ for(i=0; i<HASHTABLE_NSLOT; i++){ if( aHash[i] ) nEntry++; } |
+ assert( nEntry==idx ); |
+ } |
+ |
+ /* Verify that the every entry in the mapping region is reachable |
+ ** via the hash table. This turns out to be a really, really expensive |
+ ** thing to check, so only do this occasionally - not on every |
+ ** iteration. |
+ */ |
+ if( (idx&0x3ff)==0 ){ |
+ int i; /* Loop counter */ |
+ for(i=1; i<=idx; i++){ |
+ for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){ |
+ if( aHash[iKey]==i ) break; |
+ } |
+ assert( aHash[iKey]==i ); |
+ } |
+ } |
+#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */ |
+ } |
+ |
+ |
+ return rc; |
+} |
+ |
+ |
+/* |
+** Recover the wal-index by reading the write-ahead log file. |
+** |
+** This routine first tries to establish an exclusive lock on the |
+** wal-index to prevent other threads/processes from doing anything |
+** with the WAL or wal-index while recovery is running. The |
+** WAL_RECOVER_LOCK is also held so that other threads will know |
+** that this thread is running recovery. If unable to establish |
+** the necessary locks, this routine returns SQLITE_BUSY. |
+*/ |
+static int walIndexRecover(Wal *pWal){ |
+ int rc; /* Return Code */ |
+ i64 nSize; /* Size of log file */ |
+ u32 aFrameCksum[2] = {0, 0}; |
+ int iLock; /* Lock offset to lock for checkpoint */ |
+ int nLock; /* Number of locks to hold */ |
+ |
+ /* Obtain an exclusive lock on all byte in the locking range not already |
+ ** locked by the caller. The caller is guaranteed to have locked the |
+ ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte. |
+ ** If successful, the same bytes that are locked here are unlocked before |
+ ** this function returns. |
+ */ |
+ assert( pWal->ckptLock==1 || pWal->ckptLock==0 ); |
+ assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 ); |
+ assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE ); |
+ assert( pWal->writeLock ); |
+ iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock; |
+ nLock = SQLITE_SHM_NLOCK - iLock; |
+ rc = walLockExclusive(pWal, iLock, nLock); |
+ if( rc ){ |
+ return rc; |
+ } |
+ WALTRACE(("WAL%p: recovery begin...\n", pWal)); |
+ |
+ memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); |
+ |
+ rc = sqlite3OsFileSize(pWal->pWalFd, &nSize); |
+ if( rc!=SQLITE_OK ){ |
+ goto recovery_error; |
+ } |
+ |
+ if( nSize>WAL_HDRSIZE ){ |
+ u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */ |
+ u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */ |
+ int szFrame; /* Number of bytes in buffer aFrame[] */ |
+ u8 *aData; /* Pointer to data part of aFrame buffer */ |
+ int iFrame; /* Index of last frame read */ |
+ i64 iOffset; /* Next offset to read from log file */ |
+ int szPage; /* Page size according to the log */ |
+ u32 magic; /* Magic value read from WAL header */ |
+ u32 version; /* Magic value read from WAL header */ |
+ int isValid; /* True if this frame is valid */ |
+ |
+ /* Read in the WAL header. */ |
+ rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0); |
+ if( rc!=SQLITE_OK ){ |
+ goto recovery_error; |
+ } |
+ |
+ /* If the database page size is not a power of two, or is greater than |
+ ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid |
+ ** data. Similarly, if the 'magic' value is invalid, ignore the whole |
+ ** WAL file. |
+ */ |
+ magic = sqlite3Get4byte(&aBuf[0]); |
+ szPage = sqlite3Get4byte(&aBuf[8]); |
+ if( (magic&0xFFFFFFFE)!=WAL_MAGIC |
+ || szPage&(szPage-1) |
+ || szPage>SQLITE_MAX_PAGE_SIZE |
+ || szPage<512 |
+ ){ |
+ goto finished; |
+ } |
+ pWal->hdr.bigEndCksum = (u8)(magic&0x00000001); |
+ pWal->szPage = szPage; |
+ pWal->nCkpt = sqlite3Get4byte(&aBuf[12]); |
+ memcpy(&pWal->hdr.aSalt, &aBuf[16], 8); |
+ |
+ /* Verify that the WAL header checksum is correct */ |
+ walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN, |
+ aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum |
+ ); |
+ if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24]) |
+ || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28]) |
+ ){ |
+ goto finished; |
+ } |
+ |
+ /* Verify that the version number on the WAL format is one that |
+ ** are able to understand */ |
+ version = sqlite3Get4byte(&aBuf[4]); |
+ if( version!=WAL_MAX_VERSION ){ |
+ rc = SQLITE_CANTOPEN_BKPT; |
+ goto finished; |
+ } |
+ |
+ /* Malloc a buffer to read frames into. */ |
+ szFrame = szPage + WAL_FRAME_HDRSIZE; |
+ aFrame = (u8 *)sqlite3_malloc64(szFrame); |
+ if( !aFrame ){ |
+ rc = SQLITE_NOMEM; |
+ goto recovery_error; |
+ } |
+ aData = &aFrame[WAL_FRAME_HDRSIZE]; |
+ |
+ /* Read all frames from the log file. */ |
+ iFrame = 0; |
+ for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){ |
+ u32 pgno; /* Database page number for frame */ |
+ u32 nTruncate; /* dbsize field from frame header */ |
+ |
+ /* Read and decode the next log frame. */ |
+ iFrame++; |
+ rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset); |
+ if( rc!=SQLITE_OK ) break; |
+ isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame); |
+ if( !isValid ) break; |
+ rc = walIndexAppend(pWal, iFrame, pgno); |
+ if( rc!=SQLITE_OK ) break; |
+ |
+ /* If nTruncate is non-zero, this is a commit record. */ |
+ if( nTruncate ){ |
+ pWal->hdr.mxFrame = iFrame; |
+ pWal->hdr.nPage = nTruncate; |
+ pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16)); |
+ testcase( szPage<=32768 ); |
+ testcase( szPage>=65536 ); |
+ aFrameCksum[0] = pWal->hdr.aFrameCksum[0]; |
+ aFrameCksum[1] = pWal->hdr.aFrameCksum[1]; |
+ } |
+ } |
+ |
+ sqlite3_free(aFrame); |
+ } |
+ |
+finished: |
+ if( rc==SQLITE_OK ){ |
+ volatile WalCkptInfo *pInfo; |
+ int i; |
+ pWal->hdr.aFrameCksum[0] = aFrameCksum[0]; |
+ pWal->hdr.aFrameCksum[1] = aFrameCksum[1]; |
+ walIndexWriteHdr(pWal); |
+ |
+ /* Reset the checkpoint-header. This is safe because this thread is |
+ ** currently holding locks that exclude all other readers, writers and |
+ ** checkpointers. |
+ */ |
+ pInfo = walCkptInfo(pWal); |
+ pInfo->nBackfill = 0; |
+ pInfo->nBackfillAttempted = pWal->hdr.mxFrame; |
+ pInfo->aReadMark[0] = 0; |
+ for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED; |
+ if( pWal->hdr.mxFrame ) pInfo->aReadMark[1] = pWal->hdr.mxFrame; |
+ |
+ /* If more than one frame was recovered from the log file, report an |
+ ** event via sqlite3_log(). This is to help with identifying performance |
+ ** problems caused by applications routinely shutting down without |
+ ** checkpointing the log file. |
+ */ |
+ if( pWal->hdr.nPage ){ |
+ sqlite3_log(SQLITE_NOTICE_RECOVER_WAL, |
+ "recovered %d frames from WAL file %s", |
+ pWal->hdr.mxFrame, pWal->zWalName |
+ ); |
+ } |
+ } |
+ |
+recovery_error: |
+ WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok")); |
+ walUnlockExclusive(pWal, iLock, nLock); |
+ return rc; |
+} |
+ |
+/* |
+** Close an open wal-index. |
+*/ |
+static void walIndexClose(Wal *pWal, int isDelete){ |
+ if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){ |
+ int i; |
+ for(i=0; i<pWal->nWiData; i++){ |
+ sqlite3_free((void *)pWal->apWiData[i]); |
+ pWal->apWiData[i] = 0; |
+ } |
+ }else{ |
+ sqlite3OsShmUnmap(pWal->pDbFd, isDelete); |
+ } |
+} |
+ |
+/* |
+** Open a connection to the WAL file zWalName. The database file must |
+** already be opened on connection pDbFd. The buffer that zWalName points |
+** to must remain valid for the lifetime of the returned Wal* handle. |
+** |
+** A SHARED lock should be held on the database file when this function |
+** is called. The purpose of this SHARED lock is to prevent any other |
+** client from unlinking the WAL or wal-index file. If another process |
+** were to do this just after this client opened one of these files, the |
+** system would be badly broken. |
+** |
+** If the log file is successfully opened, SQLITE_OK is returned and |
+** *ppWal is set to point to a new WAL handle. If an error occurs, |
+** an SQLite error code is returned and *ppWal is left unmodified. |
+*/ |
+SQLITE_PRIVATE int sqlite3WalOpen( |
+ sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */ |
+ sqlite3_file *pDbFd, /* The open database file */ |
+ const char *zWalName, /* Name of the WAL file */ |
+ int bNoShm, /* True to run in heap-memory mode */ |
+ i64 mxWalSize, /* Truncate WAL to this size on reset */ |
+ Wal **ppWal /* OUT: Allocated Wal handle */ |
+){ |
+ int rc; /* Return Code */ |
+ Wal *pRet; /* Object to allocate and return */ |
+ int flags; /* Flags passed to OsOpen() */ |
+ |
+ assert( zWalName && zWalName[0] ); |
+ assert( pDbFd ); |
+ |
+ /* In the amalgamation, the os_unix.c and os_win.c source files come before |
+ ** this source file. Verify that the #defines of the locking byte offsets |
+ ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value. |
+ ** For that matter, if the lock offset ever changes from its initial design |
+ ** value of 120, we need to know that so there is an assert() to check it. |
+ */ |
+ assert( 120==WALINDEX_LOCK_OFFSET ); |
+ assert( 136==WALINDEX_HDR_SIZE ); |
+#ifdef WIN_SHM_BASE |
+ assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET ); |
+#endif |
+#ifdef UNIX_SHM_BASE |
+ assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET ); |
+#endif |
+ |
+ |
+ /* Allocate an instance of struct Wal to return. */ |
+ *ppWal = 0; |
+ pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile); |
+ if( !pRet ){ |
+ return SQLITE_NOMEM; |
+ } |
+ |
+ pRet->pVfs = pVfs; |
+ pRet->pWalFd = (sqlite3_file *)&pRet[1]; |
+ pRet->pDbFd = pDbFd; |
+ pRet->readLock = -1; |
+ pRet->mxWalSize = mxWalSize; |
+ pRet->zWalName = zWalName; |
+ pRet->syncHeader = 1; |
+ pRet->padToSectorBoundary = 1; |
+ pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE); |
+ |
+ /* Open file handle on the write-ahead log file. */ |
+ flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL); |
+ rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags); |
+ if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){ |
+ pRet->readOnly = WAL_RDONLY; |
+ } |
+ |
+ if( rc!=SQLITE_OK ){ |
+ walIndexClose(pRet, 0); |
+ sqlite3OsClose(pRet->pWalFd); |
+ sqlite3_free(pRet); |
+ }else{ |
+ int iDC = sqlite3OsDeviceCharacteristics(pDbFd); |
+ if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; } |
+ if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){ |
+ pRet->padToSectorBoundary = 0; |
+ } |
+ *ppWal = pRet; |
+ WALTRACE(("WAL%d: opened\n", pRet)); |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Change the size to which the WAL file is trucated on each reset. |
+*/ |
+SQLITE_PRIVATE void sqlite3WalLimit(Wal *pWal, i64 iLimit){ |
+ if( pWal ) pWal->mxWalSize = iLimit; |
+} |
+ |
+/* |
+** Find the smallest page number out of all pages held in the WAL that |
+** has not been returned by any prior invocation of this method on the |
+** same WalIterator object. Write into *piFrame the frame index where |
+** that page was last written into the WAL. Write into *piPage the page |
+** number. |
+** |
+** Return 0 on success. If there are no pages in the WAL with a page |
+** number larger than *piPage, then return 1. |
+*/ |
+static int walIteratorNext( |
+ WalIterator *p, /* Iterator */ |
+ u32 *piPage, /* OUT: The page number of the next page */ |
+ u32 *piFrame /* OUT: Wal frame index of next page */ |
+){ |
+ u32 iMin; /* Result pgno must be greater than iMin */ |
+ u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */ |
+ int i; /* For looping through segments */ |
+ |
+ iMin = p->iPrior; |
+ assert( iMin<0xffffffff ); |
+ for(i=p->nSegment-1; i>=0; i--){ |
+ struct WalSegment *pSegment = &p->aSegment[i]; |
+ while( pSegment->iNext<pSegment->nEntry ){ |
+ u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]]; |
+ if( iPg>iMin ){ |
+ if( iPg<iRet ){ |
+ iRet = iPg; |
+ *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext]; |
+ } |
+ break; |
+ } |
+ pSegment->iNext++; |
+ } |
+ } |
+ |
+ *piPage = p->iPrior = iRet; |
+ return (iRet==0xFFFFFFFF); |
+} |
+ |
+/* |
+** This function merges two sorted lists into a single sorted list. |
+** |
+** aLeft[] and aRight[] are arrays of indices. The sort key is |
+** aContent[aLeft[]] and aContent[aRight[]]. Upon entry, the following |
+** is guaranteed for all J<K: |
+** |
+** aContent[aLeft[J]] < aContent[aLeft[K]] |
+** aContent[aRight[J]] < aContent[aRight[K]] |
+** |
+** This routine overwrites aRight[] with a new (probably longer) sequence |
+** of indices such that the aRight[] contains every index that appears in |
+** either aLeft[] or the old aRight[] and such that the second condition |
+** above is still met. |
+** |
+** The aContent[aLeft[X]] values will be unique for all X. And the |
+** aContent[aRight[X]] values will be unique too. But there might be |
+** one or more combinations of X and Y such that |
+** |
+** aLeft[X]!=aRight[Y] && aContent[aLeft[X]] == aContent[aRight[Y]] |
+** |
+** When that happens, omit the aLeft[X] and use the aRight[Y] index. |
+*/ |
+static void walMerge( |
+ const u32 *aContent, /* Pages in wal - keys for the sort */ |
+ ht_slot *aLeft, /* IN: Left hand input list */ |
+ int nLeft, /* IN: Elements in array *paLeft */ |
+ ht_slot **paRight, /* IN/OUT: Right hand input list */ |
+ int *pnRight, /* IN/OUT: Elements in *paRight */ |
+ ht_slot *aTmp /* Temporary buffer */ |
+){ |
+ int iLeft = 0; /* Current index in aLeft */ |
+ int iRight = 0; /* Current index in aRight */ |
+ int iOut = 0; /* Current index in output buffer */ |
+ int nRight = *pnRight; |
+ ht_slot *aRight = *paRight; |
+ |
+ assert( nLeft>0 && nRight>0 ); |
+ while( iRight<nRight || iLeft<nLeft ){ |
+ ht_slot logpage; |
+ Pgno dbpage; |
+ |
+ if( (iLeft<nLeft) |
+ && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]]) |
+ ){ |
+ logpage = aLeft[iLeft++]; |
+ }else{ |
+ logpage = aRight[iRight++]; |
+ } |
+ dbpage = aContent[logpage]; |
+ |
+ aTmp[iOut++] = logpage; |
+ if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++; |
+ |
+ assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage ); |
+ assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage ); |
+ } |
+ |
+ *paRight = aLeft; |
+ *pnRight = iOut; |
+ memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut); |
+} |
+ |
+/* |
+** Sort the elements in list aList using aContent[] as the sort key. |
+** Remove elements with duplicate keys, preferring to keep the |
+** larger aList[] values. |
+** |
+** The aList[] entries are indices into aContent[]. The values in |
+** aList[] are to be sorted so that for all J<K: |
+** |
+** aContent[aList[J]] < aContent[aList[K]] |
+** |
+** For any X and Y such that |
+** |
+** aContent[aList[X]] == aContent[aList[Y]] |
+** |
+** Keep the larger of the two values aList[X] and aList[Y] and discard |
+** the smaller. |
+*/ |
+static void walMergesort( |
+ const u32 *aContent, /* Pages in wal */ |
+ ht_slot *aBuffer, /* Buffer of at least *pnList items to use */ |
+ ht_slot *aList, /* IN/OUT: List to sort */ |
+ int *pnList /* IN/OUT: Number of elements in aList[] */ |
+){ |
+ struct Sublist { |
+ int nList; /* Number of elements in aList */ |
+ ht_slot *aList; /* Pointer to sub-list content */ |
+ }; |
+ |
+ const int nList = *pnList; /* Size of input list */ |
+ int nMerge = 0; /* Number of elements in list aMerge */ |
+ ht_slot *aMerge = 0; /* List to be merged */ |
+ int iList; /* Index into input list */ |
+ u32 iSub = 0; /* Index into aSub array */ |
+ struct Sublist aSub[13]; /* Array of sub-lists */ |
+ |
+ memset(aSub, 0, sizeof(aSub)); |
+ assert( nList<=HASHTABLE_NPAGE && nList>0 ); |
+ assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) ); |
+ |
+ for(iList=0; iList<nList; iList++){ |
+ nMerge = 1; |
+ aMerge = &aList[iList]; |
+ for(iSub=0; iList & (1<<iSub); iSub++){ |
+ struct Sublist *p; |
+ assert( iSub<ArraySize(aSub) ); |
+ p = &aSub[iSub]; |
+ assert( p->aList && p->nList<=(1<<iSub) ); |
+ assert( p->aList==&aList[iList&~((2<<iSub)-1)] ); |
+ walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer); |
+ } |
+ aSub[iSub].aList = aMerge; |
+ aSub[iSub].nList = nMerge; |
+ } |
+ |
+ for(iSub++; iSub<ArraySize(aSub); iSub++){ |
+ if( nList & (1<<iSub) ){ |
+ struct Sublist *p; |
+ assert( iSub<ArraySize(aSub) ); |
+ p = &aSub[iSub]; |
+ assert( p->nList<=(1<<iSub) ); |
+ assert( p->aList==&aList[nList&~((2<<iSub)-1)] ); |
+ walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer); |
+ } |
+ } |
+ assert( aMerge==aList ); |
+ *pnList = nMerge; |
+ |
+#ifdef SQLITE_DEBUG |
+ { |
+ int i; |
+ for(i=1; i<*pnList; i++){ |
+ assert( aContent[aList[i]] > aContent[aList[i-1]] ); |
+ } |
+ } |
+#endif |
+} |
+ |
+/* |
+** Free an iterator allocated by walIteratorInit(). |
+*/ |
+static void walIteratorFree(WalIterator *p){ |
+ sqlite3_free(p); |
+} |
+ |
+/* |
+** Construct a WalInterator object that can be used to loop over all |
+** pages in the WAL in ascending order. The caller must hold the checkpoint |
+** lock. |
+** |
+** On success, make *pp point to the newly allocated WalInterator object |
+** return SQLITE_OK. Otherwise, return an error code. If this routine |
+** returns an error, the value of *pp is undefined. |
+** |
+** The calling routine should invoke walIteratorFree() to destroy the |
+** WalIterator object when it has finished with it. |
+*/ |
+static int walIteratorInit(Wal *pWal, WalIterator **pp){ |
+ WalIterator *p; /* Return value */ |
+ int nSegment; /* Number of segments to merge */ |
+ u32 iLast; /* Last frame in log */ |
+ int nByte; /* Number of bytes to allocate */ |
+ int i; /* Iterator variable */ |
+ ht_slot *aTmp; /* Temp space used by merge-sort */ |
+ int rc = SQLITE_OK; /* Return Code */ |
+ |
+ /* This routine only runs while holding the checkpoint lock. And |
+ ** it only runs if there is actually content in the log (mxFrame>0). |
+ */ |
+ assert( pWal->ckptLock && pWal->hdr.mxFrame>0 ); |
+ iLast = pWal->hdr.mxFrame; |
+ |
+ /* Allocate space for the WalIterator object. */ |
+ nSegment = walFramePage(iLast) + 1; |
+ nByte = sizeof(WalIterator) |
+ + (nSegment-1)*sizeof(struct WalSegment) |
+ + iLast*sizeof(ht_slot); |
+ p = (WalIterator *)sqlite3_malloc64(nByte); |
+ if( !p ){ |
+ return SQLITE_NOMEM; |
+ } |
+ memset(p, 0, nByte); |
+ p->nSegment = nSegment; |
+ |
+ /* Allocate temporary space used by the merge-sort routine. This block |
+ ** of memory will be freed before this function returns. |
+ */ |
+ aTmp = (ht_slot *)sqlite3_malloc64( |
+ sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast) |
+ ); |
+ if( !aTmp ){ |
+ rc = SQLITE_NOMEM; |
+ } |
+ |
+ for(i=0; rc==SQLITE_OK && i<nSegment; i++){ |
+ volatile ht_slot *aHash; |
+ u32 iZero; |
+ volatile u32 *aPgno; |
+ |
+ rc = walHashGet(pWal, i, &aHash, &aPgno, &iZero); |
+ if( rc==SQLITE_OK ){ |
+ int j; /* Counter variable */ |
+ int nEntry; /* Number of entries in this segment */ |
+ ht_slot *aIndex; /* Sorted index for this segment */ |
+ |
+ aPgno++; |
+ if( (i+1)==nSegment ){ |
+ nEntry = (int)(iLast - iZero); |
+ }else{ |
+ nEntry = (int)((u32*)aHash - (u32*)aPgno); |
+ } |
+ aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[iZero]; |
+ iZero++; |
+ |
+ for(j=0; j<nEntry; j++){ |
+ aIndex[j] = (ht_slot)j; |
+ } |
+ walMergesort((u32 *)aPgno, aTmp, aIndex, &nEntry); |
+ p->aSegment[i].iZero = iZero; |
+ p->aSegment[i].nEntry = nEntry; |
+ p->aSegment[i].aIndex = aIndex; |
+ p->aSegment[i].aPgno = (u32 *)aPgno; |
+ } |
+ } |
+ sqlite3_free(aTmp); |
+ |
+ if( rc!=SQLITE_OK ){ |
+ walIteratorFree(p); |
+ } |
+ *pp = p; |
+ return rc; |
+} |
+ |
+/* |
+** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and |
+** n. If the attempt fails and parameter xBusy is not NULL, then it is a |
+** busy-handler function. Invoke it and retry the lock until either the |
+** lock is successfully obtained or the busy-handler returns 0. |
+*/ |
+static int walBusyLock( |
+ Wal *pWal, /* WAL connection */ |
+ int (*xBusy)(void*), /* Function to call when busy */ |
+ void *pBusyArg, /* Context argument for xBusyHandler */ |
+ int lockIdx, /* Offset of first byte to lock */ |
+ int n /* Number of bytes to lock */ |
+){ |
+ int rc; |
+ do { |
+ rc = walLockExclusive(pWal, lockIdx, n); |
+ }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) ); |
+ return rc; |
+} |
+ |
+/* |
+** The cache of the wal-index header must be valid to call this function. |
+** Return the page-size in bytes used by the database. |
+*/ |
+static int walPagesize(Wal *pWal){ |
+ return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); |
+} |
+ |
+/* |
+** The following is guaranteed when this function is called: |
+** |
+** a) the WRITER lock is held, |
+** b) the entire log file has been checkpointed, and |
+** c) any existing readers are reading exclusively from the database |
+** file - there are no readers that may attempt to read a frame from |
+** the log file. |
+** |
+** This function updates the shared-memory structures so that the next |
+** client to write to the database (which may be this one) does so by |
+** writing frames into the start of the log file. |
+** |
+** The value of parameter salt1 is used as the aSalt[1] value in the |
+** new wal-index header. It should be passed a pseudo-random value (i.e. |
+** one obtained from sqlite3_randomness()). |
+*/ |
+static void walRestartHdr(Wal *pWal, u32 salt1){ |
+ volatile WalCkptInfo *pInfo = walCkptInfo(pWal); |
+ int i; /* Loop counter */ |
+ u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */ |
+ pWal->nCkpt++; |
+ pWal->hdr.mxFrame = 0; |
+ sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0])); |
+ memcpy(&pWal->hdr.aSalt[1], &salt1, 4); |
+ walIndexWriteHdr(pWal); |
+ pInfo->nBackfill = 0; |
+ pInfo->nBackfillAttempted = 0; |
+ pInfo->aReadMark[1] = 0; |
+ for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED; |
+ assert( pInfo->aReadMark[0]==0 ); |
+} |
+ |
+/* |
+** Copy as much content as we can from the WAL back into the database file |
+** in response to an sqlite3_wal_checkpoint() request or the equivalent. |
+** |
+** The amount of information copies from WAL to database might be limited |
+** by active readers. This routine will never overwrite a database page |
+** that a concurrent reader might be using. |
+** |
+** All I/O barrier operations (a.k.a fsyncs) occur in this routine when |
+** SQLite is in WAL-mode in synchronous=NORMAL. That means that if |
+** checkpoints are always run by a background thread or background |
+** process, foreground threads will never block on a lengthy fsync call. |
+** |
+** Fsync is called on the WAL before writing content out of the WAL and |
+** into the database. This ensures that if the new content is persistent |
+** in the WAL and can be recovered following a power-loss or hard reset. |
+** |
+** Fsync is also called on the database file if (and only if) the entire |
+** WAL content is copied into the database file. This second fsync makes |
+** it safe to delete the WAL since the new content will persist in the |
+** database file. |
+** |
+** This routine uses and updates the nBackfill field of the wal-index header. |
+** This is the only routine that will increase the value of nBackfill. |
+** (A WAL reset or recovery will revert nBackfill to zero, but not increase |
+** its value.) |
+** |
+** The caller must be holding sufficient locks to ensure that no other |
+** checkpoint is running (in any other thread or process) at the same |
+** time. |
+*/ |
+static int walCheckpoint( |
+ Wal *pWal, /* Wal connection */ |
+ int eMode, /* One of PASSIVE, FULL or RESTART */ |
+ int (*xBusy)(void*), /* Function to call when busy */ |
+ void *pBusyArg, /* Context argument for xBusyHandler */ |
+ int sync_flags, /* Flags for OsSync() (or 0) */ |
+ u8 *zBuf /* Temporary buffer to use */ |
+){ |
+ int rc = SQLITE_OK; /* Return code */ |
+ int szPage; /* Database page-size */ |
+ WalIterator *pIter = 0; /* Wal iterator context */ |
+ u32 iDbpage = 0; /* Next database page to write */ |
+ u32 iFrame = 0; /* Wal frame containing data for iDbpage */ |
+ u32 mxSafeFrame; /* Max frame that can be backfilled */ |
+ u32 mxPage; /* Max database page to write */ |
+ int i; /* Loop counter */ |
+ volatile WalCkptInfo *pInfo; /* The checkpoint status information */ |
+ |
+ szPage = walPagesize(pWal); |
+ testcase( szPage<=32768 ); |
+ testcase( szPage>=65536 ); |
+ pInfo = walCkptInfo(pWal); |
+ if( pInfo->nBackfill<pWal->hdr.mxFrame ){ |
+ |
+ /* Allocate the iterator */ |
+ rc = walIteratorInit(pWal, &pIter); |
+ if( rc!=SQLITE_OK ){ |
+ return rc; |
+ } |
+ assert( pIter ); |
+ |
+ /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked |
+ ** in the SQLITE_CHECKPOINT_PASSIVE mode. */ |
+ assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 ); |
+ |
+ /* Compute in mxSafeFrame the index of the last frame of the WAL that is |
+ ** safe to write into the database. Frames beyond mxSafeFrame might |
+ ** overwrite database pages that are in use by active readers and thus |
+ ** cannot be backfilled from the WAL. |
+ */ |
+ mxSafeFrame = pWal->hdr.mxFrame; |
+ mxPage = pWal->hdr.nPage; |
+ for(i=1; i<WAL_NREADER; i++){ |
+ /* Thread-sanitizer reports that the following is an unsafe read, |
+ ** as some other thread may be in the process of updating the value |
+ ** of the aReadMark[] slot. The assumption here is that if that is |
+ ** happening, the other client may only be increasing the value, |
+ ** not decreasing it. So assuming either that either the "old" or |
+ ** "new" version of the value is read, and not some arbitrary value |
+ ** that would never be written by a real client, things are still |
+ ** safe. */ |
+ u32 y = pInfo->aReadMark[i]; |
+ if( mxSafeFrame>y ){ |
+ assert( y<=pWal->hdr.mxFrame ); |
+ rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1); |
+ if( rc==SQLITE_OK ){ |
+ pInfo->aReadMark[i] = (i==1 ? mxSafeFrame : READMARK_NOT_USED); |
+ walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); |
+ }else if( rc==SQLITE_BUSY ){ |
+ mxSafeFrame = y; |
+ xBusy = 0; |
+ }else{ |
+ goto walcheckpoint_out; |
+ } |
+ } |
+ } |
+ |
+ if( pInfo->nBackfill<mxSafeFrame |
+ && (rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(0),1))==SQLITE_OK |
+ ){ |
+ i64 nSize; /* Current size of database file */ |
+ u32 nBackfill = pInfo->nBackfill; |
+ |
+ pInfo->nBackfillAttempted = mxSafeFrame; |
+ |
+ /* Sync the WAL to disk */ |
+ if( sync_flags ){ |
+ rc = sqlite3OsSync(pWal->pWalFd, sync_flags); |
+ } |
+ |
+ /* If the database may grow as a result of this checkpoint, hint |
+ ** about the eventual size of the db file to the VFS layer. |
+ */ |
+ if( rc==SQLITE_OK ){ |
+ i64 nReq = ((i64)mxPage * szPage); |
+ rc = sqlite3OsFileSize(pWal->pDbFd, &nSize); |
+ if( rc==SQLITE_OK && nSize<nReq ){ |
+ sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq); |
+ } |
+ } |
+ |
+ |
+ /* Iterate through the contents of the WAL, copying data to the db file */ |
+ while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){ |
+ i64 iOffset; |
+ assert( walFramePgno(pWal, iFrame)==iDbpage ); |
+ if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){ |
+ continue; |
+ } |
+ iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE; |
+ /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */ |
+ rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset); |
+ if( rc!=SQLITE_OK ) break; |
+ iOffset = (iDbpage-1)*(i64)szPage; |
+ testcase( IS_BIG_INT(iOffset) ); |
+ rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset); |
+ if( rc!=SQLITE_OK ) break; |
+ } |
+ |
+ /* If work was actually accomplished... */ |
+ if( rc==SQLITE_OK ){ |
+ if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){ |
+ i64 szDb = pWal->hdr.nPage*(i64)szPage; |
+ testcase( IS_BIG_INT(szDb) ); |
+ rc = sqlite3OsTruncate(pWal->pDbFd, szDb); |
+ if( rc==SQLITE_OK && sync_flags ){ |
+ rc = sqlite3OsSync(pWal->pDbFd, sync_flags); |
+ } |
+ } |
+ if( rc==SQLITE_OK ){ |
+ pInfo->nBackfill = mxSafeFrame; |
+ } |
+ } |
+ |
+ /* Release the reader lock held while backfilling */ |
+ walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1); |
+ } |
+ |
+ if( rc==SQLITE_BUSY ){ |
+ /* Reset the return code so as not to report a checkpoint failure |
+ ** just because there are active readers. */ |
+ rc = SQLITE_OK; |
+ } |
+ } |
+ |
+ /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the |
+ ** entire wal file has been copied into the database file, then block |
+ ** until all readers have finished using the wal file. This ensures that |
+ ** the next process to write to the database restarts the wal file. |
+ */ |
+ if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){ |
+ assert( pWal->writeLock ); |
+ if( pInfo->nBackfill<pWal->hdr.mxFrame ){ |
+ rc = SQLITE_BUSY; |
+ }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){ |
+ u32 salt1; |
+ sqlite3_randomness(4, &salt1); |
+ assert( pInfo->nBackfill==pWal->hdr.mxFrame ); |
+ rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1); |
+ if( rc==SQLITE_OK ){ |
+ if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){ |
+ /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as |
+ ** SQLITE_CHECKPOINT_RESTART with the addition that it also |
+ ** truncates the log file to zero bytes just prior to a |
+ ** successful return. |
+ ** |
+ ** In theory, it might be safe to do this without updating the |
+ ** wal-index header in shared memory, as all subsequent reader or |
+ ** writer clients should see that the entire log file has been |
+ ** checkpointed and behave accordingly. This seems unsafe though, |
+ ** as it would leave the system in a state where the contents of |
+ ** the wal-index header do not match the contents of the |
+ ** file-system. To avoid this, update the wal-index header to |
+ ** indicate that the log file contains zero valid frames. */ |
+ walRestartHdr(pWal, salt1); |
+ rc = sqlite3OsTruncate(pWal->pWalFd, 0); |
+ } |
+ walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); |
+ } |
+ } |
+ } |
+ |
+ walcheckpoint_out: |
+ walIteratorFree(pIter); |
+ return rc; |
+} |
+ |
+/* |
+** If the WAL file is currently larger than nMax bytes in size, truncate |
+** it to exactly nMax bytes. If an error occurs while doing so, ignore it. |
+*/ |
+static void walLimitSize(Wal *pWal, i64 nMax){ |
+ i64 sz; |
+ int rx; |
+ sqlite3BeginBenignMalloc(); |
+ rx = sqlite3OsFileSize(pWal->pWalFd, &sz); |
+ if( rx==SQLITE_OK && (sz > nMax ) ){ |
+ rx = sqlite3OsTruncate(pWal->pWalFd, nMax); |
+ } |
+ sqlite3EndBenignMalloc(); |
+ if( rx ){ |
+ sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName); |
+ } |
+} |
+ |
+/* |
+** Close a connection to a log file. |
+*/ |
+SQLITE_PRIVATE int sqlite3WalClose( |
+ Wal *pWal, /* Wal to close */ |
+ int sync_flags, /* Flags to pass to OsSync() (or 0) */ |
+ int nBuf, |
+ u8 *zBuf /* Buffer of at least nBuf bytes */ |
+){ |
+ int rc = SQLITE_OK; |
+ if( pWal ){ |
+ int isDelete = 0; /* True to unlink wal and wal-index files */ |
+ |
+ /* If an EXCLUSIVE lock can be obtained on the database file (using the |
+ ** ordinary, rollback-mode locking methods, this guarantees that the |
+ ** connection associated with this log file is the only connection to |
+ ** the database. In this case checkpoint the database and unlink both |
+ ** the wal and wal-index files. |
+ ** |
+ ** The EXCLUSIVE lock is not released before returning. |
+ */ |
+ rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE); |
+ if( rc==SQLITE_OK ){ |
+ if( pWal->exclusiveMode==WAL_NORMAL_MODE ){ |
+ pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; |
+ } |
+ rc = sqlite3WalCheckpoint( |
+ pWal, SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0 |
+ ); |
+ if( rc==SQLITE_OK ){ |
+ int bPersist = -1; |
+ sqlite3OsFileControlHint( |
+ pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist |
+ ); |
+ if( bPersist!=1 ){ |
+ /* Try to delete the WAL file if the checkpoint completed and |
+ ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal |
+ ** mode (!bPersist) */ |
+ isDelete = 1; |
+ }else if( pWal->mxWalSize>=0 ){ |
+ /* Try to truncate the WAL file to zero bytes if the checkpoint |
+ ** completed and fsynced (rc==SQLITE_OK) and we are in persistent |
+ ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a |
+ ** non-negative value (pWal->mxWalSize>=0). Note that we truncate |
+ ** to zero bytes as truncating to the journal_size_limit might |
+ ** leave a corrupt WAL file on disk. */ |
+ walLimitSize(pWal, 0); |
+ } |
+ } |
+ } |
+ |
+ walIndexClose(pWal, isDelete); |
+ sqlite3OsClose(pWal->pWalFd); |
+ if( isDelete ){ |
+ sqlite3BeginBenignMalloc(); |
+ sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0); |
+ sqlite3EndBenignMalloc(); |
+ } |
+ WALTRACE(("WAL%p: closed\n", pWal)); |
+ sqlite3_free((void *)pWal->apWiData); |
+ sqlite3_free(pWal); |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Try to read the wal-index header. Return 0 on success and 1 if |
+** there is a problem. |
+** |
+** The wal-index is in shared memory. Another thread or process might |
+** be writing the header at the same time this procedure is trying to |
+** read it, which might result in inconsistency. A dirty read is detected |
+** by verifying that both copies of the header are the same and also by |
+** a checksum on the header. |
+** |
+** If and only if the read is consistent and the header is different from |
+** pWal->hdr, then pWal->hdr is updated to the content of the new header |
+** and *pChanged is set to 1. |
+** |
+** If the checksum cannot be verified return non-zero. If the header |
+** is read successfully and the checksum verified, return zero. |
+*/ |
+static int walIndexTryHdr(Wal *pWal, int *pChanged){ |
+ u32 aCksum[2]; /* Checksum on the header content */ |
+ WalIndexHdr h1, h2; /* Two copies of the header content */ |
+ WalIndexHdr volatile *aHdr; /* Header in shared memory */ |
+ |
+ /* The first page of the wal-index must be mapped at this point. */ |
+ assert( pWal->nWiData>0 && pWal->apWiData[0] ); |
+ |
+ /* Read the header. This might happen concurrently with a write to the |
+ ** same area of shared memory on a different CPU in a SMP, |
+ ** meaning it is possible that an inconsistent snapshot is read |
+ ** from the file. If this happens, return non-zero. |
+ ** |
+ ** There are two copies of the header at the beginning of the wal-index. |
+ ** When reading, read [0] first then [1]. Writes are in the reverse order. |
+ ** Memory barriers are used to prevent the compiler or the hardware from |
+ ** reordering the reads and writes. |
+ */ |
+ aHdr = walIndexHdr(pWal); |
+ memcpy(&h1, (void *)&aHdr[0], sizeof(h1)); |
+ walShmBarrier(pWal); |
+ memcpy(&h2, (void *)&aHdr[1], sizeof(h2)); |
+ |
+ if( memcmp(&h1, &h2, sizeof(h1))!=0 ){ |
+ return 1; /* Dirty read */ |
+ } |
+ if( h1.isInit==0 ){ |
+ return 1; /* Malformed header - probably all zeros */ |
+ } |
+ walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum); |
+ if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){ |
+ return 1; /* Checksum does not match */ |
+ } |
+ |
+ if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){ |
+ *pChanged = 1; |
+ memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr)); |
+ pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); |
+ testcase( pWal->szPage<=32768 ); |
+ testcase( pWal->szPage>=65536 ); |
+ } |
+ |
+ /* The header was successfully read. Return zero. */ |
+ return 0; |
+} |
+ |
+/* |
+** Read the wal-index header from the wal-index and into pWal->hdr. |
+** If the wal-header appears to be corrupt, try to reconstruct the |
+** wal-index from the WAL before returning. |
+** |
+** Set *pChanged to 1 if the wal-index header value in pWal->hdr is |
+** changed by this operation. If pWal->hdr is unchanged, set *pChanged |
+** to 0. |
+** |
+** If the wal-index header is successfully read, return SQLITE_OK. |
+** Otherwise an SQLite error code. |
+*/ |
+static int walIndexReadHdr(Wal *pWal, int *pChanged){ |
+ int rc; /* Return code */ |
+ int badHdr; /* True if a header read failed */ |
+ volatile u32 *page0; /* Chunk of wal-index containing header */ |
+ |
+ /* Ensure that page 0 of the wal-index (the page that contains the |
+ ** wal-index header) is mapped. Return early if an error occurs here. |
+ */ |
+ assert( pChanged ); |
+ rc = walIndexPage(pWal, 0, &page0); |
+ if( rc!=SQLITE_OK ){ |
+ return rc; |
+ }; |
+ assert( page0 || pWal->writeLock==0 ); |
+ |
+ /* If the first page of the wal-index has been mapped, try to read the |
+ ** wal-index header immediately, without holding any lock. This usually |
+ ** works, but may fail if the wal-index header is corrupt or currently |
+ ** being modified by another thread or process. |
+ */ |
+ badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1); |
+ |
+ /* If the first attempt failed, it might have been due to a race |
+ ** with a writer. So get a WRITE lock and try again. |
+ */ |
+ assert( badHdr==0 || pWal->writeLock==0 ); |
+ if( badHdr ){ |
+ if( pWal->readOnly & WAL_SHM_RDONLY ){ |
+ if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){ |
+ walUnlockShared(pWal, WAL_WRITE_LOCK); |
+ rc = SQLITE_READONLY_RECOVERY; |
+ } |
+ }else if( SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){ |
+ pWal->writeLock = 1; |
+ if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){ |
+ badHdr = walIndexTryHdr(pWal, pChanged); |
+ if( badHdr ){ |
+ /* If the wal-index header is still malformed even while holding |
+ ** a WRITE lock, it can only mean that the header is corrupted and |
+ ** needs to be reconstructed. So run recovery to do exactly that. |
+ */ |
+ rc = walIndexRecover(pWal); |
+ *pChanged = 1; |
+ } |
+ } |
+ pWal->writeLock = 0; |
+ walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); |
+ } |
+ } |
+ |
+ /* If the header is read successfully, check the version number to make |
+ ** sure the wal-index was not constructed with some future format that |
+ ** this version of SQLite cannot understand. |
+ */ |
+ if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){ |
+ rc = SQLITE_CANTOPEN_BKPT; |
+ } |
+ |
+ return rc; |
+} |
+ |
+/* |
+** This is the value that walTryBeginRead returns when it needs to |
+** be retried. |
+*/ |
+#define WAL_RETRY (-1) |
+ |
+/* |
+** Attempt to start a read transaction. This might fail due to a race or |
+** other transient condition. When that happens, it returns WAL_RETRY to |
+** indicate to the caller that it is safe to retry immediately. |
+** |
+** On success return SQLITE_OK. On a permanent failure (such an |
+** I/O error or an SQLITE_BUSY because another process is running |
+** recovery) return a positive error code. |
+** |
+** The useWal parameter is true to force the use of the WAL and disable |
+** the case where the WAL is bypassed because it has been completely |
+** checkpointed. If useWal==0 then this routine calls walIndexReadHdr() |
+** to make a copy of the wal-index header into pWal->hdr. If the |
+** wal-index header has changed, *pChanged is set to 1 (as an indication |
+** to the caller that the local paget cache is obsolete and needs to be |
+** flushed.) When useWal==1, the wal-index header is assumed to already |
+** be loaded and the pChanged parameter is unused. |
+** |
+** The caller must set the cnt parameter to the number of prior calls to |
+** this routine during the current read attempt that returned WAL_RETRY. |
+** This routine will start taking more aggressive measures to clear the |
+** race conditions after multiple WAL_RETRY returns, and after an excessive |
+** number of errors will ultimately return SQLITE_PROTOCOL. The |
+** SQLITE_PROTOCOL return indicates that some other process has gone rogue |
+** and is not honoring the locking protocol. There is a vanishingly small |
+** chance that SQLITE_PROTOCOL could be returned because of a run of really |
+** bad luck when there is lots of contention for the wal-index, but that |
+** possibility is so small that it can be safely neglected, we believe. |
+** |
+** On success, this routine obtains a read lock on |
+** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is |
+** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1) |
+** that means the Wal does not hold any read lock. The reader must not |
+** access any database page that is modified by a WAL frame up to and |
+** including frame number aReadMark[pWal->readLock]. The reader will |
+** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0 |
+** Or if pWal->readLock==0, then the reader will ignore the WAL |
+** completely and get all content directly from the database file. |
+** If the useWal parameter is 1 then the WAL will never be ignored and |
+** this routine will always set pWal->readLock>0 on success. |
+** When the read transaction is completed, the caller must release the |
+** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1. |
+** |
+** This routine uses the nBackfill and aReadMark[] fields of the header |
+** to select a particular WAL_READ_LOCK() that strives to let the |
+** checkpoint process do as much work as possible. This routine might |
+** update values of the aReadMark[] array in the header, but if it does |
+** so it takes care to hold an exclusive lock on the corresponding |
+** WAL_READ_LOCK() while changing values. |
+*/ |
+static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){ |
+ volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */ |
+ u32 mxReadMark; /* Largest aReadMark[] value */ |
+ int mxI; /* Index of largest aReadMark[] value */ |
+ int i; /* Loop counter */ |
+ int rc = SQLITE_OK; /* Return code */ |
+ u32 mxFrame; /* Wal frame to lock to */ |
+ |
+ assert( pWal->readLock<0 ); /* Not currently locked */ |
+ |
+ /* Take steps to avoid spinning forever if there is a protocol error. |
+ ** |
+ ** Circumstances that cause a RETRY should only last for the briefest |
+ ** instances of time. No I/O or other system calls are done while the |
+ ** locks are held, so the locks should not be held for very long. But |
+ ** if we are unlucky, another process that is holding a lock might get |
+ ** paged out or take a page-fault that is time-consuming to resolve, |
+ ** during the few nanoseconds that it is holding the lock. In that case, |
+ ** it might take longer than normal for the lock to free. |
+ ** |
+ ** After 5 RETRYs, we begin calling sqlite3OsSleep(). The first few |
+ ** calls to sqlite3OsSleep() have a delay of 1 microsecond. Really this |
+ ** is more of a scheduler yield than an actual delay. But on the 10th |
+ ** an subsequent retries, the delays start becoming longer and longer, |
+ ** so that on the 100th (and last) RETRY we delay for 323 milliseconds. |
+ ** The total delay time before giving up is less than 10 seconds. |
+ */ |
+ if( cnt>5 ){ |
+ int nDelay = 1; /* Pause time in microseconds */ |
+ if( cnt>100 ){ |
+ VVA_ONLY( pWal->lockError = 1; ) |
+ return SQLITE_PROTOCOL; |
+ } |
+ if( cnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39; |
+ sqlite3OsSleep(pWal->pVfs, nDelay); |
+ } |
+ |
+ if( !useWal ){ |
+ rc = walIndexReadHdr(pWal, pChanged); |
+ if( rc==SQLITE_BUSY ){ |
+ /* If there is not a recovery running in another thread or process |
+ ** then convert BUSY errors to WAL_RETRY. If recovery is known to |
+ ** be running, convert BUSY to BUSY_RECOVERY. There is a race here |
+ ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY |
+ ** would be technically correct. But the race is benign since with |
+ ** WAL_RETRY this routine will be called again and will probably be |
+ ** right on the second iteration. |
+ */ |
+ if( pWal->apWiData[0]==0 ){ |
+ /* This branch is taken when the xShmMap() method returns SQLITE_BUSY. |
+ ** We assume this is a transient condition, so return WAL_RETRY. The |
+ ** xShmMap() implementation used by the default unix and win32 VFS |
+ ** modules may return SQLITE_BUSY due to a race condition in the |
+ ** code that determines whether or not the shared-memory region |
+ ** must be zeroed before the requested page is returned. |
+ */ |
+ rc = WAL_RETRY; |
+ }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){ |
+ walUnlockShared(pWal, WAL_RECOVER_LOCK); |
+ rc = WAL_RETRY; |
+ }else if( rc==SQLITE_BUSY ){ |
+ rc = SQLITE_BUSY_RECOVERY; |
+ } |
+ } |
+ if( rc!=SQLITE_OK ){ |
+ return rc; |
+ } |
+ } |
+ |
+ pInfo = walCkptInfo(pWal); |
+ if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame |
+#ifdef SQLITE_ENABLE_SNAPSHOT |
+ && (pWal->pSnapshot==0 || pWal->hdr.mxFrame==0 |
+ || 0==memcmp(&pWal->hdr, pWal->pSnapshot, sizeof(WalIndexHdr))) |
+#endif |
+ ){ |
+ /* The WAL has been completely backfilled (or it is empty). |
+ ** and can be safely ignored. |
+ */ |
+ rc = walLockShared(pWal, WAL_READ_LOCK(0)); |
+ walShmBarrier(pWal); |
+ if( rc==SQLITE_OK ){ |
+ if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){ |
+ /* It is not safe to allow the reader to continue here if frames |
+ ** may have been appended to the log before READ_LOCK(0) was obtained. |
+ ** When holding READ_LOCK(0), the reader ignores the entire log file, |
+ ** which implies that the database file contains a trustworthy |
+ ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from |
+ ** happening, this is usually correct. |
+ ** |
+ ** However, if frames have been appended to the log (or if the log |
+ ** is wrapped and written for that matter) before the READ_LOCK(0) |
+ ** is obtained, that is not necessarily true. A checkpointer may |
+ ** have started to backfill the appended frames but crashed before |
+ ** it finished. Leaving a corrupt image in the database file. |
+ */ |
+ walUnlockShared(pWal, WAL_READ_LOCK(0)); |
+ return WAL_RETRY; |
+ } |
+ pWal->readLock = 0; |
+ return SQLITE_OK; |
+ }else if( rc!=SQLITE_BUSY ){ |
+ return rc; |
+ } |
+ } |
+ |
+ /* If we get this far, it means that the reader will want to use |
+ ** the WAL to get at content from recent commits. The job now is |
+ ** to select one of the aReadMark[] entries that is closest to |
+ ** but not exceeding pWal->hdr.mxFrame and lock that entry. |
+ */ |
+ mxReadMark = 0; |
+ mxI = 0; |
+ mxFrame = pWal->hdr.mxFrame; |
+#ifdef SQLITE_ENABLE_SNAPSHOT |
+ if( pWal->pSnapshot && pWal->pSnapshot->mxFrame<mxFrame ){ |
+ mxFrame = pWal->pSnapshot->mxFrame; |
+ } |
+#endif |
+ for(i=1; i<WAL_NREADER; i++){ |
+ u32 thisMark = pInfo->aReadMark[i]; |
+ if( mxReadMark<=thisMark && thisMark<=mxFrame ){ |
+ assert( thisMark!=READMARK_NOT_USED ); |
+ mxReadMark = thisMark; |
+ mxI = i; |
+ } |
+ } |
+ if( (pWal->readOnly & WAL_SHM_RDONLY)==0 |
+ && (mxReadMark<mxFrame || mxI==0) |
+ ){ |
+ for(i=1; i<WAL_NREADER; i++){ |
+ rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1); |
+ if( rc==SQLITE_OK ){ |
+ mxReadMark = pInfo->aReadMark[i] = mxFrame; |
+ mxI = i; |
+ walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); |
+ break; |
+ }else if( rc!=SQLITE_BUSY ){ |
+ return rc; |
+ } |
+ } |
+ } |
+ if( mxI==0 ){ |
+ assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 ); |
+ return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTLOCK; |
+ } |
+ |
+ rc = walLockShared(pWal, WAL_READ_LOCK(mxI)); |
+ if( rc ){ |
+ return rc==SQLITE_BUSY ? WAL_RETRY : rc; |
+ } |
+ /* Now that the read-lock has been obtained, check that neither the |
+ ** value in the aReadMark[] array or the contents of the wal-index |
+ ** header have changed. |
+ ** |
+ ** It is necessary to check that the wal-index header did not change |
+ ** between the time it was read and when the shared-lock was obtained |
+ ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility |
+ ** that the log file may have been wrapped by a writer, or that frames |
+ ** that occur later in the log than pWal->hdr.mxFrame may have been |
+ ** copied into the database by a checkpointer. If either of these things |
+ ** happened, then reading the database with the current value of |
+ ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry |
+ ** instead. |
+ ** |
+ ** Before checking that the live wal-index header has not changed |
+ ** since it was read, set Wal.minFrame to the first frame in the wal |
+ ** file that has not yet been checkpointed. This client will not need |
+ ** to read any frames earlier than minFrame from the wal file - they |
+ ** can be safely read directly from the database file. |
+ ** |
+ ** Because a ShmBarrier() call is made between taking the copy of |
+ ** nBackfill and checking that the wal-header in shared-memory still |
+ ** matches the one cached in pWal->hdr, it is guaranteed that the |
+ ** checkpointer that set nBackfill was not working with a wal-index |
+ ** header newer than that cached in pWal->hdr. If it were, that could |
+ ** cause a problem. The checkpointer could omit to checkpoint |
+ ** a version of page X that lies before pWal->minFrame (call that version |
+ ** A) on the basis that there is a newer version (version B) of the same |
+ ** page later in the wal file. But if version B happens to like past |
+ ** frame pWal->hdr.mxFrame - then the client would incorrectly assume |
+ ** that it can read version A from the database file. However, since |
+ ** we can guarantee that the checkpointer that set nBackfill could not |
+ ** see any pages past pWal->hdr.mxFrame, this problem does not come up. |
+ */ |
+ pWal->minFrame = pInfo->nBackfill+1; |
+ walShmBarrier(pWal); |
+ if( pInfo->aReadMark[mxI]!=mxReadMark |
+ || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) |
+ ){ |
+ walUnlockShared(pWal, WAL_READ_LOCK(mxI)); |
+ return WAL_RETRY; |
+ }else{ |
+ assert( mxReadMark<=pWal->hdr.mxFrame ); |
+ pWal->readLock = (i16)mxI; |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Begin a read transaction on the database. |
+** |
+** This routine used to be called sqlite3OpenSnapshot() and with good reason: |
+** it takes a snapshot of the state of the WAL and wal-index for the current |
+** instant in time. The current thread will continue to use this snapshot. |
+** Other threads might append new content to the WAL and wal-index but |
+** that extra content is ignored by the current thread. |
+** |
+** If the database contents have changes since the previous read |
+** transaction, then *pChanged is set to 1 before returning. The |
+** Pager layer will use this to know that is cache is stale and |
+** needs to be flushed. |
+*/ |
+SQLITE_PRIVATE int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){ |
+ int rc; /* Return code */ |
+ int cnt = 0; /* Number of TryBeginRead attempts */ |
+ |
+#ifdef SQLITE_ENABLE_SNAPSHOT |
+ int bChanged = 0; |
+ WalIndexHdr *pSnapshot = pWal->pSnapshot; |
+ if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){ |
+ bChanged = 1; |
+ } |
+#endif |
+ |
+ do{ |
+ rc = walTryBeginRead(pWal, pChanged, 0, ++cnt); |
+ }while( rc==WAL_RETRY ); |
+ testcase( (rc&0xff)==SQLITE_BUSY ); |
+ testcase( (rc&0xff)==SQLITE_IOERR ); |
+ testcase( rc==SQLITE_PROTOCOL ); |
+ testcase( rc==SQLITE_OK ); |
+ |
+#ifdef SQLITE_ENABLE_SNAPSHOT |
+ if( rc==SQLITE_OK ){ |
+ if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){ |
+ /* At this point the client has a lock on an aReadMark[] slot holding |
+ ** a value equal to or smaller than pSnapshot->mxFrame, but pWal->hdr |
+ ** is populated with the wal-index header corresponding to the head |
+ ** of the wal file. Verify that pSnapshot is still valid before |
+ ** continuing. Reasons why pSnapshot might no longer be valid: |
+ ** |
+ ** (1) The WAL file has been reset since the snapshot was taken. |
+ ** In this case, the salt will have changed. |
+ ** |
+ ** (2) A checkpoint as been attempted that wrote frames past |
+ ** pSnapshot->mxFrame into the database file. Note that the |
+ ** checkpoint need not have completed for this to cause problems. |
+ */ |
+ volatile WalCkptInfo *pInfo = walCkptInfo(pWal); |
+ |
+ assert( pWal->readLock>0 || pWal->hdr.mxFrame==0 ); |
+ assert( pInfo->aReadMark[pWal->readLock]<=pSnapshot->mxFrame ); |
+ |
+ /* It is possible that there is a checkpointer thread running |
+ ** concurrent with this code. If this is the case, it may be that the |
+ ** checkpointer has already determined that it will checkpoint |
+ ** snapshot X, where X is later in the wal file than pSnapshot, but |
+ ** has not yet set the pInfo->nBackfillAttempted variable to indicate |
+ ** its intent. To avoid the race condition this leads to, ensure that |
+ ** there is no checkpointer process by taking a shared CKPT lock |
+ ** before checking pInfo->nBackfillAttempted. */ |
+ rc = walLockShared(pWal, WAL_CKPT_LOCK); |
+ |
+ if( rc==SQLITE_OK ){ |
+ /* Check that the wal file has not been wrapped. Assuming that it has |
+ ** not, also check that no checkpointer has attempted to checkpoint any |
+ ** frames beyond pSnapshot->mxFrame. If either of these conditions are |
+ ** true, return SQLITE_BUSY_SNAPSHOT. Otherwise, overwrite pWal->hdr |
+ ** with *pSnapshot and set *pChanged as appropriate for opening the |
+ ** snapshot. */ |
+ if( !memcmp(pSnapshot->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt)) |
+ && pSnapshot->mxFrame>=pInfo->nBackfillAttempted |
+ ){ |
+ assert( pWal->readLock>0 ); |
+ memcpy(&pWal->hdr, pSnapshot, sizeof(WalIndexHdr)); |
+ *pChanged = bChanged; |
+ }else{ |
+ rc = SQLITE_BUSY_SNAPSHOT; |
+ } |
+ |
+ /* Release the shared CKPT lock obtained above. */ |
+ walUnlockShared(pWal, WAL_CKPT_LOCK); |
+ } |
+ |
+ |
+ if( rc!=SQLITE_OK ){ |
+ sqlite3WalEndReadTransaction(pWal); |
+ } |
+ } |
+ } |
+#endif |
+ return rc; |
+} |
+ |
+/* |
+** Finish with a read transaction. All this does is release the |
+** read-lock. |
+*/ |
+SQLITE_PRIVATE void sqlite3WalEndReadTransaction(Wal *pWal){ |
+ sqlite3WalEndWriteTransaction(pWal); |
+ if( pWal->readLock>=0 ){ |
+ walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); |
+ pWal->readLock = -1; |
+ } |
+} |
+ |
+/* |
+** Search the wal file for page pgno. If found, set *piRead to the frame that |
+** contains the page. Otherwise, if pgno is not in the wal file, set *piRead |
+** to zero. |
+** |
+** Return SQLITE_OK if successful, or an error code if an error occurs. If an |
+** error does occur, the final value of *piRead is undefined. |
+*/ |
+SQLITE_PRIVATE int sqlite3WalFindFrame( |
+ Wal *pWal, /* WAL handle */ |
+ Pgno pgno, /* Database page number to read data for */ |
+ u32 *piRead /* OUT: Frame number (or zero) */ |
+){ |
+ u32 iRead = 0; /* If !=0, WAL frame to return data from */ |
+ u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */ |
+ int iHash; /* Used to loop through N hash tables */ |
+ int iMinHash; |
+ |
+ /* This routine is only be called from within a read transaction. */ |
+ assert( pWal->readLock>=0 || pWal->lockError ); |
+ |
+ /* If the "last page" field of the wal-index header snapshot is 0, then |
+ ** no data will be read from the wal under any circumstances. Return early |
+ ** in this case as an optimization. Likewise, if pWal->readLock==0, |
+ ** then the WAL is ignored by the reader so return early, as if the |
+ ** WAL were empty. |
+ */ |
+ if( iLast==0 || pWal->readLock==0 ){ |
+ *piRead = 0; |
+ return SQLITE_OK; |
+ } |
+ |
+ /* Search the hash table or tables for an entry matching page number |
+ ** pgno. Each iteration of the following for() loop searches one |
+ ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames). |
+ ** |
+ ** This code might run concurrently to the code in walIndexAppend() |
+ ** that adds entries to the wal-index (and possibly to this hash |
+ ** table). This means the value just read from the hash |
+ ** slot (aHash[iKey]) may have been added before or after the |
+ ** current read transaction was opened. Values added after the |
+ ** read transaction was opened may have been written incorrectly - |
+ ** i.e. these slots may contain garbage data. However, we assume |
+ ** that any slots written before the current read transaction was |
+ ** opened remain unmodified. |
+ ** |
+ ** For the reasons above, the if(...) condition featured in the inner |
+ ** loop of the following block is more stringent that would be required |
+ ** if we had exclusive access to the hash-table: |
+ ** |
+ ** (aPgno[iFrame]==pgno): |
+ ** This condition filters out normal hash-table collisions. |
+ ** |
+ ** (iFrame<=iLast): |
+ ** This condition filters out entries that were added to the hash |
+ ** table after the current read-transaction had started. |
+ */ |
+ iMinHash = walFramePage(pWal->minFrame); |
+ for(iHash=walFramePage(iLast); iHash>=iMinHash && iRead==0; iHash--){ |
+ volatile ht_slot *aHash; /* Pointer to hash table */ |
+ volatile u32 *aPgno; /* Pointer to array of page numbers */ |
+ u32 iZero; /* Frame number corresponding to aPgno[0] */ |
+ int iKey; /* Hash slot index */ |
+ int nCollide; /* Number of hash collisions remaining */ |
+ int rc; /* Error code */ |
+ |
+ rc = walHashGet(pWal, iHash, &aHash, &aPgno, &iZero); |
+ if( rc!=SQLITE_OK ){ |
+ return rc; |
+ } |
+ nCollide = HASHTABLE_NSLOT; |
+ for(iKey=walHash(pgno); aHash[iKey]; iKey=walNextHash(iKey)){ |
+ u32 iFrame = aHash[iKey] + iZero; |
+ if( iFrame<=iLast && iFrame>=pWal->minFrame && aPgno[aHash[iKey]]==pgno ){ |
+ assert( iFrame>iRead || CORRUPT_DB ); |
+ iRead = iFrame; |
+ } |
+ if( (nCollide--)==0 ){ |
+ return SQLITE_CORRUPT_BKPT; |
+ } |
+ } |
+ } |
+ |
+#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT |
+ /* If expensive assert() statements are available, do a linear search |
+ ** of the wal-index file content. Make sure the results agree with the |
+ ** result obtained using the hash indexes above. */ |
+ { |
+ u32 iRead2 = 0; |
+ u32 iTest; |
+ assert( pWal->minFrame>0 ); |
+ for(iTest=iLast; iTest>=pWal->minFrame; iTest--){ |
+ if( walFramePgno(pWal, iTest)==pgno ){ |
+ iRead2 = iTest; |
+ break; |
+ } |
+ } |
+ assert( iRead==iRead2 ); |
+ } |
+#endif |
+ |
+ *piRead = iRead; |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Read the contents of frame iRead from the wal file into buffer pOut |
+** (which is nOut bytes in size). Return SQLITE_OK if successful, or an |
+** error code otherwise. |
+*/ |
+SQLITE_PRIVATE int sqlite3WalReadFrame( |
+ Wal *pWal, /* WAL handle */ |
+ u32 iRead, /* Frame to read */ |
+ int nOut, /* Size of buffer pOut in bytes */ |
+ u8 *pOut /* Buffer to write page data to */ |
+){ |
+ int sz; |
+ i64 iOffset; |
+ sz = pWal->hdr.szPage; |
+ sz = (sz&0xfe00) + ((sz&0x0001)<<16); |
+ testcase( sz<=32768 ); |
+ testcase( sz>=65536 ); |
+ iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE; |
+ /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */ |
+ return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset); |
+} |
+ |
+/* |
+** Return the size of the database in pages (or zero, if unknown). |
+*/ |
+SQLITE_PRIVATE Pgno sqlite3WalDbsize(Wal *pWal){ |
+ if( pWal && ALWAYS(pWal->readLock>=0) ){ |
+ return pWal->hdr.nPage; |
+ } |
+ return 0; |
+} |
+ |
+ |
+/* |
+** This function starts a write transaction on the WAL. |
+** |
+** A read transaction must have already been started by a prior call |
+** to sqlite3WalBeginReadTransaction(). |
+** |
+** If another thread or process has written into the database since |
+** the read transaction was started, then it is not possible for this |
+** thread to write as doing so would cause a fork. So this routine |
+** returns SQLITE_BUSY in that case and no write transaction is started. |
+** |
+** There can only be a single writer active at a time. |
+*/ |
+SQLITE_PRIVATE int sqlite3WalBeginWriteTransaction(Wal *pWal){ |
+ int rc; |
+ |
+ /* Cannot start a write transaction without first holding a read |
+ ** transaction. */ |
+ assert( pWal->readLock>=0 ); |
+ |
+ if( pWal->readOnly ){ |
+ return SQLITE_READONLY; |
+ } |
+ |
+ /* Only one writer allowed at a time. Get the write lock. Return |
+ ** SQLITE_BUSY if unable. |
+ */ |
+ rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1); |
+ if( rc ){ |
+ return rc; |
+ } |
+ pWal->writeLock = 1; |
+ |
+ /* If another connection has written to the database file since the |
+ ** time the read transaction on this connection was started, then |
+ ** the write is disallowed. |
+ */ |
+ if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){ |
+ walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); |
+ pWal->writeLock = 0; |
+ rc = SQLITE_BUSY_SNAPSHOT; |
+ } |
+ |
+ return rc; |
+} |
+ |
+/* |
+** End a write transaction. The commit has already been done. This |
+** routine merely releases the lock. |
+*/ |
+SQLITE_PRIVATE int sqlite3WalEndWriteTransaction(Wal *pWal){ |
+ if( pWal->writeLock ){ |
+ walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); |
+ pWal->writeLock = 0; |
+ pWal->truncateOnCommit = 0; |
+ } |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** If any data has been written (but not committed) to the log file, this |
+** function moves the write-pointer back to the start of the transaction. |
+** |
+** Additionally, the callback function is invoked for each frame written |
+** to the WAL since the start of the transaction. If the callback returns |
+** other than SQLITE_OK, it is not invoked again and the error code is |
+** returned to the caller. |
+** |
+** Otherwise, if the callback function does not return an error, this |
+** function returns SQLITE_OK. |
+*/ |
+SQLITE_PRIVATE int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){ |
+ int rc = SQLITE_OK; |
+ if( ALWAYS(pWal->writeLock) ){ |
+ Pgno iMax = pWal->hdr.mxFrame; |
+ Pgno iFrame; |
+ |
+ /* Restore the clients cache of the wal-index header to the state it |
+ ** was in before the client began writing to the database. |
+ */ |
+ memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr)); |
+ |
+ for(iFrame=pWal->hdr.mxFrame+1; |
+ ALWAYS(rc==SQLITE_OK) && iFrame<=iMax; |
+ iFrame++ |
+ ){ |
+ /* This call cannot fail. Unless the page for which the page number |
+ ** is passed as the second argument is (a) in the cache and |
+ ** (b) has an outstanding reference, then xUndo is either a no-op |
+ ** (if (a) is false) or simply expels the page from the cache (if (b) |
+ ** is false). |
+ ** |
+ ** If the upper layer is doing a rollback, it is guaranteed that there |
+ ** are no outstanding references to any page other than page 1. And |
+ ** page 1 is never written to the log until the transaction is |
+ ** committed. As a result, the call to xUndo may not fail. |
+ */ |
+ assert( walFramePgno(pWal, iFrame)!=1 ); |
+ rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame)); |
+ } |
+ if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal); |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32 |
+** values. This function populates the array with values required to |
+** "rollback" the write position of the WAL handle back to the current |
+** point in the event of a savepoint rollback (via WalSavepointUndo()). |
+*/ |
+SQLITE_PRIVATE void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){ |
+ assert( pWal->writeLock ); |
+ aWalData[0] = pWal->hdr.mxFrame; |
+ aWalData[1] = pWal->hdr.aFrameCksum[0]; |
+ aWalData[2] = pWal->hdr.aFrameCksum[1]; |
+ aWalData[3] = pWal->nCkpt; |
+} |
+ |
+/* |
+** Move the write position of the WAL back to the point identified by |
+** the values in the aWalData[] array. aWalData must point to an array |
+** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated |
+** by a call to WalSavepoint(). |
+*/ |
+SQLITE_PRIVATE int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){ |
+ int rc = SQLITE_OK; |
+ |
+ assert( pWal->writeLock ); |
+ assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame ); |
+ |
+ if( aWalData[3]!=pWal->nCkpt ){ |
+ /* This savepoint was opened immediately after the write-transaction |
+ ** was started. Right after that, the writer decided to wrap around |
+ ** to the start of the log. Update the savepoint values to match. |
+ */ |
+ aWalData[0] = 0; |
+ aWalData[3] = pWal->nCkpt; |
+ } |
+ |
+ if( aWalData[0]<pWal->hdr.mxFrame ){ |
+ pWal->hdr.mxFrame = aWalData[0]; |
+ pWal->hdr.aFrameCksum[0] = aWalData[1]; |
+ pWal->hdr.aFrameCksum[1] = aWalData[2]; |
+ walCleanupHash(pWal); |
+ } |
+ |
+ return rc; |
+} |
+ |
+/* |
+** This function is called just before writing a set of frames to the log |
+** file (see sqlite3WalFrames()). It checks to see if, instead of appending |
+** to the current log file, it is possible to overwrite the start of the |
+** existing log file with the new frames (i.e. "reset" the log). If so, |
+** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left |
+** unchanged. |
+** |
+** SQLITE_OK is returned if no error is encountered (regardless of whether |
+** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned |
+** if an error occurs. |
+*/ |
+static int walRestartLog(Wal *pWal){ |
+ int rc = SQLITE_OK; |
+ int cnt; |
+ |
+ if( pWal->readLock==0 ){ |
+ volatile WalCkptInfo *pInfo = walCkptInfo(pWal); |
+ assert( pInfo->nBackfill==pWal->hdr.mxFrame ); |
+ if( pInfo->nBackfill>0 ){ |
+ u32 salt1; |
+ sqlite3_randomness(4, &salt1); |
+ rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); |
+ if( rc==SQLITE_OK ){ |
+ /* If all readers are using WAL_READ_LOCK(0) (in other words if no |
+ ** readers are currently using the WAL), then the transactions |
+ ** frames will overwrite the start of the existing log. Update the |
+ ** wal-index header to reflect this. |
+ ** |
+ ** In theory it would be Ok to update the cache of the header only |
+ ** at this point. But updating the actual wal-index header is also |
+ ** safe and means there is no special case for sqlite3WalUndo() |
+ ** to handle if this transaction is rolled back. */ |
+ walRestartHdr(pWal, salt1); |
+ walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); |
+ }else if( rc!=SQLITE_BUSY ){ |
+ return rc; |
+ } |
+ } |
+ walUnlockShared(pWal, WAL_READ_LOCK(0)); |
+ pWal->readLock = -1; |
+ cnt = 0; |
+ do{ |
+ int notUsed; |
+ rc = walTryBeginRead(pWal, ¬Used, 1, ++cnt); |
+ }while( rc==WAL_RETRY ); |
+ assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */ |
+ testcase( (rc&0xff)==SQLITE_IOERR ); |
+ testcase( rc==SQLITE_PROTOCOL ); |
+ testcase( rc==SQLITE_OK ); |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Information about the current state of the WAL file and where |
+** the next fsync should occur - passed from sqlite3WalFrames() into |
+** walWriteToLog(). |
+*/ |
+typedef struct WalWriter { |
+ Wal *pWal; /* The complete WAL information */ |
+ sqlite3_file *pFd; /* The WAL file to which we write */ |
+ sqlite3_int64 iSyncPoint; /* Fsync at this offset */ |
+ int syncFlags; /* Flags for the fsync */ |
+ int szPage; /* Size of one page */ |
+} WalWriter; |
+ |
+/* |
+** Write iAmt bytes of content into the WAL file beginning at iOffset. |
+** Do a sync when crossing the p->iSyncPoint boundary. |
+** |
+** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt, |
+** first write the part before iSyncPoint, then sync, then write the |
+** rest. |
+*/ |
+static int walWriteToLog( |
+ WalWriter *p, /* WAL to write to */ |
+ void *pContent, /* Content to be written */ |
+ int iAmt, /* Number of bytes to write */ |
+ sqlite3_int64 iOffset /* Start writing at this offset */ |
+){ |
+ int rc; |
+ if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){ |
+ int iFirstAmt = (int)(p->iSyncPoint - iOffset); |
+ rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset); |
+ if( rc ) return rc; |
+ iOffset += iFirstAmt; |
+ iAmt -= iFirstAmt; |
+ pContent = (void*)(iFirstAmt + (char*)pContent); |
+ assert( p->syncFlags & (SQLITE_SYNC_NORMAL|SQLITE_SYNC_FULL) ); |
+ rc = sqlite3OsSync(p->pFd, p->syncFlags & SQLITE_SYNC_MASK); |
+ if( iAmt==0 || rc ) return rc; |
+ } |
+ rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset); |
+ return rc; |
+} |
+ |
+/* |
+** Write out a single frame of the WAL |
+*/ |
+static int walWriteOneFrame( |
+ WalWriter *p, /* Where to write the frame */ |
+ PgHdr *pPage, /* The page of the frame to be written */ |
+ int nTruncate, /* The commit flag. Usually 0. >0 for commit */ |
+ sqlite3_int64 iOffset /* Byte offset at which to write */ |
+){ |
+ int rc; /* Result code from subfunctions */ |
+ void *pData; /* Data actually written */ |
+ u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */ |
+#if defined(SQLITE_HAS_CODEC) |
+ if( (pData = sqlite3PagerCodec(pPage))==0 ) return SQLITE_NOMEM; |
+#else |
+ pData = pPage->pData; |
+#endif |
+ walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame); |
+ rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset); |
+ if( rc ) return rc; |
+ /* Write the page data */ |
+ rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame)); |
+ return rc; |
+} |
+ |
+/* |
+** Write a set of frames to the log. The caller must hold the write-lock |
+** on the log file (obtained using sqlite3WalBeginWriteTransaction()). |
+*/ |
+SQLITE_PRIVATE int sqlite3WalFrames( |
+ Wal *pWal, /* Wal handle to write to */ |
+ int szPage, /* Database page-size in bytes */ |
+ PgHdr *pList, /* List of dirty pages to write */ |
+ Pgno nTruncate, /* Database size after this commit */ |
+ int isCommit, /* True if this is a commit */ |
+ int sync_flags /* Flags to pass to OsSync() (or 0) */ |
+){ |
+ int rc; /* Used to catch return codes */ |
+ u32 iFrame; /* Next frame address */ |
+ PgHdr *p; /* Iterator to run through pList with. */ |
+ PgHdr *pLast = 0; /* Last frame in list */ |
+ int nExtra = 0; /* Number of extra copies of last page */ |
+ int szFrame; /* The size of a single frame */ |
+ i64 iOffset; /* Next byte to write in WAL file */ |
+ WalWriter w; /* The writer */ |
+ |
+ assert( pList ); |
+ assert( pWal->writeLock ); |
+ |
+ /* If this frame set completes a transaction, then nTruncate>0. If |
+ ** nTruncate==0 then this frame set does not complete the transaction. */ |
+ assert( (isCommit!=0)==(nTruncate!=0) ); |
+ |
+#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) |
+ { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){} |
+ WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n", |
+ pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill")); |
+ } |
+#endif |
+ |
+ /* See if it is possible to write these frames into the start of the |
+ ** log file, instead of appending to it at pWal->hdr.mxFrame. |
+ */ |
+ if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){ |
+ return rc; |
+ } |
+ |
+ /* If this is the first frame written into the log, write the WAL |
+ ** header to the start of the WAL file. See comments at the top of |
+ ** this source file for a description of the WAL header format. |
+ */ |
+ iFrame = pWal->hdr.mxFrame; |
+ if( iFrame==0 ){ |
+ u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */ |
+ u32 aCksum[2]; /* Checksum for wal-header */ |
+ |
+ sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN)); |
+ sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION); |
+ sqlite3Put4byte(&aWalHdr[8], szPage); |
+ sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt); |
+ if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt); |
+ memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8); |
+ walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum); |
+ sqlite3Put4byte(&aWalHdr[24], aCksum[0]); |
+ sqlite3Put4byte(&aWalHdr[28], aCksum[1]); |
+ |
+ pWal->szPage = szPage; |
+ pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN; |
+ pWal->hdr.aFrameCksum[0] = aCksum[0]; |
+ pWal->hdr.aFrameCksum[1] = aCksum[1]; |
+ pWal->truncateOnCommit = 1; |
+ |
+ rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0); |
+ WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok")); |
+ if( rc!=SQLITE_OK ){ |
+ return rc; |
+ } |
+ |
+ /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless |
+ ** all syncing is turned off by PRAGMA synchronous=OFF). Otherwise |
+ ** an out-of-order write following a WAL restart could result in |
+ ** database corruption. See the ticket: |
+ ** |
+ ** http://localhost:591/sqlite/info/ff5be73dee |
+ */ |
+ if( pWal->syncHeader && sync_flags ){ |
+ rc = sqlite3OsSync(pWal->pWalFd, sync_flags & SQLITE_SYNC_MASK); |
+ if( rc ) return rc; |
+ } |
+ } |
+ assert( (int)pWal->szPage==szPage ); |
+ |
+ /* Setup information needed to write frames into the WAL */ |
+ w.pWal = pWal; |
+ w.pFd = pWal->pWalFd; |
+ w.iSyncPoint = 0; |
+ w.syncFlags = sync_flags; |
+ w.szPage = szPage; |
+ iOffset = walFrameOffset(iFrame+1, szPage); |
+ szFrame = szPage + WAL_FRAME_HDRSIZE; |
+ |
+ /* Write all frames into the log file exactly once */ |
+ for(p=pList; p; p=p->pDirty){ |
+ int nDbSize; /* 0 normally. Positive == commit flag */ |
+ iFrame++; |
+ assert( iOffset==walFrameOffset(iFrame, szPage) ); |
+ nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0; |
+ rc = walWriteOneFrame(&w, p, nDbSize, iOffset); |
+ if( rc ) return rc; |
+ pLast = p; |
+ iOffset += szFrame; |
+ } |
+ |
+ /* If this is the end of a transaction, then we might need to pad |
+ ** the transaction and/or sync the WAL file. |
+ ** |
+ ** Padding and syncing only occur if this set of frames complete a |
+ ** transaction and if PRAGMA synchronous=FULL. If synchronous==NORMAL |
+ ** or synchronous==OFF, then no padding or syncing are needed. |
+ ** |
+ ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not |
+ ** needed and only the sync is done. If padding is needed, then the |
+ ** final frame is repeated (with its commit mark) until the next sector |
+ ** boundary is crossed. Only the part of the WAL prior to the last |
+ ** sector boundary is synced; the part of the last frame that extends |
+ ** past the sector boundary is written after the sync. |
+ */ |
+ if( isCommit && (sync_flags & WAL_SYNC_TRANSACTIONS)!=0 ){ |
+ if( pWal->padToSectorBoundary ){ |
+ int sectorSize = sqlite3SectorSize(pWal->pWalFd); |
+ w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize; |
+ while( iOffset<w.iSyncPoint ){ |
+ rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset); |
+ if( rc ) return rc; |
+ iOffset += szFrame; |
+ nExtra++; |
+ } |
+ }else{ |
+ rc = sqlite3OsSync(w.pFd, sync_flags & SQLITE_SYNC_MASK); |
+ } |
+ } |
+ |
+ /* If this frame set completes the first transaction in the WAL and |
+ ** if PRAGMA journal_size_limit is set, then truncate the WAL to the |
+ ** journal size limit, if possible. |
+ */ |
+ if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){ |
+ i64 sz = pWal->mxWalSize; |
+ if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){ |
+ sz = walFrameOffset(iFrame+nExtra+1, szPage); |
+ } |
+ walLimitSize(pWal, sz); |
+ pWal->truncateOnCommit = 0; |
+ } |
+ |
+ /* Append data to the wal-index. It is not necessary to lock the |
+ ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index |
+ ** guarantees that there are no other writers, and no data that may |
+ ** be in use by existing readers is being overwritten. |
+ */ |
+ iFrame = pWal->hdr.mxFrame; |
+ for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){ |
+ iFrame++; |
+ rc = walIndexAppend(pWal, iFrame, p->pgno); |
+ } |
+ while( rc==SQLITE_OK && nExtra>0 ){ |
+ iFrame++; |
+ nExtra--; |
+ rc = walIndexAppend(pWal, iFrame, pLast->pgno); |
+ } |
+ |
+ if( rc==SQLITE_OK ){ |
+ /* Update the private copy of the header. */ |
+ pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16)); |
+ testcase( szPage<=32768 ); |
+ testcase( szPage>=65536 ); |
+ pWal->hdr.mxFrame = iFrame; |
+ if( isCommit ){ |
+ pWal->hdr.iChange++; |
+ pWal->hdr.nPage = nTruncate; |
+ } |
+ /* If this is a commit, update the wal-index header too. */ |
+ if( isCommit ){ |
+ walIndexWriteHdr(pWal); |
+ pWal->iCallback = iFrame; |
+ } |
+ } |
+ |
+ WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok")); |
+ return rc; |
+} |
+ |
+/* |
+** This routine is called to implement sqlite3_wal_checkpoint() and |
+** related interfaces. |
+** |
+** Obtain a CHECKPOINT lock and then backfill as much information as |
+** we can from WAL into the database. |
+** |
+** If parameter xBusy is not NULL, it is a pointer to a busy-handler |
+** callback. In this case this function runs a blocking checkpoint. |
+*/ |
+SQLITE_PRIVATE int sqlite3WalCheckpoint( |
+ Wal *pWal, /* Wal connection */ |
+ int eMode, /* PASSIVE, FULL, RESTART, or TRUNCATE */ |
+ int (*xBusy)(void*), /* Function to call when busy */ |
+ void *pBusyArg, /* Context argument for xBusyHandler */ |
+ int sync_flags, /* Flags to sync db file with (or 0) */ |
+ int nBuf, /* Size of temporary buffer */ |
+ u8 *zBuf, /* Temporary buffer to use */ |
+ int *pnLog, /* OUT: Number of frames in WAL */ |
+ int *pnCkpt /* OUT: Number of backfilled frames in WAL */ |
+){ |
+ int rc; /* Return code */ |
+ int isChanged = 0; /* True if a new wal-index header is loaded */ |
+ int eMode2 = eMode; /* Mode to pass to walCheckpoint() */ |
+ int (*xBusy2)(void*) = xBusy; /* Busy handler for eMode2 */ |
+ |
+ assert( pWal->ckptLock==0 ); |
+ assert( pWal->writeLock==0 ); |
+ |
+ /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked |
+ ** in the SQLITE_CHECKPOINT_PASSIVE mode. */ |
+ assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 ); |
+ |
+ if( pWal->readOnly ) return SQLITE_READONLY; |
+ WALTRACE(("WAL%p: checkpoint begins\n", pWal)); |
+ |
+ /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive |
+ ** "checkpoint" lock on the database file. */ |
+ rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1); |
+ if( rc ){ |
+ /* EVIDENCE-OF: R-10421-19736 If any other process is running a |
+ ** checkpoint operation at the same time, the lock cannot be obtained and |
+ ** SQLITE_BUSY is returned. |
+ ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured, |
+ ** it will not be invoked in this case. |
+ */ |
+ testcase( rc==SQLITE_BUSY ); |
+ testcase( xBusy!=0 ); |
+ return rc; |
+ } |
+ pWal->ckptLock = 1; |
+ |
+ /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and |
+ ** TRUNCATE modes also obtain the exclusive "writer" lock on the database |
+ ** file. |
+ ** |
+ ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained |
+ ** immediately, and a busy-handler is configured, it is invoked and the |
+ ** writer lock retried until either the busy-handler returns 0 or the |
+ ** lock is successfully obtained. |
+ */ |
+ if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){ |
+ rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_WRITE_LOCK, 1); |
+ if( rc==SQLITE_OK ){ |
+ pWal->writeLock = 1; |
+ }else if( rc==SQLITE_BUSY ){ |
+ eMode2 = SQLITE_CHECKPOINT_PASSIVE; |
+ xBusy2 = 0; |
+ rc = SQLITE_OK; |
+ } |
+ } |
+ |
+ /* Read the wal-index header. */ |
+ if( rc==SQLITE_OK ){ |
+ rc = walIndexReadHdr(pWal, &isChanged); |
+ if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){ |
+ sqlite3OsUnfetch(pWal->pDbFd, 0, 0); |
+ } |
+ } |
+ |
+ /* Copy data from the log to the database file. */ |
+ if( rc==SQLITE_OK ){ |
+ if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){ |
+ rc = SQLITE_CORRUPT_BKPT; |
+ }else{ |
+ rc = walCheckpoint(pWal, eMode2, xBusy2, pBusyArg, sync_flags, zBuf); |
+ } |
+ |
+ /* If no error occurred, set the output variables. */ |
+ if( rc==SQLITE_OK || rc==SQLITE_BUSY ){ |
+ if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame; |
+ if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill); |
+ } |
+ } |
+ |
+ if( isChanged ){ |
+ /* If a new wal-index header was loaded before the checkpoint was |
+ ** performed, then the pager-cache associated with pWal is now |
+ ** out of date. So zero the cached wal-index header to ensure that |
+ ** next time the pager opens a snapshot on this database it knows that |
+ ** the cache needs to be reset. |
+ */ |
+ memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); |
+ } |
+ |
+ /* Release the locks. */ |
+ sqlite3WalEndWriteTransaction(pWal); |
+ walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1); |
+ pWal->ckptLock = 0; |
+ WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok")); |
+ return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc); |
+} |
+ |
+/* Return the value to pass to a sqlite3_wal_hook callback, the |
+** number of frames in the WAL at the point of the last commit since |
+** sqlite3WalCallback() was called. If no commits have occurred since |
+** the last call, then return 0. |
+*/ |
+SQLITE_PRIVATE int sqlite3WalCallback(Wal *pWal){ |
+ u32 ret = 0; |
+ if( pWal ){ |
+ ret = pWal->iCallback; |
+ pWal->iCallback = 0; |
+ } |
+ return (int)ret; |
+} |
+ |
+/* |
+** This function is called to change the WAL subsystem into or out |
+** of locking_mode=EXCLUSIVE. |
+** |
+** If op is zero, then attempt to change from locking_mode=EXCLUSIVE |
+** into locking_mode=NORMAL. This means that we must acquire a lock |
+** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL |
+** or if the acquisition of the lock fails, then return 0. If the |
+** transition out of exclusive-mode is successful, return 1. This |
+** operation must occur while the pager is still holding the exclusive |
+** lock on the main database file. |
+** |
+** If op is one, then change from locking_mode=NORMAL into |
+** locking_mode=EXCLUSIVE. This means that the pWal->readLock must |
+** be released. Return 1 if the transition is made and 0 if the |
+** WAL is already in exclusive-locking mode - meaning that this |
+** routine is a no-op. The pager must already hold the exclusive lock |
+** on the main database file before invoking this operation. |
+** |
+** If op is negative, then do a dry-run of the op==1 case but do |
+** not actually change anything. The pager uses this to see if it |
+** should acquire the database exclusive lock prior to invoking |
+** the op==1 case. |
+*/ |
+SQLITE_PRIVATE int sqlite3WalExclusiveMode(Wal *pWal, int op){ |
+ int rc; |
+ assert( pWal->writeLock==0 ); |
+ assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 ); |
+ |
+ /* pWal->readLock is usually set, but might be -1 if there was a |
+ ** prior error while attempting to acquire are read-lock. This cannot |
+ ** happen if the connection is actually in exclusive mode (as no xShmLock |
+ ** locks are taken in this case). Nor should the pager attempt to |
+ ** upgrade to exclusive-mode following such an error. |
+ */ |
+ assert( pWal->readLock>=0 || pWal->lockError ); |
+ assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) ); |
+ |
+ if( op==0 ){ |
+ if( pWal->exclusiveMode ){ |
+ pWal->exclusiveMode = 0; |
+ if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){ |
+ pWal->exclusiveMode = 1; |
+ } |
+ rc = pWal->exclusiveMode==0; |
+ }else{ |
+ /* Already in locking_mode=NORMAL */ |
+ rc = 0; |
+ } |
+ }else if( op>0 ){ |
+ assert( pWal->exclusiveMode==0 ); |
+ assert( pWal->readLock>=0 ); |
+ walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); |
+ pWal->exclusiveMode = 1; |
+ rc = 1; |
+ }else{ |
+ rc = pWal->exclusiveMode==0; |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Return true if the argument is non-NULL and the WAL module is using |
+** heap-memory for the wal-index. Otherwise, if the argument is NULL or the |
+** WAL module is using shared-memory, return false. |
+*/ |
+SQLITE_PRIVATE int sqlite3WalHeapMemory(Wal *pWal){ |
+ return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ); |
+} |
+ |
+#ifdef SQLITE_ENABLE_SNAPSHOT |
+/* Create a snapshot object. The content of a snapshot is opaque to |
+** every other subsystem, so the WAL module can put whatever it needs |
+** in the object. |
+*/ |
+SQLITE_PRIVATE int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){ |
+ int rc = SQLITE_OK; |
+ WalIndexHdr *pRet; |
+ |
+ assert( pWal->readLock>=0 && pWal->writeLock==0 ); |
+ |
+ pRet = (WalIndexHdr*)sqlite3_malloc(sizeof(WalIndexHdr)); |
+ if( pRet==0 ){ |
+ rc = SQLITE_NOMEM; |
+ }else{ |
+ memcpy(pRet, &pWal->hdr, sizeof(WalIndexHdr)); |
+ *ppSnapshot = (sqlite3_snapshot*)pRet; |
+ } |
+ |
+ return rc; |
+} |
+ |
+/* Try to open on pSnapshot when the next read-transaction starts |
+*/ |
+SQLITE_PRIVATE void sqlite3WalSnapshotOpen(Wal *pWal, sqlite3_snapshot *pSnapshot){ |
+ pWal->pSnapshot = (WalIndexHdr*)pSnapshot; |
+} |
+#endif /* SQLITE_ENABLE_SNAPSHOT */ |
+ |
+#ifdef SQLITE_ENABLE_ZIPVFS |
+/* |
+** If the argument is not NULL, it points to a Wal object that holds a |
+** read-lock. This function returns the database page-size if it is known, |
+** or zero if it is not (or if pWal is NULL). |
+*/ |
+SQLITE_PRIVATE int sqlite3WalFramesize(Wal *pWal){ |
+ assert( pWal==0 || pWal->readLock>=0 ); |
+ return (pWal ? pWal->szPage : 0); |
+} |
+#endif |
+ |
+/* Return the sqlite3_file object for the WAL file |
+*/ |
+SQLITE_PRIVATE sqlite3_file *sqlite3WalFile(Wal *pWal){ |
+ return pWal->pWalFd; |
+} |
+ |
+#endif /* #ifndef SQLITE_OMIT_WAL */ |
+ |
+/************** End of wal.c *************************************************/ |
+/************** Begin file btmutex.c *****************************************/ |
+/* |
+** 2007 August 27 |
+** |
+** The author disclaims copyright to this source code. In place of |
+** a legal notice, here is a blessing: |
+** |
+** May you do good and not evil. |
+** May you find forgiveness for yourself and forgive others. |
+** May you share freely, never taking more than you give. |
+** |
+************************************************************************* |
+** |
+** This file contains code used to implement mutexes on Btree objects. |
+** This code really belongs in btree.c. But btree.c is getting too |
+** big and we want to break it down some. This packaged seemed like |
+** a good breakout. |
+*/ |
+/************** Include btreeInt.h in the middle of btmutex.c ****************/ |
+/************** Begin file btreeInt.h ****************************************/ |
+/* |
+** 2004 April 6 |
+** |
+** The author disclaims copyright to this source code. In place of |
+** a legal notice, here is a blessing: |
+** |
+** May you do good and not evil. |
+** May you find forgiveness for yourself and forgive others. |
+** May you share freely, never taking more than you give. |
+** |
+************************************************************************* |
+** This file implements an external (disk-based) database using BTrees. |
+** For a detailed discussion of BTrees, refer to |
+** |
+** Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3: |
+** "Sorting And Searching", pages 473-480. Addison-Wesley |
+** Publishing Company, Reading, Massachusetts. |
+** |
+** The basic idea is that each page of the file contains N database |
+** entries and N+1 pointers to subpages. |
+** |
+** ---------------------------------------------------------------- |
+** | Ptr(0) | Key(0) | Ptr(1) | Key(1) | ... | Key(N-1) | Ptr(N) | |
+** ---------------------------------------------------------------- |
+** |
+** All of the keys on the page that Ptr(0) points to have values less |
+** than Key(0). All of the keys on page Ptr(1) and its subpages have |
+** values greater than Key(0) and less than Key(1). All of the keys |
+** on Ptr(N) and its subpages have values greater than Key(N-1). And |
+** so forth. |
+** |
+** Finding a particular key requires reading O(log(M)) pages from the |
+** disk where M is the number of entries in the tree. |
+** |
+** In this implementation, a single file can hold one or more separate |
+** BTrees. Each BTree is identified by the index of its root page. The |
+** key and data for any entry are combined to form the "payload". A |
+** fixed amount of payload can be carried directly on the database |
+** page. If the payload is larger than the preset amount then surplus |
+** bytes are stored on overflow pages. The payload for an entry |
+** and the preceding pointer are combined to form a "Cell". Each |
+** page has a small header which contains the Ptr(N) pointer and other |
+** information such as the size of key and data. |
+** |
+** FORMAT DETAILS |
+** |
+** The file is divided into pages. The first page is called page 1, |
+** the second is page 2, and so forth. A page number of zero indicates |
+** "no such page". The page size can be any power of 2 between 512 and 65536. |
+** Each page can be either a btree page, a freelist page, an overflow |
+** page, or a pointer-map page. |
+** |
+** The first page is always a btree page. The first 100 bytes of the first |
+** page contain a special header (the "file header") that describes the file. |
+** The format of the file header is as follows: |
+** |
+** OFFSET SIZE DESCRIPTION |
+** 0 16 Header string: "SQLite format 3\000" |
+** 16 2 Page size in bytes. (1 means 65536) |
+** 18 1 File format write version |
+** 19 1 File format read version |
+** 20 1 Bytes of unused space at the end of each page |
+** 21 1 Max embedded payload fraction (must be 64) |
+** 22 1 Min embedded payload fraction (must be 32) |
+** 23 1 Min leaf payload fraction (must be 32) |
+** 24 4 File change counter |
+** 28 4 Reserved for future use |
+** 32 4 First freelist page |
+** 36 4 Number of freelist pages in the file |
+** 40 60 15 4-byte meta values passed to higher layers |
+** |
+** 40 4 Schema cookie |
+** 44 4 File format of schema layer |
+** 48 4 Size of page cache |
+** 52 4 Largest root-page (auto/incr_vacuum) |
+** 56 4 1=UTF-8 2=UTF16le 3=UTF16be |
+** 60 4 User version |
+** 64 4 Incremental vacuum mode |
+** 68 4 Application-ID |
+** 72 20 unused |
+** 92 4 The version-valid-for number |
+** 96 4 SQLITE_VERSION_NUMBER |
+** |
+** All of the integer values are big-endian (most significant byte first). |
+** |
+** The file change counter is incremented when the database is changed |
+** This counter allows other processes to know when the file has changed |
+** and thus when they need to flush their cache. |
+** |
+** The max embedded payload fraction is the amount of the total usable |
+** space in a page that can be consumed by a single cell for standard |
+** B-tree (non-LEAFDATA) tables. A value of 255 means 100%. The default |
+** is to limit the maximum cell size so that at least 4 cells will fit |
+** on one page. Thus the default max embedded payload fraction is 64. |
+** |
+** If the payload for a cell is larger than the max payload, then extra |
+** payload is spilled to overflow pages. Once an overflow page is allocated, |
+** as many bytes as possible are moved into the overflow pages without letting |
+** the cell size drop below the min embedded payload fraction. |
+** |
+** The min leaf payload fraction is like the min embedded payload fraction |
+** except that it applies to leaf nodes in a LEAFDATA tree. The maximum |
+** payload fraction for a LEAFDATA tree is always 100% (or 255) and it |
+** not specified in the header. |
+** |
+** Each btree pages is divided into three sections: The header, the |
+** cell pointer array, and the cell content area. Page 1 also has a 100-byte |
+** file header that occurs before the page header. |
+** |
+** |----------------| |
+** | file header | 100 bytes. Page 1 only. |
+** |----------------| |
+** | page header | 8 bytes for leaves. 12 bytes for interior nodes |
+** |----------------| |
+** | cell pointer | | 2 bytes per cell. Sorted order. |
+** | array | | Grows downward |
+** | | v |
+** |----------------| |
+** | unallocated | |
+** | space | |
+** |----------------| ^ Grows upwards |
+** | cell content | | Arbitrary order interspersed with freeblocks. |
+** | area | | and free space fragments. |
+** |----------------| |
+** |
+** The page headers looks like this: |
+** |
+** OFFSET SIZE DESCRIPTION |
+** 0 1 Flags. 1: intkey, 2: zerodata, 4: leafdata, 8: leaf |
+** 1 2 byte offset to the first freeblock |
+** 3 2 number of cells on this page |
+** 5 2 first byte of the cell content area |
+** 7 1 number of fragmented free bytes |
+** 8 4 Right child (the Ptr(N) value). Omitted on leaves. |
+** |
+** The flags define the format of this btree page. The leaf flag means that |
+** this page has no children. The zerodata flag means that this page carries |
+** only keys and no data. The intkey flag means that the key is an integer |
+** which is stored in the key size entry of the cell header rather than in |
+** the payload area. |
+** |
+** The cell pointer array begins on the first byte after the page header. |
+** The cell pointer array contains zero or more 2-byte numbers which are |
+** offsets from the beginning of the page to the cell content in the cell |
+** content area. The cell pointers occur in sorted order. The system strives |
+** to keep free space after the last cell pointer so that new cells can |
+** be easily added without having to defragment the page. |
+** |
+** Cell content is stored at the very end of the page and grows toward the |
+** beginning of the page. |
+** |
+** Unused space within the cell content area is collected into a linked list of |
+** freeblocks. Each freeblock is at least 4 bytes in size. The byte offset |
+** to the first freeblock is given in the header. Freeblocks occur in |
+** increasing order. Because a freeblock must be at least 4 bytes in size, |
+** any group of 3 or fewer unused bytes in the cell content area cannot |
+** exist on the freeblock chain. A group of 3 or fewer free bytes is called |
+** a fragment. The total number of bytes in all fragments is recorded. |
+** in the page header at offset 7. |
+** |
+** SIZE DESCRIPTION |
+** 2 Byte offset of the next freeblock |
+** 2 Bytes in this freeblock |
+** |
+** Cells are of variable length. Cells are stored in the cell content area at |
+** the end of the page. Pointers to the cells are in the cell pointer array |
+** that immediately follows the page header. Cells is not necessarily |
+** contiguous or in order, but cell pointers are contiguous and in order. |
+** |
+** Cell content makes use of variable length integers. A variable |
+** length integer is 1 to 9 bytes where the lower 7 bits of each |
+** byte are used. The integer consists of all bytes that have bit 8 set and |
+** the first byte with bit 8 clear. The most significant byte of the integer |
+** appears first. A variable-length integer may not be more than 9 bytes long. |
+** As a special case, all 8 bytes of the 9th byte are used as data. This |
+** allows a 64-bit integer to be encoded in 9 bytes. |
+** |
+** 0x00 becomes 0x00000000 |
+** 0x7f becomes 0x0000007f |
+** 0x81 0x00 becomes 0x00000080 |
+** 0x82 0x00 becomes 0x00000100 |
+** 0x80 0x7f becomes 0x0000007f |
+** 0x8a 0x91 0xd1 0xac 0x78 becomes 0x12345678 |
+** 0x81 0x81 0x81 0x81 0x01 becomes 0x10204081 |
+** |
+** Variable length integers are used for rowids and to hold the number of |
+** bytes of key and data in a btree cell. |
+** |
+** The content of a cell looks like this: |
+** |
+** SIZE DESCRIPTION |
+** 4 Page number of the left child. Omitted if leaf flag is set. |
+** var Number of bytes of data. Omitted if the zerodata flag is set. |
+** var Number of bytes of key. Or the key itself if intkey flag is set. |
+** * Payload |
+** 4 First page of the overflow chain. Omitted if no overflow |
+** |
+** Overflow pages form a linked list. Each page except the last is completely |
+** filled with data (pagesize - 4 bytes). The last page can have as little |
+** as 1 byte of data. |
+** |
+** SIZE DESCRIPTION |
+** 4 Page number of next overflow page |
+** * Data |
+** |
+** Freelist pages come in two subtypes: trunk pages and leaf pages. The |
+** file header points to the first in a linked list of trunk page. Each trunk |
+** page points to multiple leaf pages. The content of a leaf page is |
+** unspecified. A trunk page looks like this: |
+** |
+** SIZE DESCRIPTION |
+** 4 Page number of next trunk page |
+** 4 Number of leaf pointers on this page |
+** * zero or more pages numbers of leaves |
+*/ |
+/* #include "sqliteInt.h" */ |
+ |
+ |
+/* The following value is the maximum cell size assuming a maximum page |
+** size give above. |
+*/ |
+#define MX_CELL_SIZE(pBt) ((int)(pBt->pageSize-8)) |
+ |
+/* The maximum number of cells on a single page of the database. This |
+** assumes a minimum cell size of 6 bytes (4 bytes for the cell itself |
+** plus 2 bytes for the index to the cell in the page header). Such |
+** small cells will be rare, but they are possible. |
+*/ |
+#define MX_CELL(pBt) ((pBt->pageSize-8)/6) |
+ |
+/* Forward declarations */ |
+typedef struct MemPage MemPage; |
+typedef struct BtLock BtLock; |
+typedef struct CellInfo CellInfo; |
+ |
+/* |
+** This is a magic string that appears at the beginning of every |
+** SQLite database in order to identify the file as a real database. |
+** |
+** You can change this value at compile-time by specifying a |
+** -DSQLITE_FILE_HEADER="..." on the compiler command-line. The |
+** header must be exactly 16 bytes including the zero-terminator so |
+** the string itself should be 15 characters long. If you change |
+** the header, then your custom library will not be able to read |
+** databases generated by the standard tools and the standard tools |
+** will not be able to read databases created by your custom library. |
+*/ |
+#ifndef SQLITE_FILE_HEADER /* 123456789 123456 */ |
+# define SQLITE_FILE_HEADER "SQLite format 3" |
+#endif |
+ |
+/* |
+** Page type flags. An ORed combination of these flags appear as the |
+** first byte of on-disk image of every BTree page. |
+*/ |
+#define PTF_INTKEY 0x01 |
+#define PTF_ZERODATA 0x02 |
+#define PTF_LEAFDATA 0x04 |
+#define PTF_LEAF 0x08 |
+ |
+/* |
+** As each page of the file is loaded into memory, an instance of the following |
+** structure is appended and initialized to zero. This structure stores |
+** information about the page that is decoded from the raw file page. |
+** |
+** The pParent field points back to the parent page. This allows us to |
+** walk up the BTree from any leaf to the root. Care must be taken to |
+** unref() the parent page pointer when this page is no longer referenced. |
+** The pageDestructor() routine handles that chore. |
+** |
+** Access to all fields of this structure is controlled by the mutex |
+** stored in MemPage.pBt->mutex. |
+*/ |
+struct MemPage { |
+ u8 isInit; /* True if previously initialized. MUST BE FIRST! */ |
+ u8 nOverflow; /* Number of overflow cell bodies in aCell[] */ |
+ u8 intKey; /* True if table b-trees. False for index b-trees */ |
+ u8 intKeyLeaf; /* True if the leaf of an intKey table */ |
+ u8 noPayload; /* True if internal intKey page (thus w/o data) */ |
+ u8 leaf; /* True if a leaf page */ |
+ u8 hdrOffset; /* 100 for page 1. 0 otherwise */ |
+ u8 childPtrSize; /* 0 if leaf==1. 4 if leaf==0 */ |
+ u8 max1bytePayload; /* min(maxLocal,127) */ |
+ u8 bBusy; /* Prevent endless loops on corrupt database files */ |
+ u16 maxLocal; /* Copy of BtShared.maxLocal or BtShared.maxLeaf */ |
+ u16 minLocal; /* Copy of BtShared.minLocal or BtShared.minLeaf */ |
+ u16 cellOffset; /* Index in aData of first cell pointer */ |
+ u16 nFree; /* Number of free bytes on the page */ |
+ u16 nCell; /* Number of cells on this page, local and ovfl */ |
+ u16 maskPage; /* Mask for page offset */ |
+ u16 aiOvfl[5]; /* Insert the i-th overflow cell before the aiOvfl-th |
+ ** non-overflow cell */ |
+ u8 *apOvfl[5]; /* Pointers to the body of overflow cells */ |
+ BtShared *pBt; /* Pointer to BtShared that this page is part of */ |
+ u8 *aData; /* Pointer to disk image of the page data */ |
+ u8 *aDataEnd; /* One byte past the end of usable data */ |
+ u8 *aCellIdx; /* The cell index area */ |
+ u8 *aDataOfst; /* Same as aData for leaves. aData+4 for interior */ |
+ DbPage *pDbPage; /* Pager page handle */ |
+ u16 (*xCellSize)(MemPage*,u8*); /* cellSizePtr method */ |
+ void (*xParseCell)(MemPage*,u8*,CellInfo*); /* btreeParseCell method */ |
+ Pgno pgno; /* Page number for this page */ |
+}; |
+ |
+/* |
+** The in-memory image of a disk page has the auxiliary information appended |
+** to the end. EXTRA_SIZE is the number of bytes of space needed to hold |
+** that extra information. |
+*/ |
+#define EXTRA_SIZE sizeof(MemPage) |
+ |
+/* |
+** A linked list of the following structures is stored at BtShared.pLock. |
+** Locks are added (or upgraded from READ_LOCK to WRITE_LOCK) when a cursor |
+** is opened on the table with root page BtShared.iTable. Locks are removed |
+** from this list when a transaction is committed or rolled back, or when |
+** a btree handle is closed. |
+*/ |
+struct BtLock { |
+ Btree *pBtree; /* Btree handle holding this lock */ |
+ Pgno iTable; /* Root page of table */ |
+ u8 eLock; /* READ_LOCK or WRITE_LOCK */ |
+ BtLock *pNext; /* Next in BtShared.pLock list */ |
+}; |
+ |
+/* Candidate values for BtLock.eLock */ |
+#define READ_LOCK 1 |
+#define WRITE_LOCK 2 |
+ |
+/* A Btree handle |
+** |
+** A database connection contains a pointer to an instance of |
+** this object for every database file that it has open. This structure |
+** is opaque to the database connection. The database connection cannot |
+** see the internals of this structure and only deals with pointers to |
+** this structure. |
+** |
+** For some database files, the same underlying database cache might be |
+** shared between multiple connections. In that case, each connection |
+** has it own instance of this object. But each instance of this object |
+** points to the same BtShared object. The database cache and the |
+** schema associated with the database file are all contained within |
+** the BtShared object. |
+** |
+** All fields in this structure are accessed under sqlite3.mutex. |
+** The pBt pointer itself may not be changed while there exists cursors |
+** in the referenced BtShared that point back to this Btree since those |
+** cursors have to go through this Btree to find their BtShared and |
+** they often do so without holding sqlite3.mutex. |
+*/ |
+struct Btree { |
+ sqlite3 *db; /* The database connection holding this btree */ |
+ BtShared *pBt; /* Sharable content of this btree */ |
+ u8 inTrans; /* TRANS_NONE, TRANS_READ or TRANS_WRITE */ |
+ u8 sharable; /* True if we can share pBt with another db */ |
+ u8 locked; /* True if db currently has pBt locked */ |
+ u8 hasIncrblobCur; /* True if there are one or more Incrblob cursors */ |
+ int wantToLock; /* Number of nested calls to sqlite3BtreeEnter() */ |
+ int nBackup; /* Number of backup operations reading this btree */ |
+ u32 iDataVersion; /* Combines with pBt->pPager->iDataVersion */ |
+ Btree *pNext; /* List of other sharable Btrees from the same db */ |
+ Btree *pPrev; /* Back pointer of the same list */ |
+#ifndef SQLITE_OMIT_SHARED_CACHE |
+ BtLock lock; /* Object used to lock page 1 */ |
+#endif |
+}; |
+ |
+/* |
+** Btree.inTrans may take one of the following values. |
+** |
+** If the shared-data extension is enabled, there may be multiple users |
+** of the Btree structure. At most one of these may open a write transaction, |
+** but any number may have active read transactions. |
+*/ |
+#define TRANS_NONE 0 |
+#define TRANS_READ 1 |
+#define TRANS_WRITE 2 |
+ |
+/* |
+** An instance of this object represents a single database file. |
+** |
+** A single database file can be in use at the same time by two |
+** or more database connections. When two or more connections are |
+** sharing the same database file, each connection has it own |
+** private Btree object for the file and each of those Btrees points |
+** to this one BtShared object. BtShared.nRef is the number of |
+** connections currently sharing this database file. |
+** |
+** Fields in this structure are accessed under the BtShared.mutex |
+** mutex, except for nRef and pNext which are accessed under the |
+** global SQLITE_MUTEX_STATIC_MASTER mutex. The pPager field |
+** may not be modified once it is initially set as long as nRef>0. |
+** The pSchema field may be set once under BtShared.mutex and |
+** thereafter is unchanged as long as nRef>0. |
+** |
+** isPending: |
+** |
+** If a BtShared client fails to obtain a write-lock on a database |
+** table (because there exists one or more read-locks on the table), |
+** the shared-cache enters 'pending-lock' state and isPending is |
+** set to true. |
+** |
+** The shared-cache leaves the 'pending lock' state when either of |
+** the following occur: |
+** |
+** 1) The current writer (BtShared.pWriter) concludes its transaction, OR |
+** 2) The number of locks held by other connections drops to zero. |
+** |
+** while in the 'pending-lock' state, no connection may start a new |
+** transaction. |
+** |
+** This feature is included to help prevent writer-starvation. |
+*/ |
+struct BtShared { |
+ Pager *pPager; /* The page cache */ |
+ sqlite3 *db; /* Database connection currently using this Btree */ |
+ BtCursor *pCursor; /* A list of all open cursors */ |
+ MemPage *pPage1; /* First page of the database */ |
+ u8 openFlags; /* Flags to sqlite3BtreeOpen() */ |
+#ifndef SQLITE_OMIT_AUTOVACUUM |
+ u8 autoVacuum; /* True if auto-vacuum is enabled */ |
+ u8 incrVacuum; /* True if incr-vacuum is enabled */ |
+ u8 bDoTruncate; /* True to truncate db on commit */ |
+#endif |
+ u8 inTransaction; /* Transaction state */ |
+ u8 max1bytePayload; /* Maximum first byte of cell for a 1-byte payload */ |
+#ifdef SQLITE_HAS_CODEC |
+ u8 optimalReserve; /* Desired amount of reserved space per page */ |
+#endif |
+ u16 btsFlags; /* Boolean parameters. See BTS_* macros below */ |
+ u16 maxLocal; /* Maximum local payload in non-LEAFDATA tables */ |
+ u16 minLocal; /* Minimum local payload in non-LEAFDATA tables */ |
+ u16 maxLeaf; /* Maximum local payload in a LEAFDATA table */ |
+ u16 minLeaf; /* Minimum local payload in a LEAFDATA table */ |
+ u32 pageSize; /* Total number of bytes on a page */ |
+ u32 usableSize; /* Number of usable bytes on each page */ |
+ int nTransaction; /* Number of open transactions (read + write) */ |
+ u32 nPage; /* Number of pages in the database */ |
+ void *pSchema; /* Pointer to space allocated by sqlite3BtreeSchema() */ |
+ void (*xFreeSchema)(void*); /* Destructor for BtShared.pSchema */ |
+ sqlite3_mutex *mutex; /* Non-recursive mutex required to access this object */ |
+ Bitvec *pHasContent; /* Set of pages moved to free-list this transaction */ |
+#ifndef SQLITE_OMIT_SHARED_CACHE |
+ int nRef; /* Number of references to this structure */ |
+ BtShared *pNext; /* Next on a list of sharable BtShared structs */ |
+ BtLock *pLock; /* List of locks held on this shared-btree struct */ |
+ Btree *pWriter; /* Btree with currently open write transaction */ |
+#endif |
+ u8 *pTmpSpace; /* Temp space sufficient to hold a single cell */ |
+}; |
+ |
+/* |
+** Allowed values for BtShared.btsFlags |
+*/ |
+#define BTS_READ_ONLY 0x0001 /* Underlying file is readonly */ |
+#define BTS_PAGESIZE_FIXED 0x0002 /* Page size can no longer be changed */ |
+#define BTS_SECURE_DELETE 0x0004 /* PRAGMA secure_delete is enabled */ |
+#define BTS_INITIALLY_EMPTY 0x0008 /* Database was empty at trans start */ |
+#define BTS_NO_WAL 0x0010 /* Do not open write-ahead-log files */ |
+#define BTS_EXCLUSIVE 0x0020 /* pWriter has an exclusive lock */ |
+#define BTS_PENDING 0x0040 /* Waiting for read-locks to clear */ |
+ |
+/* |
+** An instance of the following structure is used to hold information |
+** about a cell. The parseCellPtr() function fills in this structure |
+** based on information extract from the raw disk page. |
+*/ |
+struct CellInfo { |
+ i64 nKey; /* The key for INTKEY tables, or nPayload otherwise */ |
+ u8 *pPayload; /* Pointer to the start of payload */ |
+ u32 nPayload; /* Bytes of payload */ |
+ u16 nLocal; /* Amount of payload held locally, not on overflow */ |
+ u16 nSize; /* Size of the cell content on the main b-tree page */ |
+}; |
+ |
+/* |
+** Maximum depth of an SQLite B-Tree structure. Any B-Tree deeper than |
+** this will be declared corrupt. This value is calculated based on a |
+** maximum database size of 2^31 pages a minimum fanout of 2 for a |
+** root-node and 3 for all other internal nodes. |
+** |
+** If a tree that appears to be taller than this is encountered, it is |
+** assumed that the database is corrupt. |
+*/ |
+#define BTCURSOR_MAX_DEPTH 20 |
+ |
+/* |
+** A cursor is a pointer to a particular entry within a particular |
+** b-tree within a database file. |
+** |
+** The entry is identified by its MemPage and the index in |
+** MemPage.aCell[] of the entry. |
+** |
+** A single database file can be shared by two more database connections, |
+** but cursors cannot be shared. Each cursor is associated with a |
+** particular database connection identified BtCursor.pBtree.db. |
+** |
+** Fields in this structure are accessed under the BtShared.mutex |
+** found at self->pBt->mutex. |
+** |
+** skipNext meaning: |
+** eState==SKIPNEXT && skipNext>0: Next sqlite3BtreeNext() is no-op. |
+** eState==SKIPNEXT && skipNext<0: Next sqlite3BtreePrevious() is no-op. |
+** eState==FAULT: Cursor fault with skipNext as error code. |
+*/ |
+struct BtCursor { |
+ Btree *pBtree; /* The Btree to which this cursor belongs */ |
+ BtShared *pBt; /* The BtShared this cursor points to */ |
+ BtCursor *pNext; /* Forms a linked list of all cursors */ |
+ Pgno *aOverflow; /* Cache of overflow page locations */ |
+ CellInfo info; /* A parse of the cell we are pointing at */ |
+ i64 nKey; /* Size of pKey, or last integer key */ |
+ void *pKey; /* Saved key that was cursor last known position */ |
+ Pgno pgnoRoot; /* The root page of this tree */ |
+ int nOvflAlloc; /* Allocated size of aOverflow[] array */ |
+ int skipNext; /* Prev() is noop if negative. Next() is noop if positive. |
+ ** Error code if eState==CURSOR_FAULT */ |
+ u8 curFlags; /* zero or more BTCF_* flags defined below */ |
+ u8 curPagerFlags; /* Flags to send to sqlite3PagerGet() */ |
+ u8 eState; /* One of the CURSOR_XXX constants (see below) */ |
+ u8 hints; /* As configured by CursorSetHints() */ |
+ /* All fields above are zeroed when the cursor is allocated. See |
+ ** sqlite3BtreeCursorZero(). Fields that follow must be manually |
+ ** initialized. */ |
+ i8 iPage; /* Index of current page in apPage */ |
+ u8 curIntKey; /* Value of apPage[0]->intKey */ |
+ struct KeyInfo *pKeyInfo; /* Argument passed to comparison function */ |
+ void *padding1; /* Make object size a multiple of 16 */ |
+ u16 aiIdx[BTCURSOR_MAX_DEPTH]; /* Current index in apPage[i] */ |
+ MemPage *apPage[BTCURSOR_MAX_DEPTH]; /* Pages from root to current page */ |
+}; |
+ |
+/* |
+** Legal values for BtCursor.curFlags |
+*/ |
+#define BTCF_WriteFlag 0x01 /* True if a write cursor */ |
+#define BTCF_ValidNKey 0x02 /* True if info.nKey is valid */ |
+#define BTCF_ValidOvfl 0x04 /* True if aOverflow is valid */ |
+#define BTCF_AtLast 0x08 /* Cursor is pointing ot the last entry */ |
+#define BTCF_Incrblob 0x10 /* True if an incremental I/O handle */ |
+#define BTCF_Multiple 0x20 /* Maybe another cursor on the same btree */ |
+ |
+/* |
+** Potential values for BtCursor.eState. |
+** |
+** CURSOR_INVALID: |
+** Cursor does not point to a valid entry. This can happen (for example) |
+** because the table is empty or because BtreeCursorFirst() has not been |
+** called. |
+** |
+** CURSOR_VALID: |
+** Cursor points to a valid entry. getPayload() etc. may be called. |
+** |
+** CURSOR_SKIPNEXT: |
+** Cursor is valid except that the Cursor.skipNext field is non-zero |
+** indicating that the next sqlite3BtreeNext() or sqlite3BtreePrevious() |
+** operation should be a no-op. |
+** |
+** CURSOR_REQUIRESEEK: |
+** The table that this cursor was opened on still exists, but has been |
+** modified since the cursor was last used. The cursor position is saved |
+** in variables BtCursor.pKey and BtCursor.nKey. When a cursor is in |
+** this state, restoreCursorPosition() can be called to attempt to |
+** seek the cursor to the saved position. |
+** |
+** CURSOR_FAULT: |
+** An unrecoverable error (an I/O error or a malloc failure) has occurred |
+** on a different connection that shares the BtShared cache with this |
+** cursor. The error has left the cache in an inconsistent state. |
+** Do nothing else with this cursor. Any attempt to use the cursor |
+** should return the error code stored in BtCursor.skipNext |
+*/ |
+#define CURSOR_INVALID 0 |
+#define CURSOR_VALID 1 |
+#define CURSOR_SKIPNEXT 2 |
+#define CURSOR_REQUIRESEEK 3 |
+#define CURSOR_FAULT 4 |
+ |
+/* |
+** The database page the PENDING_BYTE occupies. This page is never used. |
+*/ |
+# define PENDING_BYTE_PAGE(pBt) PAGER_MJ_PGNO(pBt) |
+ |
+/* |
+** These macros define the location of the pointer-map entry for a |
+** database page. The first argument to each is the number of usable |
+** bytes on each page of the database (often 1024). The second is the |
+** page number to look up in the pointer map. |
+** |
+** PTRMAP_PAGENO returns the database page number of the pointer-map |
+** page that stores the required pointer. PTRMAP_PTROFFSET returns |
+** the offset of the requested map entry. |
+** |
+** If the pgno argument passed to PTRMAP_PAGENO is a pointer-map page, |
+** then pgno is returned. So (pgno==PTRMAP_PAGENO(pgsz, pgno)) can be |
+** used to test if pgno is a pointer-map page. PTRMAP_ISPAGE implements |
+** this test. |
+*/ |
+#define PTRMAP_PAGENO(pBt, pgno) ptrmapPageno(pBt, pgno) |
+#define PTRMAP_PTROFFSET(pgptrmap, pgno) (5*(pgno-pgptrmap-1)) |
+#define PTRMAP_ISPAGE(pBt, pgno) (PTRMAP_PAGENO((pBt),(pgno))==(pgno)) |
+ |
+/* |
+** The pointer map is a lookup table that identifies the parent page for |
+** each child page in the database file. The parent page is the page that |
+** contains a pointer to the child. Every page in the database contains |
+** 0 or 1 parent pages. (In this context 'database page' refers |
+** to any page that is not part of the pointer map itself.) Each pointer map |
+** entry consists of a single byte 'type' and a 4 byte parent page number. |
+** The PTRMAP_XXX identifiers below are the valid types. |
+** |
+** The purpose of the pointer map is to facility moving pages from one |
+** position in the file to another as part of autovacuum. When a page |
+** is moved, the pointer in its parent must be updated to point to the |
+** new location. The pointer map is used to locate the parent page quickly. |
+** |
+** PTRMAP_ROOTPAGE: The database page is a root-page. The page-number is not |
+** used in this case. |
+** |
+** PTRMAP_FREEPAGE: The database page is an unused (free) page. The page-number |
+** is not used in this case. |
+** |
+** PTRMAP_OVERFLOW1: The database page is the first page in a list of |
+** overflow pages. The page number identifies the page that |
+** contains the cell with a pointer to this overflow page. |
+** |
+** PTRMAP_OVERFLOW2: The database page is the second or later page in a list of |
+** overflow pages. The page-number identifies the previous |
+** page in the overflow page list. |
+** |
+** PTRMAP_BTREE: The database page is a non-root btree page. The page number |
+** identifies the parent page in the btree. |
+*/ |
+#define PTRMAP_ROOTPAGE 1 |
+#define PTRMAP_FREEPAGE 2 |
+#define PTRMAP_OVERFLOW1 3 |
+#define PTRMAP_OVERFLOW2 4 |
+#define PTRMAP_BTREE 5 |
+ |
+/* A bunch of assert() statements to check the transaction state variables |
+** of handle p (type Btree*) are internally consistent. |
+*/ |
+#define btreeIntegrity(p) \ |
+ assert( p->pBt->inTransaction!=TRANS_NONE || p->pBt->nTransaction==0 ); \ |
+ assert( p->pBt->inTransaction>=p->inTrans ); |
+ |
+ |
+/* |
+** The ISAUTOVACUUM macro is used within balance_nonroot() to determine |
+** if the database supports auto-vacuum or not. Because it is used |
+** within an expression that is an argument to another macro |
+** (sqliteMallocRaw), it is not possible to use conditional compilation. |
+** So, this macro is defined instead. |
+*/ |
+#ifndef SQLITE_OMIT_AUTOVACUUM |
+#define ISAUTOVACUUM (pBt->autoVacuum) |
+#else |
+#define ISAUTOVACUUM 0 |
+#endif |
+ |
+ |
+/* |
+** This structure is passed around through all the sanity checking routines |
+** in order to keep track of some global state information. |
+** |
+** The aRef[] array is allocated so that there is 1 bit for each page in |
+** the database. As the integrity-check proceeds, for each page used in |
+** the database the corresponding bit is set. This allows integrity-check to |
+** detect pages that are used twice and orphaned pages (both of which |
+** indicate corruption). |
+*/ |
+typedef struct IntegrityCk IntegrityCk; |
+struct IntegrityCk { |
+ BtShared *pBt; /* The tree being checked out */ |
+ Pager *pPager; /* The associated pager. Also accessible by pBt->pPager */ |
+ u8 *aPgRef; /* 1 bit per page in the db (see above) */ |
+ Pgno nPage; /* Number of pages in the database */ |
+ int mxErr; /* Stop accumulating errors when this reaches zero */ |
+ int nErr; /* Number of messages written to zErrMsg so far */ |
+ int mallocFailed; /* A memory allocation error has occurred */ |
+ const char *zPfx; /* Error message prefix */ |
+ int v1, v2; /* Values for up to two %d fields in zPfx */ |
+ StrAccum errMsg; /* Accumulate the error message text here */ |
+ u32 *heap; /* Min-heap used for analyzing cell coverage */ |
+}; |
+ |
+/* |
+** Routines to read or write a two- and four-byte big-endian integer values. |
+*/ |
+#define get2byte(x) ((x)[0]<<8 | (x)[1]) |
+#define put2byte(p,v) ((p)[0] = (u8)((v)>>8), (p)[1] = (u8)(v)) |
+#define get4byte sqlite3Get4byte |
+#define put4byte sqlite3Put4byte |
+ |
+/* |
+** get2byteAligned(), unlike get2byte(), requires that its argument point to a |
+** two-byte aligned address. get2bytea() is only used for accessing the |
+** cell addresses in a btree header. |
+*/ |
+#if SQLITE_BYTEORDER==4321 |
+# define get2byteAligned(x) (*(u16*)(x)) |
+#elif SQLITE_BYTEORDER==1234 && !defined(SQLITE_DISABLE_INTRINSIC) \ |
+ && GCC_VERSION>=4008000 |
+# define get2byteAligned(x) __builtin_bswap16(*(u16*)(x)) |
+#elif SQLITE_BYTEORDER==1234 && !defined(SQLITE_DISABLE_INTRINSIC) \ |
+ && defined(_MSC_VER) && _MSC_VER>=1300 |
+# define get2byteAligned(x) _byteswap_ushort(*(u16*)(x)) |
+#else |
+# define get2byteAligned(x) ((x)[0]<<8 | (x)[1]) |
+#endif |
+ |
+/************** End of btreeInt.h ********************************************/ |
+/************** Continuing where we left off in btmutex.c ********************/ |
+#ifndef SQLITE_OMIT_SHARED_CACHE |
+#if SQLITE_THREADSAFE |
+ |
+/* |
+** Obtain the BtShared mutex associated with B-Tree handle p. Also, |
+** set BtShared.db to the database handle associated with p and the |
+** p->locked boolean to true. |
+*/ |
+static void lockBtreeMutex(Btree *p){ |
+ assert( p->locked==0 ); |
+ assert( sqlite3_mutex_notheld(p->pBt->mutex) ); |
+ assert( sqlite3_mutex_held(p->db->mutex) ); |
+ |
+ sqlite3_mutex_enter(p->pBt->mutex); |
+ p->pBt->db = p->db; |
+ p->locked = 1; |
+} |
+ |
+/* |
+** Release the BtShared mutex associated with B-Tree handle p and |
+** clear the p->locked boolean. |
+*/ |
+static void SQLITE_NOINLINE unlockBtreeMutex(Btree *p){ |
+ BtShared *pBt = p->pBt; |
+ assert( p->locked==1 ); |
+ assert( sqlite3_mutex_held(pBt->mutex) ); |
+ assert( sqlite3_mutex_held(p->db->mutex) ); |
+ assert( p->db==pBt->db ); |
+ |
+ sqlite3_mutex_leave(pBt->mutex); |
+ p->locked = 0; |
+} |
+ |
+/* Forward reference */ |
+static void SQLITE_NOINLINE btreeLockCarefully(Btree *p); |
+ |
+/* |
+** Enter a mutex on the given BTree object. |
+** |
+** If the object is not sharable, then no mutex is ever required |
+** and this routine is a no-op. The underlying mutex is non-recursive. |
+** But we keep a reference count in Btree.wantToLock so the behavior |
+** of this interface is recursive. |
+** |
+** To avoid deadlocks, multiple Btrees are locked in the same order |
+** by all database connections. The p->pNext is a list of other |
+** Btrees belonging to the same database connection as the p Btree |
+** which need to be locked after p. If we cannot get a lock on |
+** p, then first unlock all of the others on p->pNext, then wait |
+** for the lock to become available on p, then relock all of the |
+** subsequent Btrees that desire a lock. |
+*/ |
+SQLITE_PRIVATE void sqlite3BtreeEnter(Btree *p){ |
+ /* Some basic sanity checking on the Btree. The list of Btrees |
+ ** connected by pNext and pPrev should be in sorted order by |
+ ** Btree.pBt value. All elements of the list should belong to |
+ ** the same connection. Only shared Btrees are on the list. */ |
+ assert( p->pNext==0 || p->pNext->pBt>p->pBt ); |
+ assert( p->pPrev==0 || p->pPrev->pBt<p->pBt ); |
+ assert( p->pNext==0 || p->pNext->db==p->db ); |
+ assert( p->pPrev==0 || p->pPrev->db==p->db ); |
+ assert( p->sharable || (p->pNext==0 && p->pPrev==0) ); |
+ |
+ /* Check for locking consistency */ |
+ assert( !p->locked || p->wantToLock>0 ); |
+ assert( p->sharable || p->wantToLock==0 ); |
+ |
+ /* We should already hold a lock on the database connection */ |
+ assert( sqlite3_mutex_held(p->db->mutex) ); |
+ |
+ /* Unless the database is sharable and unlocked, then BtShared.db |
+ ** should already be set correctly. */ |
+ assert( (p->locked==0 && p->sharable) || p->pBt->db==p->db ); |
+ |
+ if( !p->sharable ) return; |
+ p->wantToLock++; |
+ if( p->locked ) return; |
+ btreeLockCarefully(p); |
+} |
+ |
+/* This is a helper function for sqlite3BtreeLock(). By moving |
+** complex, but seldom used logic, out of sqlite3BtreeLock() and |
+** into this routine, we avoid unnecessary stack pointer changes |
+** and thus help the sqlite3BtreeLock() routine to run much faster |
+** in the common case. |
+*/ |
+static void SQLITE_NOINLINE btreeLockCarefully(Btree *p){ |
+ Btree *pLater; |
+ |
+ /* In most cases, we should be able to acquire the lock we |
+ ** want without having to go through the ascending lock |
+ ** procedure that follows. Just be sure not to block. |
+ */ |
+ if( sqlite3_mutex_try(p->pBt->mutex)==SQLITE_OK ){ |
+ p->pBt->db = p->db; |
+ p->locked = 1; |
+ return; |
+ } |
+ |
+ /* To avoid deadlock, first release all locks with a larger |
+ ** BtShared address. Then acquire our lock. Then reacquire |
+ ** the other BtShared locks that we used to hold in ascending |
+ ** order. |
+ */ |
+ for(pLater=p->pNext; pLater; pLater=pLater->pNext){ |
+ assert( pLater->sharable ); |
+ assert( pLater->pNext==0 || pLater->pNext->pBt>pLater->pBt ); |
+ assert( !pLater->locked || pLater->wantToLock>0 ); |
+ if( pLater->locked ){ |
+ unlockBtreeMutex(pLater); |
+ } |
+ } |
+ lockBtreeMutex(p); |
+ for(pLater=p->pNext; pLater; pLater=pLater->pNext){ |
+ if( pLater->wantToLock ){ |
+ lockBtreeMutex(pLater); |
+ } |
+ } |
+} |
+ |
+ |
+/* |
+** Exit the recursive mutex on a Btree. |
+*/ |
+SQLITE_PRIVATE void sqlite3BtreeLeave(Btree *p){ |
+ assert( sqlite3_mutex_held(p->db->mutex) ); |
+ if( p->sharable ){ |
+ assert( p->wantToLock>0 ); |
+ p->wantToLock--; |
+ if( p->wantToLock==0 ){ |
+ unlockBtreeMutex(p); |
+ } |
+ } |
+} |
+ |
+#ifndef NDEBUG |
+/* |
+** Return true if the BtShared mutex is held on the btree, or if the |
+** B-Tree is not marked as sharable. |
+** |
+** This routine is used only from within assert() statements. |
+*/ |
+SQLITE_PRIVATE int sqlite3BtreeHoldsMutex(Btree *p){ |
+ assert( p->sharable==0 || p->locked==0 || p->wantToLock>0 ); |
+ assert( p->sharable==0 || p->locked==0 || p->db==p->pBt->db ); |
+ assert( p->sharable==0 || p->locked==0 || sqlite3_mutex_held(p->pBt->mutex) ); |
+ assert( p->sharable==0 || p->locked==0 || sqlite3_mutex_held(p->db->mutex) ); |
+ |
+ return (p->sharable==0 || p->locked); |
+} |
+#endif |
+ |
+ |
+#ifndef SQLITE_OMIT_INCRBLOB |
+/* |
+** Enter and leave a mutex on a Btree given a cursor owned by that |
+** Btree. These entry points are used by incremental I/O and can be |
+** omitted if that module is not used. |
+*/ |
+SQLITE_PRIVATE void sqlite3BtreeEnterCursor(BtCursor *pCur){ |
+ sqlite3BtreeEnter(pCur->pBtree); |
+} |
+SQLITE_PRIVATE void sqlite3BtreeLeaveCursor(BtCursor *pCur){ |
+ sqlite3BtreeLeave(pCur->pBtree); |
+} |
+#endif /* SQLITE_OMIT_INCRBLOB */ |
+ |
+ |
+/* |
+** Enter the mutex on every Btree associated with a database |
+** connection. This is needed (for example) prior to parsing |
+** a statement since we will be comparing table and column names |
+** against all schemas and we do not want those schemas being |
+** reset out from under us. |
+** |
+** There is a corresponding leave-all procedures. |
+** |
+** Enter the mutexes in accending order by BtShared pointer address |
+** to avoid the possibility of deadlock when two threads with |
+** two or more btrees in common both try to lock all their btrees |
+** at the same instant. |
+*/ |
+SQLITE_PRIVATE void sqlite3BtreeEnterAll(sqlite3 *db){ |
+ int i; |
+ Btree *p; |
+ assert( sqlite3_mutex_held(db->mutex) ); |
+ for(i=0; i<db->nDb; i++){ |
+ p = db->aDb[i].pBt; |
+ if( p ) sqlite3BtreeEnter(p); |
+ } |
+} |
+SQLITE_PRIVATE void sqlite3BtreeLeaveAll(sqlite3 *db){ |
+ int i; |
+ Btree *p; |
+ assert( sqlite3_mutex_held(db->mutex) ); |
+ for(i=0; i<db->nDb; i++){ |
+ p = db->aDb[i].pBt; |
+ if( p ) sqlite3BtreeLeave(p); |
+ } |
+} |
+ |
+/* |
+** Return true if a particular Btree requires a lock. Return FALSE if |
+** no lock is ever required since it is not sharable. |
+*/ |
+SQLITE_PRIVATE int sqlite3BtreeSharable(Btree *p){ |
+ return p->sharable; |
+} |
+ |
+#ifndef NDEBUG |
+/* |
+** Return true if the current thread holds the database connection |
+** mutex and all required BtShared mutexes. |
+** |
+** This routine is used inside assert() statements only. |
+*/ |
+SQLITE_PRIVATE int sqlite3BtreeHoldsAllMutexes(sqlite3 *db){ |
+ int i; |
+ if( !sqlite3_mutex_held(db->mutex) ){ |
+ return 0; |
+ } |
+ for(i=0; i<db->nDb; i++){ |
+ Btree *p; |
+ p = db->aDb[i].pBt; |
+ if( p && p->sharable && |
+ (p->wantToLock==0 || !sqlite3_mutex_held(p->pBt->mutex)) ){ |
+ return 0; |
+ } |
+ } |
+ return 1; |
+} |
+#endif /* NDEBUG */ |
+ |
+#ifndef NDEBUG |
+/* |
+** Return true if the correct mutexes are held for accessing the |
+** db->aDb[iDb].pSchema structure. The mutexes required for schema |
+** access are: |
+** |
+** (1) The mutex on db |
+** (2) if iDb!=1, then the mutex on db->aDb[iDb].pBt. |
+** |
+** If pSchema is not NULL, then iDb is computed from pSchema and |
+** db using sqlite3SchemaToIndex(). |
+*/ |
+SQLITE_PRIVATE int sqlite3SchemaMutexHeld(sqlite3 *db, int iDb, Schema *pSchema){ |
+ Btree *p; |
+ assert( db!=0 ); |
+ if( pSchema ) iDb = sqlite3SchemaToIndex(db, pSchema); |
+ assert( iDb>=0 && iDb<db->nDb ); |
+ if( !sqlite3_mutex_held(db->mutex) ) return 0; |
+ if( iDb==1 ) return 1; |
+ p = db->aDb[iDb].pBt; |
+ assert( p!=0 ); |
+ return p->sharable==0 || p->locked==1; |
+} |
+#endif /* NDEBUG */ |
+ |
+#else /* SQLITE_THREADSAFE>0 above. SQLITE_THREADSAFE==0 below */ |
+/* |
+** The following are special cases for mutex enter routines for use |
+** in single threaded applications that use shared cache. Except for |
+** these two routines, all mutex operations are no-ops in that case and |
+** are null #defines in btree.h. |
+** |
+** If shared cache is disabled, then all btree mutex routines, including |
+** the ones below, are no-ops and are null #defines in btree.h. |
+*/ |
+ |
+SQLITE_PRIVATE void sqlite3BtreeEnter(Btree *p){ |
+ p->pBt->db = p->db; |
+} |
+SQLITE_PRIVATE void sqlite3BtreeEnterAll(sqlite3 *db){ |
+ int i; |
+ for(i=0; i<db->nDb; i++){ |
+ Btree *p = db->aDb[i].pBt; |
+ if( p ){ |
+ p->pBt->db = p->db; |
+ } |
+ } |
+} |
+#endif /* if SQLITE_THREADSAFE */ |
+#endif /* ifndef SQLITE_OMIT_SHARED_CACHE */ |
+ |
+/************** End of btmutex.c *********************************************/ |
+/************** Begin file btree.c *******************************************/ |
+/* |
+** 2004 April 6 |
+** |
+** The author disclaims copyright to this source code. In place of |
+** a legal notice, here is a blessing: |
+** |
+** May you do good and not evil. |
+** May you find forgiveness for yourself and forgive others. |
+** May you share freely, never taking more than you give. |
+** |
+************************************************************************* |
+** This file implements an external (disk-based) database using BTrees. |
+** See the header comment on "btreeInt.h" for additional information. |
+** Including a description of file format and an overview of operation. |
+*/ |
+/* #include "btreeInt.h" */ |
+ |
+/* |
+** The header string that appears at the beginning of every |
+** SQLite database. |
+*/ |
+static const char zMagicHeader[] = SQLITE_FILE_HEADER; |
+ |
+/* |
+** Set this global variable to 1 to enable tracing using the TRACE |
+** macro. |
+*/ |
+#if 0 |
+int sqlite3BtreeTrace=1; /* True to enable tracing */ |
+# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);} |
+#else |
+# define TRACE(X) |
+#endif |
+ |
+/* |
+** Extract a 2-byte big-endian integer from an array of unsigned bytes. |
+** But if the value is zero, make it 65536. |
+** |
+** This routine is used to extract the "offset to cell content area" value |
+** from the header of a btree page. If the page size is 65536 and the page |
+** is empty, the offset should be 65536, but the 2-byte value stores zero. |
+** This routine makes the necessary adjustment to 65536. |
+*/ |
+#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1) |
+ |
+/* |
+** Values passed as the 5th argument to allocateBtreePage() |
+*/ |
+#define BTALLOC_ANY 0 /* Allocate any page */ |
+#define BTALLOC_EXACT 1 /* Allocate exact page if possible */ |
+#define BTALLOC_LE 2 /* Allocate any page <= the parameter */ |
+ |
+/* |
+** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not |
+** defined, or 0 if it is. For example: |
+** |
+** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum); |
+*/ |
+#ifndef SQLITE_OMIT_AUTOVACUUM |
+#define IfNotOmitAV(expr) (expr) |
+#else |
+#define IfNotOmitAV(expr) 0 |
+#endif |
+ |
+#ifndef SQLITE_OMIT_SHARED_CACHE |
+/* |
+** A list of BtShared objects that are eligible for participation |
+** in shared cache. This variable has file scope during normal builds, |
+** but the test harness needs to access it so we make it global for |
+** test builds. |
+** |
+** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER. |
+*/ |
+#ifdef SQLITE_TEST |
+SQLITE_PRIVATE BtShared *SQLITE_WSD sqlite3SharedCacheList = 0; |
+#else |
+static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0; |
+#endif |
+#endif /* SQLITE_OMIT_SHARED_CACHE */ |
+ |
+#ifndef SQLITE_OMIT_SHARED_CACHE |
+/* |
+** Enable or disable the shared pager and schema features. |
+** |
+** This routine has no effect on existing database connections. |
+** The shared cache setting effects only future calls to |
+** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2(). |
+*/ |
+SQLITE_API int SQLITE_STDCALL sqlite3_enable_shared_cache(int enable){ |
+ sqlite3GlobalConfig.sharedCacheEnabled = enable; |
+ return SQLITE_OK; |
+} |
+#endif |
+ |
+ |
+ |
+#ifdef SQLITE_OMIT_SHARED_CACHE |
+ /* |
+ ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(), |
+ ** and clearAllSharedCacheTableLocks() |
+ ** manipulate entries in the BtShared.pLock linked list used to store |
+ ** shared-cache table level locks. If the library is compiled with the |
+ ** shared-cache feature disabled, then there is only ever one user |
+ ** of each BtShared structure and so this locking is not necessary. |
+ ** So define the lock related functions as no-ops. |
+ */ |
+ #define querySharedCacheTableLock(a,b,c) SQLITE_OK |
+ #define setSharedCacheTableLock(a,b,c) SQLITE_OK |
+ #define clearAllSharedCacheTableLocks(a) |
+ #define downgradeAllSharedCacheTableLocks(a) |
+ #define hasSharedCacheTableLock(a,b,c,d) 1 |
+ #define hasReadConflicts(a, b) 0 |
+#endif |
+ |
+#ifndef SQLITE_OMIT_SHARED_CACHE |
+ |
+#ifdef SQLITE_DEBUG |
+/* |
+**** This function is only used as part of an assert() statement. *** |
+** |
+** Check to see if pBtree holds the required locks to read or write to the |
+** table with root page iRoot. Return 1 if it does and 0 if not. |
+** |
+** For example, when writing to a table with root-page iRoot via |
+** Btree connection pBtree: |
+** |
+** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) ); |
+** |
+** When writing to an index that resides in a sharable database, the |
+** caller should have first obtained a lock specifying the root page of |
+** the corresponding table. This makes things a bit more complicated, |
+** as this module treats each table as a separate structure. To determine |
+** the table corresponding to the index being written, this |
+** function has to search through the database schema. |
+** |
+** Instead of a lock on the table/index rooted at page iRoot, the caller may |
+** hold a write-lock on the schema table (root page 1). This is also |
+** acceptable. |
+*/ |
+static int hasSharedCacheTableLock( |
+ Btree *pBtree, /* Handle that must hold lock */ |
+ Pgno iRoot, /* Root page of b-tree */ |
+ int isIndex, /* True if iRoot is the root of an index b-tree */ |
+ int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */ |
+){ |
+ Schema *pSchema = (Schema *)pBtree->pBt->pSchema; |
+ Pgno iTab = 0; |
+ BtLock *pLock; |
+ |
+ /* If this database is not shareable, or if the client is reading |
+ ** and has the read-uncommitted flag set, then no lock is required. |
+ ** Return true immediately. |
+ */ |
+ if( (pBtree->sharable==0) |
+ || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted)) |
+ ){ |
+ return 1; |
+ } |
+ |
+ /* If the client is reading or writing an index and the schema is |
+ ** not loaded, then it is too difficult to actually check to see if |
+ ** the correct locks are held. So do not bother - just return true. |
+ ** This case does not come up very often anyhow. |
+ */ |
+ if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){ |
+ return 1; |
+ } |
+ |
+ /* Figure out the root-page that the lock should be held on. For table |
+ ** b-trees, this is just the root page of the b-tree being read or |
+ ** written. For index b-trees, it is the root page of the associated |
+ ** table. */ |
+ if( isIndex ){ |
+ HashElem *p; |
+ for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){ |
+ Index *pIdx = (Index *)sqliteHashData(p); |
+ if( pIdx->tnum==(int)iRoot ){ |
+ if( iTab ){ |
+ /* Two or more indexes share the same root page. There must |
+ ** be imposter tables. So just return true. The assert is not |
+ ** useful in that case. */ |
+ return 1; |
+ } |
+ iTab = pIdx->pTable->tnum; |
+ } |
+ } |
+ }else{ |
+ iTab = iRoot; |
+ } |
+ |
+ /* Search for the required lock. Either a write-lock on root-page iTab, a |
+ ** write-lock on the schema table, or (if the client is reading) a |
+ ** read-lock on iTab will suffice. Return 1 if any of these are found. */ |
+ for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){ |
+ if( pLock->pBtree==pBtree |
+ && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1)) |
+ && pLock->eLock>=eLockType |
+ ){ |
+ return 1; |
+ } |
+ } |
+ |
+ /* Failed to find the required lock. */ |
+ return 0; |
+} |
+#endif /* SQLITE_DEBUG */ |
+ |
+#ifdef SQLITE_DEBUG |
+/* |
+**** This function may be used as part of assert() statements only. **** |
+** |
+** Return true if it would be illegal for pBtree to write into the |
+** table or index rooted at iRoot because other shared connections are |
+** simultaneously reading that same table or index. |
+** |
+** It is illegal for pBtree to write if some other Btree object that |
+** shares the same BtShared object is currently reading or writing |
+** the iRoot table. Except, if the other Btree object has the |
+** read-uncommitted flag set, then it is OK for the other object to |
+** have a read cursor. |
+** |
+** For example, before writing to any part of the table or index |
+** rooted at page iRoot, one should call: |
+** |
+** assert( !hasReadConflicts(pBtree, iRoot) ); |
+*/ |
+static int hasReadConflicts(Btree *pBtree, Pgno iRoot){ |
+ BtCursor *p; |
+ for(p=pBtree->pBt->pCursor; p; p=p->pNext){ |
+ if( p->pgnoRoot==iRoot |
+ && p->pBtree!=pBtree |
+ && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted) |
+ ){ |
+ return 1; |
+ } |
+ } |
+ return 0; |
+} |
+#endif /* #ifdef SQLITE_DEBUG */ |
+ |
+/* |
+** Query to see if Btree handle p may obtain a lock of type eLock |
+** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return |
+** SQLITE_OK if the lock may be obtained (by calling |
+** setSharedCacheTableLock()), or SQLITE_LOCKED if not. |
+*/ |
+static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){ |
+ BtShared *pBt = p->pBt; |
+ BtLock *pIter; |
+ |
+ assert( sqlite3BtreeHoldsMutex(p) ); |
+ assert( eLock==READ_LOCK || eLock==WRITE_LOCK ); |
+ assert( p->db!=0 ); |
+ assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 ); |
+ |
+ /* If requesting a write-lock, then the Btree must have an open write |
+ ** transaction on this file. And, obviously, for this to be so there |
+ ** must be an open write transaction on the file itself. |
+ */ |
+ assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) ); |
+ assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE ); |
+ |
+ /* This routine is a no-op if the shared-cache is not enabled */ |
+ if( !p->sharable ){ |
+ return SQLITE_OK; |
+ } |
+ |
+ /* If some other connection is holding an exclusive lock, the |
+ ** requested lock may not be obtained. |
+ */ |
+ if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){ |
+ sqlite3ConnectionBlocked(p->db, pBt->pWriter->db); |
+ return SQLITE_LOCKED_SHAREDCACHE; |
+ } |
+ |
+ for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ |
+ /* The condition (pIter->eLock!=eLock) in the following if(...) |
+ ** statement is a simplification of: |
+ ** |
+ ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK) |
+ ** |
+ ** since we know that if eLock==WRITE_LOCK, then no other connection |
+ ** may hold a WRITE_LOCK on any table in this file (since there can |
+ ** only be a single writer). |
+ */ |
+ assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK ); |
+ assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK); |
+ if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){ |
+ sqlite3ConnectionBlocked(p->db, pIter->pBtree->db); |
+ if( eLock==WRITE_LOCK ){ |
+ assert( p==pBt->pWriter ); |
+ pBt->btsFlags |= BTS_PENDING; |
+ } |
+ return SQLITE_LOCKED_SHAREDCACHE; |
+ } |
+ } |
+ return SQLITE_OK; |
+} |
+#endif /* !SQLITE_OMIT_SHARED_CACHE */ |
+ |
+#ifndef SQLITE_OMIT_SHARED_CACHE |
+/* |
+** Add a lock on the table with root-page iTable to the shared-btree used |
+** by Btree handle p. Parameter eLock must be either READ_LOCK or |
+** WRITE_LOCK. |
+** |
+** This function assumes the following: |
+** |
+** (a) The specified Btree object p is connected to a sharable |
+** database (one with the BtShared.sharable flag set), and |
+** |
+** (b) No other Btree objects hold a lock that conflicts |
+** with the requested lock (i.e. querySharedCacheTableLock() has |
+** already been called and returned SQLITE_OK). |
+** |
+** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM |
+** is returned if a malloc attempt fails. |
+*/ |
+static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){ |
+ BtShared *pBt = p->pBt; |
+ BtLock *pLock = 0; |
+ BtLock *pIter; |
+ |
+ assert( sqlite3BtreeHoldsMutex(p) ); |
+ assert( eLock==READ_LOCK || eLock==WRITE_LOCK ); |
+ assert( p->db!=0 ); |
+ |
+ /* A connection with the read-uncommitted flag set will never try to |
+ ** obtain a read-lock using this function. The only read-lock obtained |
+ ** by a connection in read-uncommitted mode is on the sqlite_master |
+ ** table, and that lock is obtained in BtreeBeginTrans(). */ |
+ assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK ); |
+ |
+ /* This function should only be called on a sharable b-tree after it |
+ ** has been determined that no other b-tree holds a conflicting lock. */ |
+ assert( p->sharable ); |
+ assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) ); |
+ |
+ /* First search the list for an existing lock on this table. */ |
+ for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ |
+ if( pIter->iTable==iTable && pIter->pBtree==p ){ |
+ pLock = pIter; |
+ break; |
+ } |
+ } |
+ |
+ /* If the above search did not find a BtLock struct associating Btree p |
+ ** with table iTable, allocate one and link it into the list. |
+ */ |
+ if( !pLock ){ |
+ pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock)); |
+ if( !pLock ){ |
+ return SQLITE_NOMEM; |
+ } |
+ pLock->iTable = iTable; |
+ pLock->pBtree = p; |
+ pLock->pNext = pBt->pLock; |
+ pBt->pLock = pLock; |
+ } |
+ |
+ /* Set the BtLock.eLock variable to the maximum of the current lock |
+ ** and the requested lock. This means if a write-lock was already held |
+ ** and a read-lock requested, we don't incorrectly downgrade the lock. |
+ */ |
+ assert( WRITE_LOCK>READ_LOCK ); |
+ if( eLock>pLock->eLock ){ |
+ pLock->eLock = eLock; |
+ } |
+ |
+ return SQLITE_OK; |
+} |
+#endif /* !SQLITE_OMIT_SHARED_CACHE */ |
+ |
+#ifndef SQLITE_OMIT_SHARED_CACHE |
+/* |
+** Release all the table locks (locks obtained via calls to |
+** the setSharedCacheTableLock() procedure) held by Btree object p. |
+** |
+** This function assumes that Btree p has an open read or write |
+** transaction. If it does not, then the BTS_PENDING flag |
+** may be incorrectly cleared. |
+*/ |
+static void clearAllSharedCacheTableLocks(Btree *p){ |
+ BtShared *pBt = p->pBt; |
+ BtLock **ppIter = &pBt->pLock; |
+ |
+ assert( sqlite3BtreeHoldsMutex(p) ); |
+ assert( p->sharable || 0==*ppIter ); |
+ assert( p->inTrans>0 ); |
+ |
+ while( *ppIter ){ |
+ BtLock *pLock = *ppIter; |
+ assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree ); |
+ assert( pLock->pBtree->inTrans>=pLock->eLock ); |
+ if( pLock->pBtree==p ){ |
+ *ppIter = pLock->pNext; |
+ assert( pLock->iTable!=1 || pLock==&p->lock ); |
+ if( pLock->iTable!=1 ){ |
+ sqlite3_free(pLock); |
+ } |
+ }else{ |
+ ppIter = &pLock->pNext; |
+ } |
+ } |
+ |
+ assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter ); |
+ if( pBt->pWriter==p ){ |
+ pBt->pWriter = 0; |
+ pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING); |
+ }else if( pBt->nTransaction==2 ){ |
+ /* This function is called when Btree p is concluding its |
+ ** transaction. If there currently exists a writer, and p is not |
+ ** that writer, then the number of locks held by connections other |
+ ** than the writer must be about to drop to zero. In this case |
+ ** set the BTS_PENDING flag to 0. |
+ ** |
+ ** If there is not currently a writer, then BTS_PENDING must |
+ ** be zero already. So this next line is harmless in that case. |
+ */ |
+ pBt->btsFlags &= ~BTS_PENDING; |
+ } |
+} |
+ |
+/* |
+** This function changes all write-locks held by Btree p into read-locks. |
+*/ |
+static void downgradeAllSharedCacheTableLocks(Btree *p){ |
+ BtShared *pBt = p->pBt; |
+ if( pBt->pWriter==p ){ |
+ BtLock *pLock; |
+ pBt->pWriter = 0; |
+ pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING); |
+ for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){ |
+ assert( pLock->eLock==READ_LOCK || pLock->pBtree==p ); |
+ pLock->eLock = READ_LOCK; |
+ } |
+ } |
+} |
+ |
+#endif /* SQLITE_OMIT_SHARED_CACHE */ |
+ |
+static void releasePage(MemPage *pPage); /* Forward reference */ |
+ |
+/* |
+***** This routine is used inside of assert() only **** |
+** |
+** Verify that the cursor holds the mutex on its BtShared |
+*/ |
+#ifdef SQLITE_DEBUG |
+static int cursorHoldsMutex(BtCursor *p){ |
+ return sqlite3_mutex_held(p->pBt->mutex); |
+} |
+#endif |
+ |
+/* |
+** Invalidate the overflow cache of the cursor passed as the first argument. |
+** on the shared btree structure pBt. |
+*/ |
+#define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl) |
+ |
+/* |
+** Invalidate the overflow page-list cache for all cursors opened |
+** on the shared btree structure pBt. |
+*/ |
+static void invalidateAllOverflowCache(BtShared *pBt){ |
+ BtCursor *p; |
+ assert( sqlite3_mutex_held(pBt->mutex) ); |
+ for(p=pBt->pCursor; p; p=p->pNext){ |
+ invalidateOverflowCache(p); |
+ } |
+} |
+ |
+#ifndef SQLITE_OMIT_INCRBLOB |
+/* |
+** This function is called before modifying the contents of a table |
+** to invalidate any incrblob cursors that are open on the |
+** row or one of the rows being modified. |
+** |
+** If argument isClearTable is true, then the entire contents of the |
+** table is about to be deleted. In this case invalidate all incrblob |
+** cursors open on any row within the table with root-page pgnoRoot. |
+** |
+** Otherwise, if argument isClearTable is false, then the row with |
+** rowid iRow is being replaced or deleted. In this case invalidate |
+** only those incrblob cursors open on that specific row. |
+*/ |
+static void invalidateIncrblobCursors( |
+ Btree *pBtree, /* The database file to check */ |
+ i64 iRow, /* The rowid that might be changing */ |
+ int isClearTable /* True if all rows are being deleted */ |
+){ |
+ BtCursor *p; |
+ if( pBtree->hasIncrblobCur==0 ) return; |
+ assert( sqlite3BtreeHoldsMutex(pBtree) ); |
+ pBtree->hasIncrblobCur = 0; |
+ for(p=pBtree->pBt->pCursor; p; p=p->pNext){ |
+ if( (p->curFlags & BTCF_Incrblob)!=0 ){ |
+ pBtree->hasIncrblobCur = 1; |
+ if( isClearTable || p->info.nKey==iRow ){ |
+ p->eState = CURSOR_INVALID; |
+ } |
+ } |
+ } |
+} |
+ |
+#else |
+ /* Stub function when INCRBLOB is omitted */ |
+ #define invalidateIncrblobCursors(x,y,z) |
+#endif /* SQLITE_OMIT_INCRBLOB */ |
+ |
+/* |
+** Set bit pgno of the BtShared.pHasContent bitvec. This is called |
+** when a page that previously contained data becomes a free-list leaf |
+** page. |
+** |
+** The BtShared.pHasContent bitvec exists to work around an obscure |
+** bug caused by the interaction of two useful IO optimizations surrounding |
+** free-list leaf pages: |
+** |
+** 1) When all data is deleted from a page and the page becomes |
+** a free-list leaf page, the page is not written to the database |
+** (as free-list leaf pages contain no meaningful data). Sometimes |
+** such a page is not even journalled (as it will not be modified, |
+** why bother journalling it?). |
+** |
+** 2) When a free-list leaf page is reused, its content is not read |
+** from the database or written to the journal file (why should it |
+** be, if it is not at all meaningful?). |
+** |
+** By themselves, these optimizations work fine and provide a handy |
+** performance boost to bulk delete or insert operations. However, if |
+** a page is moved to the free-list and then reused within the same |
+** transaction, a problem comes up. If the page is not journalled when |
+** it is moved to the free-list and it is also not journalled when it |
+** is extracted from the free-list and reused, then the original data |
+** may be lost. In the event of a rollback, it may not be possible |
+** to restore the database to its original configuration. |
+** |
+** The solution is the BtShared.pHasContent bitvec. Whenever a page is |
+** moved to become a free-list leaf page, the corresponding bit is |
+** set in the bitvec. Whenever a leaf page is extracted from the free-list, |
+** optimization 2 above is omitted if the corresponding bit is already |
+** set in BtShared.pHasContent. The contents of the bitvec are cleared |
+** at the end of every transaction. |
+*/ |
+static int btreeSetHasContent(BtShared *pBt, Pgno pgno){ |
+ int rc = SQLITE_OK; |
+ if( !pBt->pHasContent ){ |
+ assert( pgno<=pBt->nPage ); |
+ pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage); |
+ if( !pBt->pHasContent ){ |
+ rc = SQLITE_NOMEM; |
+ } |
+ } |
+ if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){ |
+ rc = sqlite3BitvecSet(pBt->pHasContent, pgno); |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Query the BtShared.pHasContent vector. |
+** |
+** This function is called when a free-list leaf page is removed from the |
+** free-list for reuse. It returns false if it is safe to retrieve the |
+** page from the pager layer with the 'no-content' flag set. True otherwise. |
+*/ |
+static int btreeGetHasContent(BtShared *pBt, Pgno pgno){ |
+ Bitvec *p = pBt->pHasContent; |
+ return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno))); |
+} |
+ |
+/* |
+** Clear (destroy) the BtShared.pHasContent bitvec. This should be |
+** invoked at the conclusion of each write-transaction. |
+*/ |
+static void btreeClearHasContent(BtShared *pBt){ |
+ sqlite3BitvecDestroy(pBt->pHasContent); |
+ pBt->pHasContent = 0; |
+} |
+ |
+/* |
+** Release all of the apPage[] pages for a cursor. |
+*/ |
+static void btreeReleaseAllCursorPages(BtCursor *pCur){ |
+ int i; |
+ for(i=0; i<=pCur->iPage; i++){ |
+ releasePage(pCur->apPage[i]); |
+ pCur->apPage[i] = 0; |
+ } |
+ pCur->iPage = -1; |
+} |
+ |
+/* |
+** The cursor passed as the only argument must point to a valid entry |
+** when this function is called (i.e. have eState==CURSOR_VALID). This |
+** function saves the current cursor key in variables pCur->nKey and |
+** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error |
+** code otherwise. |
+** |
+** If the cursor is open on an intkey table, then the integer key |
+** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to |
+** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is |
+** set to point to a malloced buffer pCur->nKey bytes in size containing |
+** the key. |
+*/ |
+static int saveCursorKey(BtCursor *pCur){ |
+ int rc; |
+ assert( CURSOR_VALID==pCur->eState ); |
+ assert( 0==pCur->pKey ); |
+ assert( cursorHoldsMutex(pCur) ); |
+ |
+ rc = sqlite3BtreeKeySize(pCur, &pCur->nKey); |
+ assert( rc==SQLITE_OK ); /* KeySize() cannot fail */ |
+ |
+ /* If this is an intKey table, then the above call to BtreeKeySize() |
+ ** stores the integer key in pCur->nKey. In this case this value is |
+ ** all that is required. Otherwise, if pCur is not open on an intKey |
+ ** table, then malloc space for and store the pCur->nKey bytes of key |
+ ** data. */ |
+ if( 0==pCur->curIntKey ){ |
+ void *pKey = sqlite3Malloc( pCur->nKey ); |
+ if( pKey ){ |
+ rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey); |
+ if( rc==SQLITE_OK ){ |
+ pCur->pKey = pKey; |
+ }else{ |
+ sqlite3_free(pKey); |
+ } |
+ }else{ |
+ rc = SQLITE_NOMEM; |
+ } |
+ } |
+ assert( !pCur->curIntKey || !pCur->pKey ); |
+ return rc; |
+} |
+ |
+/* |
+** Save the current cursor position in the variables BtCursor.nKey |
+** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK. |
+** |
+** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID) |
+** prior to calling this routine. |
+*/ |
+static int saveCursorPosition(BtCursor *pCur){ |
+ int rc; |
+ |
+ assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState ); |
+ assert( 0==pCur->pKey ); |
+ assert( cursorHoldsMutex(pCur) ); |
+ |
+ if( pCur->eState==CURSOR_SKIPNEXT ){ |
+ pCur->eState = CURSOR_VALID; |
+ }else{ |
+ pCur->skipNext = 0; |
+ } |
+ |
+ rc = saveCursorKey(pCur); |
+ if( rc==SQLITE_OK ){ |
+ btreeReleaseAllCursorPages(pCur); |
+ pCur->eState = CURSOR_REQUIRESEEK; |
+ } |
+ |
+ pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast); |
+ return rc; |
+} |
+ |
+/* Forward reference */ |
+static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*); |
+ |
+/* |
+** Save the positions of all cursors (except pExcept) that are open on |
+** the table with root-page iRoot. "Saving the cursor position" means that |
+** the location in the btree is remembered in such a way that it can be |
+** moved back to the same spot after the btree has been modified. This |
+** routine is called just before cursor pExcept is used to modify the |
+** table, for example in BtreeDelete() or BtreeInsert(). |
+** |
+** If there are two or more cursors on the same btree, then all such |
+** cursors should have their BTCF_Multiple flag set. The btreeCursor() |
+** routine enforces that rule. This routine only needs to be called in |
+** the uncommon case when pExpect has the BTCF_Multiple flag set. |
+** |
+** If pExpect!=NULL and if no other cursors are found on the same root-page, |
+** then the BTCF_Multiple flag on pExpect is cleared, to avoid another |
+** pointless call to this routine. |
+** |
+** Implementation note: This routine merely checks to see if any cursors |
+** need to be saved. It calls out to saveCursorsOnList() in the (unusual) |
+** event that cursors are in need to being saved. |
+*/ |
+static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){ |
+ BtCursor *p; |
+ assert( sqlite3_mutex_held(pBt->mutex) ); |
+ assert( pExcept==0 || pExcept->pBt==pBt ); |
+ for(p=pBt->pCursor; p; p=p->pNext){ |
+ if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break; |
+ } |
+ if( p ) return saveCursorsOnList(p, iRoot, pExcept); |
+ if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple; |
+ return SQLITE_OK; |
+} |
+ |
+/* This helper routine to saveAllCursors does the actual work of saving |
+** the cursors if and when a cursor is found that actually requires saving. |
+** The common case is that no cursors need to be saved, so this routine is |
+** broken out from its caller to avoid unnecessary stack pointer movement. |
+*/ |
+static int SQLITE_NOINLINE saveCursorsOnList( |
+ BtCursor *p, /* The first cursor that needs saving */ |
+ Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */ |
+ BtCursor *pExcept /* Do not save this cursor */ |
+){ |
+ do{ |
+ if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){ |
+ if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){ |
+ int rc = saveCursorPosition(p); |
+ if( SQLITE_OK!=rc ){ |
+ return rc; |
+ } |
+ }else{ |
+ testcase( p->iPage>0 ); |
+ btreeReleaseAllCursorPages(p); |
+ } |
+ } |
+ p = p->pNext; |
+ }while( p ); |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Clear the current cursor position. |
+*/ |
+SQLITE_PRIVATE void sqlite3BtreeClearCursor(BtCursor *pCur){ |
+ assert( cursorHoldsMutex(pCur) ); |
+ sqlite3_free(pCur->pKey); |
+ pCur->pKey = 0; |
+ pCur->eState = CURSOR_INVALID; |
+} |
+ |
+/* |
+** In this version of BtreeMoveto, pKey is a packed index record |
+** such as is generated by the OP_MakeRecord opcode. Unpack the |
+** record and then call BtreeMovetoUnpacked() to do the work. |
+*/ |
+static int btreeMoveto( |
+ BtCursor *pCur, /* Cursor open on the btree to be searched */ |
+ const void *pKey, /* Packed key if the btree is an index */ |
+ i64 nKey, /* Integer key for tables. Size of pKey for indices */ |
+ int bias, /* Bias search to the high end */ |
+ int *pRes /* Write search results here */ |
+){ |
+ int rc; /* Status code */ |
+ UnpackedRecord *pIdxKey; /* Unpacked index key */ |
+ char aSpace[200]; /* Temp space for pIdxKey - to avoid a malloc */ |
+ char *pFree = 0; |
+ |
+ if( pKey ){ |
+ assert( nKey==(i64)(int)nKey ); |
+ pIdxKey = sqlite3VdbeAllocUnpackedRecord( |
+ pCur->pKeyInfo, aSpace, sizeof(aSpace), &pFree |
+ ); |
+ if( pIdxKey==0 ) return SQLITE_NOMEM; |
+ sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey); |
+ if( pIdxKey->nField==0 ){ |
+ sqlite3DbFree(pCur->pKeyInfo->db, pFree); |
+ return SQLITE_CORRUPT_BKPT; |
+ } |
+ }else{ |
+ pIdxKey = 0; |
+ } |
+ rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes); |
+ if( pFree ){ |
+ sqlite3DbFree(pCur->pKeyInfo->db, pFree); |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Restore the cursor to the position it was in (or as close to as possible) |
+** when saveCursorPosition() was called. Note that this call deletes the |
+** saved position info stored by saveCursorPosition(), so there can be |
+** at most one effective restoreCursorPosition() call after each |
+** saveCursorPosition(). |
+*/ |
+static int btreeRestoreCursorPosition(BtCursor *pCur){ |
+ int rc; |
+ int skipNext; |
+ assert( cursorHoldsMutex(pCur) ); |
+ assert( pCur->eState>=CURSOR_REQUIRESEEK ); |
+ if( pCur->eState==CURSOR_FAULT ){ |
+ return pCur->skipNext; |
+ } |
+ pCur->eState = CURSOR_INVALID; |
+ rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext); |
+ if( rc==SQLITE_OK ){ |
+ sqlite3_free(pCur->pKey); |
+ pCur->pKey = 0; |
+ assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID ); |
+ pCur->skipNext |= skipNext; |
+ if( pCur->skipNext && pCur->eState==CURSOR_VALID ){ |
+ pCur->eState = CURSOR_SKIPNEXT; |
+ } |
+ } |
+ return rc; |
+} |
+ |
+#define restoreCursorPosition(p) \ |
+ (p->eState>=CURSOR_REQUIRESEEK ? \ |
+ btreeRestoreCursorPosition(p) : \ |
+ SQLITE_OK) |
+ |
+/* |
+** Determine whether or not a cursor has moved from the position where |
+** it was last placed, or has been invalidated for any other reason. |
+** Cursors can move when the row they are pointing at is deleted out |
+** from under them, for example. Cursor might also move if a btree |
+** is rebalanced. |
+** |
+** Calling this routine with a NULL cursor pointer returns false. |
+** |
+** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor |
+** back to where it ought to be if this routine returns true. |
+*/ |
+SQLITE_PRIVATE int sqlite3BtreeCursorHasMoved(BtCursor *pCur){ |
+ return pCur->eState!=CURSOR_VALID; |
+} |
+ |
+/* |
+** This routine restores a cursor back to its original position after it |
+** has been moved by some outside activity (such as a btree rebalance or |
+** a row having been deleted out from under the cursor). |
+** |
+** On success, the *pDifferentRow parameter is false if the cursor is left |
+** pointing at exactly the same row. *pDifferntRow is the row the cursor |
+** was pointing to has been deleted, forcing the cursor to point to some |
+** nearby row. |
+** |
+** This routine should only be called for a cursor that just returned |
+** TRUE from sqlite3BtreeCursorHasMoved(). |
+*/ |
+SQLITE_PRIVATE int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){ |
+ int rc; |
+ |
+ assert( pCur!=0 ); |
+ assert( pCur->eState!=CURSOR_VALID ); |
+ rc = restoreCursorPosition(pCur); |
+ if( rc ){ |
+ *pDifferentRow = 1; |
+ return rc; |
+ } |
+ if( pCur->eState!=CURSOR_VALID ){ |
+ *pDifferentRow = 1; |
+ }else{ |
+ assert( pCur->skipNext==0 ); |
+ *pDifferentRow = 0; |
+ } |
+ return SQLITE_OK; |
+} |
+ |
+#ifdef SQLITE_ENABLE_CURSOR_HINTS |
+/* |
+** Provide hints to the cursor. The particular hint given (and the type |
+** and number of the varargs parameters) is determined by the eHintType |
+** parameter. See the definitions of the BTREE_HINT_* macros for details. |
+*/ |
+SQLITE_PRIVATE void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){ |
+ /* Used only by system that substitute their own storage engine */ |
+} |
+#endif |
+ |
+/* |
+** Provide flag hints to the cursor. |
+*/ |
+SQLITE_PRIVATE void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){ |
+ assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 ); |
+ pCur->hints = x; |
+} |
+ |
+ |
+#ifndef SQLITE_OMIT_AUTOVACUUM |
+/* |
+** Given a page number of a regular database page, return the page |
+** number for the pointer-map page that contains the entry for the |
+** input page number. |
+** |
+** Return 0 (not a valid page) for pgno==1 since there is |
+** no pointer map associated with page 1. The integrity_check logic |
+** requires that ptrmapPageno(*,1)!=1. |
+*/ |
+static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){ |
+ int nPagesPerMapPage; |
+ Pgno iPtrMap, ret; |
+ assert( sqlite3_mutex_held(pBt->mutex) ); |
+ if( pgno<2 ) return 0; |
+ nPagesPerMapPage = (pBt->usableSize/5)+1; |
+ iPtrMap = (pgno-2)/nPagesPerMapPage; |
+ ret = (iPtrMap*nPagesPerMapPage) + 2; |
+ if( ret==PENDING_BYTE_PAGE(pBt) ){ |
+ ret++; |
+ } |
+ return ret; |
+} |
+ |
+/* |
+** Write an entry into the pointer map. |
+** |
+** This routine updates the pointer map entry for page number 'key' |
+** so that it maps to type 'eType' and parent page number 'pgno'. |
+** |
+** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is |
+** a no-op. If an error occurs, the appropriate error code is written |
+** into *pRC. |
+*/ |
+static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){ |
+ DbPage *pDbPage; /* The pointer map page */ |
+ u8 *pPtrmap; /* The pointer map data */ |
+ Pgno iPtrmap; /* The pointer map page number */ |
+ int offset; /* Offset in pointer map page */ |
+ int rc; /* Return code from subfunctions */ |
+ |
+ if( *pRC ) return; |
+ |
+ assert( sqlite3_mutex_held(pBt->mutex) ); |
+ /* The master-journal page number must never be used as a pointer map page */ |
+ assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) ); |
+ |
+ assert( pBt->autoVacuum ); |
+ if( key==0 ){ |
+ *pRC = SQLITE_CORRUPT_BKPT; |
+ return; |
+ } |
+ iPtrmap = PTRMAP_PAGENO(pBt, key); |
+ rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0); |
+ if( rc!=SQLITE_OK ){ |
+ *pRC = rc; |
+ return; |
+ } |
+ offset = PTRMAP_PTROFFSET(iPtrmap, key); |
+ if( offset<0 ){ |
+ *pRC = SQLITE_CORRUPT_BKPT; |
+ goto ptrmap_exit; |
+ } |
+ assert( offset <= (int)pBt->usableSize-5 ); |
+ pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage); |
+ |
+ if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){ |
+ TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent)); |
+ *pRC= rc = sqlite3PagerWrite(pDbPage); |
+ if( rc==SQLITE_OK ){ |
+ pPtrmap[offset] = eType; |
+ put4byte(&pPtrmap[offset+1], parent); |
+ } |
+ } |
+ |
+ptrmap_exit: |
+ sqlite3PagerUnref(pDbPage); |
+} |
+ |
+/* |
+** Read an entry from the pointer map. |
+** |
+** This routine retrieves the pointer map entry for page 'key', writing |
+** the type and parent page number to *pEType and *pPgno respectively. |
+** An error code is returned if something goes wrong, otherwise SQLITE_OK. |
+*/ |
+static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){ |
+ DbPage *pDbPage; /* The pointer map page */ |
+ int iPtrmap; /* Pointer map page index */ |
+ u8 *pPtrmap; /* Pointer map page data */ |
+ int offset; /* Offset of entry in pointer map */ |
+ int rc; |
+ |
+ assert( sqlite3_mutex_held(pBt->mutex) ); |
+ |
+ iPtrmap = PTRMAP_PAGENO(pBt, key); |
+ rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0); |
+ if( rc!=0 ){ |
+ return rc; |
+ } |
+ pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage); |
+ |
+ offset = PTRMAP_PTROFFSET(iPtrmap, key); |
+ if( offset<0 ){ |
+ sqlite3PagerUnref(pDbPage); |
+ return SQLITE_CORRUPT_BKPT; |
+ } |
+ assert( offset <= (int)pBt->usableSize-5 ); |
+ assert( pEType!=0 ); |
+ *pEType = pPtrmap[offset]; |
+ if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]); |
+ |
+ sqlite3PagerUnref(pDbPage); |
+ if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT; |
+ return SQLITE_OK; |
+} |
+ |
+#else /* if defined SQLITE_OMIT_AUTOVACUUM */ |
+ #define ptrmapPut(w,x,y,z,rc) |
+ #define ptrmapGet(w,x,y,z) SQLITE_OK |
+ #define ptrmapPutOvflPtr(x, y, rc) |
+#endif |
+ |
+/* |
+** Given a btree page and a cell index (0 means the first cell on |
+** the page, 1 means the second cell, and so forth) return a pointer |
+** to the cell content. |
+** |
+** findCellPastPtr() does the same except it skips past the initial |
+** 4-byte child pointer found on interior pages, if there is one. |
+** |
+** This routine works only for pages that do not contain overflow cells. |
+*/ |
+#define findCell(P,I) \ |
+ ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)]))) |
+#define findCellPastPtr(P,I) \ |
+ ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)]))) |
+ |
+ |
+/* |
+** This is common tail processing for btreeParseCellPtr() and |
+** btreeParseCellPtrIndex() for the case when the cell does not fit entirely |
+** on a single B-tree page. Make necessary adjustments to the CellInfo |
+** structure. |
+*/ |
+static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow( |
+ MemPage *pPage, /* Page containing the cell */ |
+ u8 *pCell, /* Pointer to the cell text. */ |
+ CellInfo *pInfo /* Fill in this structure */ |
+){ |
+ /* If the payload will not fit completely on the local page, we have |
+ ** to decide how much to store locally and how much to spill onto |
+ ** overflow pages. The strategy is to minimize the amount of unused |
+ ** space on overflow pages while keeping the amount of local storage |
+ ** in between minLocal and maxLocal. |
+ ** |
+ ** Warning: changing the way overflow payload is distributed in any |
+ ** way will result in an incompatible file format. |
+ */ |
+ int minLocal; /* Minimum amount of payload held locally */ |
+ int maxLocal; /* Maximum amount of payload held locally */ |
+ int surplus; /* Overflow payload available for local storage */ |
+ |
+ minLocal = pPage->minLocal; |
+ maxLocal = pPage->maxLocal; |
+ surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4); |
+ testcase( surplus==maxLocal ); |
+ testcase( surplus==maxLocal+1 ); |
+ if( surplus <= maxLocal ){ |
+ pInfo->nLocal = (u16)surplus; |
+ }else{ |
+ pInfo->nLocal = (u16)minLocal; |
+ } |
+ pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4; |
+} |
+ |
+/* |
+** The following routines are implementations of the MemPage.xParseCell() |
+** method. |
+** |
+** Parse a cell content block and fill in the CellInfo structure. |
+** |
+** btreeParseCellPtr() => table btree leaf nodes |
+** btreeParseCellNoPayload() => table btree internal nodes |
+** btreeParseCellPtrIndex() => index btree nodes |
+** |
+** There is also a wrapper function btreeParseCell() that works for |
+** all MemPage types and that references the cell by index rather than |
+** by pointer. |
+*/ |
+static void btreeParseCellPtrNoPayload( |
+ MemPage *pPage, /* Page containing the cell */ |
+ u8 *pCell, /* Pointer to the cell text. */ |
+ CellInfo *pInfo /* Fill in this structure */ |
+){ |
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
+ assert( pPage->leaf==0 ); |
+ assert( pPage->noPayload ); |
+ assert( pPage->childPtrSize==4 ); |
+#ifndef SQLITE_DEBUG |
+ UNUSED_PARAMETER(pPage); |
+#endif |
+ pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey); |
+ pInfo->nPayload = 0; |
+ pInfo->nLocal = 0; |
+ pInfo->pPayload = 0; |
+ return; |
+} |
+static void btreeParseCellPtr( |
+ MemPage *pPage, /* Page containing the cell */ |
+ u8 *pCell, /* Pointer to the cell text. */ |
+ CellInfo *pInfo /* Fill in this structure */ |
+){ |
+ u8 *pIter; /* For scanning through pCell */ |
+ u32 nPayload; /* Number of bytes of cell payload */ |
+ u64 iKey; /* Extracted Key value */ |
+ |
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
+ assert( pPage->leaf==0 || pPage->leaf==1 ); |
+ assert( pPage->intKeyLeaf || pPage->noPayload ); |
+ assert( pPage->noPayload==0 ); |
+ assert( pPage->intKeyLeaf ); |
+ assert( pPage->childPtrSize==0 ); |
+ pIter = pCell; |
+ |
+ /* The next block of code is equivalent to: |
+ ** |
+ ** pIter += getVarint32(pIter, nPayload); |
+ ** |
+ ** The code is inlined to avoid a function call. |
+ */ |
+ nPayload = *pIter; |
+ if( nPayload>=0x80 ){ |
+ u8 *pEnd = &pIter[8]; |
+ nPayload &= 0x7f; |
+ do{ |
+ nPayload = (nPayload<<7) | (*++pIter & 0x7f); |
+ }while( (*pIter)>=0x80 && pIter<pEnd ); |
+ } |
+ pIter++; |
+ |
+ /* The next block of code is equivalent to: |
+ ** |
+ ** pIter += getVarint(pIter, (u64*)&pInfo->nKey); |
+ ** |
+ ** The code is inlined to avoid a function call. |
+ */ |
+ iKey = *pIter; |
+ if( iKey>=0x80 ){ |
+ u8 *pEnd = &pIter[7]; |
+ iKey &= 0x7f; |
+ while(1){ |
+ iKey = (iKey<<7) | (*++pIter & 0x7f); |
+ if( (*pIter)<0x80 ) break; |
+ if( pIter>=pEnd ){ |
+ iKey = (iKey<<8) | *++pIter; |
+ break; |
+ } |
+ } |
+ } |
+ pIter++; |
+ |
+ pInfo->nKey = *(i64*)&iKey; |
+ pInfo->nPayload = nPayload; |
+ pInfo->pPayload = pIter; |
+ testcase( nPayload==pPage->maxLocal ); |
+ testcase( nPayload==pPage->maxLocal+1 ); |
+ if( nPayload<=pPage->maxLocal ){ |
+ /* This is the (easy) common case where the entire payload fits |
+ ** on the local page. No overflow is required. |
+ */ |
+ pInfo->nSize = nPayload + (u16)(pIter - pCell); |
+ if( pInfo->nSize<4 ) pInfo->nSize = 4; |
+ pInfo->nLocal = (u16)nPayload; |
+ }else{ |
+ btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo); |
+ } |
+} |
+static void btreeParseCellPtrIndex( |
+ MemPage *pPage, /* Page containing the cell */ |
+ u8 *pCell, /* Pointer to the cell text. */ |
+ CellInfo *pInfo /* Fill in this structure */ |
+){ |
+ u8 *pIter; /* For scanning through pCell */ |
+ u32 nPayload; /* Number of bytes of cell payload */ |
+ |
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
+ assert( pPage->leaf==0 || pPage->leaf==1 ); |
+ assert( pPage->intKeyLeaf==0 ); |
+ assert( pPage->noPayload==0 ); |
+ pIter = pCell + pPage->childPtrSize; |
+ nPayload = *pIter; |
+ if( nPayload>=0x80 ){ |
+ u8 *pEnd = &pIter[8]; |
+ nPayload &= 0x7f; |
+ do{ |
+ nPayload = (nPayload<<7) | (*++pIter & 0x7f); |
+ }while( *(pIter)>=0x80 && pIter<pEnd ); |
+ } |
+ pIter++; |
+ pInfo->nKey = nPayload; |
+ pInfo->nPayload = nPayload; |
+ pInfo->pPayload = pIter; |
+ testcase( nPayload==pPage->maxLocal ); |
+ testcase( nPayload==pPage->maxLocal+1 ); |
+ if( nPayload<=pPage->maxLocal ){ |
+ /* This is the (easy) common case where the entire payload fits |
+ ** on the local page. No overflow is required. |
+ */ |
+ pInfo->nSize = nPayload + (u16)(pIter - pCell); |
+ if( pInfo->nSize<4 ) pInfo->nSize = 4; |
+ pInfo->nLocal = (u16)nPayload; |
+ }else{ |
+ btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo); |
+ } |
+} |
+static void btreeParseCell( |
+ MemPage *pPage, /* Page containing the cell */ |
+ int iCell, /* The cell index. First cell is 0 */ |
+ CellInfo *pInfo /* Fill in this structure */ |
+){ |
+ pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo); |
+} |
+ |
+/* |
+** The following routines are implementations of the MemPage.xCellSize |
+** method. |
+** |
+** Compute the total number of bytes that a Cell needs in the cell |
+** data area of the btree-page. The return number includes the cell |
+** data header and the local payload, but not any overflow page or |
+** the space used by the cell pointer. |
+** |
+** cellSizePtrNoPayload() => table internal nodes |
+** cellSizePtr() => all index nodes & table leaf nodes |
+*/ |
+static u16 cellSizePtr(MemPage *pPage, u8 *pCell){ |
+ u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */ |
+ u8 *pEnd; /* End mark for a varint */ |
+ u32 nSize; /* Size value to return */ |
+ |
+#ifdef SQLITE_DEBUG |
+ /* The value returned by this function should always be the same as |
+ ** the (CellInfo.nSize) value found by doing a full parse of the |
+ ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of |
+ ** this function verifies that this invariant is not violated. */ |
+ CellInfo debuginfo; |
+ pPage->xParseCell(pPage, pCell, &debuginfo); |
+#endif |
+ |
+ assert( pPage->noPayload==0 ); |
+ nSize = *pIter; |
+ if( nSize>=0x80 ){ |
+ pEnd = &pIter[8]; |
+ nSize &= 0x7f; |
+ do{ |
+ nSize = (nSize<<7) | (*++pIter & 0x7f); |
+ }while( *(pIter)>=0x80 && pIter<pEnd ); |
+ } |
+ pIter++; |
+ if( pPage->intKey ){ |
+ /* pIter now points at the 64-bit integer key value, a variable length |
+ ** integer. The following block moves pIter to point at the first byte |
+ ** past the end of the key value. */ |
+ pEnd = &pIter[9]; |
+ while( (*pIter++)&0x80 && pIter<pEnd ); |
+ } |
+ testcase( nSize==pPage->maxLocal ); |
+ testcase( nSize==pPage->maxLocal+1 ); |
+ if( nSize<=pPage->maxLocal ){ |
+ nSize += (u32)(pIter - pCell); |
+ if( nSize<4 ) nSize = 4; |
+ }else{ |
+ int minLocal = pPage->minLocal; |
+ nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4); |
+ testcase( nSize==pPage->maxLocal ); |
+ testcase( nSize==pPage->maxLocal+1 ); |
+ if( nSize>pPage->maxLocal ){ |
+ nSize = minLocal; |
+ } |
+ nSize += 4 + (u16)(pIter - pCell); |
+ } |
+ assert( nSize==debuginfo.nSize || CORRUPT_DB ); |
+ return (u16)nSize; |
+} |
+static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){ |
+ u8 *pIter = pCell + 4; /* For looping over bytes of pCell */ |
+ u8 *pEnd; /* End mark for a varint */ |
+ |
+#ifdef SQLITE_DEBUG |
+ /* The value returned by this function should always be the same as |
+ ** the (CellInfo.nSize) value found by doing a full parse of the |
+ ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of |
+ ** this function verifies that this invariant is not violated. */ |
+ CellInfo debuginfo; |
+ pPage->xParseCell(pPage, pCell, &debuginfo); |
+#else |
+ UNUSED_PARAMETER(pPage); |
+#endif |
+ |
+ assert( pPage->childPtrSize==4 ); |
+ pEnd = pIter + 9; |
+ while( (*pIter++)&0x80 && pIter<pEnd ); |
+ assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB ); |
+ return (u16)(pIter - pCell); |
+} |
+ |
+ |
+#ifdef SQLITE_DEBUG |
+/* This variation on cellSizePtr() is used inside of assert() statements |
+** only. */ |
+static u16 cellSize(MemPage *pPage, int iCell){ |
+ return pPage->xCellSize(pPage, findCell(pPage, iCell)); |
+} |
+#endif |
+ |
+#ifndef SQLITE_OMIT_AUTOVACUUM |
+/* |
+** If the cell pCell, part of page pPage contains a pointer |
+** to an overflow page, insert an entry into the pointer-map |
+** for the overflow page. |
+*/ |
+static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){ |
+ CellInfo info; |
+ if( *pRC ) return; |
+ assert( pCell!=0 ); |
+ pPage->xParseCell(pPage, pCell, &info); |
+ if( info.nLocal<info.nPayload ){ |
+ Pgno ovfl = get4byte(&pCell[info.nSize-4]); |
+ ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC); |
+ } |
+} |
+#endif |
+ |
+ |
+/* |
+** Defragment the page given. All Cells are moved to the |
+** end of the page and all free space is collected into one |
+** big FreeBlk that occurs in between the header and cell |
+** pointer array and the cell content area. |
+** |
+** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a |
+** b-tree page so that there are no freeblocks or fragment bytes, all |
+** unused bytes are contained in the unallocated space region, and all |
+** cells are packed tightly at the end of the page. |
+*/ |
+static int defragmentPage(MemPage *pPage){ |
+ int i; /* Loop counter */ |
+ int pc; /* Address of the i-th cell */ |
+ int hdr; /* Offset to the page header */ |
+ int size; /* Size of a cell */ |
+ int usableSize; /* Number of usable bytes on a page */ |
+ int cellOffset; /* Offset to the cell pointer array */ |
+ int cbrk; /* Offset to the cell content area */ |
+ int nCell; /* Number of cells on the page */ |
+ unsigned char *data; /* The page data */ |
+ unsigned char *temp; /* Temp area for cell content */ |
+ unsigned char *src; /* Source of content */ |
+ int iCellFirst; /* First allowable cell index */ |
+ int iCellLast; /* Last possible cell index */ |
+ |
+ |
+ assert( sqlite3PagerIswriteable(pPage->pDbPage) ); |
+ assert( pPage->pBt!=0 ); |
+ assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE ); |
+ assert( pPage->nOverflow==0 ); |
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
+ temp = 0; |
+ src = data = pPage->aData; |
+ hdr = pPage->hdrOffset; |
+ cellOffset = pPage->cellOffset; |
+ nCell = pPage->nCell; |
+ assert( nCell==get2byte(&data[hdr+3]) ); |
+ usableSize = pPage->pBt->usableSize; |
+ cbrk = usableSize; |
+ iCellFirst = cellOffset + 2*nCell; |
+ iCellLast = usableSize - 4; |
+ for(i=0; i<nCell; i++){ |
+ u8 *pAddr; /* The i-th cell pointer */ |
+ pAddr = &data[cellOffset + i*2]; |
+ pc = get2byte(pAddr); |
+ testcase( pc==iCellFirst ); |
+ testcase( pc==iCellLast ); |
+ /* These conditions have already been verified in btreeInitPage() |
+ ** if PRAGMA cell_size_check=ON. |
+ */ |
+ if( pc<iCellFirst || pc>iCellLast ){ |
+ return SQLITE_CORRUPT_BKPT; |
+ } |
+ assert( pc>=iCellFirst && pc<=iCellLast ); |
+ size = pPage->xCellSize(pPage, &src[pc]); |
+ cbrk -= size; |
+ if( cbrk<iCellFirst || pc+size>usableSize ){ |
+ return SQLITE_CORRUPT_BKPT; |
+ } |
+ assert( cbrk+size<=usableSize && cbrk>=iCellFirst ); |
+ testcase( cbrk+size==usableSize ); |
+ testcase( pc+size==usableSize ); |
+ put2byte(pAddr, cbrk); |
+ if( temp==0 ){ |
+ int x; |
+ if( cbrk==pc ) continue; |
+ temp = sqlite3PagerTempSpace(pPage->pBt->pPager); |
+ x = get2byte(&data[hdr+5]); |
+ memcpy(&temp[x], &data[x], (cbrk+size) - x); |
+ src = temp; |
+ } |
+ memcpy(&data[cbrk], &src[pc], size); |
+ } |
+ assert( cbrk>=iCellFirst ); |
+ put2byte(&data[hdr+5], cbrk); |
+ data[hdr+1] = 0; |
+ data[hdr+2] = 0; |
+ data[hdr+7] = 0; |
+ memset(&data[iCellFirst], 0, cbrk-iCellFirst); |
+ assert( sqlite3PagerIswriteable(pPage->pDbPage) ); |
+ if( cbrk-iCellFirst!=pPage->nFree ){ |
+ return SQLITE_CORRUPT_BKPT; |
+ } |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Search the free-list on page pPg for space to store a cell nByte bytes in |
+** size. If one can be found, return a pointer to the space and remove it |
+** from the free-list. |
+** |
+** If no suitable space can be found on the free-list, return NULL. |
+** |
+** This function may detect corruption within pPg. If corruption is |
+** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned. |
+** |
+** Slots on the free list that are between 1 and 3 bytes larger than nByte |
+** will be ignored if adding the extra space to the fragmentation count |
+** causes the fragmentation count to exceed 60. |
+*/ |
+static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){ |
+ const int hdr = pPg->hdrOffset; |
+ u8 * const aData = pPg->aData; |
+ int iAddr = hdr + 1; |
+ int pc = get2byte(&aData[iAddr]); |
+ int x; |
+ int usableSize = pPg->pBt->usableSize; |
+ |
+ assert( pc>0 ); |
+ do{ |
+ int size; /* Size of the free slot */ |
+ /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of |
+ ** increasing offset. */ |
+ if( pc>usableSize-4 || pc<iAddr+4 ){ |
+ *pRc = SQLITE_CORRUPT_BKPT; |
+ return 0; |
+ } |
+ /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each |
+ ** freeblock form a big-endian integer which is the size of the freeblock |
+ ** in bytes, including the 4-byte header. */ |
+ size = get2byte(&aData[pc+2]); |
+ if( (x = size - nByte)>=0 ){ |
+ testcase( x==4 ); |
+ testcase( x==3 ); |
+ if( pc < pPg->cellOffset+2*pPg->nCell || size+pc > usableSize ){ |
+ *pRc = SQLITE_CORRUPT_BKPT; |
+ return 0; |
+ }else if( x<4 ){ |
+ /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total |
+ ** number of bytes in fragments may not exceed 60. */ |
+ if( aData[hdr+7]>57 ) return 0; |
+ |
+ /* Remove the slot from the free-list. Update the number of |
+ ** fragmented bytes within the page. */ |
+ memcpy(&aData[iAddr], &aData[pc], 2); |
+ aData[hdr+7] += (u8)x; |
+ }else{ |
+ /* The slot remains on the free-list. Reduce its size to account |
+ ** for the portion used by the new allocation. */ |
+ put2byte(&aData[pc+2], x); |
+ } |
+ return &aData[pc + x]; |
+ } |
+ iAddr = pc; |
+ pc = get2byte(&aData[pc]); |
+ }while( pc ); |
+ |
+ return 0; |
+} |
+ |
+/* |
+** Allocate nByte bytes of space from within the B-Tree page passed |
+** as the first argument. Write into *pIdx the index into pPage->aData[] |
+** of the first byte of allocated space. Return either SQLITE_OK or |
+** an error code (usually SQLITE_CORRUPT). |
+** |
+** The caller guarantees that there is sufficient space to make the |
+** allocation. This routine might need to defragment in order to bring |
+** all the space together, however. This routine will avoid using |
+** the first two bytes past the cell pointer area since presumably this |
+** allocation is being made in order to insert a new cell, so we will |
+** also end up needing a new cell pointer. |
+*/ |
+static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){ |
+ const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */ |
+ u8 * const data = pPage->aData; /* Local cache of pPage->aData */ |
+ int top; /* First byte of cell content area */ |
+ int rc = SQLITE_OK; /* Integer return code */ |
+ int gap; /* First byte of gap between cell pointers and cell content */ |
+ |
+ assert( sqlite3PagerIswriteable(pPage->pDbPage) ); |
+ assert( pPage->pBt ); |
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
+ assert( nByte>=0 ); /* Minimum cell size is 4 */ |
+ assert( pPage->nFree>=nByte ); |
+ assert( pPage->nOverflow==0 ); |
+ assert( nByte < (int)(pPage->pBt->usableSize-8) ); |
+ |
+ assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf ); |
+ gap = pPage->cellOffset + 2*pPage->nCell; |
+ assert( gap<=65536 ); |
+ /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size |
+ ** and the reserved space is zero (the usual value for reserved space) |
+ ** then the cell content offset of an empty page wants to be 65536. |
+ ** However, that integer is too large to be stored in a 2-byte unsigned |
+ ** integer, so a value of 0 is used in its place. */ |
+ top = get2byte(&data[hdr+5]); |
+ assert( top<=(int)pPage->pBt->usableSize ); /* Prevent by getAndInitPage() */ |
+ if( gap>top ){ |
+ if( top==0 && pPage->pBt->usableSize==65536 ){ |
+ top = 65536; |
+ }else{ |
+ return SQLITE_CORRUPT_BKPT; |
+ } |
+ } |
+ |
+ /* If there is enough space between gap and top for one more cell pointer |
+ ** array entry offset, and if the freelist is not empty, then search the |
+ ** freelist looking for a free slot big enough to satisfy the request. |
+ */ |
+ testcase( gap+2==top ); |
+ testcase( gap+1==top ); |
+ testcase( gap==top ); |
+ if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){ |
+ u8 *pSpace = pageFindSlot(pPage, nByte, &rc); |
+ if( pSpace ){ |
+ assert( pSpace>=data && (pSpace - data)<65536 ); |
+ *pIdx = (int)(pSpace - data); |
+ return SQLITE_OK; |
+ }else if( rc ){ |
+ return rc; |
+ } |
+ } |
+ |
+ /* The request could not be fulfilled using a freelist slot. Check |
+ ** to see if defragmentation is necessary. |
+ */ |
+ testcase( gap+2+nByte==top ); |
+ if( gap+2+nByte>top ){ |
+ assert( pPage->nCell>0 || CORRUPT_DB ); |
+ rc = defragmentPage(pPage); |
+ if( rc ) return rc; |
+ top = get2byteNotZero(&data[hdr+5]); |
+ assert( gap+nByte<=top ); |
+ } |
+ |
+ |
+ /* Allocate memory from the gap in between the cell pointer array |
+ ** and the cell content area. The btreeInitPage() call has already |
+ ** validated the freelist. Given that the freelist is valid, there |
+ ** is no way that the allocation can extend off the end of the page. |
+ ** The assert() below verifies the previous sentence. |
+ */ |
+ top -= nByte; |
+ put2byte(&data[hdr+5], top); |
+ assert( top+nByte <= (int)pPage->pBt->usableSize ); |
+ *pIdx = top; |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Return a section of the pPage->aData to the freelist. |
+** The first byte of the new free block is pPage->aData[iStart] |
+** and the size of the block is iSize bytes. |
+** |
+** Adjacent freeblocks are coalesced. |
+** |
+** Note that even though the freeblock list was checked by btreeInitPage(), |
+** that routine will not detect overlap between cells or freeblocks. Nor |
+** does it detect cells or freeblocks that encrouch into the reserved bytes |
+** at the end of the page. So do additional corruption checks inside this |
+** routine and return SQLITE_CORRUPT if any problems are found. |
+*/ |
+static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){ |
+ u16 iPtr; /* Address of ptr to next freeblock */ |
+ u16 iFreeBlk; /* Address of the next freeblock */ |
+ u8 hdr; /* Page header size. 0 or 100 */ |
+ u8 nFrag = 0; /* Reduction in fragmentation */ |
+ u16 iOrigSize = iSize; /* Original value of iSize */ |
+ u32 iLast = pPage->pBt->usableSize-4; /* Largest possible freeblock offset */ |
+ u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */ |
+ unsigned char *data = pPage->aData; /* Page content */ |
+ |
+ assert( pPage->pBt!=0 ); |
+ assert( sqlite3PagerIswriteable(pPage->pDbPage) ); |
+ assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize ); |
+ assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize ); |
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
+ assert( iSize>=4 ); /* Minimum cell size is 4 */ |
+ assert( iStart<=iLast ); |
+ |
+ /* Overwrite deleted information with zeros when the secure_delete |
+ ** option is enabled */ |
+ if( pPage->pBt->btsFlags & BTS_SECURE_DELETE ){ |
+ memset(&data[iStart], 0, iSize); |
+ } |
+ |
+ /* The list of freeblocks must be in ascending order. Find the |
+ ** spot on the list where iStart should be inserted. |
+ */ |
+ hdr = pPage->hdrOffset; |
+ iPtr = hdr + 1; |
+ if( data[iPtr+1]==0 && data[iPtr]==0 ){ |
+ iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */ |
+ }else{ |
+ while( (iFreeBlk = get2byte(&data[iPtr]))>0 && iFreeBlk<iStart ){ |
+ if( iFreeBlk<iPtr+4 ) return SQLITE_CORRUPT_BKPT; |
+ iPtr = iFreeBlk; |
+ } |
+ if( iFreeBlk>iLast ) return SQLITE_CORRUPT_BKPT; |
+ assert( iFreeBlk>iPtr || iFreeBlk==0 ); |
+ |
+ /* At this point: |
+ ** iFreeBlk: First freeblock after iStart, or zero if none |
+ ** iPtr: The address of a pointer to iFreeBlk |
+ ** |
+ ** Check to see if iFreeBlk should be coalesced onto the end of iStart. |
+ */ |
+ if( iFreeBlk && iEnd+3>=iFreeBlk ){ |
+ nFrag = iFreeBlk - iEnd; |
+ if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_BKPT; |
+ iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]); |
+ if( iEnd > pPage->pBt->usableSize ) return SQLITE_CORRUPT_BKPT; |
+ iSize = iEnd - iStart; |
+ iFreeBlk = get2byte(&data[iFreeBlk]); |
+ } |
+ |
+ /* If iPtr is another freeblock (that is, if iPtr is not the freelist |
+ ** pointer in the page header) then check to see if iStart should be |
+ ** coalesced onto the end of iPtr. |
+ */ |
+ if( iPtr>hdr+1 ){ |
+ int iPtrEnd = iPtr + get2byte(&data[iPtr+2]); |
+ if( iPtrEnd+3>=iStart ){ |
+ if( iPtrEnd>iStart ) return SQLITE_CORRUPT_BKPT; |
+ nFrag += iStart - iPtrEnd; |
+ iSize = iEnd - iPtr; |
+ iStart = iPtr; |
+ } |
+ } |
+ if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_BKPT; |
+ data[hdr+7] -= nFrag; |
+ } |
+ if( iStart==get2byte(&data[hdr+5]) ){ |
+ /* The new freeblock is at the beginning of the cell content area, |
+ ** so just extend the cell content area rather than create another |
+ ** freelist entry */ |
+ if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_BKPT; |
+ put2byte(&data[hdr+1], iFreeBlk); |
+ put2byte(&data[hdr+5], iEnd); |
+ }else{ |
+ /* Insert the new freeblock into the freelist */ |
+ put2byte(&data[iPtr], iStart); |
+ put2byte(&data[iStart], iFreeBlk); |
+ put2byte(&data[iStart+2], iSize); |
+ } |
+ pPage->nFree += iOrigSize; |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Decode the flags byte (the first byte of the header) for a page |
+** and initialize fields of the MemPage structure accordingly. |
+** |
+** Only the following combinations are supported. Anything different |
+** indicates a corrupt database files: |
+** |
+** PTF_ZERODATA |
+** PTF_ZERODATA | PTF_LEAF |
+** PTF_LEAFDATA | PTF_INTKEY |
+** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF |
+*/ |
+static int decodeFlags(MemPage *pPage, int flagByte){ |
+ BtShared *pBt; /* A copy of pPage->pBt */ |
+ |
+ assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) ); |
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
+ pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 ); |
+ flagByte &= ~PTF_LEAF; |
+ pPage->childPtrSize = 4-4*pPage->leaf; |
+ pPage->xCellSize = cellSizePtr; |
+ pBt = pPage->pBt; |
+ if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){ |
+ /* EVIDENCE-OF: R-03640-13415 A value of 5 means the page is an interior |
+ ** table b-tree page. */ |
+ assert( (PTF_LEAFDATA|PTF_INTKEY)==5 ); |
+ /* EVIDENCE-OF: R-20501-61796 A value of 13 means the page is a leaf |
+ ** table b-tree page. */ |
+ assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 ); |
+ pPage->intKey = 1; |
+ if( pPage->leaf ){ |
+ pPage->intKeyLeaf = 1; |
+ pPage->noPayload = 0; |
+ pPage->xParseCell = btreeParseCellPtr; |
+ }else{ |
+ pPage->intKeyLeaf = 0; |
+ pPage->noPayload = 1; |
+ pPage->xCellSize = cellSizePtrNoPayload; |
+ pPage->xParseCell = btreeParseCellPtrNoPayload; |
+ } |
+ pPage->maxLocal = pBt->maxLeaf; |
+ pPage->minLocal = pBt->minLeaf; |
+ }else if( flagByte==PTF_ZERODATA ){ |
+ /* EVIDENCE-OF: R-27225-53936 A value of 2 means the page is an interior |
+ ** index b-tree page. */ |
+ assert( (PTF_ZERODATA)==2 ); |
+ /* EVIDENCE-OF: R-16571-11615 A value of 10 means the page is a leaf |
+ ** index b-tree page. */ |
+ assert( (PTF_ZERODATA|PTF_LEAF)==10 ); |
+ pPage->intKey = 0; |
+ pPage->intKeyLeaf = 0; |
+ pPage->noPayload = 0; |
+ pPage->xParseCell = btreeParseCellPtrIndex; |
+ pPage->maxLocal = pBt->maxLocal; |
+ pPage->minLocal = pBt->minLocal; |
+ }else{ |
+ /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is |
+ ** an error. */ |
+ return SQLITE_CORRUPT_BKPT; |
+ } |
+ pPage->max1bytePayload = pBt->max1bytePayload; |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Initialize the auxiliary information for a disk block. |
+** |
+** Return SQLITE_OK on success. If we see that the page does |
+** not contain a well-formed database page, then return |
+** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not |
+** guarantee that the page is well-formed. It only shows that |
+** we failed to detect any corruption. |
+*/ |
+static int btreeInitPage(MemPage *pPage){ |
+ |
+ assert( pPage->pBt!=0 ); |
+ assert( pPage->pBt->db!=0 ); |
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
+ assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) ); |
+ assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) ); |
+ assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) ); |
+ |
+ if( !pPage->isInit ){ |
+ u16 pc; /* Address of a freeblock within pPage->aData[] */ |
+ u8 hdr; /* Offset to beginning of page header */ |
+ u8 *data; /* Equal to pPage->aData */ |
+ BtShared *pBt; /* The main btree structure */ |
+ int usableSize; /* Amount of usable space on each page */ |
+ u16 cellOffset; /* Offset from start of page to first cell pointer */ |
+ int nFree; /* Number of unused bytes on the page */ |
+ int top; /* First byte of the cell content area */ |
+ int iCellFirst; /* First allowable cell or freeblock offset */ |
+ int iCellLast; /* Last possible cell or freeblock offset */ |
+ |
+ pBt = pPage->pBt; |
+ |
+ hdr = pPage->hdrOffset; |
+ data = pPage->aData; |
+ /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating |
+ ** the b-tree page type. */ |
+ if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT; |
+ assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); |
+ pPage->maskPage = (u16)(pBt->pageSize - 1); |
+ pPage->nOverflow = 0; |
+ usableSize = pBt->usableSize; |
+ pPage->cellOffset = cellOffset = hdr + 8 + pPage->childPtrSize; |
+ pPage->aDataEnd = &data[usableSize]; |
+ pPage->aCellIdx = &data[cellOffset]; |
+ pPage->aDataOfst = &data[pPage->childPtrSize]; |
+ /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates |
+ ** the start of the cell content area. A zero value for this integer is |
+ ** interpreted as 65536. */ |
+ top = get2byteNotZero(&data[hdr+5]); |
+ /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the |
+ ** number of cells on the page. */ |
+ pPage->nCell = get2byte(&data[hdr+3]); |
+ if( pPage->nCell>MX_CELL(pBt) ){ |
+ /* To many cells for a single page. The page must be corrupt */ |
+ return SQLITE_CORRUPT_BKPT; |
+ } |
+ testcase( pPage->nCell==MX_CELL(pBt) ); |
+ /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only |
+ ** possible for a root page of a table that contains no rows) then the |
+ ** offset to the cell content area will equal the page size minus the |
+ ** bytes of reserved space. */ |
+ assert( pPage->nCell>0 || top==usableSize || CORRUPT_DB ); |
+ |
+ /* A malformed database page might cause us to read past the end |
+ ** of page when parsing a cell. |
+ ** |
+ ** The following block of code checks early to see if a cell extends |
+ ** past the end of a page boundary and causes SQLITE_CORRUPT to be |
+ ** returned if it does. |
+ */ |
+ iCellFirst = cellOffset + 2*pPage->nCell; |
+ iCellLast = usableSize - 4; |
+ if( pBt->db->flags & SQLITE_CellSizeCk ){ |
+ int i; /* Index into the cell pointer array */ |
+ int sz; /* Size of a cell */ |
+ |
+ if( !pPage->leaf ) iCellLast--; |
+ for(i=0; i<pPage->nCell; i++){ |
+ pc = get2byteAligned(&data[cellOffset+i*2]); |
+ testcase( pc==iCellFirst ); |
+ testcase( pc==iCellLast ); |
+ if( pc<iCellFirst || pc>iCellLast ){ |
+ return SQLITE_CORRUPT_BKPT; |
+ } |
+ sz = pPage->xCellSize(pPage, &data[pc]); |
+ testcase( pc+sz==usableSize ); |
+ if( pc+sz>usableSize ){ |
+ return SQLITE_CORRUPT_BKPT; |
+ } |
+ } |
+ if( !pPage->leaf ) iCellLast++; |
+ } |
+ |
+ /* Compute the total free space on the page |
+ ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the |
+ ** start of the first freeblock on the page, or is zero if there are no |
+ ** freeblocks. */ |
+ pc = get2byte(&data[hdr+1]); |
+ nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */ |
+ while( pc>0 ){ |
+ u16 next, size; |
+ if( pc<iCellFirst || pc>iCellLast ){ |
+ /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will |
+ ** always be at least one cell before the first freeblock. |
+ ** |
+ ** Or, the freeblock is off the end of the page |
+ */ |
+ return SQLITE_CORRUPT_BKPT; |
+ } |
+ next = get2byte(&data[pc]); |
+ size = get2byte(&data[pc+2]); |
+ if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){ |
+ /* Free blocks must be in ascending order. And the last byte of |
+ ** the free-block must lie on the database page. */ |
+ return SQLITE_CORRUPT_BKPT; |
+ } |
+ nFree = nFree + size; |
+ pc = next; |
+ } |
+ |
+ /* At this point, nFree contains the sum of the offset to the start |
+ ** of the cell-content area plus the number of free bytes within |
+ ** the cell-content area. If this is greater than the usable-size |
+ ** of the page, then the page must be corrupted. This check also |
+ ** serves to verify that the offset to the start of the cell-content |
+ ** area, according to the page header, lies within the page. |
+ */ |
+ if( nFree>usableSize ){ |
+ return SQLITE_CORRUPT_BKPT; |
+ } |
+ pPage->nFree = (u16)(nFree - iCellFirst); |
+ pPage->isInit = 1; |
+ } |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Set up a raw page so that it looks like a database page holding |
+** no entries. |
+*/ |
+static void zeroPage(MemPage *pPage, int flags){ |
+ unsigned char *data = pPage->aData; |
+ BtShared *pBt = pPage->pBt; |
+ u8 hdr = pPage->hdrOffset; |
+ u16 first; |
+ |
+ assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno ); |
+ assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); |
+ assert( sqlite3PagerGetData(pPage->pDbPage) == data ); |
+ assert( sqlite3PagerIswriteable(pPage->pDbPage) ); |
+ assert( sqlite3_mutex_held(pBt->mutex) ); |
+ if( pBt->btsFlags & BTS_SECURE_DELETE ){ |
+ memset(&data[hdr], 0, pBt->usableSize - hdr); |
+ } |
+ data[hdr] = (char)flags; |
+ first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8); |
+ memset(&data[hdr+1], 0, 4); |
+ data[hdr+7] = 0; |
+ put2byte(&data[hdr+5], pBt->usableSize); |
+ pPage->nFree = (u16)(pBt->usableSize - first); |
+ decodeFlags(pPage, flags); |
+ pPage->cellOffset = first; |
+ pPage->aDataEnd = &data[pBt->usableSize]; |
+ pPage->aCellIdx = &data[first]; |
+ pPage->aDataOfst = &data[pPage->childPtrSize]; |
+ pPage->nOverflow = 0; |
+ assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); |
+ pPage->maskPage = (u16)(pBt->pageSize - 1); |
+ pPage->nCell = 0; |
+ pPage->isInit = 1; |
+} |
+ |
+ |
+/* |
+** Convert a DbPage obtained from the pager into a MemPage used by |
+** the btree layer. |
+*/ |
+static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){ |
+ MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage); |
+ if( pgno!=pPage->pgno ){ |
+ pPage->aData = sqlite3PagerGetData(pDbPage); |
+ pPage->pDbPage = pDbPage; |
+ pPage->pBt = pBt; |
+ pPage->pgno = pgno; |
+ pPage->hdrOffset = pgno==1 ? 100 : 0; |
+ } |
+ assert( pPage->aData==sqlite3PagerGetData(pDbPage) ); |
+ return pPage; |
+} |
+ |
+/* |
+** Get a page from the pager. Initialize the MemPage.pBt and |
+** MemPage.aData elements if needed. See also: btreeGetUnusedPage(). |
+** |
+** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care |
+** about the content of the page at this time. So do not go to the disk |
+** to fetch the content. Just fill in the content with zeros for now. |
+** If in the future we call sqlite3PagerWrite() on this page, that |
+** means we have started to be concerned about content and the disk |
+** read should occur at that point. |
+*/ |
+static int btreeGetPage( |
+ BtShared *pBt, /* The btree */ |
+ Pgno pgno, /* Number of the page to fetch */ |
+ MemPage **ppPage, /* Return the page in this parameter */ |
+ int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */ |
+){ |
+ int rc; |
+ DbPage *pDbPage; |
+ |
+ assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY ); |
+ assert( sqlite3_mutex_held(pBt->mutex) ); |
+ rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags); |
+ if( rc ) return rc; |
+ *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt); |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Retrieve a page from the pager cache. If the requested page is not |
+** already in the pager cache return NULL. Initialize the MemPage.pBt and |
+** MemPage.aData elements if needed. |
+*/ |
+static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){ |
+ DbPage *pDbPage; |
+ assert( sqlite3_mutex_held(pBt->mutex) ); |
+ pDbPage = sqlite3PagerLookup(pBt->pPager, pgno); |
+ if( pDbPage ){ |
+ return btreePageFromDbPage(pDbPage, pgno, pBt); |
+ } |
+ return 0; |
+} |
+ |
+/* |
+** Return the size of the database file in pages. If there is any kind of |
+** error, return ((unsigned int)-1). |
+*/ |
+static Pgno btreePagecount(BtShared *pBt){ |
+ return pBt->nPage; |
+} |
+SQLITE_PRIVATE u32 sqlite3BtreeLastPage(Btree *p){ |
+ assert( sqlite3BtreeHoldsMutex(p) ); |
+ assert( ((p->pBt->nPage)&0x8000000)==0 ); |
+ return btreePagecount(p->pBt); |
+} |
+ |
+/* |
+** Get a page from the pager and initialize it. |
+** |
+** If pCur!=0 then the page is being fetched as part of a moveToChild() |
+** call. Do additional sanity checking on the page in this case. |
+** And if the fetch fails, this routine must decrement pCur->iPage. |
+** |
+** The page is fetched as read-write unless pCur is not NULL and is |
+** a read-only cursor. |
+** |
+** If an error occurs, then *ppPage is undefined. It |
+** may remain unchanged, or it may be set to an invalid value. |
+*/ |
+static int getAndInitPage( |
+ BtShared *pBt, /* The database file */ |
+ Pgno pgno, /* Number of the page to get */ |
+ MemPage **ppPage, /* Write the page pointer here */ |
+ BtCursor *pCur, /* Cursor to receive the page, or NULL */ |
+ int bReadOnly /* True for a read-only page */ |
+){ |
+ int rc; |
+ DbPage *pDbPage; |
+ assert( sqlite3_mutex_held(pBt->mutex) ); |
+ assert( pCur==0 || ppPage==&pCur->apPage[pCur->iPage] ); |
+ assert( pCur==0 || bReadOnly==pCur->curPagerFlags ); |
+ assert( pCur==0 || pCur->iPage>0 ); |
+ |
+ if( pgno>btreePagecount(pBt) ){ |
+ rc = SQLITE_CORRUPT_BKPT; |
+ goto getAndInitPage_error; |
+ } |
+ rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly); |
+ if( rc ){ |
+ goto getAndInitPage_error; |
+ } |
+ *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage); |
+ if( (*ppPage)->isInit==0 ){ |
+ btreePageFromDbPage(pDbPage, pgno, pBt); |
+ rc = btreeInitPage(*ppPage); |
+ if( rc!=SQLITE_OK ){ |
+ releasePage(*ppPage); |
+ goto getAndInitPage_error; |
+ } |
+ } |
+ assert( (*ppPage)->pgno==pgno ); |
+ assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) ); |
+ |
+ /* If obtaining a child page for a cursor, we must verify that the page is |
+ ** compatible with the root page. */ |
+ if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){ |
+ rc = SQLITE_CORRUPT_BKPT; |
+ releasePage(*ppPage); |
+ goto getAndInitPage_error; |
+ } |
+ return SQLITE_OK; |
+ |
+getAndInitPage_error: |
+ if( pCur ) pCur->iPage--; |
+ testcase( pgno==0 ); |
+ assert( pgno!=0 || rc==SQLITE_CORRUPT ); |
+ return rc; |
+} |
+ |
+/* |
+** Release a MemPage. This should be called once for each prior |
+** call to btreeGetPage. |
+*/ |
+static void releasePageNotNull(MemPage *pPage){ |
+ assert( pPage->aData ); |
+ assert( pPage->pBt ); |
+ assert( pPage->pDbPage!=0 ); |
+ assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); |
+ assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData ); |
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
+ sqlite3PagerUnrefNotNull(pPage->pDbPage); |
+} |
+static void releasePage(MemPage *pPage){ |
+ if( pPage ) releasePageNotNull(pPage); |
+} |
+ |
+/* |
+** Get an unused page. |
+** |
+** This works just like btreeGetPage() with the addition: |
+** |
+** * If the page is already in use for some other purpose, immediately |
+** release it and return an SQLITE_CURRUPT error. |
+** * Make sure the isInit flag is clear |
+*/ |
+static int btreeGetUnusedPage( |
+ BtShared *pBt, /* The btree */ |
+ Pgno pgno, /* Number of the page to fetch */ |
+ MemPage **ppPage, /* Return the page in this parameter */ |
+ int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */ |
+){ |
+ int rc = btreeGetPage(pBt, pgno, ppPage, flags); |
+ if( rc==SQLITE_OK ){ |
+ if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){ |
+ releasePage(*ppPage); |
+ *ppPage = 0; |
+ return SQLITE_CORRUPT_BKPT; |
+ } |
+ (*ppPage)->isInit = 0; |
+ }else{ |
+ *ppPage = 0; |
+ } |
+ return rc; |
+} |
+ |
+ |
+/* |
+** During a rollback, when the pager reloads information into the cache |
+** so that the cache is restored to its original state at the start of |
+** the transaction, for each page restored this routine is called. |
+** |
+** This routine needs to reset the extra data section at the end of the |
+** page to agree with the restored data. |
+*/ |
+static void pageReinit(DbPage *pData){ |
+ MemPage *pPage; |
+ pPage = (MemPage *)sqlite3PagerGetExtra(pData); |
+ assert( sqlite3PagerPageRefcount(pData)>0 ); |
+ if( pPage->isInit ){ |
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
+ pPage->isInit = 0; |
+ if( sqlite3PagerPageRefcount(pData)>1 ){ |
+ /* pPage might not be a btree page; it might be an overflow page |
+ ** or ptrmap page or a free page. In those cases, the following |
+ ** call to btreeInitPage() will likely return SQLITE_CORRUPT. |
+ ** But no harm is done by this. And it is very important that |
+ ** btreeInitPage() be called on every btree page so we make |
+ ** the call for every page that comes in for re-initing. */ |
+ btreeInitPage(pPage); |
+ } |
+ } |
+} |
+ |
+/* |
+** Invoke the busy handler for a btree. |
+*/ |
+static int btreeInvokeBusyHandler(void *pArg){ |
+ BtShared *pBt = (BtShared*)pArg; |
+ assert( pBt->db ); |
+ assert( sqlite3_mutex_held(pBt->db->mutex) ); |
+ return sqlite3InvokeBusyHandler(&pBt->db->busyHandler); |
+} |
+ |
+/* |
+** Open a database file. |
+** |
+** zFilename is the name of the database file. If zFilename is NULL |
+** then an ephemeral database is created. The ephemeral database might |
+** be exclusively in memory, or it might use a disk-based memory cache. |
+** Either way, the ephemeral database will be automatically deleted |
+** when sqlite3BtreeClose() is called. |
+** |
+** If zFilename is ":memory:" then an in-memory database is created |
+** that is automatically destroyed when it is closed. |
+** |
+** The "flags" parameter is a bitmask that might contain bits like |
+** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY. |
+** |
+** If the database is already opened in the same database connection |
+** and we are in shared cache mode, then the open will fail with an |
+** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared |
+** objects in the same database connection since doing so will lead |
+** to problems with locking. |
+*/ |
+SQLITE_PRIVATE int sqlite3BtreeOpen( |
+ sqlite3_vfs *pVfs, /* VFS to use for this b-tree */ |
+ const char *zFilename, /* Name of the file containing the BTree database */ |
+ sqlite3 *db, /* Associated database handle */ |
+ Btree **ppBtree, /* Pointer to new Btree object written here */ |
+ int flags, /* Options */ |
+ int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */ |
+){ |
+ BtShared *pBt = 0; /* Shared part of btree structure */ |
+ Btree *p; /* Handle to return */ |
+ sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */ |
+ int rc = SQLITE_OK; /* Result code from this function */ |
+ u8 nReserve; /* Byte of unused space on each page */ |
+ unsigned char zDbHeader[100]; /* Database header content */ |
+ |
+ /* True if opening an ephemeral, temporary database */ |
+ const int isTempDb = zFilename==0 || zFilename[0]==0; |
+ |
+ /* Set the variable isMemdb to true for an in-memory database, or |
+ ** false for a file-based database. |
+ */ |
+#ifdef SQLITE_OMIT_MEMORYDB |
+ const int isMemdb = 0; |
+#else |
+ const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0) |
+ || (isTempDb && sqlite3TempInMemory(db)) |
+ || (vfsFlags & SQLITE_OPEN_MEMORY)!=0; |
+#endif |
+ |
+ assert( db!=0 ); |
+ assert( pVfs!=0 ); |
+ assert( sqlite3_mutex_held(db->mutex) ); |
+ assert( (flags&0xff)==flags ); /* flags fit in 8 bits */ |
+ |
+ /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */ |
+ assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 ); |
+ |
+ /* A BTREE_SINGLE database is always a temporary and/or ephemeral */ |
+ assert( (flags & BTREE_SINGLE)==0 || isTempDb ); |
+ |
+ if( isMemdb ){ |
+ flags |= BTREE_MEMORY; |
+ } |
+ if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){ |
+ vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB; |
+ } |
+ p = sqlite3MallocZero(sizeof(Btree)); |
+ if( !p ){ |
+ return SQLITE_NOMEM; |
+ } |
+ p->inTrans = TRANS_NONE; |
+ p->db = db; |
+#ifndef SQLITE_OMIT_SHARED_CACHE |
+ p->lock.pBtree = p; |
+ p->lock.iTable = 1; |
+#endif |
+ |
+#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) |
+ /* |
+ ** If this Btree is a candidate for shared cache, try to find an |
+ ** existing BtShared object that we can share with |
+ */ |
+ if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){ |
+ if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){ |
+ int nFilename = sqlite3Strlen30(zFilename)+1; |
+ int nFullPathname = pVfs->mxPathname+1; |
+ char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename)); |
+ MUTEX_LOGIC( sqlite3_mutex *mutexShared; ) |
+ |
+ p->sharable = 1; |
+ if( !zFullPathname ){ |
+ sqlite3_free(p); |
+ return SQLITE_NOMEM; |
+ } |
+ if( isMemdb ){ |
+ memcpy(zFullPathname, zFilename, nFilename); |
+ }else{ |
+ rc = sqlite3OsFullPathname(pVfs, zFilename, |
+ nFullPathname, zFullPathname); |
+ if( rc ){ |
+ sqlite3_free(zFullPathname); |
+ sqlite3_free(p); |
+ return rc; |
+ } |
+ } |
+#if SQLITE_THREADSAFE |
+ mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN); |
+ sqlite3_mutex_enter(mutexOpen); |
+ mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); |
+ sqlite3_mutex_enter(mutexShared); |
+#endif |
+ for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){ |
+ assert( pBt->nRef>0 ); |
+ if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0)) |
+ && sqlite3PagerVfs(pBt->pPager)==pVfs ){ |
+ int iDb; |
+ for(iDb=db->nDb-1; iDb>=0; iDb--){ |
+ Btree *pExisting = db->aDb[iDb].pBt; |
+ if( pExisting && pExisting->pBt==pBt ){ |
+ sqlite3_mutex_leave(mutexShared); |
+ sqlite3_mutex_leave(mutexOpen); |
+ sqlite3_free(zFullPathname); |
+ sqlite3_free(p); |
+ return SQLITE_CONSTRAINT; |
+ } |
+ } |
+ p->pBt = pBt; |
+ pBt->nRef++; |
+ break; |
+ } |
+ } |
+ sqlite3_mutex_leave(mutexShared); |
+ sqlite3_free(zFullPathname); |
+ } |
+#ifdef SQLITE_DEBUG |
+ else{ |
+ /* In debug mode, we mark all persistent databases as sharable |
+ ** even when they are not. This exercises the locking code and |
+ ** gives more opportunity for asserts(sqlite3_mutex_held()) |
+ ** statements to find locking problems. |
+ */ |
+ p->sharable = 1; |
+ } |
+#endif |
+ } |
+#endif |
+ if( pBt==0 ){ |
+ /* |
+ ** The following asserts make sure that structures used by the btree are |
+ ** the right size. This is to guard against size changes that result |
+ ** when compiling on a different architecture. |
+ */ |
+ assert( sizeof(i64)==8 ); |
+ assert( sizeof(u64)==8 ); |
+ assert( sizeof(u32)==4 ); |
+ assert( sizeof(u16)==2 ); |
+ assert( sizeof(Pgno)==4 ); |
+ |
+ pBt = sqlite3MallocZero( sizeof(*pBt) ); |
+ if( pBt==0 ){ |
+ rc = SQLITE_NOMEM; |
+ goto btree_open_out; |
+ } |
+ rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename, |
+ EXTRA_SIZE, flags, vfsFlags, pageReinit); |
+ if( rc==SQLITE_OK ){ |
+ sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap); |
+ rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader); |
+ } |
+ if( rc!=SQLITE_OK ){ |
+ goto btree_open_out; |
+ } |
+ pBt->openFlags = (u8)flags; |
+ pBt->db = db; |
+ sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt); |
+ p->pBt = pBt; |
+ |
+ pBt->pCursor = 0; |
+ pBt->pPage1 = 0; |
+ if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY; |
+#ifdef SQLITE_SECURE_DELETE |
+ pBt->btsFlags |= BTS_SECURE_DELETE; |
+#endif |
+ /* EVIDENCE-OF: R-51873-39618 The page size for a database file is |
+ ** determined by the 2-byte integer located at an offset of 16 bytes from |
+ ** the beginning of the database file. */ |
+ pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16); |
+ if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE |
+ || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){ |
+ pBt->pageSize = 0; |
+#ifndef SQLITE_OMIT_AUTOVACUUM |
+ /* If the magic name ":memory:" will create an in-memory database, then |
+ ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if |
+ ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if |
+ ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a |
+ ** regular file-name. In this case the auto-vacuum applies as per normal. |
+ */ |
+ if( zFilename && !isMemdb ){ |
+ pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0); |
+ pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0); |
+ } |
+#endif |
+ nReserve = 0; |
+ }else{ |
+ /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is |
+ ** determined by the one-byte unsigned integer found at an offset of 20 |
+ ** into the database file header. */ |
+ nReserve = zDbHeader[20]; |
+ pBt->btsFlags |= BTS_PAGESIZE_FIXED; |
+#ifndef SQLITE_OMIT_AUTOVACUUM |
+ pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0); |
+ pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0); |
+#endif |
+ } |
+ rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve); |
+ if( rc ) goto btree_open_out; |
+ pBt->usableSize = pBt->pageSize - nReserve; |
+ assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */ |
+ |
+#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) |
+ /* Add the new BtShared object to the linked list sharable BtShareds. |
+ */ |
+ if( p->sharable ){ |
+ MUTEX_LOGIC( sqlite3_mutex *mutexShared; ) |
+ pBt->nRef = 1; |
+ MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);) |
+ if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){ |
+ pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST); |
+ if( pBt->mutex==0 ){ |
+ rc = SQLITE_NOMEM; |
+ db->mallocFailed = 0; |
+ goto btree_open_out; |
+ } |
+ } |
+ sqlite3_mutex_enter(mutexShared); |
+ pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList); |
+ GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt; |
+ sqlite3_mutex_leave(mutexShared); |
+ } |
+#endif |
+ } |
+ |
+#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) |
+ /* If the new Btree uses a sharable pBtShared, then link the new |
+ ** Btree into the list of all sharable Btrees for the same connection. |
+ ** The list is kept in ascending order by pBt address. |
+ */ |
+ if( p->sharable ){ |
+ int i; |
+ Btree *pSib; |
+ for(i=0; i<db->nDb; i++){ |
+ if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){ |
+ while( pSib->pPrev ){ pSib = pSib->pPrev; } |
+ if( p->pBt<pSib->pBt ){ |
+ p->pNext = pSib; |
+ p->pPrev = 0; |
+ pSib->pPrev = p; |
+ }else{ |
+ while( pSib->pNext && pSib->pNext->pBt<p->pBt ){ |
+ pSib = pSib->pNext; |
+ } |
+ p->pNext = pSib->pNext; |
+ p->pPrev = pSib; |
+ if( p->pNext ){ |
+ p->pNext->pPrev = p; |
+ } |
+ pSib->pNext = p; |
+ } |
+ break; |
+ } |
+ } |
+ } |
+#endif |
+ *ppBtree = p; |
+ |
+btree_open_out: |
+ if( rc!=SQLITE_OK ){ |
+ if( pBt && pBt->pPager ){ |
+ sqlite3PagerClose(pBt->pPager); |
+ } |
+ sqlite3_free(pBt); |
+ sqlite3_free(p); |
+ *ppBtree = 0; |
+ }else{ |
+ /* If the B-Tree was successfully opened, set the pager-cache size to the |
+ ** default value. Except, when opening on an existing shared pager-cache, |
+ ** do not change the pager-cache size. |
+ */ |
+ if( sqlite3BtreeSchema(p, 0, 0)==0 ){ |
+ sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE); |
+ } |
+ } |
+ if( mutexOpen ){ |
+ assert( sqlite3_mutex_held(mutexOpen) ); |
+ sqlite3_mutex_leave(mutexOpen); |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Decrement the BtShared.nRef counter. When it reaches zero, |
+** remove the BtShared structure from the sharing list. Return |
+** true if the BtShared.nRef counter reaches zero and return |
+** false if it is still positive. |
+*/ |
+static int removeFromSharingList(BtShared *pBt){ |
+#ifndef SQLITE_OMIT_SHARED_CACHE |
+ MUTEX_LOGIC( sqlite3_mutex *pMaster; ) |
+ BtShared *pList; |
+ int removed = 0; |
+ |
+ assert( sqlite3_mutex_notheld(pBt->mutex) ); |
+ MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); ) |
+ sqlite3_mutex_enter(pMaster); |
+ pBt->nRef--; |
+ if( pBt->nRef<=0 ){ |
+ if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){ |
+ GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext; |
+ }else{ |
+ pList = GLOBAL(BtShared*,sqlite3SharedCacheList); |
+ while( ALWAYS(pList) && pList->pNext!=pBt ){ |
+ pList=pList->pNext; |
+ } |
+ if( ALWAYS(pList) ){ |
+ pList->pNext = pBt->pNext; |
+ } |
+ } |
+ if( SQLITE_THREADSAFE ){ |
+ sqlite3_mutex_free(pBt->mutex); |
+ } |
+ removed = 1; |
+ } |
+ sqlite3_mutex_leave(pMaster); |
+ return removed; |
+#else |
+ return 1; |
+#endif |
+} |
+ |
+/* |
+** Make sure pBt->pTmpSpace points to an allocation of |
+** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child |
+** pointer. |
+*/ |
+static void allocateTempSpace(BtShared *pBt){ |
+ if( !pBt->pTmpSpace ){ |
+ pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize ); |
+ |
+ /* One of the uses of pBt->pTmpSpace is to format cells before |
+ ** inserting them into a leaf page (function fillInCell()). If |
+ ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes |
+ ** by the various routines that manipulate binary cells. Which |
+ ** can mean that fillInCell() only initializes the first 2 or 3 |
+ ** bytes of pTmpSpace, but that the first 4 bytes are copied from |
+ ** it into a database page. This is not actually a problem, but it |
+ ** does cause a valgrind error when the 1 or 2 bytes of unitialized |
+ ** data is passed to system call write(). So to avoid this error, |
+ ** zero the first 4 bytes of temp space here. |
+ ** |
+ ** Also: Provide four bytes of initialized space before the |
+ ** beginning of pTmpSpace as an area available to prepend the |
+ ** left-child pointer to the beginning of a cell. |
+ */ |
+ if( pBt->pTmpSpace ){ |
+ memset(pBt->pTmpSpace, 0, 8); |
+ pBt->pTmpSpace += 4; |
+ } |
+ } |
+} |
+ |
+/* |
+** Free the pBt->pTmpSpace allocation |
+*/ |
+static void freeTempSpace(BtShared *pBt){ |
+ if( pBt->pTmpSpace ){ |
+ pBt->pTmpSpace -= 4; |
+ sqlite3PageFree(pBt->pTmpSpace); |
+ pBt->pTmpSpace = 0; |
+ } |
+} |
+ |
+/* |
+** Close an open database and invalidate all cursors. |
+*/ |
+SQLITE_PRIVATE int sqlite3BtreeClose(Btree *p){ |
+ BtShared *pBt = p->pBt; |
+ BtCursor *pCur; |
+ |
+ /* Close all cursors opened via this handle. */ |
+ assert( sqlite3_mutex_held(p->db->mutex) ); |
+ sqlite3BtreeEnter(p); |
+ pCur = pBt->pCursor; |
+ while( pCur ){ |
+ BtCursor *pTmp = pCur; |
+ pCur = pCur->pNext; |
+ if( pTmp->pBtree==p ){ |
+ sqlite3BtreeCloseCursor(pTmp); |
+ } |
+ } |
+ |
+ /* Rollback any active transaction and free the handle structure. |
+ ** The call to sqlite3BtreeRollback() drops any table-locks held by |
+ ** this handle. |
+ */ |
+ sqlite3BtreeRollback(p, SQLITE_OK, 0); |
+ sqlite3BtreeLeave(p); |
+ |
+ /* If there are still other outstanding references to the shared-btree |
+ ** structure, return now. The remainder of this procedure cleans |
+ ** up the shared-btree. |
+ */ |
+ assert( p->wantToLock==0 && p->locked==0 ); |
+ if( !p->sharable || removeFromSharingList(pBt) ){ |
+ /* The pBt is no longer on the sharing list, so we can access |
+ ** it without having to hold the mutex. |
+ ** |
+ ** Clean out and delete the BtShared object. |
+ */ |
+ assert( !pBt->pCursor ); |
+ sqlite3PagerClose(pBt->pPager); |
+ if( pBt->xFreeSchema && pBt->pSchema ){ |
+ pBt->xFreeSchema(pBt->pSchema); |
+ } |
+ sqlite3DbFree(0, pBt->pSchema); |
+ freeTempSpace(pBt); |
+ sqlite3_free(pBt); |
+ } |
+ |
+#ifndef SQLITE_OMIT_SHARED_CACHE |
+ assert( p->wantToLock==0 ); |
+ assert( p->locked==0 ); |
+ if( p->pPrev ) p->pPrev->pNext = p->pNext; |
+ if( p->pNext ) p->pNext->pPrev = p->pPrev; |
+#endif |
+ |
+ sqlite3_free(p); |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Change the "soft" limit on the number of pages in the cache. |
+** Unused and unmodified pages will be recycled when the number of |
+** pages in the cache exceeds this soft limit. But the size of the |
+** cache is allowed to grow larger than this limit if it contains |
+** dirty pages or pages still in active use. |
+*/ |
+SQLITE_PRIVATE int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){ |
+ BtShared *pBt = p->pBt; |
+ assert( sqlite3_mutex_held(p->db->mutex) ); |
+ sqlite3BtreeEnter(p); |
+ sqlite3PagerSetCachesize(pBt->pPager, mxPage); |
+ sqlite3BtreeLeave(p); |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Change the "spill" limit on the number of pages in the cache. |
+** If the number of pages exceeds this limit during a write transaction, |
+** the pager might attempt to "spill" pages to the journal early in |
+** order to free up memory. |
+** |
+** The value returned is the current spill size. If zero is passed |
+** as an argument, no changes are made to the spill size setting, so |
+** using mxPage of 0 is a way to query the current spill size. |
+*/ |
+SQLITE_PRIVATE int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){ |
+ BtShared *pBt = p->pBt; |
+ int res; |
+ assert( sqlite3_mutex_held(p->db->mutex) ); |
+ sqlite3BtreeEnter(p); |
+ res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage); |
+ sqlite3BtreeLeave(p); |
+ return res; |
+} |
+ |
+#if SQLITE_MAX_MMAP_SIZE>0 |
+/* |
+** Change the limit on the amount of the database file that may be |
+** memory mapped. |
+*/ |
+SQLITE_PRIVATE int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){ |
+ BtShared *pBt = p->pBt; |
+ assert( sqlite3_mutex_held(p->db->mutex) ); |
+ sqlite3BtreeEnter(p); |
+ sqlite3PagerSetMmapLimit(pBt->pPager, szMmap); |
+ sqlite3BtreeLeave(p); |
+ return SQLITE_OK; |
+} |
+#endif /* SQLITE_MAX_MMAP_SIZE>0 */ |
+ |
+/* |
+** Change the way data is synced to disk in order to increase or decrease |
+** how well the database resists damage due to OS crashes and power |
+** failures. Level 1 is the same as asynchronous (no syncs() occur and |
+** there is a high probability of damage) Level 2 is the default. There |
+** is a very low but non-zero probability of damage. Level 3 reduces the |
+** probability of damage to near zero but with a write performance reduction. |
+*/ |
+#ifndef SQLITE_OMIT_PAGER_PRAGMAS |
+SQLITE_PRIVATE int sqlite3BtreeSetPagerFlags( |
+ Btree *p, /* The btree to set the safety level on */ |
+ unsigned pgFlags /* Various PAGER_* flags */ |
+){ |
+ BtShared *pBt = p->pBt; |
+ assert( sqlite3_mutex_held(p->db->mutex) ); |
+ sqlite3BtreeEnter(p); |
+ sqlite3PagerSetFlags(pBt->pPager, pgFlags); |
+ sqlite3BtreeLeave(p); |
+ return SQLITE_OK; |
+} |
+#endif |
+ |
+/* |
+** Return TRUE if the given btree is set to safety level 1. In other |
+** words, return TRUE if no sync() occurs on the disk files. |
+*/ |
+SQLITE_PRIVATE int sqlite3BtreeSyncDisabled(Btree *p){ |
+ BtShared *pBt = p->pBt; |
+ int rc; |
+ assert( sqlite3_mutex_held(p->db->mutex) ); |
+ sqlite3BtreeEnter(p); |
+ assert( pBt && pBt->pPager ); |
+ rc = sqlite3PagerNosync(pBt->pPager); |
+ sqlite3BtreeLeave(p); |
+ return rc; |
+} |
+ |
+/* |
+** Change the default pages size and the number of reserved bytes per page. |
+** Or, if the page size has already been fixed, return SQLITE_READONLY |
+** without changing anything. |
+** |
+** The page size must be a power of 2 between 512 and 65536. If the page |
+** size supplied does not meet this constraint then the page size is not |
+** changed. |
+** |
+** Page sizes are constrained to be a power of two so that the region |
+** of the database file used for locking (beginning at PENDING_BYTE, |
+** the first byte past the 1GB boundary, 0x40000000) needs to occur |
+** at the beginning of a page. |
+** |
+** If parameter nReserve is less than zero, then the number of reserved |
+** bytes per page is left unchanged. |
+** |
+** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size |
+** and autovacuum mode can no longer be changed. |
+*/ |
+SQLITE_PRIVATE int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){ |
+ int rc = SQLITE_OK; |
+ BtShared *pBt = p->pBt; |
+ assert( nReserve>=-1 && nReserve<=255 ); |
+ sqlite3BtreeEnter(p); |
+#if SQLITE_HAS_CODEC |
+ if( nReserve>pBt->optimalReserve ) pBt->optimalReserve = (u8)nReserve; |
+#endif |
+ if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){ |
+ sqlite3BtreeLeave(p); |
+ return SQLITE_READONLY; |
+ } |
+ if( nReserve<0 ){ |
+ nReserve = pBt->pageSize - pBt->usableSize; |
+ } |
+ assert( nReserve>=0 && nReserve<=255 ); |
+ if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE && |
+ ((pageSize-1)&pageSize)==0 ){ |
+ assert( (pageSize & 7)==0 ); |
+ assert( !pBt->pCursor ); |
+ pBt->pageSize = (u32)pageSize; |
+ freeTempSpace(pBt); |
+ } |
+ rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve); |
+ pBt->usableSize = pBt->pageSize - (u16)nReserve; |
+ if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED; |
+ sqlite3BtreeLeave(p); |
+ return rc; |
+} |
+ |
+/* |
+** Return the currently defined page size |
+*/ |
+SQLITE_PRIVATE int sqlite3BtreeGetPageSize(Btree *p){ |
+ return p->pBt->pageSize; |
+} |
+ |
+/* |
+** This function is similar to sqlite3BtreeGetReserve(), except that it |
+** may only be called if it is guaranteed that the b-tree mutex is already |
+** held. |
+** |
+** This is useful in one special case in the backup API code where it is |
+** known that the shared b-tree mutex is held, but the mutex on the |
+** database handle that owns *p is not. In this case if sqlite3BtreeEnter() |
+** were to be called, it might collide with some other operation on the |
+** database handle that owns *p, causing undefined behavior. |
+*/ |
+SQLITE_PRIVATE int sqlite3BtreeGetReserveNoMutex(Btree *p){ |
+ int n; |
+ assert( sqlite3_mutex_held(p->pBt->mutex) ); |
+ n = p->pBt->pageSize - p->pBt->usableSize; |
+ return n; |
+} |
+ |
+/* |
+** Return the number of bytes of space at the end of every page that |
+** are intentually left unused. This is the "reserved" space that is |
+** sometimes used by extensions. |
+** |
+** If SQLITE_HAS_MUTEX is defined then the number returned is the |
+** greater of the current reserved space and the maximum requested |
+** reserve space. |
+*/ |
+SQLITE_PRIVATE int sqlite3BtreeGetOptimalReserve(Btree *p){ |
+ int n; |
+ sqlite3BtreeEnter(p); |
+ n = sqlite3BtreeGetReserveNoMutex(p); |
+#ifdef SQLITE_HAS_CODEC |
+ if( n<p->pBt->optimalReserve ) n = p->pBt->optimalReserve; |
+#endif |
+ sqlite3BtreeLeave(p); |
+ return n; |
+} |
+ |
+ |
+/* |
+** Set the maximum page count for a database if mxPage is positive. |
+** No changes are made if mxPage is 0 or negative. |
+** Regardless of the value of mxPage, return the maximum page count. |
+*/ |
+SQLITE_PRIVATE int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){ |
+ int n; |
+ sqlite3BtreeEnter(p); |
+ n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage); |
+ sqlite3BtreeLeave(p); |
+ return n; |
+} |
+ |
+/* |
+** Set the BTS_SECURE_DELETE flag if newFlag is 0 or 1. If newFlag is -1, |
+** then make no changes. Always return the value of the BTS_SECURE_DELETE |
+** setting after the change. |
+*/ |
+SQLITE_PRIVATE int sqlite3BtreeSecureDelete(Btree *p, int newFlag){ |
+ int b; |
+ if( p==0 ) return 0; |
+ sqlite3BtreeEnter(p); |
+ if( newFlag>=0 ){ |
+ p->pBt->btsFlags &= ~BTS_SECURE_DELETE; |
+ if( newFlag ) p->pBt->btsFlags |= BTS_SECURE_DELETE; |
+ } |
+ b = (p->pBt->btsFlags & BTS_SECURE_DELETE)!=0; |
+ sqlite3BtreeLeave(p); |
+ return b; |
+} |
+ |
+/* |
+** Change the 'auto-vacuum' property of the database. If the 'autoVacuum' |
+** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it |
+** is disabled. The default value for the auto-vacuum property is |
+** determined by the SQLITE_DEFAULT_AUTOVACUUM macro. |
+*/ |
+SQLITE_PRIVATE int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){ |
+#ifdef SQLITE_OMIT_AUTOVACUUM |
+ return SQLITE_READONLY; |
+#else |
+ BtShared *pBt = p->pBt; |
+ int rc = SQLITE_OK; |
+ u8 av = (u8)autoVacuum; |
+ |
+ sqlite3BtreeEnter(p); |
+ if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){ |
+ rc = SQLITE_READONLY; |
+ }else{ |
+ pBt->autoVacuum = av ?1:0; |
+ pBt->incrVacuum = av==2 ?1:0; |
+ } |
+ sqlite3BtreeLeave(p); |
+ return rc; |
+#endif |
+} |
+ |
+/* |
+** Return the value of the 'auto-vacuum' property. If auto-vacuum is |
+** enabled 1 is returned. Otherwise 0. |
+*/ |
+SQLITE_PRIVATE int sqlite3BtreeGetAutoVacuum(Btree *p){ |
+#ifdef SQLITE_OMIT_AUTOVACUUM |
+ return BTREE_AUTOVACUUM_NONE; |
+#else |
+ int rc; |
+ sqlite3BtreeEnter(p); |
+ rc = ( |
+ (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE: |
+ (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL: |
+ BTREE_AUTOVACUUM_INCR |
+ ); |
+ sqlite3BtreeLeave(p); |
+ return rc; |
+#endif |
+} |
+ |
+ |
+/* |
+** Get a reference to pPage1 of the database file. This will |
+** also acquire a readlock on that file. |
+** |
+** SQLITE_OK is returned on success. If the file is not a |
+** well-formed database file, then SQLITE_CORRUPT is returned. |
+** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM |
+** is returned if we run out of memory. |
+*/ |
+static int lockBtree(BtShared *pBt){ |
+ int rc; /* Result code from subfunctions */ |
+ MemPage *pPage1; /* Page 1 of the database file */ |
+ int nPage; /* Number of pages in the database */ |
+ int nPageFile = 0; /* Number of pages in the database file */ |
+ int nPageHeader; /* Number of pages in the database according to hdr */ |
+ |
+ assert( sqlite3_mutex_held(pBt->mutex) ); |
+ assert( pBt->pPage1==0 ); |
+ rc = sqlite3PagerSharedLock(pBt->pPager); |
+ if( rc!=SQLITE_OK ) return rc; |
+ rc = btreeGetPage(pBt, 1, &pPage1, 0); |
+ if( rc!=SQLITE_OK ) return rc; |
+ |
+ /* Do some checking to help insure the file we opened really is |
+ ** a valid database file. |
+ */ |
+ nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData); |
+ sqlite3PagerPagecount(pBt->pPager, &nPageFile); |
+ if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){ |
+ nPage = nPageFile; |
+ } |
+ if( nPage>0 ){ |
+ u32 pageSize; |
+ u32 usableSize; |
+ u8 *page1 = pPage1->aData; |
+ rc = SQLITE_NOTADB; |
+ /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins |
+ ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d |
+ ** 61 74 20 33 00. */ |
+ if( memcmp(page1, zMagicHeader, 16)!=0 ){ |
+ goto page1_init_failed; |
+ } |
+ |
+#ifdef SQLITE_OMIT_WAL |
+ if( page1[18]>1 ){ |
+ pBt->btsFlags |= BTS_READ_ONLY; |
+ } |
+ if( page1[19]>1 ){ |
+ goto page1_init_failed; |
+ } |
+#else |
+ if( page1[18]>2 ){ |
+ pBt->btsFlags |= BTS_READ_ONLY; |
+ } |
+ if( page1[19]>2 ){ |
+ goto page1_init_failed; |
+ } |
+ |
+ /* If the write version is set to 2, this database should be accessed |
+ ** in WAL mode. If the log is not already open, open it now. Then |
+ ** return SQLITE_OK and return without populating BtShared.pPage1. |
+ ** The caller detects this and calls this function again. This is |
+ ** required as the version of page 1 currently in the page1 buffer |
+ ** may not be the latest version - there may be a newer one in the log |
+ ** file. |
+ */ |
+ if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){ |
+ int isOpen = 0; |
+ rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen); |
+ if( rc!=SQLITE_OK ){ |
+ goto page1_init_failed; |
+ }else if( isOpen==0 ){ |
+ releasePage(pPage1); |
+ return SQLITE_OK; |
+ } |
+ rc = SQLITE_NOTADB; |
+ } |
+#endif |
+ |
+ /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload |
+ ** fractions and the leaf payload fraction values must be 64, 32, and 32. |
+ ** |
+ ** The original design allowed these amounts to vary, but as of |
+ ** version 3.6.0, we require them to be fixed. |
+ */ |
+ if( memcmp(&page1[21], "\100\040\040",3)!=0 ){ |
+ goto page1_init_failed; |
+ } |
+ /* EVIDENCE-OF: R-51873-39618 The page size for a database file is |
+ ** determined by the 2-byte integer located at an offset of 16 bytes from |
+ ** the beginning of the database file. */ |
+ pageSize = (page1[16]<<8) | (page1[17]<<16); |
+ /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two |
+ ** between 512 and 65536 inclusive. */ |
+ if( ((pageSize-1)&pageSize)!=0 |
+ || pageSize>SQLITE_MAX_PAGE_SIZE |
+ || pageSize<=256 |
+ ){ |
+ goto page1_init_failed; |
+ } |
+ assert( (pageSize & 7)==0 ); |
+ /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte |
+ ** integer at offset 20 is the number of bytes of space at the end of |
+ ** each page to reserve for extensions. |
+ ** |
+ ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is |
+ ** determined by the one-byte unsigned integer found at an offset of 20 |
+ ** into the database file header. */ |
+ usableSize = pageSize - page1[20]; |
+ if( (u32)pageSize!=pBt->pageSize ){ |
+ /* After reading the first page of the database assuming a page size |
+ ** of BtShared.pageSize, we have discovered that the page-size is |
+ ** actually pageSize. Unlock the database, leave pBt->pPage1 at |
+ ** zero and return SQLITE_OK. The caller will call this function |
+ ** again with the correct page-size. |
+ */ |
+ releasePage(pPage1); |
+ pBt->usableSize = usableSize; |
+ pBt->pageSize = pageSize; |
+ freeTempSpace(pBt); |
+ rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, |
+ pageSize-usableSize); |
+ return rc; |
+ } |
+ if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){ |
+ rc = SQLITE_CORRUPT_BKPT; |
+ goto page1_init_failed; |
+ } |
+ /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to |
+ ** be less than 480. In other words, if the page size is 512, then the |
+ ** reserved space size cannot exceed 32. */ |
+ if( usableSize<480 ){ |
+ goto page1_init_failed; |
+ } |
+ pBt->pageSize = pageSize; |
+ pBt->usableSize = usableSize; |
+#ifndef SQLITE_OMIT_AUTOVACUUM |
+ pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0); |
+ pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0); |
+#endif |
+ } |
+ |
+ /* maxLocal is the maximum amount of payload to store locally for |
+ ** a cell. Make sure it is small enough so that at least minFanout |
+ ** cells can will fit on one page. We assume a 10-byte page header. |
+ ** Besides the payload, the cell must store: |
+ ** 2-byte pointer to the cell |
+ ** 4-byte child pointer |
+ ** 9-byte nKey value |
+ ** 4-byte nData value |
+ ** 4-byte overflow page pointer |
+ ** So a cell consists of a 2-byte pointer, a header which is as much as |
+ ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow |
+ ** page pointer. |
+ */ |
+ pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23); |
+ pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23); |
+ pBt->maxLeaf = (u16)(pBt->usableSize - 35); |
+ pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23); |
+ if( pBt->maxLocal>127 ){ |
+ pBt->max1bytePayload = 127; |
+ }else{ |
+ pBt->max1bytePayload = (u8)pBt->maxLocal; |
+ } |
+ assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) ); |
+ pBt->pPage1 = pPage1; |
+ pBt->nPage = nPage; |
+ return SQLITE_OK; |
+ |
+page1_init_failed: |
+ releasePage(pPage1); |
+ pBt->pPage1 = 0; |
+ return rc; |
+} |
+ |
+#ifndef NDEBUG |
+/* |
+** Return the number of cursors open on pBt. This is for use |
+** in assert() expressions, so it is only compiled if NDEBUG is not |
+** defined. |
+** |
+** Only write cursors are counted if wrOnly is true. If wrOnly is |
+** false then all cursors are counted. |
+** |
+** For the purposes of this routine, a cursor is any cursor that |
+** is capable of reading or writing to the database. Cursors that |
+** have been tripped into the CURSOR_FAULT state are not counted. |
+*/ |
+static int countValidCursors(BtShared *pBt, int wrOnly){ |
+ BtCursor *pCur; |
+ int r = 0; |
+ for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ |
+ if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0) |
+ && pCur->eState!=CURSOR_FAULT ) r++; |
+ } |
+ return r; |
+} |
+#endif |
+ |
+/* |
+** If there are no outstanding cursors and we are not in the middle |
+** of a transaction but there is a read lock on the database, then |
+** this routine unrefs the first page of the database file which |
+** has the effect of releasing the read lock. |
+** |
+** If there is a transaction in progress, this routine is a no-op. |
+*/ |
+static void unlockBtreeIfUnused(BtShared *pBt){ |
+ assert( sqlite3_mutex_held(pBt->mutex) ); |
+ assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE ); |
+ if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){ |
+ MemPage *pPage1 = pBt->pPage1; |
+ assert( pPage1->aData ); |
+ assert( sqlite3PagerRefcount(pBt->pPager)==1 ); |
+ pBt->pPage1 = 0; |
+ releasePageNotNull(pPage1); |
+ } |
+} |
+ |
+/* |
+** If pBt points to an empty file then convert that empty file |
+** into a new empty database by initializing the first page of |
+** the database. |
+*/ |
+static int newDatabase(BtShared *pBt){ |
+ MemPage *pP1; |
+ unsigned char *data; |
+ int rc; |
+ |
+ assert( sqlite3_mutex_held(pBt->mutex) ); |
+ if( pBt->nPage>0 ){ |
+ return SQLITE_OK; |
+ } |
+ pP1 = pBt->pPage1; |
+ assert( pP1!=0 ); |
+ data = pP1->aData; |
+ rc = sqlite3PagerWrite(pP1->pDbPage); |
+ if( rc ) return rc; |
+ memcpy(data, zMagicHeader, sizeof(zMagicHeader)); |
+ assert( sizeof(zMagicHeader)==16 ); |
+ data[16] = (u8)((pBt->pageSize>>8)&0xff); |
+ data[17] = (u8)((pBt->pageSize>>16)&0xff); |
+ data[18] = 1; |
+ data[19] = 1; |
+ assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize); |
+ data[20] = (u8)(pBt->pageSize - pBt->usableSize); |
+ data[21] = 64; |
+ data[22] = 32; |
+ data[23] = 32; |
+ memset(&data[24], 0, 100-24); |
+ zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA ); |
+ pBt->btsFlags |= BTS_PAGESIZE_FIXED; |
+#ifndef SQLITE_OMIT_AUTOVACUUM |
+ assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 ); |
+ assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 ); |
+ put4byte(&data[36 + 4*4], pBt->autoVacuum); |
+ put4byte(&data[36 + 7*4], pBt->incrVacuum); |
+#endif |
+ pBt->nPage = 1; |
+ data[31] = 1; |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Initialize the first page of the database file (creating a database |
+** consisting of a single page and no schema objects). Return SQLITE_OK |
+** if successful, or an SQLite error code otherwise. |
+*/ |
+SQLITE_PRIVATE int sqlite3BtreeNewDb(Btree *p){ |
+ int rc; |
+ sqlite3BtreeEnter(p); |
+ p->pBt->nPage = 0; |
+ rc = newDatabase(p->pBt); |
+ sqlite3BtreeLeave(p); |
+ return rc; |
+} |
+ |
+/* |
+** Attempt to start a new transaction. A write-transaction |
+** is started if the second argument is nonzero, otherwise a read- |
+** transaction. If the second argument is 2 or more and exclusive |
+** transaction is started, meaning that no other process is allowed |
+** to access the database. A preexisting transaction may not be |
+** upgraded to exclusive by calling this routine a second time - the |
+** exclusivity flag only works for a new transaction. |
+** |
+** A write-transaction must be started before attempting any |
+** changes to the database. None of the following routines |
+** will work unless a transaction is started first: |
+** |
+** sqlite3BtreeCreateTable() |
+** sqlite3BtreeCreateIndex() |
+** sqlite3BtreeClearTable() |
+** sqlite3BtreeDropTable() |
+** sqlite3BtreeInsert() |
+** sqlite3BtreeDelete() |
+** sqlite3BtreeUpdateMeta() |
+** |
+** If an initial attempt to acquire the lock fails because of lock contention |
+** and the database was previously unlocked, then invoke the busy handler |
+** if there is one. But if there was previously a read-lock, do not |
+** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is |
+** returned when there is already a read-lock in order to avoid a deadlock. |
+** |
+** Suppose there are two processes A and B. A has a read lock and B has |
+** a reserved lock. B tries to promote to exclusive but is blocked because |
+** of A's read lock. A tries to promote to reserved but is blocked by B. |
+** One or the other of the two processes must give way or there can be |
+** no progress. By returning SQLITE_BUSY and not invoking the busy callback |
+** when A already has a read lock, we encourage A to give up and let B |
+** proceed. |
+*/ |
+SQLITE_PRIVATE int sqlite3BtreeBeginTrans(Btree *p, int wrflag){ |
+ sqlite3 *pBlock = 0; |
+ BtShared *pBt = p->pBt; |
+ int rc = SQLITE_OK; |
+ |
+ sqlite3BtreeEnter(p); |
+ btreeIntegrity(p); |
+ |
+ /* If the btree is already in a write-transaction, or it |
+ ** is already in a read-transaction and a read-transaction |
+ ** is requested, this is a no-op. |
+ */ |
+ if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){ |
+ goto trans_begun; |
+ } |
+ assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 ); |
+ |
+ /* Write transactions are not possible on a read-only database */ |
+ if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){ |
+ rc = SQLITE_READONLY; |
+ goto trans_begun; |
+ } |
+ |
+#ifndef SQLITE_OMIT_SHARED_CACHE |
+ /* If another database handle has already opened a write transaction |
+ ** on this shared-btree structure and a second write transaction is |
+ ** requested, return SQLITE_LOCKED. |
+ */ |
+ if( (wrflag && pBt->inTransaction==TRANS_WRITE) |
+ || (pBt->btsFlags & BTS_PENDING)!=0 |
+ ){ |
+ pBlock = pBt->pWriter->db; |
+ }else if( wrflag>1 ){ |
+ BtLock *pIter; |
+ for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ |
+ if( pIter->pBtree!=p ){ |
+ pBlock = pIter->pBtree->db; |
+ break; |
+ } |
+ } |
+ } |
+ if( pBlock ){ |
+ sqlite3ConnectionBlocked(p->db, pBlock); |
+ rc = SQLITE_LOCKED_SHAREDCACHE; |
+ goto trans_begun; |
+ } |
+#endif |
+ |
+ /* Any read-only or read-write transaction implies a read-lock on |
+ ** page 1. So if some other shared-cache client already has a write-lock |
+ ** on page 1, the transaction cannot be opened. */ |
+ rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK); |
+ if( SQLITE_OK!=rc ) goto trans_begun; |
+ |
+ pBt->btsFlags &= ~BTS_INITIALLY_EMPTY; |
+ if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY; |
+ do { |
+ /* Call lockBtree() until either pBt->pPage1 is populated or |
+ ** lockBtree() returns something other than SQLITE_OK. lockBtree() |
+ ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after |
+ ** reading page 1 it discovers that the page-size of the database |
+ ** file is not pBt->pageSize. In this case lockBtree() will update |
+ ** pBt->pageSize to the page-size of the file on disk. |
+ */ |
+ while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) ); |
+ |
+ if( rc==SQLITE_OK && wrflag ){ |
+ if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){ |
+ rc = SQLITE_READONLY; |
+ }else{ |
+ rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db)); |
+ if( rc==SQLITE_OK ){ |
+ rc = newDatabase(pBt); |
+ } |
+ } |
+ } |
+ |
+ if( rc!=SQLITE_OK ){ |
+ unlockBtreeIfUnused(pBt); |
+ } |
+ }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE && |
+ btreeInvokeBusyHandler(pBt) ); |
+ |
+ if( rc==SQLITE_OK ){ |
+ if( p->inTrans==TRANS_NONE ){ |
+ pBt->nTransaction++; |
+#ifndef SQLITE_OMIT_SHARED_CACHE |
+ if( p->sharable ){ |
+ assert( p->lock.pBtree==p && p->lock.iTable==1 ); |
+ p->lock.eLock = READ_LOCK; |
+ p->lock.pNext = pBt->pLock; |
+ pBt->pLock = &p->lock; |
+ } |
+#endif |
+ } |
+ p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ); |
+ if( p->inTrans>pBt->inTransaction ){ |
+ pBt->inTransaction = p->inTrans; |
+ } |
+ if( wrflag ){ |
+ MemPage *pPage1 = pBt->pPage1; |
+#ifndef SQLITE_OMIT_SHARED_CACHE |
+ assert( !pBt->pWriter ); |
+ pBt->pWriter = p; |
+ pBt->btsFlags &= ~BTS_EXCLUSIVE; |
+ if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE; |
+#endif |
+ |
+ /* If the db-size header field is incorrect (as it may be if an old |
+ ** client has been writing the database file), update it now. Doing |
+ ** this sooner rather than later means the database size can safely |
+ ** re-read the database size from page 1 if a savepoint or transaction |
+ ** rollback occurs within the transaction. |
+ */ |
+ if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){ |
+ rc = sqlite3PagerWrite(pPage1->pDbPage); |
+ if( rc==SQLITE_OK ){ |
+ put4byte(&pPage1->aData[28], pBt->nPage); |
+ } |
+ } |
+ } |
+ } |
+ |
+ |
+trans_begun: |
+ if( rc==SQLITE_OK && wrflag ){ |
+ /* This call makes sure that the pager has the correct number of |
+ ** open savepoints. If the second parameter is greater than 0 and |
+ ** the sub-journal is not already open, then it will be opened here. |
+ */ |
+ rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint); |
+ } |
+ |
+ btreeIntegrity(p); |
+ sqlite3BtreeLeave(p); |
+ return rc; |
+} |
+ |
+#ifndef SQLITE_OMIT_AUTOVACUUM |
+ |
+/* |
+** Set the pointer-map entries for all children of page pPage. Also, if |
+** pPage contains cells that point to overflow pages, set the pointer |
+** map entries for the overflow pages as well. |
+*/ |
+static int setChildPtrmaps(MemPage *pPage){ |
+ int i; /* Counter variable */ |
+ int nCell; /* Number of cells in page pPage */ |
+ int rc; /* Return code */ |
+ BtShared *pBt = pPage->pBt; |
+ u8 isInitOrig = pPage->isInit; |
+ Pgno pgno = pPage->pgno; |
+ |
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
+ rc = btreeInitPage(pPage); |
+ if( rc!=SQLITE_OK ){ |
+ goto set_child_ptrmaps_out; |
+ } |
+ nCell = pPage->nCell; |
+ |
+ for(i=0; i<nCell; i++){ |
+ u8 *pCell = findCell(pPage, i); |
+ |
+ ptrmapPutOvflPtr(pPage, pCell, &rc); |
+ |
+ if( !pPage->leaf ){ |
+ Pgno childPgno = get4byte(pCell); |
+ ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc); |
+ } |
+ } |
+ |
+ if( !pPage->leaf ){ |
+ Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); |
+ ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc); |
+ } |
+ |
+set_child_ptrmaps_out: |
+ pPage->isInit = isInitOrig; |
+ return rc; |
+} |
+ |
+/* |
+** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so |
+** that it points to iTo. Parameter eType describes the type of pointer to |
+** be modified, as follows: |
+** |
+** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child |
+** page of pPage. |
+** |
+** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow |
+** page pointed to by one of the cells on pPage. |
+** |
+** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next |
+** overflow page in the list. |
+*/ |
+static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){ |
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
+ assert( sqlite3PagerIswriteable(pPage->pDbPage) ); |
+ if( eType==PTRMAP_OVERFLOW2 ){ |
+ /* The pointer is always the first 4 bytes of the page in this case. */ |
+ if( get4byte(pPage->aData)!=iFrom ){ |
+ return SQLITE_CORRUPT_BKPT; |
+ } |
+ put4byte(pPage->aData, iTo); |
+ }else{ |
+ u8 isInitOrig = pPage->isInit; |
+ int i; |
+ int nCell; |
+ int rc; |
+ |
+ rc = btreeInitPage(pPage); |
+ if( rc ) return rc; |
+ nCell = pPage->nCell; |
+ |
+ for(i=0; i<nCell; i++){ |
+ u8 *pCell = findCell(pPage, i); |
+ if( eType==PTRMAP_OVERFLOW1 ){ |
+ CellInfo info; |
+ pPage->xParseCell(pPage, pCell, &info); |
+ if( info.nLocal<info.nPayload |
+ && pCell+info.nSize-1<=pPage->aData+pPage->maskPage |
+ && iFrom==get4byte(pCell+info.nSize-4) |
+ ){ |
+ put4byte(pCell+info.nSize-4, iTo); |
+ break; |
+ } |
+ }else{ |
+ if( get4byte(pCell)==iFrom ){ |
+ put4byte(pCell, iTo); |
+ break; |
+ } |
+ } |
+ } |
+ |
+ if( i==nCell ){ |
+ if( eType!=PTRMAP_BTREE || |
+ get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){ |
+ return SQLITE_CORRUPT_BKPT; |
+ } |
+ put4byte(&pPage->aData[pPage->hdrOffset+8], iTo); |
+ } |
+ |
+ pPage->isInit = isInitOrig; |
+ } |
+ return SQLITE_OK; |
+} |
+ |
+ |
+/* |
+** Move the open database page pDbPage to location iFreePage in the |
+** database. The pDbPage reference remains valid. |
+** |
+** The isCommit flag indicates that there is no need to remember that |
+** the journal needs to be sync()ed before database page pDbPage->pgno |
+** can be written to. The caller has already promised not to write to that |
+** page. |
+*/ |
+static int relocatePage( |
+ BtShared *pBt, /* Btree */ |
+ MemPage *pDbPage, /* Open page to move */ |
+ u8 eType, /* Pointer map 'type' entry for pDbPage */ |
+ Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */ |
+ Pgno iFreePage, /* The location to move pDbPage to */ |
+ int isCommit /* isCommit flag passed to sqlite3PagerMovepage */ |
+){ |
+ MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */ |
+ Pgno iDbPage = pDbPage->pgno; |
+ Pager *pPager = pBt->pPager; |
+ int rc; |
+ |
+ assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 || |
+ eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ); |
+ assert( sqlite3_mutex_held(pBt->mutex) ); |
+ assert( pDbPage->pBt==pBt ); |
+ |
+ /* Move page iDbPage from its current location to page number iFreePage */ |
+ TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n", |
+ iDbPage, iFreePage, iPtrPage, eType)); |
+ rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit); |
+ if( rc!=SQLITE_OK ){ |
+ return rc; |
+ } |
+ pDbPage->pgno = iFreePage; |
+ |
+ /* If pDbPage was a btree-page, then it may have child pages and/or cells |
+ ** that point to overflow pages. The pointer map entries for all these |
+ ** pages need to be changed. |
+ ** |
+ ** If pDbPage is an overflow page, then the first 4 bytes may store a |
+ ** pointer to a subsequent overflow page. If this is the case, then |
+ ** the pointer map needs to be updated for the subsequent overflow page. |
+ */ |
+ if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){ |
+ rc = setChildPtrmaps(pDbPage); |
+ if( rc!=SQLITE_OK ){ |
+ return rc; |
+ } |
+ }else{ |
+ Pgno nextOvfl = get4byte(pDbPage->aData); |
+ if( nextOvfl!=0 ){ |
+ ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc); |
+ if( rc!=SQLITE_OK ){ |
+ return rc; |
+ } |
+ } |
+ } |
+ |
+ /* Fix the database pointer on page iPtrPage that pointed at iDbPage so |
+ ** that it points at iFreePage. Also fix the pointer map entry for |
+ ** iPtrPage. |
+ */ |
+ if( eType!=PTRMAP_ROOTPAGE ){ |
+ rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0); |
+ if( rc!=SQLITE_OK ){ |
+ return rc; |
+ } |
+ rc = sqlite3PagerWrite(pPtrPage->pDbPage); |
+ if( rc!=SQLITE_OK ){ |
+ releasePage(pPtrPage); |
+ return rc; |
+ } |
+ rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType); |
+ releasePage(pPtrPage); |
+ if( rc==SQLITE_OK ){ |
+ ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc); |
+ } |
+ } |
+ return rc; |
+} |
+ |
+/* Forward declaration required by incrVacuumStep(). */ |
+static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8); |
+ |
+/* |
+** Perform a single step of an incremental-vacuum. If successful, return |
+** SQLITE_OK. If there is no work to do (and therefore no point in |
+** calling this function again), return SQLITE_DONE. Or, if an error |
+** occurs, return some other error code. |
+** |
+** More specifically, this function attempts to re-organize the database so |
+** that the last page of the file currently in use is no longer in use. |
+** |
+** Parameter nFin is the number of pages that this database would contain |
+** were this function called until it returns SQLITE_DONE. |
+** |
+** If the bCommit parameter is non-zero, this function assumes that the |
+** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE |
+** or an error. bCommit is passed true for an auto-vacuum-on-commit |
+** operation, or false for an incremental vacuum. |
+*/ |
+static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){ |
+ Pgno nFreeList; /* Number of pages still on the free-list */ |
+ int rc; |
+ |
+ assert( sqlite3_mutex_held(pBt->mutex) ); |
+ assert( iLastPg>nFin ); |
+ |
+ if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){ |
+ u8 eType; |
+ Pgno iPtrPage; |
+ |
+ nFreeList = get4byte(&pBt->pPage1->aData[36]); |
+ if( nFreeList==0 ){ |
+ return SQLITE_DONE; |
+ } |
+ |
+ rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage); |
+ if( rc!=SQLITE_OK ){ |
+ return rc; |
+ } |
+ if( eType==PTRMAP_ROOTPAGE ){ |
+ return SQLITE_CORRUPT_BKPT; |
+ } |
+ |
+ if( eType==PTRMAP_FREEPAGE ){ |
+ if( bCommit==0 ){ |
+ /* Remove the page from the files free-list. This is not required |
+ ** if bCommit is non-zero. In that case, the free-list will be |
+ ** truncated to zero after this function returns, so it doesn't |
+ ** matter if it still contains some garbage entries. |
+ */ |
+ Pgno iFreePg; |
+ MemPage *pFreePg; |
+ rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT); |
+ if( rc!=SQLITE_OK ){ |
+ return rc; |
+ } |
+ assert( iFreePg==iLastPg ); |
+ releasePage(pFreePg); |
+ } |
+ } else { |
+ Pgno iFreePg; /* Index of free page to move pLastPg to */ |
+ MemPage *pLastPg; |
+ u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */ |
+ Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */ |
+ |
+ rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0); |
+ if( rc!=SQLITE_OK ){ |
+ return rc; |
+ } |
+ |
+ /* If bCommit is zero, this loop runs exactly once and page pLastPg |
+ ** is swapped with the first free page pulled off the free list. |
+ ** |
+ ** On the other hand, if bCommit is greater than zero, then keep |
+ ** looping until a free-page located within the first nFin pages |
+ ** of the file is found. |
+ */ |
+ if( bCommit==0 ){ |
+ eMode = BTALLOC_LE; |
+ iNear = nFin; |
+ } |
+ do { |
+ MemPage *pFreePg; |
+ rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode); |
+ if( rc!=SQLITE_OK ){ |
+ releasePage(pLastPg); |
+ return rc; |
+ } |
+ releasePage(pFreePg); |
+ }while( bCommit && iFreePg>nFin ); |
+ assert( iFreePg<iLastPg ); |
+ |
+ rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit); |
+ releasePage(pLastPg); |
+ if( rc!=SQLITE_OK ){ |
+ return rc; |
+ } |
+ } |
+ } |
+ |
+ if( bCommit==0 ){ |
+ do { |
+ iLastPg--; |
+ }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) ); |
+ pBt->bDoTruncate = 1; |
+ pBt->nPage = iLastPg; |
+ } |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** The database opened by the first argument is an auto-vacuum database |
+** nOrig pages in size containing nFree free pages. Return the expected |
+** size of the database in pages following an auto-vacuum operation. |
+*/ |
+static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){ |
+ int nEntry; /* Number of entries on one ptrmap page */ |
+ Pgno nPtrmap; /* Number of PtrMap pages to be freed */ |
+ Pgno nFin; /* Return value */ |
+ |
+ nEntry = pBt->usableSize/5; |
+ nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry; |
+ nFin = nOrig - nFree - nPtrmap; |
+ if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){ |
+ nFin--; |
+ } |
+ while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){ |
+ nFin--; |
+ } |
+ |
+ return nFin; |
+} |
+ |
+/* |
+** A write-transaction must be opened before calling this function. |
+** It performs a single unit of work towards an incremental vacuum. |
+** |
+** If the incremental vacuum is finished after this function has run, |
+** SQLITE_DONE is returned. If it is not finished, but no error occurred, |
+** SQLITE_OK is returned. Otherwise an SQLite error code. |
+*/ |
+SQLITE_PRIVATE int sqlite3BtreeIncrVacuum(Btree *p){ |
+ int rc; |
+ BtShared *pBt = p->pBt; |
+ |
+ sqlite3BtreeEnter(p); |
+ assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE ); |
+ if( !pBt->autoVacuum ){ |
+ rc = SQLITE_DONE; |
+ }else{ |
+ Pgno nOrig = btreePagecount(pBt); |
+ Pgno nFree = get4byte(&pBt->pPage1->aData[36]); |
+ Pgno nFin = finalDbSize(pBt, nOrig, nFree); |
+ |
+ if( nOrig<nFin ){ |
+ rc = SQLITE_CORRUPT_BKPT; |
+ }else if( nFree>0 ){ |
+ rc = saveAllCursors(pBt, 0, 0); |
+ if( rc==SQLITE_OK ){ |
+ invalidateAllOverflowCache(pBt); |
+ rc = incrVacuumStep(pBt, nFin, nOrig, 0); |
+ } |
+ if( rc==SQLITE_OK ){ |
+ rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); |
+ put4byte(&pBt->pPage1->aData[28], pBt->nPage); |
+ } |
+ }else{ |
+ rc = SQLITE_DONE; |
+ } |
+ } |
+ sqlite3BtreeLeave(p); |
+ return rc; |
+} |
+ |
+/* |
+** This routine is called prior to sqlite3PagerCommit when a transaction |
+** is committed for an auto-vacuum database. |
+** |
+** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages |
+** the database file should be truncated to during the commit process. |
+** i.e. the database has been reorganized so that only the first *pnTrunc |
+** pages are in use. |
+*/ |
+static int autoVacuumCommit(BtShared *pBt){ |
+ int rc = SQLITE_OK; |
+ Pager *pPager = pBt->pPager; |
+ VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager); ) |
+ |
+ assert( sqlite3_mutex_held(pBt->mutex) ); |
+ invalidateAllOverflowCache(pBt); |
+ assert(pBt->autoVacuum); |
+ if( !pBt->incrVacuum ){ |
+ Pgno nFin; /* Number of pages in database after autovacuuming */ |
+ Pgno nFree; /* Number of pages on the freelist initially */ |
+ Pgno iFree; /* The next page to be freed */ |
+ Pgno nOrig; /* Database size before freeing */ |
+ |
+ nOrig = btreePagecount(pBt); |
+ if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){ |
+ /* It is not possible to create a database for which the final page |
+ ** is either a pointer-map page or the pending-byte page. If one |
+ ** is encountered, this indicates corruption. |
+ */ |
+ return SQLITE_CORRUPT_BKPT; |
+ } |
+ |
+ nFree = get4byte(&pBt->pPage1->aData[36]); |
+ nFin = finalDbSize(pBt, nOrig, nFree); |
+ if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT; |
+ if( nFin<nOrig ){ |
+ rc = saveAllCursors(pBt, 0, 0); |
+ } |
+ for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){ |
+ rc = incrVacuumStep(pBt, nFin, iFree, 1); |
+ } |
+ if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){ |
+ rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); |
+ put4byte(&pBt->pPage1->aData[32], 0); |
+ put4byte(&pBt->pPage1->aData[36], 0); |
+ put4byte(&pBt->pPage1->aData[28], nFin); |
+ pBt->bDoTruncate = 1; |
+ pBt->nPage = nFin; |
+ } |
+ if( rc!=SQLITE_OK ){ |
+ sqlite3PagerRollback(pPager); |
+ } |
+ } |
+ |
+ assert( nRef>=sqlite3PagerRefcount(pPager) ); |
+ return rc; |
+} |
+ |
+#else /* ifndef SQLITE_OMIT_AUTOVACUUM */ |
+# define setChildPtrmaps(x) SQLITE_OK |
+#endif |
+ |
+/* |
+** This routine does the first phase of a two-phase commit. This routine |
+** causes a rollback journal to be created (if it does not already exist) |
+** and populated with enough information so that if a power loss occurs |
+** the database can be restored to its original state by playing back |
+** the journal. Then the contents of the journal are flushed out to |
+** the disk. After the journal is safely on oxide, the changes to the |
+** database are written into the database file and flushed to oxide. |
+** At the end of this call, the rollback journal still exists on the |
+** disk and we are still holding all locks, so the transaction has not |
+** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the |
+** commit process. |
+** |
+** This call is a no-op if no write-transaction is currently active on pBt. |
+** |
+** Otherwise, sync the database file for the btree pBt. zMaster points to |
+** the name of a master journal file that should be written into the |
+** individual journal file, or is NULL, indicating no master journal file |
+** (single database transaction). |
+** |
+** When this is called, the master journal should already have been |
+** created, populated with this journal pointer and synced to disk. |
+** |
+** Once this is routine has returned, the only thing required to commit |
+** the write-transaction for this database file is to delete the journal. |
+*/ |
+SQLITE_PRIVATE int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){ |
+ int rc = SQLITE_OK; |
+ if( p->inTrans==TRANS_WRITE ){ |
+ BtShared *pBt = p->pBt; |
+ sqlite3BtreeEnter(p); |
+#ifndef SQLITE_OMIT_AUTOVACUUM |
+ if( pBt->autoVacuum ){ |
+ rc = autoVacuumCommit(pBt); |
+ if( rc!=SQLITE_OK ){ |
+ sqlite3BtreeLeave(p); |
+ return rc; |
+ } |
+ } |
+ if( pBt->bDoTruncate ){ |
+ sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage); |
+ } |
+#endif |
+ rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0); |
+ sqlite3BtreeLeave(p); |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback() |
+** at the conclusion of a transaction. |
+*/ |
+static void btreeEndTransaction(Btree *p){ |
+ BtShared *pBt = p->pBt; |
+ sqlite3 *db = p->db; |
+ assert( sqlite3BtreeHoldsMutex(p) ); |
+ |
+#ifndef SQLITE_OMIT_AUTOVACUUM |
+ pBt->bDoTruncate = 0; |
+#endif |
+ if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){ |
+ /* If there are other active statements that belong to this database |
+ ** handle, downgrade to a read-only transaction. The other statements |
+ ** may still be reading from the database. */ |
+ downgradeAllSharedCacheTableLocks(p); |
+ p->inTrans = TRANS_READ; |
+ }else{ |
+ /* If the handle had any kind of transaction open, decrement the |
+ ** transaction count of the shared btree. If the transaction count |
+ ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused() |
+ ** call below will unlock the pager. */ |
+ if( p->inTrans!=TRANS_NONE ){ |
+ clearAllSharedCacheTableLocks(p); |
+ pBt->nTransaction--; |
+ if( 0==pBt->nTransaction ){ |
+ pBt->inTransaction = TRANS_NONE; |
+ } |
+ } |
+ |
+ /* Set the current transaction state to TRANS_NONE and unlock the |
+ ** pager if this call closed the only read or write transaction. */ |
+ p->inTrans = TRANS_NONE; |
+ unlockBtreeIfUnused(pBt); |
+ } |
+ |
+ btreeIntegrity(p); |
+} |
+ |
+/* |
+** Commit the transaction currently in progress. |
+** |
+** This routine implements the second phase of a 2-phase commit. The |
+** sqlite3BtreeCommitPhaseOne() routine does the first phase and should |
+** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne() |
+** routine did all the work of writing information out to disk and flushing the |
+** contents so that they are written onto the disk platter. All this |
+** routine has to do is delete or truncate or zero the header in the |
+** the rollback journal (which causes the transaction to commit) and |
+** drop locks. |
+** |
+** Normally, if an error occurs while the pager layer is attempting to |
+** finalize the underlying journal file, this function returns an error and |
+** the upper layer will attempt a rollback. However, if the second argument |
+** is non-zero then this b-tree transaction is part of a multi-file |
+** transaction. In this case, the transaction has already been committed |
+** (by deleting a master journal file) and the caller will ignore this |
+** functions return code. So, even if an error occurs in the pager layer, |
+** reset the b-tree objects internal state to indicate that the write |
+** transaction has been closed. This is quite safe, as the pager will have |
+** transitioned to the error state. |
+** |
+** This will release the write lock on the database file. If there |
+** are no active cursors, it also releases the read lock. |
+*/ |
+SQLITE_PRIVATE int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){ |
+ |
+ if( p->inTrans==TRANS_NONE ) return SQLITE_OK; |
+ sqlite3BtreeEnter(p); |
+ btreeIntegrity(p); |
+ |
+ /* If the handle has a write-transaction open, commit the shared-btrees |
+ ** transaction and set the shared state to TRANS_READ. |
+ */ |
+ if( p->inTrans==TRANS_WRITE ){ |
+ int rc; |
+ BtShared *pBt = p->pBt; |
+ assert( pBt->inTransaction==TRANS_WRITE ); |
+ assert( pBt->nTransaction>0 ); |
+ rc = sqlite3PagerCommitPhaseTwo(pBt->pPager); |
+ if( rc!=SQLITE_OK && bCleanup==0 ){ |
+ sqlite3BtreeLeave(p); |
+ return rc; |
+ } |
+ p->iDataVersion--; /* Compensate for pPager->iDataVersion++; */ |
+ pBt->inTransaction = TRANS_READ; |
+ btreeClearHasContent(pBt); |
+ } |
+ |
+ btreeEndTransaction(p); |
+ sqlite3BtreeLeave(p); |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Do both phases of a commit. |
+*/ |
+SQLITE_PRIVATE int sqlite3BtreeCommit(Btree *p){ |
+ int rc; |
+ sqlite3BtreeEnter(p); |
+ rc = sqlite3BtreeCommitPhaseOne(p, 0); |
+ if( rc==SQLITE_OK ){ |
+ rc = sqlite3BtreeCommitPhaseTwo(p, 0); |
+ } |
+ sqlite3BtreeLeave(p); |
+ return rc; |
+} |
+ |
+/* |
+** This routine sets the state to CURSOR_FAULT and the error |
+** code to errCode for every cursor on any BtShared that pBtree |
+** references. Or if the writeOnly flag is set to 1, then only |
+** trip write cursors and leave read cursors unchanged. |
+** |
+** Every cursor is a candidate to be tripped, including cursors |
+** that belong to other database connections that happen to be |
+** sharing the cache with pBtree. |
+** |
+** This routine gets called when a rollback occurs. If the writeOnly |
+** flag is true, then only write-cursors need be tripped - read-only |
+** cursors save their current positions so that they may continue |
+** following the rollback. Or, if writeOnly is false, all cursors are |
+** tripped. In general, writeOnly is false if the transaction being |
+** rolled back modified the database schema. In this case b-tree root |
+** pages may be moved or deleted from the database altogether, making |
+** it unsafe for read cursors to continue. |
+** |
+** If the writeOnly flag is true and an error is encountered while |
+** saving the current position of a read-only cursor, all cursors, |
+** including all read-cursors are tripped. |
+** |
+** SQLITE_OK is returned if successful, or if an error occurs while |
+** saving a cursor position, an SQLite error code. |
+*/ |
+SQLITE_PRIVATE int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){ |
+ BtCursor *p; |
+ int rc = SQLITE_OK; |
+ |
+ assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 ); |
+ if( pBtree ){ |
+ sqlite3BtreeEnter(pBtree); |
+ for(p=pBtree->pBt->pCursor; p; p=p->pNext){ |
+ int i; |
+ if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){ |
+ if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){ |
+ rc = saveCursorPosition(p); |
+ if( rc!=SQLITE_OK ){ |
+ (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0); |
+ break; |
+ } |
+ } |
+ }else{ |
+ sqlite3BtreeClearCursor(p); |
+ p->eState = CURSOR_FAULT; |
+ p->skipNext = errCode; |
+ } |
+ for(i=0; i<=p->iPage; i++){ |
+ releasePage(p->apPage[i]); |
+ p->apPage[i] = 0; |
+ } |
+ } |
+ sqlite3BtreeLeave(pBtree); |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Rollback the transaction in progress. |
+** |
+** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped). |
+** Only write cursors are tripped if writeOnly is true but all cursors are |
+** tripped if writeOnly is false. Any attempt to use |
+** a tripped cursor will result in an error. |
+** |
+** This will release the write lock on the database file. If there |
+** are no active cursors, it also releases the read lock. |
+*/ |
+SQLITE_PRIVATE int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){ |
+ int rc; |
+ BtShared *pBt = p->pBt; |
+ MemPage *pPage1; |
+ |
+ assert( writeOnly==1 || writeOnly==0 ); |
+ assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK ); |
+ sqlite3BtreeEnter(p); |
+ if( tripCode==SQLITE_OK ){ |
+ rc = tripCode = saveAllCursors(pBt, 0, 0); |
+ if( rc ) writeOnly = 0; |
+ }else{ |
+ rc = SQLITE_OK; |
+ } |
+ if( tripCode ){ |
+ int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly); |
+ assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) ); |
+ if( rc2!=SQLITE_OK ) rc = rc2; |
+ } |
+ btreeIntegrity(p); |
+ |
+ if( p->inTrans==TRANS_WRITE ){ |
+ int rc2; |
+ |
+ assert( TRANS_WRITE==pBt->inTransaction ); |
+ rc2 = sqlite3PagerRollback(pBt->pPager); |
+ if( rc2!=SQLITE_OK ){ |
+ rc = rc2; |
+ } |
+ |
+ /* The rollback may have destroyed the pPage1->aData value. So |
+ ** call btreeGetPage() on page 1 again to make |
+ ** sure pPage1->aData is set correctly. */ |
+ if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){ |
+ int nPage = get4byte(28+(u8*)pPage1->aData); |
+ testcase( nPage==0 ); |
+ if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage); |
+ testcase( pBt->nPage!=nPage ); |
+ pBt->nPage = nPage; |
+ releasePage(pPage1); |
+ } |
+ assert( countValidCursors(pBt, 1)==0 ); |
+ pBt->inTransaction = TRANS_READ; |
+ btreeClearHasContent(pBt); |
+ } |
+ |
+ btreeEndTransaction(p); |
+ sqlite3BtreeLeave(p); |
+ return rc; |
+} |
+ |
+/* |
+** Start a statement subtransaction. The subtransaction can be rolled |
+** back independently of the main transaction. You must start a transaction |
+** before starting a subtransaction. The subtransaction is ended automatically |
+** if the main transaction commits or rolls back. |
+** |
+** Statement subtransactions are used around individual SQL statements |
+** that are contained within a BEGIN...COMMIT block. If a constraint |
+** error occurs within the statement, the effect of that one statement |
+** can be rolled back without having to rollback the entire transaction. |
+** |
+** A statement sub-transaction is implemented as an anonymous savepoint. The |
+** value passed as the second parameter is the total number of savepoints, |
+** including the new anonymous savepoint, open on the B-Tree. i.e. if there |
+** are no active savepoints and no other statement-transactions open, |
+** iStatement is 1. This anonymous savepoint can be released or rolled back |
+** using the sqlite3BtreeSavepoint() function. |
+*/ |
+SQLITE_PRIVATE int sqlite3BtreeBeginStmt(Btree *p, int iStatement){ |
+ int rc; |
+ BtShared *pBt = p->pBt; |
+ sqlite3BtreeEnter(p); |
+ assert( p->inTrans==TRANS_WRITE ); |
+ assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); |
+ assert( iStatement>0 ); |
+ assert( iStatement>p->db->nSavepoint ); |
+ assert( pBt->inTransaction==TRANS_WRITE ); |
+ /* At the pager level, a statement transaction is a savepoint with |
+ ** an index greater than all savepoints created explicitly using |
+ ** SQL statements. It is illegal to open, release or rollback any |
+ ** such savepoints while the statement transaction savepoint is active. |
+ */ |
+ rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement); |
+ sqlite3BtreeLeave(p); |
+ return rc; |
+} |
+ |
+/* |
+** The second argument to this function, op, is always SAVEPOINT_ROLLBACK |
+** or SAVEPOINT_RELEASE. This function either releases or rolls back the |
+** savepoint identified by parameter iSavepoint, depending on the value |
+** of op. |
+** |
+** Normally, iSavepoint is greater than or equal to zero. However, if op is |
+** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the |
+** contents of the entire transaction are rolled back. This is different |
+** from a normal transaction rollback, as no locks are released and the |
+** transaction remains open. |
+*/ |
+SQLITE_PRIVATE int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){ |
+ int rc = SQLITE_OK; |
+ if( p && p->inTrans==TRANS_WRITE ){ |
+ BtShared *pBt = p->pBt; |
+ assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK ); |
+ assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) ); |
+ sqlite3BtreeEnter(p); |
+ rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint); |
+ if( rc==SQLITE_OK ){ |
+ if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){ |
+ pBt->nPage = 0; |
+ } |
+ rc = newDatabase(pBt); |
+ pBt->nPage = get4byte(28 + pBt->pPage1->aData); |
+ |
+ /* The database size was written into the offset 28 of the header |
+ ** when the transaction started, so we know that the value at offset |
+ ** 28 is nonzero. */ |
+ assert( pBt->nPage>0 ); |
+ } |
+ sqlite3BtreeLeave(p); |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Create a new cursor for the BTree whose root is on the page |
+** iTable. If a read-only cursor is requested, it is assumed that |
+** the caller already has at least a read-only transaction open |
+** on the database already. If a write-cursor is requested, then |
+** the caller is assumed to have an open write transaction. |
+** |
+** If wrFlag==0, then the cursor can only be used for reading. |
+** If wrFlag==1, then the cursor can be used for reading or for |
+** writing if other conditions for writing are also met. These |
+** are the conditions that must be met in order for writing to |
+** be allowed: |
+** |
+** 1: The cursor must have been opened with wrFlag==1 |
+** |
+** 2: Other database connections that share the same pager cache |
+** but which are not in the READ_UNCOMMITTED state may not have |
+** cursors open with wrFlag==0 on the same table. Otherwise |
+** the changes made by this write cursor would be visible to |
+** the read cursors in the other database connection. |
+** |
+** 3: The database must be writable (not on read-only media) |
+** |
+** 4: There must be an active transaction. |
+** |
+** No checking is done to make sure that page iTable really is the |
+** root page of a b-tree. If it is not, then the cursor acquired |
+** will not work correctly. |
+** |
+** It is assumed that the sqlite3BtreeCursorZero() has been called |
+** on pCur to initialize the memory space prior to invoking this routine. |
+*/ |
+static int btreeCursor( |
+ Btree *p, /* The btree */ |
+ int iTable, /* Root page of table to open */ |
+ int wrFlag, /* 1 to write. 0 read-only */ |
+ struct KeyInfo *pKeyInfo, /* First arg to comparison function */ |
+ BtCursor *pCur /* Space for new cursor */ |
+){ |
+ BtShared *pBt = p->pBt; /* Shared b-tree handle */ |
+ BtCursor *pX; /* Looping over other all cursors */ |
+ |
+ assert( sqlite3BtreeHoldsMutex(p) ); |
+ assert( wrFlag==0 |
+ || wrFlag==BTREE_WRCSR |
+ || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE) |
+ ); |
+ |
+ /* The following assert statements verify that if this is a sharable |
+ ** b-tree database, the connection is holding the required table locks, |
+ ** and that no other connection has any open cursor that conflicts with |
+ ** this lock. */ |
+ assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1)) ); |
+ assert( wrFlag==0 || !hasReadConflicts(p, iTable) ); |
+ |
+ /* Assert that the caller has opened the required transaction. */ |
+ assert( p->inTrans>TRANS_NONE ); |
+ assert( wrFlag==0 || p->inTrans==TRANS_WRITE ); |
+ assert( pBt->pPage1 && pBt->pPage1->aData ); |
+ assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 ); |
+ |
+ if( wrFlag ){ |
+ allocateTempSpace(pBt); |
+ if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM; |
+ } |
+ if( iTable==1 && btreePagecount(pBt)==0 ){ |
+ assert( wrFlag==0 ); |
+ iTable = 0; |
+ } |
+ |
+ /* Now that no other errors can occur, finish filling in the BtCursor |
+ ** variables and link the cursor into the BtShared list. */ |
+ pCur->pgnoRoot = (Pgno)iTable; |
+ pCur->iPage = -1; |
+ pCur->pKeyInfo = pKeyInfo; |
+ pCur->pBtree = p; |
+ pCur->pBt = pBt; |
+ pCur->curFlags = wrFlag ? BTCF_WriteFlag : 0; |
+ pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY; |
+ /* If there are two or more cursors on the same btree, then all such |
+ ** cursors *must* have the BTCF_Multiple flag set. */ |
+ for(pX=pBt->pCursor; pX; pX=pX->pNext){ |
+ if( pX->pgnoRoot==(Pgno)iTable ){ |
+ pX->curFlags |= BTCF_Multiple; |
+ pCur->curFlags |= BTCF_Multiple; |
+ } |
+ } |
+ pCur->pNext = pBt->pCursor; |
+ pBt->pCursor = pCur; |
+ pCur->eState = CURSOR_INVALID; |
+ return SQLITE_OK; |
+} |
+SQLITE_PRIVATE int sqlite3BtreeCursor( |
+ Btree *p, /* The btree */ |
+ int iTable, /* Root page of table to open */ |
+ int wrFlag, /* 1 to write. 0 read-only */ |
+ struct KeyInfo *pKeyInfo, /* First arg to xCompare() */ |
+ BtCursor *pCur /* Write new cursor here */ |
+){ |
+ int rc; |
+ if( iTable<1 ){ |
+ rc = SQLITE_CORRUPT_BKPT; |
+ }else{ |
+ sqlite3BtreeEnter(p); |
+ rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur); |
+ sqlite3BtreeLeave(p); |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Return the size of a BtCursor object in bytes. |
+** |
+** This interfaces is needed so that users of cursors can preallocate |
+** sufficient storage to hold a cursor. The BtCursor object is opaque |
+** to users so they cannot do the sizeof() themselves - they must call |
+** this routine. |
+*/ |
+SQLITE_PRIVATE int sqlite3BtreeCursorSize(void){ |
+ return ROUND8(sizeof(BtCursor)); |
+} |
+ |
+/* |
+** Initialize memory that will be converted into a BtCursor object. |
+** |
+** The simple approach here would be to memset() the entire object |
+** to zero. But it turns out that the apPage[] and aiIdx[] arrays |
+** do not need to be zeroed and they are large, so we can save a lot |
+** of run-time by skipping the initialization of those elements. |
+*/ |
+SQLITE_PRIVATE void sqlite3BtreeCursorZero(BtCursor *p){ |
+ memset(p, 0, offsetof(BtCursor, iPage)); |
+} |
+ |
+/* |
+** Close a cursor. The read lock on the database file is released |
+** when the last cursor is closed. |
+*/ |
+SQLITE_PRIVATE int sqlite3BtreeCloseCursor(BtCursor *pCur){ |
+ Btree *pBtree = pCur->pBtree; |
+ if( pBtree ){ |
+ int i; |
+ BtShared *pBt = pCur->pBt; |
+ sqlite3BtreeEnter(pBtree); |
+ sqlite3BtreeClearCursor(pCur); |
+ assert( pBt->pCursor!=0 ); |
+ if( pBt->pCursor==pCur ){ |
+ pBt->pCursor = pCur->pNext; |
+ }else{ |
+ BtCursor *pPrev = pBt->pCursor; |
+ do{ |
+ if( pPrev->pNext==pCur ){ |
+ pPrev->pNext = pCur->pNext; |
+ break; |
+ } |
+ pPrev = pPrev->pNext; |
+ }while( ALWAYS(pPrev) ); |
+ } |
+ for(i=0; i<=pCur->iPage; i++){ |
+ releasePage(pCur->apPage[i]); |
+ } |
+ unlockBtreeIfUnused(pBt); |
+ sqlite3_free(pCur->aOverflow); |
+ /* sqlite3_free(pCur); */ |
+ sqlite3BtreeLeave(pBtree); |
+ } |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Make sure the BtCursor* given in the argument has a valid |
+** BtCursor.info structure. If it is not already valid, call |
+** btreeParseCell() to fill it in. |
+** |
+** BtCursor.info is a cache of the information in the current cell. |
+** Using this cache reduces the number of calls to btreeParseCell(). |
+*/ |
+#ifndef NDEBUG |
+ static void assertCellInfo(BtCursor *pCur){ |
+ CellInfo info; |
+ int iPage = pCur->iPage; |
+ memset(&info, 0, sizeof(info)); |
+ btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info); |
+ assert( CORRUPT_DB || memcmp(&info, &pCur->info, sizeof(info))==0 ); |
+ } |
+#else |
+ #define assertCellInfo(x) |
+#endif |
+static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){ |
+ if( pCur->info.nSize==0 ){ |
+ int iPage = pCur->iPage; |
+ pCur->curFlags |= BTCF_ValidNKey; |
+ btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); |
+ }else{ |
+ assertCellInfo(pCur); |
+ } |
+} |
+ |
+#ifndef NDEBUG /* The next routine used only within assert() statements */ |
+/* |
+** Return true if the given BtCursor is valid. A valid cursor is one |
+** that is currently pointing to a row in a (non-empty) table. |
+** This is a verification routine is used only within assert() statements. |
+*/ |
+SQLITE_PRIVATE int sqlite3BtreeCursorIsValid(BtCursor *pCur){ |
+ return pCur && pCur->eState==CURSOR_VALID; |
+} |
+#endif /* NDEBUG */ |
+ |
+/* |
+** Set *pSize to the size of the buffer needed to hold the value of |
+** the key for the current entry. If the cursor is not pointing |
+** to a valid entry, *pSize is set to 0. |
+** |
+** For a table with the INTKEY flag set, this routine returns the key |
+** itself, not the number of bytes in the key. |
+** |
+** The caller must position the cursor prior to invoking this routine. |
+** |
+** This routine cannot fail. It always returns SQLITE_OK. |
+*/ |
+SQLITE_PRIVATE int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){ |
+ assert( cursorHoldsMutex(pCur) ); |
+ assert( pCur->eState==CURSOR_VALID ); |
+ getCellInfo(pCur); |
+ *pSize = pCur->info.nKey; |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Set *pSize to the number of bytes of data in the entry the |
+** cursor currently points to. |
+** |
+** The caller must guarantee that the cursor is pointing to a non-NULL |
+** valid entry. In other words, the calling procedure must guarantee |
+** that the cursor has Cursor.eState==CURSOR_VALID. |
+** |
+** Failure is not possible. This function always returns SQLITE_OK. |
+** It might just as well be a procedure (returning void) but we continue |
+** to return an integer result code for historical reasons. |
+*/ |
+SQLITE_PRIVATE int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){ |
+ assert( cursorHoldsMutex(pCur) ); |
+ assert( pCur->eState==CURSOR_VALID ); |
+ assert( pCur->iPage>=0 ); |
+ assert( pCur->iPage<BTCURSOR_MAX_DEPTH ); |
+ assert( pCur->apPage[pCur->iPage]->intKeyLeaf==1 ); |
+ getCellInfo(pCur); |
+ *pSize = pCur->info.nPayload; |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Given the page number of an overflow page in the database (parameter |
+** ovfl), this function finds the page number of the next page in the |
+** linked list of overflow pages. If possible, it uses the auto-vacuum |
+** pointer-map data instead of reading the content of page ovfl to do so. |
+** |
+** If an error occurs an SQLite error code is returned. Otherwise: |
+** |
+** The page number of the next overflow page in the linked list is |
+** written to *pPgnoNext. If page ovfl is the last page in its linked |
+** list, *pPgnoNext is set to zero. |
+** |
+** If ppPage is not NULL, and a reference to the MemPage object corresponding |
+** to page number pOvfl was obtained, then *ppPage is set to point to that |
+** reference. It is the responsibility of the caller to call releasePage() |
+** on *ppPage to free the reference. In no reference was obtained (because |
+** the pointer-map was used to obtain the value for *pPgnoNext), then |
+** *ppPage is set to zero. |
+*/ |
+static int getOverflowPage( |
+ BtShared *pBt, /* The database file */ |
+ Pgno ovfl, /* Current overflow page number */ |
+ MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */ |
+ Pgno *pPgnoNext /* OUT: Next overflow page number */ |
+){ |
+ Pgno next = 0; |
+ MemPage *pPage = 0; |
+ int rc = SQLITE_OK; |
+ |
+ assert( sqlite3_mutex_held(pBt->mutex) ); |
+ assert(pPgnoNext); |
+ |
+#ifndef SQLITE_OMIT_AUTOVACUUM |
+ /* Try to find the next page in the overflow list using the |
+ ** autovacuum pointer-map pages. Guess that the next page in |
+ ** the overflow list is page number (ovfl+1). If that guess turns |
+ ** out to be wrong, fall back to loading the data of page |
+ ** number ovfl to determine the next page number. |
+ */ |
+ if( pBt->autoVacuum ){ |
+ Pgno pgno; |
+ Pgno iGuess = ovfl+1; |
+ u8 eType; |
+ |
+ while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){ |
+ iGuess++; |
+ } |
+ |
+ if( iGuess<=btreePagecount(pBt) ){ |
+ rc = ptrmapGet(pBt, iGuess, &eType, &pgno); |
+ if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){ |
+ next = iGuess; |
+ rc = SQLITE_DONE; |
+ } |
+ } |
+ } |
+#endif |
+ |
+ assert( next==0 || rc==SQLITE_DONE ); |
+ if( rc==SQLITE_OK ){ |
+ rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0); |
+ assert( rc==SQLITE_OK || pPage==0 ); |
+ if( rc==SQLITE_OK ){ |
+ next = get4byte(pPage->aData); |
+ } |
+ } |
+ |
+ *pPgnoNext = next; |
+ if( ppPage ){ |
+ *ppPage = pPage; |
+ }else{ |
+ releasePage(pPage); |
+ } |
+ return (rc==SQLITE_DONE ? SQLITE_OK : rc); |
+} |
+ |
+/* |
+** Copy data from a buffer to a page, or from a page to a buffer. |
+** |
+** pPayload is a pointer to data stored on database page pDbPage. |
+** If argument eOp is false, then nByte bytes of data are copied |
+** from pPayload to the buffer pointed at by pBuf. If eOp is true, |
+** then sqlite3PagerWrite() is called on pDbPage and nByte bytes |
+** of data are copied from the buffer pBuf to pPayload. |
+** |
+** SQLITE_OK is returned on success, otherwise an error code. |
+*/ |
+static int copyPayload( |
+ void *pPayload, /* Pointer to page data */ |
+ void *pBuf, /* Pointer to buffer */ |
+ int nByte, /* Number of bytes to copy */ |
+ int eOp, /* 0 -> copy from page, 1 -> copy to page */ |
+ DbPage *pDbPage /* Page containing pPayload */ |
+){ |
+ if( eOp ){ |
+ /* Copy data from buffer to page (a write operation) */ |
+ int rc = sqlite3PagerWrite(pDbPage); |
+ if( rc!=SQLITE_OK ){ |
+ return rc; |
+ } |
+ memcpy(pPayload, pBuf, nByte); |
+ }else{ |
+ /* Copy data from page to buffer (a read operation) */ |
+ memcpy(pBuf, pPayload, nByte); |
+ } |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** This function is used to read or overwrite payload information |
+** for the entry that the pCur cursor is pointing to. The eOp |
+** argument is interpreted as follows: |
+** |
+** 0: The operation is a read. Populate the overflow cache. |
+** 1: The operation is a write. Populate the overflow cache. |
+** 2: The operation is a read. Do not populate the overflow cache. |
+** |
+** A total of "amt" bytes are read or written beginning at "offset". |
+** Data is read to or from the buffer pBuf. |
+** |
+** The content being read or written might appear on the main page |
+** or be scattered out on multiple overflow pages. |
+** |
+** If the current cursor entry uses one or more overflow pages and the |
+** eOp argument is not 2, this function may allocate space for and lazily |
+** populates the overflow page-list cache array (BtCursor.aOverflow). |
+** Subsequent calls use this cache to make seeking to the supplied offset |
+** more efficient. |
+** |
+** Once an overflow page-list cache has been allocated, it may be |
+** invalidated if some other cursor writes to the same table, or if |
+** the cursor is moved to a different row. Additionally, in auto-vacuum |
+** mode, the following events may invalidate an overflow page-list cache. |
+** |
+** * An incremental vacuum, |
+** * A commit in auto_vacuum="full" mode, |
+** * Creating a table (may require moving an overflow page). |
+*/ |
+static int accessPayload( |
+ BtCursor *pCur, /* Cursor pointing to entry to read from */ |
+ u32 offset, /* Begin reading this far into payload */ |
+ u32 amt, /* Read this many bytes */ |
+ unsigned char *pBuf, /* Write the bytes into this buffer */ |
+ int eOp /* zero to read. non-zero to write. */ |
+){ |
+ unsigned char *aPayload; |
+ int rc = SQLITE_OK; |
+ int iIdx = 0; |
+ MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */ |
+ BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */ |
+#ifdef SQLITE_DIRECT_OVERFLOW_READ |
+ unsigned char * const pBufStart = pBuf; |
+ int bEnd; /* True if reading to end of data */ |
+#endif |
+ |
+ assert( pPage ); |
+ assert( pCur->eState==CURSOR_VALID ); |
+ assert( pCur->aiIdx[pCur->iPage]<pPage->nCell ); |
+ assert( cursorHoldsMutex(pCur) ); |
+ assert( eOp!=2 || offset==0 ); /* Always start from beginning for eOp==2 */ |
+ |
+ getCellInfo(pCur); |
+ aPayload = pCur->info.pPayload; |
+#ifdef SQLITE_DIRECT_OVERFLOW_READ |
+ bEnd = offset+amt==pCur->info.nPayload; |
+#endif |
+ assert( offset+amt <= pCur->info.nPayload ); |
+ |
+ if( &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize] ){ |
+ /* Trying to read or write past the end of the data is an error */ |
+ return SQLITE_CORRUPT_BKPT; |
+ } |
+ |
+ /* Check if data must be read/written to/from the btree page itself. */ |
+ if( offset<pCur->info.nLocal ){ |
+ int a = amt; |
+ if( a+offset>pCur->info.nLocal ){ |
+ a = pCur->info.nLocal - offset; |
+ } |
+ rc = copyPayload(&aPayload[offset], pBuf, a, (eOp & 0x01), pPage->pDbPage); |
+ offset = 0; |
+ pBuf += a; |
+ amt -= a; |
+ }else{ |
+ offset -= pCur->info.nLocal; |
+ } |
+ |
+ |
+ if( rc==SQLITE_OK && amt>0 ){ |
+ const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */ |
+ Pgno nextPage; |
+ |
+ nextPage = get4byte(&aPayload[pCur->info.nLocal]); |
+ |
+ /* If the BtCursor.aOverflow[] has not been allocated, allocate it now. |
+ ** Except, do not allocate aOverflow[] for eOp==2. |
+ ** |
+ ** The aOverflow[] array is sized at one entry for each overflow page |
+ ** in the overflow chain. The page number of the first overflow page is |
+ ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array |
+ ** means "not yet known" (the cache is lazily populated). |
+ */ |
+ if( eOp!=2 && (pCur->curFlags & BTCF_ValidOvfl)==0 ){ |
+ int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize; |
+ if( nOvfl>pCur->nOvflAlloc ){ |
+ Pgno *aNew = (Pgno*)sqlite3Realloc( |
+ pCur->aOverflow, nOvfl*2*sizeof(Pgno) |
+ ); |
+ if( aNew==0 ){ |
+ rc = SQLITE_NOMEM; |
+ }else{ |
+ pCur->nOvflAlloc = nOvfl*2; |
+ pCur->aOverflow = aNew; |
+ } |
+ } |
+ if( rc==SQLITE_OK ){ |
+ memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno)); |
+ pCur->curFlags |= BTCF_ValidOvfl; |
+ } |
+ } |
+ |
+ /* If the overflow page-list cache has been allocated and the |
+ ** entry for the first required overflow page is valid, skip |
+ ** directly to it. |
+ */ |
+ if( (pCur->curFlags & BTCF_ValidOvfl)!=0 |
+ && pCur->aOverflow[offset/ovflSize] |
+ ){ |
+ iIdx = (offset/ovflSize); |
+ nextPage = pCur->aOverflow[iIdx]; |
+ offset = (offset%ovflSize); |
+ } |
+ |
+ for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){ |
+ |
+ /* If required, populate the overflow page-list cache. */ |
+ if( (pCur->curFlags & BTCF_ValidOvfl)!=0 ){ |
+ assert( pCur->aOverflow[iIdx]==0 |
+ || pCur->aOverflow[iIdx]==nextPage |
+ || CORRUPT_DB ); |
+ pCur->aOverflow[iIdx] = nextPage; |
+ } |
+ |
+ if( offset>=ovflSize ){ |
+ /* The only reason to read this page is to obtain the page |
+ ** number for the next page in the overflow chain. The page |
+ ** data is not required. So first try to lookup the overflow |
+ ** page-list cache, if any, then fall back to the getOverflowPage() |
+ ** function. |
+ ** |
+ ** Note that the aOverflow[] array must be allocated because eOp!=2 |
+ ** here. If eOp==2, then offset==0 and this branch is never taken. |
+ */ |
+ assert( eOp!=2 ); |
+ assert( pCur->curFlags & BTCF_ValidOvfl ); |
+ assert( pCur->pBtree->db==pBt->db ); |
+ if( pCur->aOverflow[iIdx+1] ){ |
+ nextPage = pCur->aOverflow[iIdx+1]; |
+ }else{ |
+ rc = getOverflowPage(pBt, nextPage, 0, &nextPage); |
+ } |
+ offset -= ovflSize; |
+ }else{ |
+ /* Need to read this page properly. It contains some of the |
+ ** range of data that is being read (eOp==0) or written (eOp!=0). |
+ */ |
+#ifdef SQLITE_DIRECT_OVERFLOW_READ |
+ sqlite3_file *fd; |
+#endif |
+ int a = amt; |
+ if( a + offset > ovflSize ){ |
+ a = ovflSize - offset; |
+ } |
+ |
+#ifdef SQLITE_DIRECT_OVERFLOW_READ |
+ /* If all the following are true: |
+ ** |
+ ** 1) this is a read operation, and |
+ ** 2) data is required from the start of this overflow page, and |
+ ** 3) the database is file-backed, and |
+ ** 4) there is no open write-transaction, and |
+ ** 5) the database is not a WAL database, |
+ ** 6) all data from the page is being read. |
+ ** 7) at least 4 bytes have already been read into the output buffer |
+ ** |
+ ** then data can be read directly from the database file into the |
+ ** output buffer, bypassing the page-cache altogether. This speeds |
+ ** up loading large records that span many overflow pages. |
+ */ |
+ if( (eOp&0x01)==0 /* (1) */ |
+ && offset==0 /* (2) */ |
+ && (bEnd || a==ovflSize) /* (6) */ |
+ && pBt->inTransaction==TRANS_READ /* (4) */ |
+ && (fd = sqlite3PagerFile(pBt->pPager))->pMethods /* (3) */ |
+ && pBt->pPage1->aData[19]==0x01 /* (5) */ |
+ && &pBuf[-4]>=pBufStart /* (7) */ |
+ ){ |
+ u8 aSave[4]; |
+ u8 *aWrite = &pBuf[-4]; |
+ assert( aWrite>=pBufStart ); /* hence (7) */ |
+ memcpy(aSave, aWrite, 4); |
+ rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1)); |
+ nextPage = get4byte(aWrite); |
+ memcpy(aWrite, aSave, 4); |
+ }else |
+#endif |
+ |
+ { |
+ DbPage *pDbPage; |
+ rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage, |
+ ((eOp&0x01)==0 ? PAGER_GET_READONLY : 0) |
+ ); |
+ if( rc==SQLITE_OK ){ |
+ aPayload = sqlite3PagerGetData(pDbPage); |
+ nextPage = get4byte(aPayload); |
+ rc = copyPayload(&aPayload[offset+4], pBuf, a, (eOp&0x01), pDbPage); |
+ sqlite3PagerUnref(pDbPage); |
+ offset = 0; |
+ } |
+ } |
+ amt -= a; |
+ pBuf += a; |
+ } |
+ } |
+ } |
+ |
+ if( rc==SQLITE_OK && amt>0 ){ |
+ return SQLITE_CORRUPT_BKPT; |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Read part of the key associated with cursor pCur. Exactly |
+** "amt" bytes will be transferred into pBuf[]. The transfer |
+** begins at "offset". |
+** |
+** The caller must ensure that pCur is pointing to a valid row |
+** in the table. |
+** |
+** Return SQLITE_OK on success or an error code if anything goes |
+** wrong. An error is returned if "offset+amt" is larger than |
+** the available payload. |
+*/ |
+SQLITE_PRIVATE int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ |
+ assert( cursorHoldsMutex(pCur) ); |
+ assert( pCur->eState==CURSOR_VALID ); |
+ assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] ); |
+ assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell ); |
+ return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0); |
+} |
+ |
+/* |
+** Read part of the data associated with cursor pCur. Exactly |
+** "amt" bytes will be transfered into pBuf[]. The transfer |
+** begins at "offset". |
+** |
+** Return SQLITE_OK on success or an error code if anything goes |
+** wrong. An error is returned if "offset+amt" is larger than |
+** the available payload. |
+*/ |
+SQLITE_PRIVATE int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ |
+ int rc; |
+ |
+#ifndef SQLITE_OMIT_INCRBLOB |
+ if ( pCur->eState==CURSOR_INVALID ){ |
+ return SQLITE_ABORT; |
+ } |
+#endif |
+ |
+ assert( cursorHoldsMutex(pCur) ); |
+ rc = restoreCursorPosition(pCur); |
+ if( rc==SQLITE_OK ){ |
+ assert( pCur->eState==CURSOR_VALID ); |
+ assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] ); |
+ assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell ); |
+ rc = accessPayload(pCur, offset, amt, pBuf, 0); |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Return a pointer to payload information from the entry that the |
+** pCur cursor is pointing to. The pointer is to the beginning of |
+** the key if index btrees (pPage->intKey==0) and is the data for |
+** table btrees (pPage->intKey==1). The number of bytes of available |
+** key/data is written into *pAmt. If *pAmt==0, then the value |
+** returned will not be a valid pointer. |
+** |
+** This routine is an optimization. It is common for the entire key |
+** and data to fit on the local page and for there to be no overflow |
+** pages. When that is so, this routine can be used to access the |
+** key and data without making a copy. If the key and/or data spills |
+** onto overflow pages, then accessPayload() must be used to reassemble |
+** the key/data and copy it into a preallocated buffer. |
+** |
+** The pointer returned by this routine looks directly into the cached |
+** page of the database. The data might change or move the next time |
+** any btree routine is called. |
+*/ |
+static const void *fetchPayload( |
+ BtCursor *pCur, /* Cursor pointing to entry to read from */ |
+ u32 *pAmt /* Write the number of available bytes here */ |
+){ |
+ u32 amt; |
+ assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]); |
+ assert( pCur->eState==CURSOR_VALID ); |
+ assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); |
+ assert( cursorHoldsMutex(pCur) ); |
+ assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell ); |
+ assert( pCur->info.nSize>0 ); |
+ assert( pCur->info.pPayload>pCur->apPage[pCur->iPage]->aData || CORRUPT_DB ); |
+ assert( pCur->info.pPayload<pCur->apPage[pCur->iPage]->aDataEnd ||CORRUPT_DB); |
+ amt = (int)(pCur->apPage[pCur->iPage]->aDataEnd - pCur->info.pPayload); |
+ if( pCur->info.nLocal<amt ) amt = pCur->info.nLocal; |
+ *pAmt = amt; |
+ return (void*)pCur->info.pPayload; |
+} |
+ |
+ |
+/* |
+** For the entry that cursor pCur is point to, return as |
+** many bytes of the key or data as are available on the local |
+** b-tree page. Write the number of available bytes into *pAmt. |
+** |
+** The pointer returned is ephemeral. The key/data may move |
+** or be destroyed on the next call to any Btree routine, |
+** including calls from other threads against the same cache. |
+** Hence, a mutex on the BtShared should be held prior to calling |
+** this routine. |
+** |
+** These routines is used to get quick access to key and data |
+** in the common case where no overflow pages are used. |
+*/ |
+SQLITE_PRIVATE const void *sqlite3BtreeKeyFetch(BtCursor *pCur, u32 *pAmt){ |
+ return fetchPayload(pCur, pAmt); |
+} |
+SQLITE_PRIVATE const void *sqlite3BtreeDataFetch(BtCursor *pCur, u32 *pAmt){ |
+ return fetchPayload(pCur, pAmt); |
+} |
+ |
+ |
+/* |
+** Move the cursor down to a new child page. The newPgno argument is the |
+** page number of the child page to move to. |
+** |
+** This function returns SQLITE_CORRUPT if the page-header flags field of |
+** the new child page does not match the flags field of the parent (i.e. |
+** if an intkey page appears to be the parent of a non-intkey page, or |
+** vice-versa). |
+*/ |
+static int moveToChild(BtCursor *pCur, u32 newPgno){ |
+ BtShared *pBt = pCur->pBt; |
+ |
+ assert( cursorHoldsMutex(pCur) ); |
+ assert( pCur->eState==CURSOR_VALID ); |
+ assert( pCur->iPage<BTCURSOR_MAX_DEPTH ); |
+ assert( pCur->iPage>=0 ); |
+ if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){ |
+ return SQLITE_CORRUPT_BKPT; |
+ } |
+ pCur->info.nSize = 0; |
+ pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); |
+ pCur->iPage++; |
+ pCur->aiIdx[pCur->iPage] = 0; |
+ return getAndInitPage(pBt, newPgno, &pCur->apPage[pCur->iPage], |
+ pCur, pCur->curPagerFlags); |
+} |
+ |
+#if SQLITE_DEBUG |
+/* |
+** Page pParent is an internal (non-leaf) tree page. This function |
+** asserts that page number iChild is the left-child if the iIdx'th |
+** cell in page pParent. Or, if iIdx is equal to the total number of |
+** cells in pParent, that page number iChild is the right-child of |
+** the page. |
+*/ |
+static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){ |
+ if( CORRUPT_DB ) return; /* The conditions tested below might not be true |
+ ** in a corrupt database */ |
+ assert( iIdx<=pParent->nCell ); |
+ if( iIdx==pParent->nCell ){ |
+ assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild ); |
+ }else{ |
+ assert( get4byte(findCell(pParent, iIdx))==iChild ); |
+ } |
+} |
+#else |
+# define assertParentIndex(x,y,z) |
+#endif |
+ |
+/* |
+** Move the cursor up to the parent page. |
+** |
+** pCur->idx is set to the cell index that contains the pointer |
+** to the page we are coming from. If we are coming from the |
+** right-most child page then pCur->idx is set to one more than |
+** the largest cell index. |
+*/ |
+static void moveToParent(BtCursor *pCur){ |
+ assert( cursorHoldsMutex(pCur) ); |
+ assert( pCur->eState==CURSOR_VALID ); |
+ assert( pCur->iPage>0 ); |
+ assert( pCur->apPage[pCur->iPage] ); |
+ assertParentIndex( |
+ pCur->apPage[pCur->iPage-1], |
+ pCur->aiIdx[pCur->iPage-1], |
+ pCur->apPage[pCur->iPage]->pgno |
+ ); |
+ testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell ); |
+ pCur->info.nSize = 0; |
+ pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); |
+ releasePageNotNull(pCur->apPage[pCur->iPage--]); |
+} |
+ |
+/* |
+** Move the cursor to point to the root page of its b-tree structure. |
+** |
+** If the table has a virtual root page, then the cursor is moved to point |
+** to the virtual root page instead of the actual root page. A table has a |
+** virtual root page when the actual root page contains no cells and a |
+** single child page. This can only happen with the table rooted at page 1. |
+** |
+** If the b-tree structure is empty, the cursor state is set to |
+** CURSOR_INVALID. Otherwise, the cursor is set to point to the first |
+** cell located on the root (or virtual root) page and the cursor state |
+** is set to CURSOR_VALID. |
+** |
+** If this function returns successfully, it may be assumed that the |
+** page-header flags indicate that the [virtual] root-page is the expected |
+** kind of b-tree page (i.e. if when opening the cursor the caller did not |
+** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D, |
+** indicating a table b-tree, or if the caller did specify a KeyInfo |
+** structure the flags byte is set to 0x02 or 0x0A, indicating an index |
+** b-tree). |
+*/ |
+static int moveToRoot(BtCursor *pCur){ |
+ MemPage *pRoot; |
+ int rc = SQLITE_OK; |
+ |
+ assert( cursorHoldsMutex(pCur) ); |
+ assert( CURSOR_INVALID < CURSOR_REQUIRESEEK ); |
+ assert( CURSOR_VALID < CURSOR_REQUIRESEEK ); |
+ assert( CURSOR_FAULT > CURSOR_REQUIRESEEK ); |
+ if( pCur->eState>=CURSOR_REQUIRESEEK ){ |
+ if( pCur->eState==CURSOR_FAULT ){ |
+ assert( pCur->skipNext!=SQLITE_OK ); |
+ return pCur->skipNext; |
+ } |
+ sqlite3BtreeClearCursor(pCur); |
+ } |
+ |
+ if( pCur->iPage>=0 ){ |
+ while( pCur->iPage ){ |
+ assert( pCur->apPage[pCur->iPage]!=0 ); |
+ releasePageNotNull(pCur->apPage[pCur->iPage--]); |
+ } |
+ }else if( pCur->pgnoRoot==0 ){ |
+ pCur->eState = CURSOR_INVALID; |
+ return SQLITE_OK; |
+ }else{ |
+ assert( pCur->iPage==(-1) ); |
+ rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->apPage[0], |
+ 0, pCur->curPagerFlags); |
+ if( rc!=SQLITE_OK ){ |
+ pCur->eState = CURSOR_INVALID; |
+ return rc; |
+ } |
+ pCur->iPage = 0; |
+ pCur->curIntKey = pCur->apPage[0]->intKey; |
+ } |
+ pRoot = pCur->apPage[0]; |
+ assert( pRoot->pgno==pCur->pgnoRoot ); |
+ |
+ /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor |
+ ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is |
+ ** NULL, the caller expects a table b-tree. If this is not the case, |
+ ** return an SQLITE_CORRUPT error. |
+ ** |
+ ** Earlier versions of SQLite assumed that this test could not fail |
+ ** if the root page was already loaded when this function was called (i.e. |
+ ** if pCur->iPage>=0). But this is not so if the database is corrupted |
+ ** in such a way that page pRoot is linked into a second b-tree table |
+ ** (or the freelist). */ |
+ assert( pRoot->intKey==1 || pRoot->intKey==0 ); |
+ if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){ |
+ return SQLITE_CORRUPT_BKPT; |
+ } |
+ |
+ pCur->aiIdx[0] = 0; |
+ pCur->info.nSize = 0; |
+ pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl); |
+ |
+ if( pRoot->nCell>0 ){ |
+ pCur->eState = CURSOR_VALID; |
+ }else if( !pRoot->leaf ){ |
+ Pgno subpage; |
+ if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT; |
+ subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]); |
+ pCur->eState = CURSOR_VALID; |
+ rc = moveToChild(pCur, subpage); |
+ }else{ |
+ pCur->eState = CURSOR_INVALID; |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Move the cursor down to the left-most leaf entry beneath the |
+** entry to which it is currently pointing. |
+** |
+** The left-most leaf is the one with the smallest key - the first |
+** in ascending order. |
+*/ |
+static int moveToLeftmost(BtCursor *pCur){ |
+ Pgno pgno; |
+ int rc = SQLITE_OK; |
+ MemPage *pPage; |
+ |
+ assert( cursorHoldsMutex(pCur) ); |
+ assert( pCur->eState==CURSOR_VALID ); |
+ while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){ |
+ assert( pCur->aiIdx[pCur->iPage]<pPage->nCell ); |
+ pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage])); |
+ rc = moveToChild(pCur, pgno); |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Move the cursor down to the right-most leaf entry beneath the |
+** page to which it is currently pointing. Notice the difference |
+** between moveToLeftmost() and moveToRightmost(). moveToLeftmost() |
+** finds the left-most entry beneath the *entry* whereas moveToRightmost() |
+** finds the right-most entry beneath the *page*. |
+** |
+** The right-most entry is the one with the largest key - the last |
+** key in ascending order. |
+*/ |
+static int moveToRightmost(BtCursor *pCur){ |
+ Pgno pgno; |
+ int rc = SQLITE_OK; |
+ MemPage *pPage = 0; |
+ |
+ assert( cursorHoldsMutex(pCur) ); |
+ assert( pCur->eState==CURSOR_VALID ); |
+ while( !(pPage = pCur->apPage[pCur->iPage])->leaf ){ |
+ pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); |
+ pCur->aiIdx[pCur->iPage] = pPage->nCell; |
+ rc = moveToChild(pCur, pgno); |
+ if( rc ) return rc; |
+ } |
+ pCur->aiIdx[pCur->iPage] = pPage->nCell-1; |
+ assert( pCur->info.nSize==0 ); |
+ assert( (pCur->curFlags & BTCF_ValidNKey)==0 ); |
+ return SQLITE_OK; |
+} |
+ |
+/* Move the cursor to the first entry in the table. Return SQLITE_OK |
+** on success. Set *pRes to 0 if the cursor actually points to something |
+** or set *pRes to 1 if the table is empty. |
+*/ |
+SQLITE_PRIVATE int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){ |
+ int rc; |
+ |
+ assert( cursorHoldsMutex(pCur) ); |
+ assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); |
+ rc = moveToRoot(pCur); |
+ if( rc==SQLITE_OK ){ |
+ if( pCur->eState==CURSOR_INVALID ){ |
+ assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 ); |
+ *pRes = 1; |
+ }else{ |
+ assert( pCur->apPage[pCur->iPage]->nCell>0 ); |
+ *pRes = 0; |
+ rc = moveToLeftmost(pCur); |
+ } |
+ } |
+ return rc; |
+} |
+ |
+/* Move the cursor to the last entry in the table. Return SQLITE_OK |
+** on success. Set *pRes to 0 if the cursor actually points to something |
+** or set *pRes to 1 if the table is empty. |
+*/ |
+SQLITE_PRIVATE int sqlite3BtreeLast(BtCursor *pCur, int *pRes){ |
+ int rc; |
+ |
+ assert( cursorHoldsMutex(pCur) ); |
+ assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); |
+ |
+ /* If the cursor already points to the last entry, this is a no-op. */ |
+ if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){ |
+#ifdef SQLITE_DEBUG |
+ /* This block serves to assert() that the cursor really does point |
+ ** to the last entry in the b-tree. */ |
+ int ii; |
+ for(ii=0; ii<pCur->iPage; ii++){ |
+ assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell ); |
+ } |
+ assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 ); |
+ assert( pCur->apPage[pCur->iPage]->leaf ); |
+#endif |
+ return SQLITE_OK; |
+ } |
+ |
+ rc = moveToRoot(pCur); |
+ if( rc==SQLITE_OK ){ |
+ if( CURSOR_INVALID==pCur->eState ){ |
+ assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 ); |
+ *pRes = 1; |
+ }else{ |
+ assert( pCur->eState==CURSOR_VALID ); |
+ *pRes = 0; |
+ rc = moveToRightmost(pCur); |
+ if( rc==SQLITE_OK ){ |
+ pCur->curFlags |= BTCF_AtLast; |
+ }else{ |
+ pCur->curFlags &= ~BTCF_AtLast; |
+ } |
+ |
+ } |
+ } |
+ return rc; |
+} |
+ |
+/* Move the cursor so that it points to an entry near the key |
+** specified by pIdxKey or intKey. Return a success code. |
+** |
+** For INTKEY tables, the intKey parameter is used. pIdxKey |
+** must be NULL. For index tables, pIdxKey is used and intKey |
+** is ignored. |
+** |
+** If an exact match is not found, then the cursor is always |
+** left pointing at a leaf page which would hold the entry if it |
+** were present. The cursor might point to an entry that comes |
+** before or after the key. |
+** |
+** An integer is written into *pRes which is the result of |
+** comparing the key with the entry to which the cursor is |
+** pointing. The meaning of the integer written into |
+** *pRes is as follows: |
+** |
+** *pRes<0 The cursor is left pointing at an entry that |
+** is smaller than intKey/pIdxKey or if the table is empty |
+** and the cursor is therefore left point to nothing. |
+** |
+** *pRes==0 The cursor is left pointing at an entry that |
+** exactly matches intKey/pIdxKey. |
+** |
+** *pRes>0 The cursor is left pointing at an entry that |
+** is larger than intKey/pIdxKey. |
+** |
+** For index tables, the pIdxKey->eqSeen field is set to 1 if there |
+** exists an entry in the table that exactly matches pIdxKey. |
+*/ |
+SQLITE_PRIVATE int sqlite3BtreeMovetoUnpacked( |
+ BtCursor *pCur, /* The cursor to be moved */ |
+ UnpackedRecord *pIdxKey, /* Unpacked index key */ |
+ i64 intKey, /* The table key */ |
+ int biasRight, /* If true, bias the search to the high end */ |
+ int *pRes /* Write search results here */ |
+){ |
+ int rc; |
+ RecordCompare xRecordCompare; |
+ |
+ assert( cursorHoldsMutex(pCur) ); |
+ assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); |
+ assert( pRes ); |
+ assert( (pIdxKey==0)==(pCur->pKeyInfo==0) ); |
+ |
+ /* If the cursor is already positioned at the point we are trying |
+ ** to move to, then just return without doing any work */ |
+ if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0 |
+ && pCur->curIntKey |
+ ){ |
+ if( pCur->info.nKey==intKey ){ |
+ *pRes = 0; |
+ return SQLITE_OK; |
+ } |
+ if( (pCur->curFlags & BTCF_AtLast)!=0 && pCur->info.nKey<intKey ){ |
+ *pRes = -1; |
+ return SQLITE_OK; |
+ } |
+ } |
+ |
+ if( pIdxKey ){ |
+ xRecordCompare = sqlite3VdbeFindCompare(pIdxKey); |
+ pIdxKey->errCode = 0; |
+ assert( pIdxKey->default_rc==1 |
+ || pIdxKey->default_rc==0 |
+ || pIdxKey->default_rc==-1 |
+ ); |
+ }else{ |
+ xRecordCompare = 0; /* All keys are integers */ |
+ } |
+ |
+ rc = moveToRoot(pCur); |
+ if( rc ){ |
+ return rc; |
+ } |
+ assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] ); |
+ assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit ); |
+ assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 ); |
+ if( pCur->eState==CURSOR_INVALID ){ |
+ *pRes = -1; |
+ assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 ); |
+ return SQLITE_OK; |
+ } |
+ assert( pCur->apPage[0]->intKey==pCur->curIntKey ); |
+ assert( pCur->curIntKey || pIdxKey ); |
+ for(;;){ |
+ int lwr, upr, idx, c; |
+ Pgno chldPg; |
+ MemPage *pPage = pCur->apPage[pCur->iPage]; |
+ u8 *pCell; /* Pointer to current cell in pPage */ |
+ |
+ /* pPage->nCell must be greater than zero. If this is the root-page |
+ ** the cursor would have been INVALID above and this for(;;) loop |
+ ** not run. If this is not the root-page, then the moveToChild() routine |
+ ** would have already detected db corruption. Similarly, pPage must |
+ ** be the right kind (index or table) of b-tree page. Otherwise |
+ ** a moveToChild() or moveToRoot() call would have detected corruption. */ |
+ assert( pPage->nCell>0 ); |
+ assert( pPage->intKey==(pIdxKey==0) ); |
+ lwr = 0; |
+ upr = pPage->nCell-1; |
+ assert( biasRight==0 || biasRight==1 ); |
+ idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */ |
+ pCur->aiIdx[pCur->iPage] = (u16)idx; |
+ if( xRecordCompare==0 ){ |
+ for(;;){ |
+ i64 nCellKey; |
+ pCell = findCellPastPtr(pPage, idx); |
+ if( pPage->intKeyLeaf ){ |
+ while( 0x80 <= *(pCell++) ){ |
+ if( pCell>=pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT; |
+ } |
+ } |
+ getVarint(pCell, (u64*)&nCellKey); |
+ if( nCellKey<intKey ){ |
+ lwr = idx+1; |
+ if( lwr>upr ){ c = -1; break; } |
+ }else if( nCellKey>intKey ){ |
+ upr = idx-1; |
+ if( lwr>upr ){ c = +1; break; } |
+ }else{ |
+ assert( nCellKey==intKey ); |
+ pCur->curFlags |= BTCF_ValidNKey; |
+ pCur->info.nKey = nCellKey; |
+ pCur->aiIdx[pCur->iPage] = (u16)idx; |
+ if( !pPage->leaf ){ |
+ lwr = idx; |
+ goto moveto_next_layer; |
+ }else{ |
+ *pRes = 0; |
+ rc = SQLITE_OK; |
+ goto moveto_finish; |
+ } |
+ } |
+ assert( lwr+upr>=0 ); |
+ idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */ |
+ } |
+ }else{ |
+ for(;;){ |
+ int nCell; /* Size of the pCell cell in bytes */ |
+ pCell = findCellPastPtr(pPage, idx); |
+ |
+ /* The maximum supported page-size is 65536 bytes. This means that |
+ ** the maximum number of record bytes stored on an index B-Tree |
+ ** page is less than 16384 bytes and may be stored as a 2-byte |
+ ** varint. This information is used to attempt to avoid parsing |
+ ** the entire cell by checking for the cases where the record is |
+ ** stored entirely within the b-tree page by inspecting the first |
+ ** 2 bytes of the cell. |
+ */ |
+ nCell = pCell[0]; |
+ if( nCell<=pPage->max1bytePayload ){ |
+ /* This branch runs if the record-size field of the cell is a |
+ ** single byte varint and the record fits entirely on the main |
+ ** b-tree page. */ |
+ testcase( pCell+nCell+1==pPage->aDataEnd ); |
+ c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey); |
+ }else if( !(pCell[1] & 0x80) |
+ && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal |
+ ){ |
+ /* The record-size field is a 2 byte varint and the record |
+ ** fits entirely on the main b-tree page. */ |
+ testcase( pCell+nCell+2==pPage->aDataEnd ); |
+ c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey); |
+ }else{ |
+ /* The record flows over onto one or more overflow pages. In |
+ ** this case the whole cell needs to be parsed, a buffer allocated |
+ ** and accessPayload() used to retrieve the record into the |
+ ** buffer before VdbeRecordCompare() can be called. |
+ ** |
+ ** If the record is corrupt, the xRecordCompare routine may read |
+ ** up to two varints past the end of the buffer. An extra 18 |
+ ** bytes of padding is allocated at the end of the buffer in |
+ ** case this happens. */ |
+ void *pCellKey; |
+ u8 * const pCellBody = pCell - pPage->childPtrSize; |
+ pPage->xParseCell(pPage, pCellBody, &pCur->info); |
+ nCell = (int)pCur->info.nKey; |
+ testcase( nCell<0 ); /* True if key size is 2^32 or more */ |
+ testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */ |
+ testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */ |
+ testcase( nCell==2 ); /* Minimum legal index key size */ |
+ if( nCell<2 ){ |
+ rc = SQLITE_CORRUPT_BKPT; |
+ goto moveto_finish; |
+ } |
+ pCellKey = sqlite3Malloc( nCell+18 ); |
+ if( pCellKey==0 ){ |
+ rc = SQLITE_NOMEM; |
+ goto moveto_finish; |
+ } |
+ pCur->aiIdx[pCur->iPage] = (u16)idx; |
+ rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 2); |
+ if( rc ){ |
+ sqlite3_free(pCellKey); |
+ goto moveto_finish; |
+ } |
+ c = xRecordCompare(nCell, pCellKey, pIdxKey); |
+ sqlite3_free(pCellKey); |
+ } |
+ assert( |
+ (pIdxKey->errCode!=SQLITE_CORRUPT || c==0) |
+ && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed) |
+ ); |
+ if( c<0 ){ |
+ lwr = idx+1; |
+ }else if( c>0 ){ |
+ upr = idx-1; |
+ }else{ |
+ assert( c==0 ); |
+ *pRes = 0; |
+ rc = SQLITE_OK; |
+ pCur->aiIdx[pCur->iPage] = (u16)idx; |
+ if( pIdxKey->errCode ) rc = SQLITE_CORRUPT; |
+ goto moveto_finish; |
+ } |
+ if( lwr>upr ) break; |
+ assert( lwr+upr>=0 ); |
+ idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */ |
+ } |
+ } |
+ assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) ); |
+ assert( pPage->isInit ); |
+ if( pPage->leaf ){ |
+ assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell ); |
+ pCur->aiIdx[pCur->iPage] = (u16)idx; |
+ *pRes = c; |
+ rc = SQLITE_OK; |
+ goto moveto_finish; |
+ } |
+moveto_next_layer: |
+ if( lwr>=pPage->nCell ){ |
+ chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]); |
+ }else{ |
+ chldPg = get4byte(findCell(pPage, lwr)); |
+ } |
+ pCur->aiIdx[pCur->iPage] = (u16)lwr; |
+ rc = moveToChild(pCur, chldPg); |
+ if( rc ) break; |
+ } |
+moveto_finish: |
+ pCur->info.nSize = 0; |
+ pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); |
+ return rc; |
+} |
+ |
+ |
+/* |
+** Return TRUE if the cursor is not pointing at an entry of the table. |
+** |
+** TRUE will be returned after a call to sqlite3BtreeNext() moves |
+** past the last entry in the table or sqlite3BtreePrev() moves past |
+** the first entry. TRUE is also returned if the table is empty. |
+*/ |
+SQLITE_PRIVATE int sqlite3BtreeEof(BtCursor *pCur){ |
+ /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries |
+ ** have been deleted? This API will need to change to return an error code |
+ ** as well as the boolean result value. |
+ */ |
+ return (CURSOR_VALID!=pCur->eState); |
+} |
+ |
+/* |
+** Advance the cursor to the next entry in the database. If |
+** successful then set *pRes=0. If the cursor |
+** was already pointing to the last entry in the database before |
+** this routine was called, then set *pRes=1. |
+** |
+** The main entry point is sqlite3BtreeNext(). That routine is optimized |
+** for the common case of merely incrementing the cell counter BtCursor.aiIdx |
+** to the next cell on the current page. The (slower) btreeNext() helper |
+** routine is called when it is necessary to move to a different page or |
+** to restore the cursor. |
+** |
+** The calling function will set *pRes to 0 or 1. The initial *pRes value |
+** will be 1 if the cursor being stepped corresponds to an SQL index and |
+** if this routine could have been skipped if that SQL index had been |
+** a unique index. Otherwise the caller will have set *pRes to zero. |
+** Zero is the common case. The btree implementation is free to use the |
+** initial *pRes value as a hint to improve performance, but the current |
+** SQLite btree implementation does not. (Note that the comdb2 btree |
+** implementation does use this hint, however.) |
+*/ |
+static SQLITE_NOINLINE int btreeNext(BtCursor *pCur, int *pRes){ |
+ int rc; |
+ int idx; |
+ MemPage *pPage; |
+ |
+ assert( cursorHoldsMutex(pCur) ); |
+ assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID ); |
+ assert( *pRes==0 ); |
+ if( pCur->eState!=CURSOR_VALID ){ |
+ assert( (pCur->curFlags & BTCF_ValidOvfl)==0 ); |
+ rc = restoreCursorPosition(pCur); |
+ if( rc!=SQLITE_OK ){ |
+ return rc; |
+ } |
+ if( CURSOR_INVALID==pCur->eState ){ |
+ *pRes = 1; |
+ return SQLITE_OK; |
+ } |
+ if( pCur->skipNext ){ |
+ assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT ); |
+ pCur->eState = CURSOR_VALID; |
+ if( pCur->skipNext>0 ){ |
+ pCur->skipNext = 0; |
+ return SQLITE_OK; |
+ } |
+ pCur->skipNext = 0; |
+ } |
+ } |
+ |
+ pPage = pCur->apPage[pCur->iPage]; |
+ idx = ++pCur->aiIdx[pCur->iPage]; |
+ assert( pPage->isInit ); |
+ |
+ /* If the database file is corrupt, it is possible for the value of idx |
+ ** to be invalid here. This can only occur if a second cursor modifies |
+ ** the page while cursor pCur is holding a reference to it. Which can |
+ ** only happen if the database is corrupt in such a way as to link the |
+ ** page into more than one b-tree structure. */ |
+ testcase( idx>pPage->nCell ); |
+ |
+ if( idx>=pPage->nCell ){ |
+ if( !pPage->leaf ){ |
+ rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); |
+ if( rc ) return rc; |
+ return moveToLeftmost(pCur); |
+ } |
+ do{ |
+ if( pCur->iPage==0 ){ |
+ *pRes = 1; |
+ pCur->eState = CURSOR_INVALID; |
+ return SQLITE_OK; |
+ } |
+ moveToParent(pCur); |
+ pPage = pCur->apPage[pCur->iPage]; |
+ }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell ); |
+ if( pPage->intKey ){ |
+ return sqlite3BtreeNext(pCur, pRes); |
+ }else{ |
+ return SQLITE_OK; |
+ } |
+ } |
+ if( pPage->leaf ){ |
+ return SQLITE_OK; |
+ }else{ |
+ return moveToLeftmost(pCur); |
+ } |
+} |
+SQLITE_PRIVATE int sqlite3BtreeNext(BtCursor *pCur, int *pRes){ |
+ MemPage *pPage; |
+ assert( cursorHoldsMutex(pCur) ); |
+ assert( pRes!=0 ); |
+ assert( *pRes==0 || *pRes==1 ); |
+ assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID ); |
+ pCur->info.nSize = 0; |
+ pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); |
+ *pRes = 0; |
+ if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur, pRes); |
+ pPage = pCur->apPage[pCur->iPage]; |
+ if( (++pCur->aiIdx[pCur->iPage])>=pPage->nCell ){ |
+ pCur->aiIdx[pCur->iPage]--; |
+ return btreeNext(pCur, pRes); |
+ } |
+ if( pPage->leaf ){ |
+ return SQLITE_OK; |
+ }else{ |
+ return moveToLeftmost(pCur); |
+ } |
+} |
+ |
+/* |
+** Step the cursor to the back to the previous entry in the database. If |
+** successful then set *pRes=0. If the cursor |
+** was already pointing to the first entry in the database before |
+** this routine was called, then set *pRes=1. |
+** |
+** The main entry point is sqlite3BtreePrevious(). That routine is optimized |
+** for the common case of merely decrementing the cell counter BtCursor.aiIdx |
+** to the previous cell on the current page. The (slower) btreePrevious() |
+** helper routine is called when it is necessary to move to a different page |
+** or to restore the cursor. |
+** |
+** The calling function will set *pRes to 0 or 1. The initial *pRes value |
+** will be 1 if the cursor being stepped corresponds to an SQL index and |
+** if this routine could have been skipped if that SQL index had been |
+** a unique index. Otherwise the caller will have set *pRes to zero. |
+** Zero is the common case. The btree implementation is free to use the |
+** initial *pRes value as a hint to improve performance, but the current |
+** SQLite btree implementation does not. (Note that the comdb2 btree |
+** implementation does use this hint, however.) |
+*/ |
+static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur, int *pRes){ |
+ int rc; |
+ MemPage *pPage; |
+ |
+ assert( cursorHoldsMutex(pCur) ); |
+ assert( pRes!=0 ); |
+ assert( *pRes==0 ); |
+ assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID ); |
+ assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 ); |
+ assert( pCur->info.nSize==0 ); |
+ if( pCur->eState!=CURSOR_VALID ){ |
+ rc = restoreCursorPosition(pCur); |
+ if( rc!=SQLITE_OK ){ |
+ return rc; |
+ } |
+ if( CURSOR_INVALID==pCur->eState ){ |
+ *pRes = 1; |
+ return SQLITE_OK; |
+ } |
+ if( pCur->skipNext ){ |
+ assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT ); |
+ pCur->eState = CURSOR_VALID; |
+ if( pCur->skipNext<0 ){ |
+ pCur->skipNext = 0; |
+ return SQLITE_OK; |
+ } |
+ pCur->skipNext = 0; |
+ } |
+ } |
+ |
+ pPage = pCur->apPage[pCur->iPage]; |
+ assert( pPage->isInit ); |
+ if( !pPage->leaf ){ |
+ int idx = pCur->aiIdx[pCur->iPage]; |
+ rc = moveToChild(pCur, get4byte(findCell(pPage, idx))); |
+ if( rc ) return rc; |
+ rc = moveToRightmost(pCur); |
+ }else{ |
+ while( pCur->aiIdx[pCur->iPage]==0 ){ |
+ if( pCur->iPage==0 ){ |
+ pCur->eState = CURSOR_INVALID; |
+ *pRes = 1; |
+ return SQLITE_OK; |
+ } |
+ moveToParent(pCur); |
+ } |
+ assert( pCur->info.nSize==0 ); |
+ assert( (pCur->curFlags & (BTCF_ValidNKey|BTCF_ValidOvfl))==0 ); |
+ |
+ pCur->aiIdx[pCur->iPage]--; |
+ pPage = pCur->apPage[pCur->iPage]; |
+ if( pPage->intKey && !pPage->leaf ){ |
+ rc = sqlite3BtreePrevious(pCur, pRes); |
+ }else{ |
+ rc = SQLITE_OK; |
+ } |
+ } |
+ return rc; |
+} |
+SQLITE_PRIVATE int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){ |
+ assert( cursorHoldsMutex(pCur) ); |
+ assert( pRes!=0 ); |
+ assert( *pRes==0 || *pRes==1 ); |
+ assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID ); |
+ *pRes = 0; |
+ pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey); |
+ pCur->info.nSize = 0; |
+ if( pCur->eState!=CURSOR_VALID |
+ || pCur->aiIdx[pCur->iPage]==0 |
+ || pCur->apPage[pCur->iPage]->leaf==0 |
+ ){ |
+ return btreePrevious(pCur, pRes); |
+ } |
+ pCur->aiIdx[pCur->iPage]--; |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Allocate a new page from the database file. |
+** |
+** The new page is marked as dirty. (In other words, sqlite3PagerWrite() |
+** has already been called on the new page.) The new page has also |
+** been referenced and the calling routine is responsible for calling |
+** sqlite3PagerUnref() on the new page when it is done. |
+** |
+** SQLITE_OK is returned on success. Any other return value indicates |
+** an error. *ppPage is set to NULL in the event of an error. |
+** |
+** If the "nearby" parameter is not 0, then an effort is made to |
+** locate a page close to the page number "nearby". This can be used in an |
+** attempt to keep related pages close to each other in the database file, |
+** which in turn can make database access faster. |
+** |
+** If the eMode parameter is BTALLOC_EXACT and the nearby page exists |
+** anywhere on the free-list, then it is guaranteed to be returned. If |
+** eMode is BTALLOC_LT then the page returned will be less than or equal |
+** to nearby if any such page exists. If eMode is BTALLOC_ANY then there |
+** are no restrictions on which page is returned. |
+*/ |
+static int allocateBtreePage( |
+ BtShared *pBt, /* The btree */ |
+ MemPage **ppPage, /* Store pointer to the allocated page here */ |
+ Pgno *pPgno, /* Store the page number here */ |
+ Pgno nearby, /* Search for a page near this one */ |
+ u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */ |
+){ |
+ MemPage *pPage1; |
+ int rc; |
+ u32 n; /* Number of pages on the freelist */ |
+ u32 k; /* Number of leaves on the trunk of the freelist */ |
+ MemPage *pTrunk = 0; |
+ MemPage *pPrevTrunk = 0; |
+ Pgno mxPage; /* Total size of the database file */ |
+ |
+ assert( sqlite3_mutex_held(pBt->mutex) ); |
+ assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) ); |
+ pPage1 = pBt->pPage1; |
+ mxPage = btreePagecount(pBt); |
+ /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36 |
+ ** stores stores the total number of pages on the freelist. */ |
+ n = get4byte(&pPage1->aData[36]); |
+ testcase( n==mxPage-1 ); |
+ if( n>=mxPage ){ |
+ return SQLITE_CORRUPT_BKPT; |
+ } |
+ if( n>0 ){ |
+ /* There are pages on the freelist. Reuse one of those pages. */ |
+ Pgno iTrunk; |
+ u8 searchList = 0; /* If the free-list must be searched for 'nearby' */ |
+ u32 nSearch = 0; /* Count of the number of search attempts */ |
+ |
+ /* If eMode==BTALLOC_EXACT and a query of the pointer-map |
+ ** shows that the page 'nearby' is somewhere on the free-list, then |
+ ** the entire-list will be searched for that page. |
+ */ |
+#ifndef SQLITE_OMIT_AUTOVACUUM |
+ if( eMode==BTALLOC_EXACT ){ |
+ if( nearby<=mxPage ){ |
+ u8 eType; |
+ assert( nearby>0 ); |
+ assert( pBt->autoVacuum ); |
+ rc = ptrmapGet(pBt, nearby, &eType, 0); |
+ if( rc ) return rc; |
+ if( eType==PTRMAP_FREEPAGE ){ |
+ searchList = 1; |
+ } |
+ } |
+ }else if( eMode==BTALLOC_LE ){ |
+ searchList = 1; |
+ } |
+#endif |
+ |
+ /* Decrement the free-list count by 1. Set iTrunk to the index of the |
+ ** first free-list trunk page. iPrevTrunk is initially 1. |
+ */ |
+ rc = sqlite3PagerWrite(pPage1->pDbPage); |
+ if( rc ) return rc; |
+ put4byte(&pPage1->aData[36], n-1); |
+ |
+ /* The code within this loop is run only once if the 'searchList' variable |
+ ** is not true. Otherwise, it runs once for each trunk-page on the |
+ ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT) |
+ ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT) |
+ */ |
+ do { |
+ pPrevTrunk = pTrunk; |
+ if( pPrevTrunk ){ |
+ /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page |
+ ** is the page number of the next freelist trunk page in the list or |
+ ** zero if this is the last freelist trunk page. */ |
+ iTrunk = get4byte(&pPrevTrunk->aData[0]); |
+ }else{ |
+ /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32 |
+ ** stores the page number of the first page of the freelist, or zero if |
+ ** the freelist is empty. */ |
+ iTrunk = get4byte(&pPage1->aData[32]); |
+ } |
+ testcase( iTrunk==mxPage ); |
+ if( iTrunk>mxPage || nSearch++ > n ){ |
+ rc = SQLITE_CORRUPT_BKPT; |
+ }else{ |
+ rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0); |
+ } |
+ if( rc ){ |
+ pTrunk = 0; |
+ goto end_allocate_page; |
+ } |
+ assert( pTrunk!=0 ); |
+ assert( pTrunk->aData!=0 ); |
+ /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page |
+ ** is the number of leaf page pointers to follow. */ |
+ k = get4byte(&pTrunk->aData[4]); |
+ if( k==0 && !searchList ){ |
+ /* The trunk has no leaves and the list is not being searched. |
+ ** So extract the trunk page itself and use it as the newly |
+ ** allocated page */ |
+ assert( pPrevTrunk==0 ); |
+ rc = sqlite3PagerWrite(pTrunk->pDbPage); |
+ if( rc ){ |
+ goto end_allocate_page; |
+ } |
+ *pPgno = iTrunk; |
+ memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); |
+ *ppPage = pTrunk; |
+ pTrunk = 0; |
+ TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1)); |
+ }else if( k>(u32)(pBt->usableSize/4 - 2) ){ |
+ /* Value of k is out of range. Database corruption */ |
+ rc = SQLITE_CORRUPT_BKPT; |
+ goto end_allocate_page; |
+#ifndef SQLITE_OMIT_AUTOVACUUM |
+ }else if( searchList |
+ && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE)) |
+ ){ |
+ /* The list is being searched and this trunk page is the page |
+ ** to allocate, regardless of whether it has leaves. |
+ */ |
+ *pPgno = iTrunk; |
+ *ppPage = pTrunk; |
+ searchList = 0; |
+ rc = sqlite3PagerWrite(pTrunk->pDbPage); |
+ if( rc ){ |
+ goto end_allocate_page; |
+ } |
+ if( k==0 ){ |
+ if( !pPrevTrunk ){ |
+ memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); |
+ }else{ |
+ rc = sqlite3PagerWrite(pPrevTrunk->pDbPage); |
+ if( rc!=SQLITE_OK ){ |
+ goto end_allocate_page; |
+ } |
+ memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4); |
+ } |
+ }else{ |
+ /* The trunk page is required by the caller but it contains |
+ ** pointers to free-list leaves. The first leaf becomes a trunk |
+ ** page in this case. |
+ */ |
+ MemPage *pNewTrunk; |
+ Pgno iNewTrunk = get4byte(&pTrunk->aData[8]); |
+ if( iNewTrunk>mxPage ){ |
+ rc = SQLITE_CORRUPT_BKPT; |
+ goto end_allocate_page; |
+ } |
+ testcase( iNewTrunk==mxPage ); |
+ rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0); |
+ if( rc!=SQLITE_OK ){ |
+ goto end_allocate_page; |
+ } |
+ rc = sqlite3PagerWrite(pNewTrunk->pDbPage); |
+ if( rc!=SQLITE_OK ){ |
+ releasePage(pNewTrunk); |
+ goto end_allocate_page; |
+ } |
+ memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4); |
+ put4byte(&pNewTrunk->aData[4], k-1); |
+ memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4); |
+ releasePage(pNewTrunk); |
+ if( !pPrevTrunk ){ |
+ assert( sqlite3PagerIswriteable(pPage1->pDbPage) ); |
+ put4byte(&pPage1->aData[32], iNewTrunk); |
+ }else{ |
+ rc = sqlite3PagerWrite(pPrevTrunk->pDbPage); |
+ if( rc ){ |
+ goto end_allocate_page; |
+ } |
+ put4byte(&pPrevTrunk->aData[0], iNewTrunk); |
+ } |
+ } |
+ pTrunk = 0; |
+ TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1)); |
+#endif |
+ }else if( k>0 ){ |
+ /* Extract a leaf from the trunk */ |
+ u32 closest; |
+ Pgno iPage; |
+ unsigned char *aData = pTrunk->aData; |
+ if( nearby>0 ){ |
+ u32 i; |
+ closest = 0; |
+ if( eMode==BTALLOC_LE ){ |
+ for(i=0; i<k; i++){ |
+ iPage = get4byte(&aData[8+i*4]); |
+ if( iPage<=nearby ){ |
+ closest = i; |
+ break; |
+ } |
+ } |
+ }else{ |
+ int dist; |
+ dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby); |
+ for(i=1; i<k; i++){ |
+ int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby); |
+ if( d2<dist ){ |
+ closest = i; |
+ dist = d2; |
+ } |
+ } |
+ } |
+ }else{ |
+ closest = 0; |
+ } |
+ |
+ iPage = get4byte(&aData[8+closest*4]); |
+ testcase( iPage==mxPage ); |
+ if( iPage>mxPage ){ |
+ rc = SQLITE_CORRUPT_BKPT; |
+ goto end_allocate_page; |
+ } |
+ testcase( iPage==mxPage ); |
+ if( !searchList |
+ || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE)) |
+ ){ |
+ int noContent; |
+ *pPgno = iPage; |
+ TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d" |
+ ": %d more free pages\n", |
+ *pPgno, closest+1, k, pTrunk->pgno, n-1)); |
+ rc = sqlite3PagerWrite(pTrunk->pDbPage); |
+ if( rc ) goto end_allocate_page; |
+ if( closest<k-1 ){ |
+ memcpy(&aData[8+closest*4], &aData[4+k*4], 4); |
+ } |
+ put4byte(&aData[4], k-1); |
+ noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0; |
+ rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent); |
+ if( rc==SQLITE_OK ){ |
+ rc = sqlite3PagerWrite((*ppPage)->pDbPage); |
+ if( rc!=SQLITE_OK ){ |
+ releasePage(*ppPage); |
+ *ppPage = 0; |
+ } |
+ } |
+ searchList = 0; |
+ } |
+ } |
+ releasePage(pPrevTrunk); |
+ pPrevTrunk = 0; |
+ }while( searchList ); |
+ }else{ |
+ /* There are no pages on the freelist, so append a new page to the |
+ ** database image. |
+ ** |
+ ** Normally, new pages allocated by this block can be requested from the |
+ ** pager layer with the 'no-content' flag set. This prevents the pager |
+ ** from trying to read the pages content from disk. However, if the |
+ ** current transaction has already run one or more incremental-vacuum |
+ ** steps, then the page we are about to allocate may contain content |
+ ** that is required in the event of a rollback. In this case, do |
+ ** not set the no-content flag. This causes the pager to load and journal |
+ ** the current page content before overwriting it. |
+ ** |
+ ** Note that the pager will not actually attempt to load or journal |
+ ** content for any page that really does lie past the end of the database |
+ ** file on disk. So the effects of disabling the no-content optimization |
+ ** here are confined to those pages that lie between the end of the |
+ ** database image and the end of the database file. |
+ */ |
+ int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0; |
+ |
+ rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); |
+ if( rc ) return rc; |
+ pBt->nPage++; |
+ if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++; |
+ |
+#ifndef SQLITE_OMIT_AUTOVACUUM |
+ if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){ |
+ /* If *pPgno refers to a pointer-map page, allocate two new pages |
+ ** at the end of the file instead of one. The first allocated page |
+ ** becomes a new pointer-map page, the second is used by the caller. |
+ */ |
+ MemPage *pPg = 0; |
+ TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage)); |
+ assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) ); |
+ rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent); |
+ if( rc==SQLITE_OK ){ |
+ rc = sqlite3PagerWrite(pPg->pDbPage); |
+ releasePage(pPg); |
+ } |
+ if( rc ) return rc; |
+ pBt->nPage++; |
+ if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; } |
+ } |
+#endif |
+ put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage); |
+ *pPgno = pBt->nPage; |
+ |
+ assert( *pPgno!=PENDING_BYTE_PAGE(pBt) ); |
+ rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent); |
+ if( rc ) return rc; |
+ rc = sqlite3PagerWrite((*ppPage)->pDbPage); |
+ if( rc!=SQLITE_OK ){ |
+ releasePage(*ppPage); |
+ *ppPage = 0; |
+ } |
+ TRACE(("ALLOCATE: %d from end of file\n", *pPgno)); |
+ } |
+ |
+ assert( *pPgno!=PENDING_BYTE_PAGE(pBt) ); |
+ |
+end_allocate_page: |
+ releasePage(pTrunk); |
+ releasePage(pPrevTrunk); |
+ assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 ); |
+ assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 ); |
+ return rc; |
+} |
+ |
+/* |
+** This function is used to add page iPage to the database file free-list. |
+** It is assumed that the page is not already a part of the free-list. |
+** |
+** The value passed as the second argument to this function is optional. |
+** If the caller happens to have a pointer to the MemPage object |
+** corresponding to page iPage handy, it may pass it as the second value. |
+** Otherwise, it may pass NULL. |
+** |
+** If a pointer to a MemPage object is passed as the second argument, |
+** its reference count is not altered by this function. |
+*/ |
+static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){ |
+ MemPage *pTrunk = 0; /* Free-list trunk page */ |
+ Pgno iTrunk = 0; /* Page number of free-list trunk page */ |
+ MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */ |
+ MemPage *pPage; /* Page being freed. May be NULL. */ |
+ int rc; /* Return Code */ |
+ int nFree; /* Initial number of pages on free-list */ |
+ |
+ assert( sqlite3_mutex_held(pBt->mutex) ); |
+ assert( CORRUPT_DB || iPage>1 ); |
+ assert( !pMemPage || pMemPage->pgno==iPage ); |
+ |
+ if( iPage<2 ) return SQLITE_CORRUPT_BKPT; |
+ if( pMemPage ){ |
+ pPage = pMemPage; |
+ sqlite3PagerRef(pPage->pDbPage); |
+ }else{ |
+ pPage = btreePageLookup(pBt, iPage); |
+ } |
+ |
+ /* Increment the free page count on pPage1 */ |
+ rc = sqlite3PagerWrite(pPage1->pDbPage); |
+ if( rc ) goto freepage_out; |
+ nFree = get4byte(&pPage1->aData[36]); |
+ put4byte(&pPage1->aData[36], nFree+1); |
+ |
+ if( pBt->btsFlags & BTS_SECURE_DELETE ){ |
+ /* If the secure_delete option is enabled, then |
+ ** always fully overwrite deleted information with zeros. |
+ */ |
+ if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) ) |
+ || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0) |
+ ){ |
+ goto freepage_out; |
+ } |
+ memset(pPage->aData, 0, pPage->pBt->pageSize); |
+ } |
+ |
+ /* If the database supports auto-vacuum, write an entry in the pointer-map |
+ ** to indicate that the page is free. |
+ */ |
+ if( ISAUTOVACUUM ){ |
+ ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc); |
+ if( rc ) goto freepage_out; |
+ } |
+ |
+ /* Now manipulate the actual database free-list structure. There are two |
+ ** possibilities. If the free-list is currently empty, or if the first |
+ ** trunk page in the free-list is full, then this page will become a |
+ ** new free-list trunk page. Otherwise, it will become a leaf of the |
+ ** first trunk page in the current free-list. This block tests if it |
+ ** is possible to add the page as a new free-list leaf. |
+ */ |
+ if( nFree!=0 ){ |
+ u32 nLeaf; /* Initial number of leaf cells on trunk page */ |
+ |
+ iTrunk = get4byte(&pPage1->aData[32]); |
+ rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0); |
+ if( rc!=SQLITE_OK ){ |
+ goto freepage_out; |
+ } |
+ |
+ nLeaf = get4byte(&pTrunk->aData[4]); |
+ assert( pBt->usableSize>32 ); |
+ if( nLeaf > (u32)pBt->usableSize/4 - 2 ){ |
+ rc = SQLITE_CORRUPT_BKPT; |
+ goto freepage_out; |
+ } |
+ if( nLeaf < (u32)pBt->usableSize/4 - 8 ){ |
+ /* In this case there is room on the trunk page to insert the page |
+ ** being freed as a new leaf. |
+ ** |
+ ** Note that the trunk page is not really full until it contains |
+ ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have |
+ ** coded. But due to a coding error in versions of SQLite prior to |
+ ** 3.6.0, databases with freelist trunk pages holding more than |
+ ** usableSize/4 - 8 entries will be reported as corrupt. In order |
+ ** to maintain backwards compatibility with older versions of SQLite, |
+ ** we will continue to restrict the number of entries to usableSize/4 - 8 |
+ ** for now. At some point in the future (once everyone has upgraded |
+ ** to 3.6.0 or later) we should consider fixing the conditional above |
+ ** to read "usableSize/4-2" instead of "usableSize/4-8". |
+ ** |
+ ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still |
+ ** avoid using the last six entries in the freelist trunk page array in |
+ ** order that database files created by newer versions of SQLite can be |
+ ** read by older versions of SQLite. |
+ */ |
+ rc = sqlite3PagerWrite(pTrunk->pDbPage); |
+ if( rc==SQLITE_OK ){ |
+ put4byte(&pTrunk->aData[4], nLeaf+1); |
+ put4byte(&pTrunk->aData[8+nLeaf*4], iPage); |
+ if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){ |
+ sqlite3PagerDontWrite(pPage->pDbPage); |
+ } |
+ rc = btreeSetHasContent(pBt, iPage); |
+ } |
+ TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno)); |
+ goto freepage_out; |
+ } |
+ } |
+ |
+ /* If control flows to this point, then it was not possible to add the |
+ ** the page being freed as a leaf page of the first trunk in the free-list. |
+ ** Possibly because the free-list is empty, or possibly because the |
+ ** first trunk in the free-list is full. Either way, the page being freed |
+ ** will become the new first trunk page in the free-list. |
+ */ |
+ if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){ |
+ goto freepage_out; |
+ } |
+ rc = sqlite3PagerWrite(pPage->pDbPage); |
+ if( rc!=SQLITE_OK ){ |
+ goto freepage_out; |
+ } |
+ put4byte(pPage->aData, iTrunk); |
+ put4byte(&pPage->aData[4], 0); |
+ put4byte(&pPage1->aData[32], iPage); |
+ TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk)); |
+ |
+freepage_out: |
+ if( pPage ){ |
+ pPage->isInit = 0; |
+ } |
+ releasePage(pPage); |
+ releasePage(pTrunk); |
+ return rc; |
+} |
+static void freePage(MemPage *pPage, int *pRC){ |
+ if( (*pRC)==SQLITE_OK ){ |
+ *pRC = freePage2(pPage->pBt, pPage, pPage->pgno); |
+ } |
+} |
+ |
+/* |
+** Free any overflow pages associated with the given Cell. Write the |
+** local Cell size (the number of bytes on the original page, omitting |
+** overflow) into *pnSize. |
+*/ |
+static int clearCell( |
+ MemPage *pPage, /* The page that contains the Cell */ |
+ unsigned char *pCell, /* First byte of the Cell */ |
+ u16 *pnSize /* Write the size of the Cell here */ |
+){ |
+ BtShared *pBt = pPage->pBt; |
+ CellInfo info; |
+ Pgno ovflPgno; |
+ int rc; |
+ int nOvfl; |
+ u32 ovflPageSize; |
+ |
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
+ pPage->xParseCell(pPage, pCell, &info); |
+ *pnSize = info.nSize; |
+ if( info.nLocal==info.nPayload ){ |
+ return SQLITE_OK; /* No overflow pages. Return without doing anything */ |
+ } |
+ if( pCell+info.nSize-1 > pPage->aData+pPage->maskPage ){ |
+ return SQLITE_CORRUPT_BKPT; /* Cell extends past end of page */ |
+ } |
+ ovflPgno = get4byte(pCell + info.nSize - 4); |
+ assert( pBt->usableSize > 4 ); |
+ ovflPageSize = pBt->usableSize - 4; |
+ nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize; |
+ assert( nOvfl>0 || |
+ (CORRUPT_DB && (info.nPayload + ovflPageSize)<ovflPageSize) |
+ ); |
+ while( nOvfl-- ){ |
+ Pgno iNext = 0; |
+ MemPage *pOvfl = 0; |
+ if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){ |
+ /* 0 is not a legal page number and page 1 cannot be an |
+ ** overflow page. Therefore if ovflPgno<2 or past the end of the |
+ ** file the database must be corrupt. */ |
+ return SQLITE_CORRUPT_BKPT; |
+ } |
+ if( nOvfl ){ |
+ rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext); |
+ if( rc ) return rc; |
+ } |
+ |
+ if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) ) |
+ && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1 |
+ ){ |
+ /* There is no reason any cursor should have an outstanding reference |
+ ** to an overflow page belonging to a cell that is being deleted/updated. |
+ ** So if there exists more than one reference to this page, then it |
+ ** must not really be an overflow page and the database must be corrupt. |
+ ** It is helpful to detect this before calling freePage2(), as |
+ ** freePage2() may zero the page contents if secure-delete mode is |
+ ** enabled. If this 'overflow' page happens to be a page that the |
+ ** caller is iterating through or using in some other way, this |
+ ** can be problematic. |
+ */ |
+ rc = SQLITE_CORRUPT_BKPT; |
+ }else{ |
+ rc = freePage2(pBt, pOvfl, ovflPgno); |
+ } |
+ |
+ if( pOvfl ){ |
+ sqlite3PagerUnref(pOvfl->pDbPage); |
+ } |
+ if( rc ) return rc; |
+ ovflPgno = iNext; |
+ } |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Create the byte sequence used to represent a cell on page pPage |
+** and write that byte sequence into pCell[]. Overflow pages are |
+** allocated and filled in as necessary. The calling procedure |
+** is responsible for making sure sufficient space has been allocated |
+** for pCell[]. |
+** |
+** Note that pCell does not necessary need to point to the pPage->aData |
+** area. pCell might point to some temporary storage. The cell will |
+** be constructed in this temporary area then copied into pPage->aData |
+** later. |
+*/ |
+static int fillInCell( |
+ MemPage *pPage, /* The page that contains the cell */ |
+ unsigned char *pCell, /* Complete text of the cell */ |
+ const void *pKey, i64 nKey, /* The key */ |
+ const void *pData,int nData, /* The data */ |
+ int nZero, /* Extra zero bytes to append to pData */ |
+ int *pnSize /* Write cell size here */ |
+){ |
+ int nPayload; |
+ const u8 *pSrc; |
+ int nSrc, n, rc; |
+ int spaceLeft; |
+ MemPage *pOvfl = 0; |
+ MemPage *pToRelease = 0; |
+ unsigned char *pPrior; |
+ unsigned char *pPayload; |
+ BtShared *pBt = pPage->pBt; |
+ Pgno pgnoOvfl = 0; |
+ int nHeader; |
+ |
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
+ |
+ /* pPage is not necessarily writeable since pCell might be auxiliary |
+ ** buffer space that is separate from the pPage buffer area */ |
+ assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize] |
+ || sqlite3PagerIswriteable(pPage->pDbPage) ); |
+ |
+ /* Fill in the header. */ |
+ nHeader = pPage->childPtrSize; |
+ nPayload = nData + nZero; |
+ if( pPage->intKeyLeaf ){ |
+ nHeader += putVarint32(&pCell[nHeader], nPayload); |
+ }else{ |
+ assert( nData==0 ); |
+ assert( nZero==0 ); |
+ } |
+ nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey); |
+ |
+ /* Fill in the payload size */ |
+ if( pPage->intKey ){ |
+ pSrc = pData; |
+ nSrc = nData; |
+ nData = 0; |
+ }else{ |
+ assert( nKey<=0x7fffffff && pKey!=0 ); |
+ nPayload = (int)nKey; |
+ pSrc = pKey; |
+ nSrc = (int)nKey; |
+ } |
+ if( nPayload<=pPage->maxLocal ){ |
+ n = nHeader + nPayload; |
+ testcase( n==3 ); |
+ testcase( n==4 ); |
+ if( n<4 ) n = 4; |
+ *pnSize = n; |
+ spaceLeft = nPayload; |
+ pPrior = pCell; |
+ }else{ |
+ int mn = pPage->minLocal; |
+ n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4); |
+ testcase( n==pPage->maxLocal ); |
+ testcase( n==pPage->maxLocal+1 ); |
+ if( n > pPage->maxLocal ) n = mn; |
+ spaceLeft = n; |
+ *pnSize = n + nHeader + 4; |
+ pPrior = &pCell[nHeader+n]; |
+ } |
+ pPayload = &pCell[nHeader]; |
+ |
+ /* At this point variables should be set as follows: |
+ ** |
+ ** nPayload Total payload size in bytes |
+ ** pPayload Begin writing payload here |
+ ** spaceLeft Space available at pPayload. If nPayload>spaceLeft, |
+ ** that means content must spill into overflow pages. |
+ ** *pnSize Size of the local cell (not counting overflow pages) |
+ ** pPrior Where to write the pgno of the first overflow page |
+ ** |
+ ** Use a call to btreeParseCellPtr() to verify that the values above |
+ ** were computed correctly. |
+ */ |
+#if SQLITE_DEBUG |
+ { |
+ CellInfo info; |
+ pPage->xParseCell(pPage, pCell, &info); |
+ assert( nHeader=(int)(info.pPayload - pCell) ); |
+ assert( info.nKey==nKey ); |
+ assert( *pnSize == info.nSize ); |
+ assert( spaceLeft == info.nLocal ); |
+ } |
+#endif |
+ |
+ /* Write the payload into the local Cell and any extra into overflow pages */ |
+ while( nPayload>0 ){ |
+ if( spaceLeft==0 ){ |
+#ifndef SQLITE_OMIT_AUTOVACUUM |
+ Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */ |
+ if( pBt->autoVacuum ){ |
+ do{ |
+ pgnoOvfl++; |
+ } while( |
+ PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt) |
+ ); |
+ } |
+#endif |
+ rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0); |
+#ifndef SQLITE_OMIT_AUTOVACUUM |
+ /* If the database supports auto-vacuum, and the second or subsequent |
+ ** overflow page is being allocated, add an entry to the pointer-map |
+ ** for that page now. |
+ ** |
+ ** If this is the first overflow page, then write a partial entry |
+ ** to the pointer-map. If we write nothing to this pointer-map slot, |
+ ** then the optimistic overflow chain processing in clearCell() |
+ ** may misinterpret the uninitialized values and delete the |
+ ** wrong pages from the database. |
+ */ |
+ if( pBt->autoVacuum && rc==SQLITE_OK ){ |
+ u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1); |
+ ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc); |
+ if( rc ){ |
+ releasePage(pOvfl); |
+ } |
+ } |
+#endif |
+ if( rc ){ |
+ releasePage(pToRelease); |
+ return rc; |
+ } |
+ |
+ /* If pToRelease is not zero than pPrior points into the data area |
+ ** of pToRelease. Make sure pToRelease is still writeable. */ |
+ assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) ); |
+ |
+ /* If pPrior is part of the data area of pPage, then make sure pPage |
+ ** is still writeable */ |
+ assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize] |
+ || sqlite3PagerIswriteable(pPage->pDbPage) ); |
+ |
+ put4byte(pPrior, pgnoOvfl); |
+ releasePage(pToRelease); |
+ pToRelease = pOvfl; |
+ pPrior = pOvfl->aData; |
+ put4byte(pPrior, 0); |
+ pPayload = &pOvfl->aData[4]; |
+ spaceLeft = pBt->usableSize - 4; |
+ } |
+ n = nPayload; |
+ if( n>spaceLeft ) n = spaceLeft; |
+ |
+ /* If pToRelease is not zero than pPayload points into the data area |
+ ** of pToRelease. Make sure pToRelease is still writeable. */ |
+ assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) ); |
+ |
+ /* If pPayload is part of the data area of pPage, then make sure pPage |
+ ** is still writeable */ |
+ assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize] |
+ || sqlite3PagerIswriteable(pPage->pDbPage) ); |
+ |
+ if( nSrc>0 ){ |
+ if( n>nSrc ) n = nSrc; |
+ assert( pSrc ); |
+ memcpy(pPayload, pSrc, n); |
+ }else{ |
+ memset(pPayload, 0, n); |
+ } |
+ nPayload -= n; |
+ pPayload += n; |
+ pSrc += n; |
+ nSrc -= n; |
+ spaceLeft -= n; |
+ if( nSrc==0 ){ |
+ nSrc = nData; |
+ pSrc = pData; |
+ } |
+ } |
+ releasePage(pToRelease); |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Remove the i-th cell from pPage. This routine effects pPage only. |
+** The cell content is not freed or deallocated. It is assumed that |
+** the cell content has been copied someplace else. This routine just |
+** removes the reference to the cell from pPage. |
+** |
+** "sz" must be the number of bytes in the cell. |
+*/ |
+static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){ |
+ u32 pc; /* Offset to cell content of cell being deleted */ |
+ u8 *data; /* pPage->aData */ |
+ u8 *ptr; /* Used to move bytes around within data[] */ |
+ int rc; /* The return code */ |
+ int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */ |
+ |
+ if( *pRC ) return; |
+ |
+ assert( idx>=0 && idx<pPage->nCell ); |
+ assert( CORRUPT_DB || sz==cellSize(pPage, idx) ); |
+ assert( sqlite3PagerIswriteable(pPage->pDbPage) ); |
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
+ data = pPage->aData; |
+ ptr = &pPage->aCellIdx[2*idx]; |
+ pc = get2byte(ptr); |
+ hdr = pPage->hdrOffset; |
+ testcase( pc==get2byte(&data[hdr+5]) ); |
+ testcase( pc+sz==pPage->pBt->usableSize ); |
+ if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){ |
+ *pRC = SQLITE_CORRUPT_BKPT; |
+ return; |
+ } |
+ rc = freeSpace(pPage, pc, sz); |
+ if( rc ){ |
+ *pRC = rc; |
+ return; |
+ } |
+ pPage->nCell--; |
+ if( pPage->nCell==0 ){ |
+ memset(&data[hdr+1], 0, 4); |
+ data[hdr+7] = 0; |
+ put2byte(&data[hdr+5], pPage->pBt->usableSize); |
+ pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset |
+ - pPage->childPtrSize - 8; |
+ }else{ |
+ memmove(ptr, ptr+2, 2*(pPage->nCell - idx)); |
+ put2byte(&data[hdr+3], pPage->nCell); |
+ pPage->nFree += 2; |
+ } |
+} |
+ |
+/* |
+** Insert a new cell on pPage at cell index "i". pCell points to the |
+** content of the cell. |
+** |
+** If the cell content will fit on the page, then put it there. If it |
+** will not fit, then make a copy of the cell content into pTemp if |
+** pTemp is not null. Regardless of pTemp, allocate a new entry |
+** in pPage->apOvfl[] and make it point to the cell content (either |
+** in pTemp or the original pCell) and also record its index. |
+** Allocating a new entry in pPage->aCell[] implies that |
+** pPage->nOverflow is incremented. |
+*/ |
+static void insertCell( |
+ MemPage *pPage, /* Page into which we are copying */ |
+ int i, /* New cell becomes the i-th cell of the page */ |
+ u8 *pCell, /* Content of the new cell */ |
+ int sz, /* Bytes of content in pCell */ |
+ u8 *pTemp, /* Temp storage space for pCell, if needed */ |
+ Pgno iChild, /* If non-zero, replace first 4 bytes with this value */ |
+ int *pRC /* Read and write return code from here */ |
+){ |
+ int idx = 0; /* Where to write new cell content in data[] */ |
+ int j; /* Loop counter */ |
+ u8 *data; /* The content of the whole page */ |
+ u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */ |
+ |
+ if( *pRC ) return; |
+ |
+ assert( i>=0 && i<=pPage->nCell+pPage->nOverflow ); |
+ assert( MX_CELL(pPage->pBt)<=10921 ); |
+ assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB ); |
+ assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) ); |
+ assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) ); |
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
+ /* The cell should normally be sized correctly. However, when moving a |
+ ** malformed cell from a leaf page to an interior page, if the cell size |
+ ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size |
+ ** might be less than 8 (leaf-size + pointer) on the interior node. Hence |
+ ** the term after the || in the following assert(). */ |
+ assert( sz==pPage->xCellSize(pPage, pCell) || (sz==8 && iChild>0) ); |
+ if( pPage->nOverflow || sz+2>pPage->nFree ){ |
+ if( pTemp ){ |
+ memcpy(pTemp, pCell, sz); |
+ pCell = pTemp; |
+ } |
+ if( iChild ){ |
+ put4byte(pCell, iChild); |
+ } |
+ j = pPage->nOverflow++; |
+ assert( j<(int)(sizeof(pPage->apOvfl)/sizeof(pPage->apOvfl[0])) ); |
+ pPage->apOvfl[j] = pCell; |
+ pPage->aiOvfl[j] = (u16)i; |
+ |
+ /* When multiple overflows occur, they are always sequential and in |
+ ** sorted order. This invariants arise because multiple overflows can |
+ ** only occur when inserting divider cells into the parent page during |
+ ** balancing, and the dividers are adjacent and sorted. |
+ */ |
+ assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */ |
+ assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */ |
+ }else{ |
+ int rc = sqlite3PagerWrite(pPage->pDbPage); |
+ if( rc!=SQLITE_OK ){ |
+ *pRC = rc; |
+ return; |
+ } |
+ assert( sqlite3PagerIswriteable(pPage->pDbPage) ); |
+ data = pPage->aData; |
+ assert( &data[pPage->cellOffset]==pPage->aCellIdx ); |
+ rc = allocateSpace(pPage, sz, &idx); |
+ if( rc ){ *pRC = rc; return; } |
+ /* The allocateSpace() routine guarantees the following properties |
+ ** if it returns successfully */ |
+ assert( idx >= 0 ); |
+ assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB ); |
+ assert( idx+sz <= (int)pPage->pBt->usableSize ); |
+ pPage->nFree -= (u16)(2 + sz); |
+ memcpy(&data[idx], pCell, sz); |
+ if( iChild ){ |
+ put4byte(&data[idx], iChild); |
+ } |
+ pIns = pPage->aCellIdx + i*2; |
+ memmove(pIns+2, pIns, 2*(pPage->nCell - i)); |
+ put2byte(pIns, idx); |
+ pPage->nCell++; |
+ /* increment the cell count */ |
+ if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++; |
+ assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell ); |
+#ifndef SQLITE_OMIT_AUTOVACUUM |
+ if( pPage->pBt->autoVacuum ){ |
+ /* The cell may contain a pointer to an overflow page. If so, write |
+ ** the entry for the overflow page into the pointer map. |
+ */ |
+ ptrmapPutOvflPtr(pPage, pCell, pRC); |
+ } |
+#endif |
+ } |
+} |
+ |
+/* |
+** A CellArray object contains a cache of pointers and sizes for a |
+** consecutive sequence of cells that might be held multiple pages. |
+*/ |
+typedef struct CellArray CellArray; |
+struct CellArray { |
+ int nCell; /* Number of cells in apCell[] */ |
+ MemPage *pRef; /* Reference page */ |
+ u8 **apCell; /* All cells begin balanced */ |
+ u16 *szCell; /* Local size of all cells in apCell[] */ |
+}; |
+ |
+/* |
+** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been |
+** computed. |
+*/ |
+static void populateCellCache(CellArray *p, int idx, int N){ |
+ assert( idx>=0 && idx+N<=p->nCell ); |
+ while( N>0 ){ |
+ assert( p->apCell[idx]!=0 ); |
+ if( p->szCell[idx]==0 ){ |
+ p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]); |
+ }else{ |
+ assert( CORRUPT_DB || |
+ p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) ); |
+ } |
+ idx++; |
+ N--; |
+ } |
+} |
+ |
+/* |
+** Return the size of the Nth element of the cell array |
+*/ |
+static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){ |
+ assert( N>=0 && N<p->nCell ); |
+ assert( p->szCell[N]==0 ); |
+ p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]); |
+ return p->szCell[N]; |
+} |
+static u16 cachedCellSize(CellArray *p, int N){ |
+ assert( N>=0 && N<p->nCell ); |
+ if( p->szCell[N] ) return p->szCell[N]; |
+ return computeCellSize(p, N); |
+} |
+ |
+/* |
+** Array apCell[] contains pointers to nCell b-tree page cells. The |
+** szCell[] array contains the size in bytes of each cell. This function |
+** replaces the current contents of page pPg with the contents of the cell |
+** array. |
+** |
+** Some of the cells in apCell[] may currently be stored in pPg. This |
+** function works around problems caused by this by making a copy of any |
+** such cells before overwriting the page data. |
+** |
+** The MemPage.nFree field is invalidated by this function. It is the |
+** responsibility of the caller to set it correctly. |
+*/ |
+static int rebuildPage( |
+ MemPage *pPg, /* Edit this page */ |
+ int nCell, /* Final number of cells on page */ |
+ u8 **apCell, /* Array of cells */ |
+ u16 *szCell /* Array of cell sizes */ |
+){ |
+ const int hdr = pPg->hdrOffset; /* Offset of header on pPg */ |
+ u8 * const aData = pPg->aData; /* Pointer to data for pPg */ |
+ const int usableSize = pPg->pBt->usableSize; |
+ u8 * const pEnd = &aData[usableSize]; |
+ int i; |
+ u8 *pCellptr = pPg->aCellIdx; |
+ u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager); |
+ u8 *pData; |
+ |
+ i = get2byte(&aData[hdr+5]); |
+ memcpy(&pTmp[i], &aData[i], usableSize - i); |
+ |
+ pData = pEnd; |
+ for(i=0; i<nCell; i++){ |
+ u8 *pCell = apCell[i]; |
+ if( SQLITE_WITHIN(pCell,aData,pEnd) ){ |
+ pCell = &pTmp[pCell - aData]; |
+ } |
+ pData -= szCell[i]; |
+ put2byte(pCellptr, (pData - aData)); |
+ pCellptr += 2; |
+ if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT; |
+ memcpy(pData, pCell, szCell[i]); |
+ assert( szCell[i]==pPg->xCellSize(pPg, pCell) || CORRUPT_DB ); |
+ testcase( szCell[i]!=pPg->xCellSize(pPg,pCell) ); |
+ } |
+ |
+ /* The pPg->nFree field is now set incorrectly. The caller will fix it. */ |
+ pPg->nCell = nCell; |
+ pPg->nOverflow = 0; |
+ |
+ put2byte(&aData[hdr+1], 0); |
+ put2byte(&aData[hdr+3], pPg->nCell); |
+ put2byte(&aData[hdr+5], pData - aData); |
+ aData[hdr+7] = 0x00; |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Array apCell[] contains nCell pointers to b-tree cells. Array szCell |
+** contains the size in bytes of each such cell. This function attempts to |
+** add the cells stored in the array to page pPg. If it cannot (because |
+** the page needs to be defragmented before the cells will fit), non-zero |
+** is returned. Otherwise, if the cells are added successfully, zero is |
+** returned. |
+** |
+** Argument pCellptr points to the first entry in the cell-pointer array |
+** (part of page pPg) to populate. After cell apCell[0] is written to the |
+** page body, a 16-bit offset is written to pCellptr. And so on, for each |
+** cell in the array. It is the responsibility of the caller to ensure |
+** that it is safe to overwrite this part of the cell-pointer array. |
+** |
+** When this function is called, *ppData points to the start of the |
+** content area on page pPg. If the size of the content area is extended, |
+** *ppData is updated to point to the new start of the content area |
+** before returning. |
+** |
+** Finally, argument pBegin points to the byte immediately following the |
+** end of the space required by this page for the cell-pointer area (for |
+** all cells - not just those inserted by the current call). If the content |
+** area must be extended to before this point in order to accomodate all |
+** cells in apCell[], then the cells do not fit and non-zero is returned. |
+*/ |
+static int pageInsertArray( |
+ MemPage *pPg, /* Page to add cells to */ |
+ u8 *pBegin, /* End of cell-pointer array */ |
+ u8 **ppData, /* IN/OUT: Page content -area pointer */ |
+ u8 *pCellptr, /* Pointer to cell-pointer area */ |
+ int iFirst, /* Index of first cell to add */ |
+ int nCell, /* Number of cells to add to pPg */ |
+ CellArray *pCArray /* Array of cells */ |
+){ |
+ int i; |
+ u8 *aData = pPg->aData; |
+ u8 *pData = *ppData; |
+ int iEnd = iFirst + nCell; |
+ assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */ |
+ for(i=iFirst; i<iEnd; i++){ |
+ int sz, rc; |
+ u8 *pSlot; |
+ sz = cachedCellSize(pCArray, i); |
+ if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){ |
+ pData -= sz; |
+ if( pData<pBegin ) return 1; |
+ pSlot = pData; |
+ } |
+ /* pSlot and pCArray->apCell[i] will never overlap on a well-formed |
+ ** database. But they might for a corrupt database. Hence use memmove() |
+ ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */ |
+ assert( (pSlot+sz)<=pCArray->apCell[i] |
+ || pSlot>=(pCArray->apCell[i]+sz) |
+ || CORRUPT_DB ); |
+ memmove(pSlot, pCArray->apCell[i], sz); |
+ put2byte(pCellptr, (pSlot - aData)); |
+ pCellptr += 2; |
+ } |
+ *ppData = pData; |
+ return 0; |
+} |
+ |
+/* |
+** Array apCell[] contains nCell pointers to b-tree cells. Array szCell |
+** contains the size in bytes of each such cell. This function adds the |
+** space associated with each cell in the array that is currently stored |
+** within the body of pPg to the pPg free-list. The cell-pointers and other |
+** fields of the page are not updated. |
+** |
+** This function returns the total number of cells added to the free-list. |
+*/ |
+static int pageFreeArray( |
+ MemPage *pPg, /* Page to edit */ |
+ int iFirst, /* First cell to delete */ |
+ int nCell, /* Cells to delete */ |
+ CellArray *pCArray /* Array of cells */ |
+){ |
+ u8 * const aData = pPg->aData; |
+ u8 * const pEnd = &aData[pPg->pBt->usableSize]; |
+ u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize]; |
+ int nRet = 0; |
+ int i; |
+ int iEnd = iFirst + nCell; |
+ u8 *pFree = 0; |
+ int szFree = 0; |
+ |
+ for(i=iFirst; i<iEnd; i++){ |
+ u8 *pCell = pCArray->apCell[i]; |
+ if( SQLITE_WITHIN(pCell, pStart, pEnd) ){ |
+ int sz; |
+ /* No need to use cachedCellSize() here. The sizes of all cells that |
+ ** are to be freed have already been computing while deciding which |
+ ** cells need freeing */ |
+ sz = pCArray->szCell[i]; assert( sz>0 ); |
+ if( pFree!=(pCell + sz) ){ |
+ if( pFree ){ |
+ assert( pFree>aData && (pFree - aData)<65536 ); |
+ freeSpace(pPg, (u16)(pFree - aData), szFree); |
+ } |
+ pFree = pCell; |
+ szFree = sz; |
+ if( pFree+sz>pEnd ) return 0; |
+ }else{ |
+ pFree = pCell; |
+ szFree += sz; |
+ } |
+ nRet++; |
+ } |
+ } |
+ if( pFree ){ |
+ assert( pFree>aData && (pFree - aData)<65536 ); |
+ freeSpace(pPg, (u16)(pFree - aData), szFree); |
+ } |
+ return nRet; |
+} |
+ |
+/* |
+** apCell[] and szCell[] contains pointers to and sizes of all cells in the |
+** pages being balanced. The current page, pPg, has pPg->nCell cells starting |
+** with apCell[iOld]. After balancing, this page should hold nNew cells |
+** starting at apCell[iNew]. |
+** |
+** This routine makes the necessary adjustments to pPg so that it contains |
+** the correct cells after being balanced. |
+** |
+** The pPg->nFree field is invalid when this function returns. It is the |
+** responsibility of the caller to set it correctly. |
+*/ |
+static int editPage( |
+ MemPage *pPg, /* Edit this page */ |
+ int iOld, /* Index of first cell currently on page */ |
+ int iNew, /* Index of new first cell on page */ |
+ int nNew, /* Final number of cells on page */ |
+ CellArray *pCArray /* Array of cells and sizes */ |
+){ |
+ u8 * const aData = pPg->aData; |
+ const int hdr = pPg->hdrOffset; |
+ u8 *pBegin = &pPg->aCellIdx[nNew * 2]; |
+ int nCell = pPg->nCell; /* Cells stored on pPg */ |
+ u8 *pData; |
+ u8 *pCellptr; |
+ int i; |
+ int iOldEnd = iOld + pPg->nCell + pPg->nOverflow; |
+ int iNewEnd = iNew + nNew; |
+ |
+#ifdef SQLITE_DEBUG |
+ u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager); |
+ memcpy(pTmp, aData, pPg->pBt->usableSize); |
+#endif |
+ |
+ /* Remove cells from the start and end of the page */ |
+ if( iOld<iNew ){ |
+ int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray); |
+ memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2); |
+ nCell -= nShift; |
+ } |
+ if( iNewEnd < iOldEnd ){ |
+ nCell -= pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray); |
+ } |
+ |
+ pData = &aData[get2byteNotZero(&aData[hdr+5])]; |
+ if( pData<pBegin ) goto editpage_fail; |
+ |
+ /* Add cells to the start of the page */ |
+ if( iNew<iOld ){ |
+ int nAdd = MIN(nNew,iOld-iNew); |
+ assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB ); |
+ pCellptr = pPg->aCellIdx; |
+ memmove(&pCellptr[nAdd*2], pCellptr, nCell*2); |
+ if( pageInsertArray( |
+ pPg, pBegin, &pData, pCellptr, |
+ iNew, nAdd, pCArray |
+ ) ) goto editpage_fail; |
+ nCell += nAdd; |
+ } |
+ |
+ /* Add any overflow cells */ |
+ for(i=0; i<pPg->nOverflow; i++){ |
+ int iCell = (iOld + pPg->aiOvfl[i]) - iNew; |
+ if( iCell>=0 && iCell<nNew ){ |
+ pCellptr = &pPg->aCellIdx[iCell * 2]; |
+ memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2); |
+ nCell++; |
+ if( pageInsertArray( |
+ pPg, pBegin, &pData, pCellptr, |
+ iCell+iNew, 1, pCArray |
+ ) ) goto editpage_fail; |
+ } |
+ } |
+ |
+ /* Append cells to the end of the page */ |
+ pCellptr = &pPg->aCellIdx[nCell*2]; |
+ if( pageInsertArray( |
+ pPg, pBegin, &pData, pCellptr, |
+ iNew+nCell, nNew-nCell, pCArray |
+ ) ) goto editpage_fail; |
+ |
+ pPg->nCell = nNew; |
+ pPg->nOverflow = 0; |
+ |
+ put2byte(&aData[hdr+3], pPg->nCell); |
+ put2byte(&aData[hdr+5], pData - aData); |
+ |
+#ifdef SQLITE_DEBUG |
+ for(i=0; i<nNew && !CORRUPT_DB; i++){ |
+ u8 *pCell = pCArray->apCell[i+iNew]; |
+ int iOff = get2byteAligned(&pPg->aCellIdx[i*2]); |
+ if( pCell>=aData && pCell<&aData[pPg->pBt->usableSize] ){ |
+ pCell = &pTmp[pCell - aData]; |
+ } |
+ assert( 0==memcmp(pCell, &aData[iOff], |
+ pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) ); |
+ } |
+#endif |
+ |
+ return SQLITE_OK; |
+ editpage_fail: |
+ /* Unable to edit this page. Rebuild it from scratch instead. */ |
+ populateCellCache(pCArray, iNew, nNew); |
+ return rebuildPage(pPg, nNew, &pCArray->apCell[iNew], &pCArray->szCell[iNew]); |
+} |
+ |
+/* |
+** The following parameters determine how many adjacent pages get involved |
+** in a balancing operation. NN is the number of neighbors on either side |
+** of the page that participate in the balancing operation. NB is the |
+** total number of pages that participate, including the target page and |
+** NN neighbors on either side. |
+** |
+** The minimum value of NN is 1 (of course). Increasing NN above 1 |
+** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance |
+** in exchange for a larger degradation in INSERT and UPDATE performance. |
+** The value of NN appears to give the best results overall. |
+*/ |
+#define NN 1 /* Number of neighbors on either side of pPage */ |
+#define NB (NN*2+1) /* Total pages involved in the balance */ |
+ |
+ |
+#ifndef SQLITE_OMIT_QUICKBALANCE |
+/* |
+** This version of balance() handles the common special case where |
+** a new entry is being inserted on the extreme right-end of the |
+** tree, in other words, when the new entry will become the largest |
+** entry in the tree. |
+** |
+** Instead of trying to balance the 3 right-most leaf pages, just add |
+** a new page to the right-hand side and put the one new entry in |
+** that page. This leaves the right side of the tree somewhat |
+** unbalanced. But odds are that we will be inserting new entries |
+** at the end soon afterwards so the nearly empty page will quickly |
+** fill up. On average. |
+** |
+** pPage is the leaf page which is the right-most page in the tree. |
+** pParent is its parent. pPage must have a single overflow entry |
+** which is also the right-most entry on the page. |
+** |
+** The pSpace buffer is used to store a temporary copy of the divider |
+** cell that will be inserted into pParent. Such a cell consists of a 4 |
+** byte page number followed by a variable length integer. In other |
+** words, at most 13 bytes. Hence the pSpace buffer must be at |
+** least 13 bytes in size. |
+*/ |
+static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){ |
+ BtShared *const pBt = pPage->pBt; /* B-Tree Database */ |
+ MemPage *pNew; /* Newly allocated page */ |
+ int rc; /* Return Code */ |
+ Pgno pgnoNew; /* Page number of pNew */ |
+ |
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
+ assert( sqlite3PagerIswriteable(pParent->pDbPage) ); |
+ assert( pPage->nOverflow==1 ); |
+ |
+ /* This error condition is now caught prior to reaching this function */ |
+ if( NEVER(pPage->nCell==0) ) return SQLITE_CORRUPT_BKPT; |
+ |
+ /* Allocate a new page. This page will become the right-sibling of |
+ ** pPage. Make the parent page writable, so that the new divider cell |
+ ** may be inserted. If both these operations are successful, proceed. |
+ */ |
+ rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0); |
+ |
+ if( rc==SQLITE_OK ){ |
+ |
+ u8 *pOut = &pSpace[4]; |
+ u8 *pCell = pPage->apOvfl[0]; |
+ u16 szCell = pPage->xCellSize(pPage, pCell); |
+ u8 *pStop; |
+ |
+ assert( sqlite3PagerIswriteable(pNew->pDbPage) ); |
+ assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) ); |
+ zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF); |
+ rc = rebuildPage(pNew, 1, &pCell, &szCell); |
+ if( NEVER(rc) ) return rc; |
+ pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell; |
+ |
+ /* If this is an auto-vacuum database, update the pointer map |
+ ** with entries for the new page, and any pointer from the |
+ ** cell on the page to an overflow page. If either of these |
+ ** operations fails, the return code is set, but the contents |
+ ** of the parent page are still manipulated by thh code below. |
+ ** That is Ok, at this point the parent page is guaranteed to |
+ ** be marked as dirty. Returning an error code will cause a |
+ ** rollback, undoing any changes made to the parent page. |
+ */ |
+ if( ISAUTOVACUUM ){ |
+ ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc); |
+ if( szCell>pNew->minLocal ){ |
+ ptrmapPutOvflPtr(pNew, pCell, &rc); |
+ } |
+ } |
+ |
+ /* Create a divider cell to insert into pParent. The divider cell |
+ ** consists of a 4-byte page number (the page number of pPage) and |
+ ** a variable length key value (which must be the same value as the |
+ ** largest key on pPage). |
+ ** |
+ ** To find the largest key value on pPage, first find the right-most |
+ ** cell on pPage. The first two fields of this cell are the |
+ ** record-length (a variable length integer at most 32-bits in size) |
+ ** and the key value (a variable length integer, may have any value). |
+ ** The first of the while(...) loops below skips over the record-length |
+ ** field. The second while(...) loop copies the key value from the |
+ ** cell on pPage into the pSpace buffer. |
+ */ |
+ pCell = findCell(pPage, pPage->nCell-1); |
+ pStop = &pCell[9]; |
+ while( (*(pCell++)&0x80) && pCell<pStop ); |
+ pStop = &pCell[9]; |
+ while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop ); |
+ |
+ /* Insert the new divider cell into pParent. */ |
+ insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace), |
+ 0, pPage->pgno, &rc); |
+ |
+ /* Set the right-child pointer of pParent to point to the new page. */ |
+ put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew); |
+ |
+ /* Release the reference to the new page. */ |
+ releasePage(pNew); |
+ } |
+ |
+ return rc; |
+} |
+#endif /* SQLITE_OMIT_QUICKBALANCE */ |
+ |
+#if 0 |
+/* |
+** This function does not contribute anything to the operation of SQLite. |
+** it is sometimes activated temporarily while debugging code responsible |
+** for setting pointer-map entries. |
+*/ |
+static int ptrmapCheckPages(MemPage **apPage, int nPage){ |
+ int i, j; |
+ for(i=0; i<nPage; i++){ |
+ Pgno n; |
+ u8 e; |
+ MemPage *pPage = apPage[i]; |
+ BtShared *pBt = pPage->pBt; |
+ assert( pPage->isInit ); |
+ |
+ for(j=0; j<pPage->nCell; j++){ |
+ CellInfo info; |
+ u8 *z; |
+ |
+ z = findCell(pPage, j); |
+ pPage->xParseCell(pPage, z, &info); |
+ if( info.nLocal<info.nPayload ){ |
+ Pgno ovfl = get4byte(&z[info.nSize-4]); |
+ ptrmapGet(pBt, ovfl, &e, &n); |
+ assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 ); |
+ } |
+ if( !pPage->leaf ){ |
+ Pgno child = get4byte(z); |
+ ptrmapGet(pBt, child, &e, &n); |
+ assert( n==pPage->pgno && e==PTRMAP_BTREE ); |
+ } |
+ } |
+ if( !pPage->leaf ){ |
+ Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]); |
+ ptrmapGet(pBt, child, &e, &n); |
+ assert( n==pPage->pgno && e==PTRMAP_BTREE ); |
+ } |
+ } |
+ return 1; |
+} |
+#endif |
+ |
+/* |
+** This function is used to copy the contents of the b-tree node stored |
+** on page pFrom to page pTo. If page pFrom was not a leaf page, then |
+** the pointer-map entries for each child page are updated so that the |
+** parent page stored in the pointer map is page pTo. If pFrom contained |
+** any cells with overflow page pointers, then the corresponding pointer |
+** map entries are also updated so that the parent page is page pTo. |
+** |
+** If pFrom is currently carrying any overflow cells (entries in the |
+** MemPage.apOvfl[] array), they are not copied to pTo. |
+** |
+** Before returning, page pTo is reinitialized using btreeInitPage(). |
+** |
+** The performance of this function is not critical. It is only used by |
+** the balance_shallower() and balance_deeper() procedures, neither of |
+** which are called often under normal circumstances. |
+*/ |
+static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){ |
+ if( (*pRC)==SQLITE_OK ){ |
+ BtShared * const pBt = pFrom->pBt; |
+ u8 * const aFrom = pFrom->aData; |
+ u8 * const aTo = pTo->aData; |
+ int const iFromHdr = pFrom->hdrOffset; |
+ int const iToHdr = ((pTo->pgno==1) ? 100 : 0); |
+ int rc; |
+ int iData; |
+ |
+ |
+ assert( pFrom->isInit ); |
+ assert( pFrom->nFree>=iToHdr ); |
+ assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize ); |
+ |
+ /* Copy the b-tree node content from page pFrom to page pTo. */ |
+ iData = get2byte(&aFrom[iFromHdr+5]); |
+ memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData); |
+ memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell); |
+ |
+ /* Reinitialize page pTo so that the contents of the MemPage structure |
+ ** match the new data. The initialization of pTo can actually fail under |
+ ** fairly obscure circumstances, even though it is a copy of initialized |
+ ** page pFrom. |
+ */ |
+ pTo->isInit = 0; |
+ rc = btreeInitPage(pTo); |
+ if( rc!=SQLITE_OK ){ |
+ *pRC = rc; |
+ return; |
+ } |
+ |
+ /* If this is an auto-vacuum database, update the pointer-map entries |
+ ** for any b-tree or overflow pages that pTo now contains the pointers to. |
+ */ |
+ if( ISAUTOVACUUM ){ |
+ *pRC = setChildPtrmaps(pTo); |
+ } |
+ } |
+} |
+ |
+/* |
+** This routine redistributes cells on the iParentIdx'th child of pParent |
+** (hereafter "the page") and up to 2 siblings so that all pages have about the |
+** same amount of free space. Usually a single sibling on either side of the |
+** page are used in the balancing, though both siblings might come from one |
+** side if the page is the first or last child of its parent. If the page |
+** has fewer than 2 siblings (something which can only happen if the page |
+** is a root page or a child of a root page) then all available siblings |
+** participate in the balancing. |
+** |
+** The number of siblings of the page might be increased or decreased by |
+** one or two in an effort to keep pages nearly full but not over full. |
+** |
+** Note that when this routine is called, some of the cells on the page |
+** might not actually be stored in MemPage.aData[]. This can happen |
+** if the page is overfull. This routine ensures that all cells allocated |
+** to the page and its siblings fit into MemPage.aData[] before returning. |
+** |
+** In the course of balancing the page and its siblings, cells may be |
+** inserted into or removed from the parent page (pParent). Doing so |
+** may cause the parent page to become overfull or underfull. If this |
+** happens, it is the responsibility of the caller to invoke the correct |
+** balancing routine to fix this problem (see the balance() routine). |
+** |
+** If this routine fails for any reason, it might leave the database |
+** in a corrupted state. So if this routine fails, the database should |
+** be rolled back. |
+** |
+** The third argument to this function, aOvflSpace, is a pointer to a |
+** buffer big enough to hold one page. If while inserting cells into the parent |
+** page (pParent) the parent page becomes overfull, this buffer is |
+** used to store the parent's overflow cells. Because this function inserts |
+** a maximum of four divider cells into the parent page, and the maximum |
+** size of a cell stored within an internal node is always less than 1/4 |
+** of the page-size, the aOvflSpace[] buffer is guaranteed to be large |
+** enough for all overflow cells. |
+** |
+** If aOvflSpace is set to a null pointer, this function returns |
+** SQLITE_NOMEM. |
+*/ |
+static int balance_nonroot( |
+ MemPage *pParent, /* Parent page of siblings being balanced */ |
+ int iParentIdx, /* Index of "the page" in pParent */ |
+ u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */ |
+ int isRoot, /* True if pParent is a root-page */ |
+ int bBulk /* True if this call is part of a bulk load */ |
+){ |
+ BtShared *pBt; /* The whole database */ |
+ int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */ |
+ int nNew = 0; /* Number of pages in apNew[] */ |
+ int nOld; /* Number of pages in apOld[] */ |
+ int i, j, k; /* Loop counters */ |
+ int nxDiv; /* Next divider slot in pParent->aCell[] */ |
+ int rc = SQLITE_OK; /* The return code */ |
+ u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */ |
+ int leafData; /* True if pPage is a leaf of a LEAFDATA tree */ |
+ int usableSpace; /* Bytes in pPage beyond the header */ |
+ int pageFlags; /* Value of pPage->aData[0] */ |
+ int iSpace1 = 0; /* First unused byte of aSpace1[] */ |
+ int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */ |
+ int szScratch; /* Size of scratch memory requested */ |
+ MemPage *apOld[NB]; /* pPage and up to two siblings */ |
+ MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */ |
+ u8 *pRight; /* Location in parent of right-sibling pointer */ |
+ u8 *apDiv[NB-1]; /* Divider cells in pParent */ |
+ int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */ |
+ int cntOld[NB+2]; /* Old index in b.apCell[] */ |
+ int szNew[NB+2]; /* Combined size of cells placed on i-th page */ |
+ u8 *aSpace1; /* Space for copies of dividers cells */ |
+ Pgno pgno; /* Temp var to store a page number in */ |
+ u8 abDone[NB+2]; /* True after i'th new page is populated */ |
+ Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */ |
+ Pgno aPgOrder[NB+2]; /* Copy of aPgno[] used for sorting pages */ |
+ u16 aPgFlags[NB+2]; /* flags field of new pages before shuffling */ |
+ CellArray b; /* Parsed information on cells being balanced */ |
+ |
+ memset(abDone, 0, sizeof(abDone)); |
+ b.nCell = 0; |
+ b.apCell = 0; |
+ pBt = pParent->pBt; |
+ assert( sqlite3_mutex_held(pBt->mutex) ); |
+ assert( sqlite3PagerIswriteable(pParent->pDbPage) ); |
+ |
+#if 0 |
+ TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno)); |
+#endif |
+ |
+ /* At this point pParent may have at most one overflow cell. And if |
+ ** this overflow cell is present, it must be the cell with |
+ ** index iParentIdx. This scenario comes about when this function |
+ ** is called (indirectly) from sqlite3BtreeDelete(). |
+ */ |
+ assert( pParent->nOverflow==0 || pParent->nOverflow==1 ); |
+ assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx ); |
+ |
+ if( !aOvflSpace ){ |
+ return SQLITE_NOMEM; |
+ } |
+ |
+ /* Find the sibling pages to balance. Also locate the cells in pParent |
+ ** that divide the siblings. An attempt is made to find NN siblings on |
+ ** either side of pPage. More siblings are taken from one side, however, |
+ ** if there are fewer than NN siblings on the other side. If pParent |
+ ** has NB or fewer children then all children of pParent are taken. |
+ ** |
+ ** This loop also drops the divider cells from the parent page. This |
+ ** way, the remainder of the function does not have to deal with any |
+ ** overflow cells in the parent page, since if any existed they will |
+ ** have already been removed. |
+ */ |
+ i = pParent->nOverflow + pParent->nCell; |
+ if( i<2 ){ |
+ nxDiv = 0; |
+ }else{ |
+ assert( bBulk==0 || bBulk==1 ); |
+ if( iParentIdx==0 ){ |
+ nxDiv = 0; |
+ }else if( iParentIdx==i ){ |
+ nxDiv = i-2+bBulk; |
+ }else{ |
+ nxDiv = iParentIdx-1; |
+ } |
+ i = 2-bBulk; |
+ } |
+ nOld = i+1; |
+ if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){ |
+ pRight = &pParent->aData[pParent->hdrOffset+8]; |
+ }else{ |
+ pRight = findCell(pParent, i+nxDiv-pParent->nOverflow); |
+ } |
+ pgno = get4byte(pRight); |
+ while( 1 ){ |
+ rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0); |
+ if( rc ){ |
+ memset(apOld, 0, (i+1)*sizeof(MemPage*)); |
+ goto balance_cleanup; |
+ } |
+ nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow; |
+ if( (i--)==0 ) break; |
+ |
+ if( i+nxDiv==pParent->aiOvfl[0] && pParent->nOverflow ){ |
+ apDiv[i] = pParent->apOvfl[0]; |
+ pgno = get4byte(apDiv[i]); |
+ szNew[i] = pParent->xCellSize(pParent, apDiv[i]); |
+ pParent->nOverflow = 0; |
+ }else{ |
+ apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow); |
+ pgno = get4byte(apDiv[i]); |
+ szNew[i] = pParent->xCellSize(pParent, apDiv[i]); |
+ |
+ /* Drop the cell from the parent page. apDiv[i] still points to |
+ ** the cell within the parent, even though it has been dropped. |
+ ** This is safe because dropping a cell only overwrites the first |
+ ** four bytes of it, and this function does not need the first |
+ ** four bytes of the divider cell. So the pointer is safe to use |
+ ** later on. |
+ ** |
+ ** But not if we are in secure-delete mode. In secure-delete mode, |
+ ** the dropCell() routine will overwrite the entire cell with zeroes. |
+ ** In this case, temporarily copy the cell into the aOvflSpace[] |
+ ** buffer. It will be copied out again as soon as the aSpace[] buffer |
+ ** is allocated. */ |
+ if( pBt->btsFlags & BTS_SECURE_DELETE ){ |
+ int iOff; |
+ |
+ iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData); |
+ if( (iOff+szNew[i])>(int)pBt->usableSize ){ |
+ rc = SQLITE_CORRUPT_BKPT; |
+ memset(apOld, 0, (i+1)*sizeof(MemPage*)); |
+ goto balance_cleanup; |
+ }else{ |
+ memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]); |
+ apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData]; |
+ } |
+ } |
+ dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc); |
+ } |
+ } |
+ |
+ /* Make nMaxCells a multiple of 4 in order to preserve 8-byte |
+ ** alignment */ |
+ nMaxCells = (nMaxCells + 3)&~3; |
+ |
+ /* |
+ ** Allocate space for memory structures |
+ */ |
+ szScratch = |
+ nMaxCells*sizeof(u8*) /* b.apCell */ |
+ + nMaxCells*sizeof(u16) /* b.szCell */ |
+ + pBt->pageSize; /* aSpace1 */ |
+ |
+ /* EVIDENCE-OF: R-28375-38319 SQLite will never request a scratch buffer |
+ ** that is more than 6 times the database page size. */ |
+ assert( szScratch<=6*(int)pBt->pageSize ); |
+ b.apCell = sqlite3ScratchMalloc( szScratch ); |
+ if( b.apCell==0 ){ |
+ rc = SQLITE_NOMEM; |
+ goto balance_cleanup; |
+ } |
+ b.szCell = (u16*)&b.apCell[nMaxCells]; |
+ aSpace1 = (u8*)&b.szCell[nMaxCells]; |
+ assert( EIGHT_BYTE_ALIGNMENT(aSpace1) ); |
+ |
+ /* |
+ ** Load pointers to all cells on sibling pages and the divider cells |
+ ** into the local b.apCell[] array. Make copies of the divider cells |
+ ** into space obtained from aSpace1[]. The divider cells have already |
+ ** been removed from pParent. |
+ ** |
+ ** If the siblings are on leaf pages, then the child pointers of the |
+ ** divider cells are stripped from the cells before they are copied |
+ ** into aSpace1[]. In this way, all cells in b.apCell[] are without |
+ ** child pointers. If siblings are not leaves, then all cell in |
+ ** b.apCell[] include child pointers. Either way, all cells in b.apCell[] |
+ ** are alike. |
+ ** |
+ ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf. |
+ ** leafData: 1 if pPage holds key+data and pParent holds only keys. |
+ */ |
+ b.pRef = apOld[0]; |
+ leafCorrection = b.pRef->leaf*4; |
+ leafData = b.pRef->intKeyLeaf; |
+ for(i=0; i<nOld; i++){ |
+ MemPage *pOld = apOld[i]; |
+ int limit = pOld->nCell; |
+ u8 *aData = pOld->aData; |
+ u16 maskPage = pOld->maskPage; |
+ u8 *piCell = aData + pOld->cellOffset; |
+ u8 *piEnd; |
+ |
+ /* Verify that all sibling pages are of the same "type" (table-leaf, |
+ ** table-interior, index-leaf, or index-interior). |
+ */ |
+ if( pOld->aData[0]!=apOld[0]->aData[0] ){ |
+ rc = SQLITE_CORRUPT_BKPT; |
+ goto balance_cleanup; |
+ } |
+ |
+ /* Load b.apCell[] with pointers to all cells in pOld. If pOld |
+ ** constains overflow cells, include them in the b.apCell[] array |
+ ** in the correct spot. |
+ ** |
+ ** Note that when there are multiple overflow cells, it is always the |
+ ** case that they are sequential and adjacent. This invariant arises |
+ ** because multiple overflows can only occurs when inserting divider |
+ ** cells into a parent on a prior balance, and divider cells are always |
+ ** adjacent and are inserted in order. There is an assert() tagged |
+ ** with "NOTE 1" in the overflow cell insertion loop to prove this |
+ ** invariant. |
+ ** |
+ ** This must be done in advance. Once the balance starts, the cell |
+ ** offset section of the btree page will be overwritten and we will no |
+ ** long be able to find the cells if a pointer to each cell is not saved |
+ ** first. |
+ */ |
+ memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*limit); |
+ if( pOld->nOverflow>0 ){ |
+ memset(&b.szCell[b.nCell+limit], 0, sizeof(b.szCell[0])*pOld->nOverflow); |
+ limit = pOld->aiOvfl[0]; |
+ for(j=0; j<limit; j++){ |
+ b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell)); |
+ piCell += 2; |
+ b.nCell++; |
+ } |
+ for(k=0; k<pOld->nOverflow; k++){ |
+ assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */ |
+ b.apCell[b.nCell] = pOld->apOvfl[k]; |
+ b.nCell++; |
+ } |
+ } |
+ piEnd = aData + pOld->cellOffset + 2*pOld->nCell; |
+ while( piCell<piEnd ){ |
+ assert( b.nCell<nMaxCells ); |
+ b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell)); |
+ piCell += 2; |
+ b.nCell++; |
+ } |
+ |
+ cntOld[i] = b.nCell; |
+ if( i<nOld-1 && !leafData){ |
+ u16 sz = (u16)szNew[i]; |
+ u8 *pTemp; |
+ assert( b.nCell<nMaxCells ); |
+ b.szCell[b.nCell] = sz; |
+ pTemp = &aSpace1[iSpace1]; |
+ iSpace1 += sz; |
+ assert( sz<=pBt->maxLocal+23 ); |
+ assert( iSpace1 <= (int)pBt->pageSize ); |
+ memcpy(pTemp, apDiv[i], sz); |
+ b.apCell[b.nCell] = pTemp+leafCorrection; |
+ assert( leafCorrection==0 || leafCorrection==4 ); |
+ b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection; |
+ if( !pOld->leaf ){ |
+ assert( leafCorrection==0 ); |
+ assert( pOld->hdrOffset==0 ); |
+ /* The right pointer of the child page pOld becomes the left |
+ ** pointer of the divider cell */ |
+ memcpy(b.apCell[b.nCell], &pOld->aData[8], 4); |
+ }else{ |
+ assert( leafCorrection==4 ); |
+ while( b.szCell[b.nCell]<4 ){ |
+ /* Do not allow any cells smaller than 4 bytes. If a smaller cell |
+ ** does exist, pad it with 0x00 bytes. */ |
+ assert( b.szCell[b.nCell]==3 || CORRUPT_DB ); |
+ assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB ); |
+ aSpace1[iSpace1++] = 0x00; |
+ b.szCell[b.nCell]++; |
+ } |
+ } |
+ b.nCell++; |
+ } |
+ } |
+ |
+ /* |
+ ** Figure out the number of pages needed to hold all b.nCell cells. |
+ ** Store this number in "k". Also compute szNew[] which is the total |
+ ** size of all cells on the i-th page and cntNew[] which is the index |
+ ** in b.apCell[] of the cell that divides page i from page i+1. |
+ ** cntNew[k] should equal b.nCell. |
+ ** |
+ ** Values computed by this block: |
+ ** |
+ ** k: The total number of sibling pages |
+ ** szNew[i]: Spaced used on the i-th sibling page. |
+ ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to |
+ ** the right of the i-th sibling page. |
+ ** usableSpace: Number of bytes of space available on each sibling. |
+ ** |
+ */ |
+ usableSpace = pBt->usableSize - 12 + leafCorrection; |
+ for(i=0; i<nOld; i++){ |
+ MemPage *p = apOld[i]; |
+ szNew[i] = usableSpace - p->nFree; |
+ if( szNew[i]<0 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; } |
+ for(j=0; j<p->nOverflow; j++){ |
+ szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]); |
+ } |
+ cntNew[i] = cntOld[i]; |
+ } |
+ k = nOld; |
+ for(i=0; i<k; i++){ |
+ int sz; |
+ while( szNew[i]>usableSpace ){ |
+ if( i+1>=k ){ |
+ k = i+2; |
+ if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; } |
+ szNew[k-1] = 0; |
+ cntNew[k-1] = b.nCell; |
+ } |
+ sz = 2 + cachedCellSize(&b, cntNew[i]-1); |
+ szNew[i] -= sz; |
+ if( !leafData ){ |
+ if( cntNew[i]<b.nCell ){ |
+ sz = 2 + cachedCellSize(&b, cntNew[i]); |
+ }else{ |
+ sz = 0; |
+ } |
+ } |
+ szNew[i+1] += sz; |
+ cntNew[i]--; |
+ } |
+ while( cntNew[i]<b.nCell ){ |
+ sz = 2 + cachedCellSize(&b, cntNew[i]); |
+ if( szNew[i]+sz>usableSpace ) break; |
+ szNew[i] += sz; |
+ cntNew[i]++; |
+ if( !leafData ){ |
+ if( cntNew[i]<b.nCell ){ |
+ sz = 2 + cachedCellSize(&b, cntNew[i]); |
+ }else{ |
+ sz = 0; |
+ } |
+ } |
+ szNew[i+1] -= sz; |
+ } |
+ if( cntNew[i]>=b.nCell ){ |
+ k = i+1; |
+ }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){ |
+ rc = SQLITE_CORRUPT_BKPT; |
+ goto balance_cleanup; |
+ } |
+ } |
+ |
+ /* |
+ ** The packing computed by the previous block is biased toward the siblings |
+ ** on the left side (siblings with smaller keys). The left siblings are |
+ ** always nearly full, while the right-most sibling might be nearly empty. |
+ ** The next block of code attempts to adjust the packing of siblings to |
+ ** get a better balance. |
+ ** |
+ ** This adjustment is more than an optimization. The packing above might |
+ ** be so out of balance as to be illegal. For example, the right-most |
+ ** sibling might be completely empty. This adjustment is not optional. |
+ */ |
+ for(i=k-1; i>0; i--){ |
+ int szRight = szNew[i]; /* Size of sibling on the right */ |
+ int szLeft = szNew[i-1]; /* Size of sibling on the left */ |
+ int r; /* Index of right-most cell in left sibling */ |
+ int d; /* Index of first cell to the left of right sibling */ |
+ |
+ r = cntNew[i-1] - 1; |
+ d = r + 1 - leafData; |
+ (void)cachedCellSize(&b, d); |
+ do{ |
+ assert( d<nMaxCells ); |
+ assert( r<nMaxCells ); |
+ (void)cachedCellSize(&b, r); |
+ if( szRight!=0 |
+ && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+2)) ){ |
+ break; |
+ } |
+ szRight += b.szCell[d] + 2; |
+ szLeft -= b.szCell[r] + 2; |
+ cntNew[i-1] = r; |
+ r--; |
+ d--; |
+ }while( r>=0 ); |
+ szNew[i] = szRight; |
+ szNew[i-1] = szLeft; |
+ if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){ |
+ rc = SQLITE_CORRUPT_BKPT; |
+ goto balance_cleanup; |
+ } |
+ } |
+ |
+ /* Sanity check: For a non-corrupt database file one of the follwing |
+ ** must be true: |
+ ** (1) We found one or more cells (cntNew[0])>0), or |
+ ** (2) pPage is a virtual root page. A virtual root page is when |
+ ** the real root page is page 1 and we are the only child of |
+ ** that page. |
+ */ |
+ assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB); |
+ TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n", |
+ apOld[0]->pgno, apOld[0]->nCell, |
+ nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0, |
+ nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0 |
+ )); |
+ |
+ /* |
+ ** Allocate k new pages. Reuse old pages where possible. |
+ */ |
+ pageFlags = apOld[0]->aData[0]; |
+ for(i=0; i<k; i++){ |
+ MemPage *pNew; |
+ if( i<nOld ){ |
+ pNew = apNew[i] = apOld[i]; |
+ apOld[i] = 0; |
+ rc = sqlite3PagerWrite(pNew->pDbPage); |
+ nNew++; |
+ if( rc ) goto balance_cleanup; |
+ }else{ |
+ assert( i>0 ); |
+ rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0); |
+ if( rc ) goto balance_cleanup; |
+ zeroPage(pNew, pageFlags); |
+ apNew[i] = pNew; |
+ nNew++; |
+ cntOld[i] = b.nCell; |
+ |
+ /* Set the pointer-map entry for the new sibling page. */ |
+ if( ISAUTOVACUUM ){ |
+ ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc); |
+ if( rc!=SQLITE_OK ){ |
+ goto balance_cleanup; |
+ } |
+ } |
+ } |
+ } |
+ |
+ /* |
+ ** Reassign page numbers so that the new pages are in ascending order. |
+ ** This helps to keep entries in the disk file in order so that a scan |
+ ** of the table is closer to a linear scan through the file. That in turn |
+ ** helps the operating system to deliver pages from the disk more rapidly. |
+ ** |
+ ** An O(n^2) insertion sort algorithm is used, but since n is never more |
+ ** than (NB+2) (a small constant), that should not be a problem. |
+ ** |
+ ** When NB==3, this one optimization makes the database about 25% faster |
+ ** for large insertions and deletions. |
+ */ |
+ for(i=0; i<nNew; i++){ |
+ aPgOrder[i] = aPgno[i] = apNew[i]->pgno; |
+ aPgFlags[i] = apNew[i]->pDbPage->flags; |
+ for(j=0; j<i; j++){ |
+ if( aPgno[j]==aPgno[i] ){ |
+ /* This branch is taken if the set of sibling pages somehow contains |
+ ** duplicate entries. This can happen if the database is corrupt. |
+ ** It would be simpler to detect this as part of the loop below, but |
+ ** we do the detection here in order to avoid populating the pager |
+ ** cache with two separate objects associated with the same |
+ ** page number. */ |
+ assert( CORRUPT_DB ); |
+ rc = SQLITE_CORRUPT_BKPT; |
+ goto balance_cleanup; |
+ } |
+ } |
+ } |
+ for(i=0; i<nNew; i++){ |
+ int iBest = 0; /* aPgno[] index of page number to use */ |
+ for(j=1; j<nNew; j++){ |
+ if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j; |
+ } |
+ pgno = aPgOrder[iBest]; |
+ aPgOrder[iBest] = 0xffffffff; |
+ if( iBest!=i ){ |
+ if( iBest>i ){ |
+ sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0); |
+ } |
+ sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]); |
+ apNew[i]->pgno = pgno; |
+ } |
+ } |
+ |
+ TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) " |
+ "%d(%d nc=%d) %d(%d nc=%d)\n", |
+ apNew[0]->pgno, szNew[0], cntNew[0], |
+ nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0, |
+ nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0, |
+ nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0, |
+ nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0, |
+ nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0, |
+ nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0, |
+ nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0, |
+ nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0 |
+ )); |
+ |
+ assert( sqlite3PagerIswriteable(pParent->pDbPage) ); |
+ put4byte(pRight, apNew[nNew-1]->pgno); |
+ |
+ /* If the sibling pages are not leaves, ensure that the right-child pointer |
+ ** of the right-most new sibling page is set to the value that was |
+ ** originally in the same field of the right-most old sibling page. */ |
+ if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){ |
+ MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1]; |
+ memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4); |
+ } |
+ |
+ /* Make any required updates to pointer map entries associated with |
+ ** cells stored on sibling pages following the balance operation. Pointer |
+ ** map entries associated with divider cells are set by the insertCell() |
+ ** routine. The associated pointer map entries are: |
+ ** |
+ ** a) if the cell contains a reference to an overflow chain, the |
+ ** entry associated with the first page in the overflow chain, and |
+ ** |
+ ** b) if the sibling pages are not leaves, the child page associated |
+ ** with the cell. |
+ ** |
+ ** If the sibling pages are not leaves, then the pointer map entry |
+ ** associated with the right-child of each sibling may also need to be |
+ ** updated. This happens below, after the sibling pages have been |
+ ** populated, not here. |
+ */ |
+ if( ISAUTOVACUUM ){ |
+ MemPage *pNew = apNew[0]; |
+ u8 *aOld = pNew->aData; |
+ int cntOldNext = pNew->nCell + pNew->nOverflow; |
+ int usableSize = pBt->usableSize; |
+ int iNew = 0; |
+ int iOld = 0; |
+ |
+ for(i=0; i<b.nCell; i++){ |
+ u8 *pCell = b.apCell[i]; |
+ if( i==cntOldNext ){ |
+ MemPage *pOld = (++iOld)<nNew ? apNew[iOld] : apOld[iOld]; |
+ cntOldNext += pOld->nCell + pOld->nOverflow + !leafData; |
+ aOld = pOld->aData; |
+ } |
+ if( i==cntNew[iNew] ){ |
+ pNew = apNew[++iNew]; |
+ if( !leafData ) continue; |
+ } |
+ |
+ /* Cell pCell is destined for new sibling page pNew. Originally, it |
+ ** was either part of sibling page iOld (possibly an overflow cell), |
+ ** or else the divider cell to the left of sibling page iOld. So, |
+ ** if sibling page iOld had the same page number as pNew, and if |
+ ** pCell really was a part of sibling page iOld (not a divider or |
+ ** overflow cell), we can skip updating the pointer map entries. */ |
+ if( iOld>=nNew |
+ || pNew->pgno!=aPgno[iOld] |
+ || !SQLITE_WITHIN(pCell,aOld,&aOld[usableSize]) |
+ ){ |
+ if( !leafCorrection ){ |
+ ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc); |
+ } |
+ if( cachedCellSize(&b,i)>pNew->minLocal ){ |
+ ptrmapPutOvflPtr(pNew, pCell, &rc); |
+ } |
+ if( rc ) goto balance_cleanup; |
+ } |
+ } |
+ } |
+ |
+ /* Insert new divider cells into pParent. */ |
+ for(i=0; i<nNew-1; i++){ |
+ u8 *pCell; |
+ u8 *pTemp; |
+ int sz; |
+ MemPage *pNew = apNew[i]; |
+ j = cntNew[i]; |
+ |
+ assert( j<nMaxCells ); |
+ assert( b.apCell[j]!=0 ); |
+ pCell = b.apCell[j]; |
+ sz = b.szCell[j] + leafCorrection; |
+ pTemp = &aOvflSpace[iOvflSpace]; |
+ if( !pNew->leaf ){ |
+ memcpy(&pNew->aData[8], pCell, 4); |
+ }else if( leafData ){ |
+ /* If the tree is a leaf-data tree, and the siblings are leaves, |
+ ** then there is no divider cell in b.apCell[]. Instead, the divider |
+ ** cell consists of the integer key for the right-most cell of |
+ ** the sibling-page assembled above only. |
+ */ |
+ CellInfo info; |
+ j--; |
+ pNew->xParseCell(pNew, b.apCell[j], &info); |
+ pCell = pTemp; |
+ sz = 4 + putVarint(&pCell[4], info.nKey); |
+ pTemp = 0; |
+ }else{ |
+ pCell -= 4; |
+ /* Obscure case for non-leaf-data trees: If the cell at pCell was |
+ ** previously stored on a leaf node, and its reported size was 4 |
+ ** bytes, then it may actually be smaller than this |
+ ** (see btreeParseCellPtr(), 4 bytes is the minimum size of |
+ ** any cell). But it is important to pass the correct size to |
+ ** insertCell(), so reparse the cell now. |
+ ** |
+ ** Note that this can never happen in an SQLite data file, as all |
+ ** cells are at least 4 bytes. It only happens in b-trees used |
+ ** to evaluate "IN (SELECT ...)" and similar clauses. |
+ */ |
+ if( b.szCell[j]==4 ){ |
+ assert(leafCorrection==4); |
+ sz = pParent->xCellSize(pParent, pCell); |
+ } |
+ } |
+ iOvflSpace += sz; |
+ assert( sz<=pBt->maxLocal+23 ); |
+ assert( iOvflSpace <= (int)pBt->pageSize ); |
+ insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc); |
+ if( rc!=SQLITE_OK ) goto balance_cleanup; |
+ assert( sqlite3PagerIswriteable(pParent->pDbPage) ); |
+ } |
+ |
+ /* Now update the actual sibling pages. The order in which they are updated |
+ ** is important, as this code needs to avoid disrupting any page from which |
+ ** cells may still to be read. In practice, this means: |
+ ** |
+ ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1]) |
+ ** then it is not safe to update page apNew[iPg] until after |
+ ** the left-hand sibling apNew[iPg-1] has been updated. |
+ ** |
+ ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1]) |
+ ** then it is not safe to update page apNew[iPg] until after |
+ ** the right-hand sibling apNew[iPg+1] has been updated. |
+ ** |
+ ** If neither of the above apply, the page is safe to update. |
+ ** |
+ ** The iPg value in the following loop starts at nNew-1 goes down |
+ ** to 0, then back up to nNew-1 again, thus making two passes over |
+ ** the pages. On the initial downward pass, only condition (1) above |
+ ** needs to be tested because (2) will always be true from the previous |
+ ** step. On the upward pass, both conditions are always true, so the |
+ ** upwards pass simply processes pages that were missed on the downward |
+ ** pass. |
+ */ |
+ for(i=1-nNew; i<nNew; i++){ |
+ int iPg = i<0 ? -i : i; |
+ assert( iPg>=0 && iPg<nNew ); |
+ if( abDone[iPg] ) continue; /* Skip pages already processed */ |
+ if( i>=0 /* On the upwards pass, or... */ |
+ || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */ |
+ ){ |
+ int iNew; |
+ int iOld; |
+ int nNewCell; |
+ |
+ /* Verify condition (1): If cells are moving left, update iPg |
+ ** only after iPg-1 has already been updated. */ |
+ assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] ); |
+ |
+ /* Verify condition (2): If cells are moving right, update iPg |
+ ** only after iPg+1 has already been updated. */ |
+ assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] ); |
+ |
+ if( iPg==0 ){ |
+ iNew = iOld = 0; |
+ nNewCell = cntNew[0]; |
+ }else{ |
+ iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell; |
+ iNew = cntNew[iPg-1] + !leafData; |
+ nNewCell = cntNew[iPg] - iNew; |
+ } |
+ |
+ rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b); |
+ if( rc ) goto balance_cleanup; |
+ abDone[iPg]++; |
+ apNew[iPg]->nFree = usableSpace-szNew[iPg]; |
+ assert( apNew[iPg]->nOverflow==0 ); |
+ assert( apNew[iPg]->nCell==nNewCell ); |
+ } |
+ } |
+ |
+ /* All pages have been processed exactly once */ |
+ assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 ); |
+ |
+ assert( nOld>0 ); |
+ assert( nNew>0 ); |
+ |
+ if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){ |
+ /* The root page of the b-tree now contains no cells. The only sibling |
+ ** page is the right-child of the parent. Copy the contents of the |
+ ** child page into the parent, decreasing the overall height of the |
+ ** b-tree structure by one. This is described as the "balance-shallower" |
+ ** sub-algorithm in some documentation. |
+ ** |
+ ** If this is an auto-vacuum database, the call to copyNodeContent() |
+ ** sets all pointer-map entries corresponding to database image pages |
+ ** for which the pointer is stored within the content being copied. |
+ ** |
+ ** It is critical that the child page be defragmented before being |
+ ** copied into the parent, because if the parent is page 1 then it will |
+ ** by smaller than the child due to the database header, and so all the |
+ ** free space needs to be up front. |
+ */ |
+ assert( nNew==1 || CORRUPT_DB ); |
+ rc = defragmentPage(apNew[0]); |
+ testcase( rc!=SQLITE_OK ); |
+ assert( apNew[0]->nFree == |
+ (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2) |
+ || rc!=SQLITE_OK |
+ ); |
+ copyNodeContent(apNew[0], pParent, &rc); |
+ freePage(apNew[0], &rc); |
+ }else if( ISAUTOVACUUM && !leafCorrection ){ |
+ /* Fix the pointer map entries associated with the right-child of each |
+ ** sibling page. All other pointer map entries have already been taken |
+ ** care of. */ |
+ for(i=0; i<nNew; i++){ |
+ u32 key = get4byte(&apNew[i]->aData[8]); |
+ ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc); |
+ } |
+ } |
+ |
+ assert( pParent->isInit ); |
+ TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n", |
+ nOld, nNew, b.nCell)); |
+ |
+ /* Free any old pages that were not reused as new pages. |
+ */ |
+ for(i=nNew; i<nOld; i++){ |
+ freePage(apOld[i], &rc); |
+ } |
+ |
+#if 0 |
+ if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){ |
+ /* The ptrmapCheckPages() contains assert() statements that verify that |
+ ** all pointer map pages are set correctly. This is helpful while |
+ ** debugging. This is usually disabled because a corrupt database may |
+ ** cause an assert() statement to fail. */ |
+ ptrmapCheckPages(apNew, nNew); |
+ ptrmapCheckPages(&pParent, 1); |
+ } |
+#endif |
+ |
+ /* |
+ ** Cleanup before returning. |
+ */ |
+balance_cleanup: |
+ sqlite3ScratchFree(b.apCell); |
+ for(i=0; i<nOld; i++){ |
+ releasePage(apOld[i]); |
+ } |
+ for(i=0; i<nNew; i++){ |
+ releasePage(apNew[i]); |
+ } |
+ |
+ return rc; |
+} |
+ |
+ |
+/* |
+** This function is called when the root page of a b-tree structure is |
+** overfull (has one or more overflow pages). |
+** |
+** A new child page is allocated and the contents of the current root |
+** page, including overflow cells, are copied into the child. The root |
+** page is then overwritten to make it an empty page with the right-child |
+** pointer pointing to the new page. |
+** |
+** Before returning, all pointer-map entries corresponding to pages |
+** that the new child-page now contains pointers to are updated. The |
+** entry corresponding to the new right-child pointer of the root |
+** page is also updated. |
+** |
+** If successful, *ppChild is set to contain a reference to the child |
+** page and SQLITE_OK is returned. In this case the caller is required |
+** to call releasePage() on *ppChild exactly once. If an error occurs, |
+** an error code is returned and *ppChild is set to 0. |
+*/ |
+static int balance_deeper(MemPage *pRoot, MemPage **ppChild){ |
+ int rc; /* Return value from subprocedures */ |
+ MemPage *pChild = 0; /* Pointer to a new child page */ |
+ Pgno pgnoChild = 0; /* Page number of the new child page */ |
+ BtShared *pBt = pRoot->pBt; /* The BTree */ |
+ |
+ assert( pRoot->nOverflow>0 ); |
+ assert( sqlite3_mutex_held(pBt->mutex) ); |
+ |
+ /* Make pRoot, the root page of the b-tree, writable. Allocate a new |
+ ** page that will become the new right-child of pPage. Copy the contents |
+ ** of the node stored on pRoot into the new child page. |
+ */ |
+ rc = sqlite3PagerWrite(pRoot->pDbPage); |
+ if( rc==SQLITE_OK ){ |
+ rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0); |
+ copyNodeContent(pRoot, pChild, &rc); |
+ if( ISAUTOVACUUM ){ |
+ ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc); |
+ } |
+ } |
+ if( rc ){ |
+ *ppChild = 0; |
+ releasePage(pChild); |
+ return rc; |
+ } |
+ assert( sqlite3PagerIswriteable(pChild->pDbPage) ); |
+ assert( sqlite3PagerIswriteable(pRoot->pDbPage) ); |
+ assert( pChild->nCell==pRoot->nCell ); |
+ |
+ TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno)); |
+ |
+ /* Copy the overflow cells from pRoot to pChild */ |
+ memcpy(pChild->aiOvfl, pRoot->aiOvfl, |
+ pRoot->nOverflow*sizeof(pRoot->aiOvfl[0])); |
+ memcpy(pChild->apOvfl, pRoot->apOvfl, |
+ pRoot->nOverflow*sizeof(pRoot->apOvfl[0])); |
+ pChild->nOverflow = pRoot->nOverflow; |
+ |
+ /* Zero the contents of pRoot. Then install pChild as the right-child. */ |
+ zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF); |
+ put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild); |
+ |
+ *ppChild = pChild; |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** The page that pCur currently points to has just been modified in |
+** some way. This function figures out if this modification means the |
+** tree needs to be balanced, and if so calls the appropriate balancing |
+** routine. Balancing routines are: |
+** |
+** balance_quick() |
+** balance_deeper() |
+** balance_nonroot() |
+*/ |
+static int balance(BtCursor *pCur){ |
+ int rc = SQLITE_OK; |
+ const int nMin = pCur->pBt->usableSize * 2 / 3; |
+ u8 aBalanceQuickSpace[13]; |
+ u8 *pFree = 0; |
+ |
+ TESTONLY( int balance_quick_called = 0 ); |
+ TESTONLY( int balance_deeper_called = 0 ); |
+ |
+ do { |
+ int iPage = pCur->iPage; |
+ MemPage *pPage = pCur->apPage[iPage]; |
+ |
+ if( iPage==0 ){ |
+ if( pPage->nOverflow ){ |
+ /* The root page of the b-tree is overfull. In this case call the |
+ ** balance_deeper() function to create a new child for the root-page |
+ ** and copy the current contents of the root-page to it. The |
+ ** next iteration of the do-loop will balance the child page. |
+ */ |
+ assert( (balance_deeper_called++)==0 ); |
+ rc = balance_deeper(pPage, &pCur->apPage[1]); |
+ if( rc==SQLITE_OK ){ |
+ pCur->iPage = 1; |
+ pCur->aiIdx[0] = 0; |
+ pCur->aiIdx[1] = 0; |
+ assert( pCur->apPage[1]->nOverflow ); |
+ } |
+ }else{ |
+ break; |
+ } |
+ }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){ |
+ break; |
+ }else{ |
+ MemPage * const pParent = pCur->apPage[iPage-1]; |
+ int const iIdx = pCur->aiIdx[iPage-1]; |
+ |
+ rc = sqlite3PagerWrite(pParent->pDbPage); |
+ if( rc==SQLITE_OK ){ |
+#ifndef SQLITE_OMIT_QUICKBALANCE |
+ if( pPage->intKeyLeaf |
+ && pPage->nOverflow==1 |
+ && pPage->aiOvfl[0]==pPage->nCell |
+ && pParent->pgno!=1 |
+ && pParent->nCell==iIdx |
+ ){ |
+ /* Call balance_quick() to create a new sibling of pPage on which |
+ ** to store the overflow cell. balance_quick() inserts a new cell |
+ ** into pParent, which may cause pParent overflow. If this |
+ ** happens, the next iteration of the do-loop will balance pParent |
+ ** use either balance_nonroot() or balance_deeper(). Until this |
+ ** happens, the overflow cell is stored in the aBalanceQuickSpace[] |
+ ** buffer. |
+ ** |
+ ** The purpose of the following assert() is to check that only a |
+ ** single call to balance_quick() is made for each call to this |
+ ** function. If this were not verified, a subtle bug involving reuse |
+ ** of the aBalanceQuickSpace[] might sneak in. |
+ */ |
+ assert( (balance_quick_called++)==0 ); |
+ rc = balance_quick(pParent, pPage, aBalanceQuickSpace); |
+ }else |
+#endif |
+ { |
+ /* In this case, call balance_nonroot() to redistribute cells |
+ ** between pPage and up to 2 of its sibling pages. This involves |
+ ** modifying the contents of pParent, which may cause pParent to |
+ ** become overfull or underfull. The next iteration of the do-loop |
+ ** will balance the parent page to correct this. |
+ ** |
+ ** If the parent page becomes overfull, the overflow cell or cells |
+ ** are stored in the pSpace buffer allocated immediately below. |
+ ** A subsequent iteration of the do-loop will deal with this by |
+ ** calling balance_nonroot() (balance_deeper() may be called first, |
+ ** but it doesn't deal with overflow cells - just moves them to a |
+ ** different page). Once this subsequent call to balance_nonroot() |
+ ** has completed, it is safe to release the pSpace buffer used by |
+ ** the previous call, as the overflow cell data will have been |
+ ** copied either into the body of a database page or into the new |
+ ** pSpace buffer passed to the latter call to balance_nonroot(). |
+ */ |
+ u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize); |
+ rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1, |
+ pCur->hints&BTREE_BULKLOAD); |
+ if( pFree ){ |
+ /* If pFree is not NULL, it points to the pSpace buffer used |
+ ** by a previous call to balance_nonroot(). Its contents are |
+ ** now stored either on real database pages or within the |
+ ** new pSpace buffer, so it may be safely freed here. */ |
+ sqlite3PageFree(pFree); |
+ } |
+ |
+ /* The pSpace buffer will be freed after the next call to |
+ ** balance_nonroot(), or just before this function returns, whichever |
+ ** comes first. */ |
+ pFree = pSpace; |
+ } |
+ } |
+ |
+ pPage->nOverflow = 0; |
+ |
+ /* The next iteration of the do-loop balances the parent page. */ |
+ releasePage(pPage); |
+ pCur->iPage--; |
+ assert( pCur->iPage>=0 ); |
+ } |
+ }while( rc==SQLITE_OK ); |
+ |
+ if( pFree ){ |
+ sqlite3PageFree(pFree); |
+ } |
+ return rc; |
+} |
+ |
+ |
+/* |
+** Insert a new record into the BTree. The key is given by (pKey,nKey) |
+** and the data is given by (pData,nData). The cursor is used only to |
+** define what table the record should be inserted into. The cursor |
+** is left pointing at a random location. |
+** |
+** For an INTKEY table, only the nKey value of the key is used. pKey is |
+** ignored. For a ZERODATA table, the pData and nData are both ignored. |
+** |
+** If the seekResult parameter is non-zero, then a successful call to |
+** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already |
+** been performed. seekResult is the search result returned (a negative |
+** number if pCur points at an entry that is smaller than (pKey, nKey), or |
+** a positive value if pCur points at an entry that is larger than |
+** (pKey, nKey)). |
+** |
+** If the seekResult parameter is non-zero, then the caller guarantees that |
+** cursor pCur is pointing at the existing copy of a row that is to be |
+** overwritten. If the seekResult parameter is 0, then cursor pCur may |
+** point to any entry or to no entry at all and so this function has to seek |
+** the cursor before the new key can be inserted. |
+*/ |
+SQLITE_PRIVATE int sqlite3BtreeInsert( |
+ BtCursor *pCur, /* Insert data into the table of this cursor */ |
+ const void *pKey, i64 nKey, /* The key of the new record */ |
+ const void *pData, int nData, /* The data of the new record */ |
+ int nZero, /* Number of extra 0 bytes to append to data */ |
+ int appendBias, /* True if this is likely an append */ |
+ int seekResult /* Result of prior MovetoUnpacked() call */ |
+){ |
+ int rc; |
+ int loc = seekResult; /* -1: before desired location +1: after */ |
+ int szNew = 0; |
+ int idx; |
+ MemPage *pPage; |
+ Btree *p = pCur->pBtree; |
+ BtShared *pBt = p->pBt; |
+ unsigned char *oldCell; |
+ unsigned char *newCell = 0; |
+ |
+ if( pCur->eState==CURSOR_FAULT ){ |
+ assert( pCur->skipNext!=SQLITE_OK ); |
+ return pCur->skipNext; |
+ } |
+ |
+ assert( cursorHoldsMutex(pCur) ); |
+ assert( (pCur->curFlags & BTCF_WriteFlag)!=0 |
+ && pBt->inTransaction==TRANS_WRITE |
+ && (pBt->btsFlags & BTS_READ_ONLY)==0 ); |
+ assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); |
+ |
+ /* Assert that the caller has been consistent. If this cursor was opened |
+ ** expecting an index b-tree, then the caller should be inserting blob |
+ ** keys with no associated data. If the cursor was opened expecting an |
+ ** intkey table, the caller should be inserting integer keys with a |
+ ** blob of associated data. */ |
+ assert( (pKey==0)==(pCur->pKeyInfo==0) ); |
+ |
+ /* Save the positions of any other cursors open on this table. |
+ ** |
+ ** In some cases, the call to btreeMoveto() below is a no-op. For |
+ ** example, when inserting data into a table with auto-generated integer |
+ ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the |
+ ** integer key to use. It then calls this function to actually insert the |
+ ** data into the intkey B-Tree. In this case btreeMoveto() recognizes |
+ ** that the cursor is already where it needs to be and returns without |
+ ** doing any work. To avoid thwarting these optimizations, it is important |
+ ** not to clear the cursor here. |
+ */ |
+ if( pCur->curFlags & BTCF_Multiple ){ |
+ rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); |
+ if( rc ) return rc; |
+ } |
+ |
+ if( pCur->pKeyInfo==0 ){ |
+ assert( pKey==0 ); |
+ /* If this is an insert into a table b-tree, invalidate any incrblob |
+ ** cursors open on the row being replaced */ |
+ invalidateIncrblobCursors(p, nKey, 0); |
+ |
+ /* If the cursor is currently on the last row and we are appending a |
+ ** new row onto the end, set the "loc" to avoid an unnecessary |
+ ** btreeMoveto() call */ |
+ if( (pCur->curFlags&BTCF_ValidNKey)!=0 && nKey>0 |
+ && pCur->info.nKey==nKey-1 ){ |
+ loc = -1; |
+ }else if( loc==0 ){ |
+ rc = sqlite3BtreeMovetoUnpacked(pCur, 0, nKey, appendBias, &loc); |
+ if( rc ) return rc; |
+ } |
+ }else if( loc==0 ){ |
+ rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc); |
+ if( rc ) return rc; |
+ } |
+ assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) ); |
+ |
+ pPage = pCur->apPage[pCur->iPage]; |
+ assert( pPage->intKey || nKey>=0 ); |
+ assert( pPage->leaf || !pPage->intKey ); |
+ |
+ TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n", |
+ pCur->pgnoRoot, nKey, nData, pPage->pgno, |
+ loc==0 ? "overwrite" : "new entry")); |
+ assert( pPage->isInit ); |
+ newCell = pBt->pTmpSpace; |
+ assert( newCell!=0 ); |
+ rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew); |
+ if( rc ) goto end_insert; |
+ assert( szNew==pPage->xCellSize(pPage, newCell) ); |
+ assert( szNew <= MX_CELL_SIZE(pBt) ); |
+ idx = pCur->aiIdx[pCur->iPage]; |
+ if( loc==0 ){ |
+ u16 szOld; |
+ assert( idx<pPage->nCell ); |
+ rc = sqlite3PagerWrite(pPage->pDbPage); |
+ if( rc ){ |
+ goto end_insert; |
+ } |
+ oldCell = findCell(pPage, idx); |
+ if( !pPage->leaf ){ |
+ memcpy(newCell, oldCell, 4); |
+ } |
+ rc = clearCell(pPage, oldCell, &szOld); |
+ dropCell(pPage, idx, szOld, &rc); |
+ if( rc ) goto end_insert; |
+ }else if( loc<0 && pPage->nCell>0 ){ |
+ assert( pPage->leaf ); |
+ idx = ++pCur->aiIdx[pCur->iPage]; |
+ }else{ |
+ assert( pPage->leaf ); |
+ } |
+ insertCell(pPage, idx, newCell, szNew, 0, 0, &rc); |
+ assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 ); |
+ |
+ /* If no error has occurred and pPage has an overflow cell, call balance() |
+ ** to redistribute the cells within the tree. Since balance() may move |
+ ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey |
+ ** variables. |
+ ** |
+ ** Previous versions of SQLite called moveToRoot() to move the cursor |
+ ** back to the root page as balance() used to invalidate the contents |
+ ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that, |
+ ** set the cursor state to "invalid". This makes common insert operations |
+ ** slightly faster. |
+ ** |
+ ** There is a subtle but important optimization here too. When inserting |
+ ** multiple records into an intkey b-tree using a single cursor (as can |
+ ** happen while processing an "INSERT INTO ... SELECT" statement), it |
+ ** is advantageous to leave the cursor pointing to the last entry in |
+ ** the b-tree if possible. If the cursor is left pointing to the last |
+ ** entry in the table, and the next row inserted has an integer key |
+ ** larger than the largest existing key, it is possible to insert the |
+ ** row without seeking the cursor. This can be a big performance boost. |
+ */ |
+ pCur->info.nSize = 0; |
+ if( rc==SQLITE_OK && pPage->nOverflow ){ |
+ pCur->curFlags &= ~(BTCF_ValidNKey); |
+ rc = balance(pCur); |
+ |
+ /* Must make sure nOverflow is reset to zero even if the balance() |
+ ** fails. Internal data structure corruption will result otherwise. |
+ ** Also, set the cursor state to invalid. This stops saveCursorPosition() |
+ ** from trying to save the current position of the cursor. */ |
+ pCur->apPage[pCur->iPage]->nOverflow = 0; |
+ pCur->eState = CURSOR_INVALID; |
+ } |
+ assert( pCur->apPage[pCur->iPage]->nOverflow==0 ); |
+ |
+end_insert: |
+ return rc; |
+} |
+ |
+/* |
+** Delete the entry that the cursor is pointing to. |
+** |
+** If the second parameter is zero, then the cursor is left pointing at an |
+** arbitrary location after the delete. If it is non-zero, then the cursor |
+** is left in a state such that the next call to BtreeNext() or BtreePrev() |
+** moves it to the same row as it would if the call to BtreeDelete() had |
+** been omitted. |
+*/ |
+SQLITE_PRIVATE int sqlite3BtreeDelete(BtCursor *pCur, int bPreserve){ |
+ Btree *p = pCur->pBtree; |
+ BtShared *pBt = p->pBt; |
+ int rc; /* Return code */ |
+ MemPage *pPage; /* Page to delete cell from */ |
+ unsigned char *pCell; /* Pointer to cell to delete */ |
+ int iCellIdx; /* Index of cell to delete */ |
+ int iCellDepth; /* Depth of node containing pCell */ |
+ u16 szCell; /* Size of the cell being deleted */ |
+ int bSkipnext = 0; /* Leaf cursor in SKIPNEXT state */ |
+ |
+ assert( cursorHoldsMutex(pCur) ); |
+ assert( pBt->inTransaction==TRANS_WRITE ); |
+ assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); |
+ assert( pCur->curFlags & BTCF_WriteFlag ); |
+ assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); |
+ assert( !hasReadConflicts(p, pCur->pgnoRoot) ); |
+ assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell ); |
+ assert( pCur->eState==CURSOR_VALID ); |
+ |
+ iCellDepth = pCur->iPage; |
+ iCellIdx = pCur->aiIdx[iCellDepth]; |
+ pPage = pCur->apPage[iCellDepth]; |
+ pCell = findCell(pPage, iCellIdx); |
+ |
+ /* If the page containing the entry to delete is not a leaf page, move |
+ ** the cursor to the largest entry in the tree that is smaller than |
+ ** the entry being deleted. This cell will replace the cell being deleted |
+ ** from the internal node. The 'previous' entry is used for this instead |
+ ** of the 'next' entry, as the previous entry is always a part of the |
+ ** sub-tree headed by the child page of the cell being deleted. This makes |
+ ** balancing the tree following the delete operation easier. */ |
+ if( !pPage->leaf ){ |
+ int notUsed = 0; |
+ rc = sqlite3BtreePrevious(pCur, ¬Used); |
+ if( rc ) return rc; |
+ } |
+ |
+ /* Save the positions of any other cursors open on this table before |
+ ** making any modifications. */ |
+ if( pCur->curFlags & BTCF_Multiple ){ |
+ rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); |
+ if( rc ) return rc; |
+ } |
+ |
+ /* If this is a delete operation to remove a row from a table b-tree, |
+ ** invalidate any incrblob cursors open on the row being deleted. */ |
+ if( pCur->pKeyInfo==0 ){ |
+ invalidateIncrblobCursors(p, pCur->info.nKey, 0); |
+ } |
+ |
+ /* If the bPreserve flag is set to true, then the cursor position must |
+ ** be preserved following this delete operation. If the current delete |
+ ** will cause a b-tree rebalance, then this is done by saving the cursor |
+ ** key and leaving the cursor in CURSOR_REQUIRESEEK state before |
+ ** returning. |
+ ** |
+ ** Or, if the current delete will not cause a rebalance, then the cursor |
+ ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately |
+ ** before or after the deleted entry. In this case set bSkipnext to true. */ |
+ if( bPreserve ){ |
+ if( !pPage->leaf |
+ || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3) |
+ ){ |
+ /* A b-tree rebalance will be required after deleting this entry. |
+ ** Save the cursor key. */ |
+ rc = saveCursorKey(pCur); |
+ if( rc ) return rc; |
+ }else{ |
+ bSkipnext = 1; |
+ } |
+ } |
+ |
+ /* Make the page containing the entry to be deleted writable. Then free any |
+ ** overflow pages associated with the entry and finally remove the cell |
+ ** itself from within the page. */ |
+ rc = sqlite3PagerWrite(pPage->pDbPage); |
+ if( rc ) return rc; |
+ rc = clearCell(pPage, pCell, &szCell); |
+ dropCell(pPage, iCellIdx, szCell, &rc); |
+ if( rc ) return rc; |
+ |
+ /* If the cell deleted was not located on a leaf page, then the cursor |
+ ** is currently pointing to the largest entry in the sub-tree headed |
+ ** by the child-page of the cell that was just deleted from an internal |
+ ** node. The cell from the leaf node needs to be moved to the internal |
+ ** node to replace the deleted cell. */ |
+ if( !pPage->leaf ){ |
+ MemPage *pLeaf = pCur->apPage[pCur->iPage]; |
+ int nCell; |
+ Pgno n = pCur->apPage[iCellDepth+1]->pgno; |
+ unsigned char *pTmp; |
+ |
+ pCell = findCell(pLeaf, pLeaf->nCell-1); |
+ if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT; |
+ nCell = pLeaf->xCellSize(pLeaf, pCell); |
+ assert( MX_CELL_SIZE(pBt) >= nCell ); |
+ pTmp = pBt->pTmpSpace; |
+ assert( pTmp!=0 ); |
+ rc = sqlite3PagerWrite(pLeaf->pDbPage); |
+ insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc); |
+ dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc); |
+ if( rc ) return rc; |
+ } |
+ |
+ /* Balance the tree. If the entry deleted was located on a leaf page, |
+ ** then the cursor still points to that page. In this case the first |
+ ** call to balance() repairs the tree, and the if(...) condition is |
+ ** never true. |
+ ** |
+ ** Otherwise, if the entry deleted was on an internal node page, then |
+ ** pCur is pointing to the leaf page from which a cell was removed to |
+ ** replace the cell deleted from the internal node. This is slightly |
+ ** tricky as the leaf node may be underfull, and the internal node may |
+ ** be either under or overfull. In this case run the balancing algorithm |
+ ** on the leaf node first. If the balance proceeds far enough up the |
+ ** tree that we can be sure that any problem in the internal node has |
+ ** been corrected, so be it. Otherwise, after balancing the leaf node, |
+ ** walk the cursor up the tree to the internal node and balance it as |
+ ** well. */ |
+ rc = balance(pCur); |
+ if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){ |
+ while( pCur->iPage>iCellDepth ){ |
+ releasePage(pCur->apPage[pCur->iPage--]); |
+ } |
+ rc = balance(pCur); |
+ } |
+ |
+ if( rc==SQLITE_OK ){ |
+ if( bSkipnext ){ |
+ assert( bPreserve && (pCur->iPage==iCellDepth || CORRUPT_DB) ); |
+ assert( pPage==pCur->apPage[pCur->iPage] ); |
+ assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell ); |
+ pCur->eState = CURSOR_SKIPNEXT; |
+ if( iCellIdx>=pPage->nCell ){ |
+ pCur->skipNext = -1; |
+ pCur->aiIdx[iCellDepth] = pPage->nCell-1; |
+ }else{ |
+ pCur->skipNext = 1; |
+ } |
+ }else{ |
+ rc = moveToRoot(pCur); |
+ if( bPreserve ){ |
+ pCur->eState = CURSOR_REQUIRESEEK; |
+ } |
+ } |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Create a new BTree table. Write into *piTable the page |
+** number for the root page of the new table. |
+** |
+** The type of type is determined by the flags parameter. Only the |
+** following values of flags are currently in use. Other values for |
+** flags might not work: |
+** |
+** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys |
+** BTREE_ZERODATA Used for SQL indices |
+*/ |
+static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){ |
+ BtShared *pBt = p->pBt; |
+ MemPage *pRoot; |
+ Pgno pgnoRoot; |
+ int rc; |
+ int ptfFlags; /* Page-type flage for the root page of new table */ |
+ |
+ assert( sqlite3BtreeHoldsMutex(p) ); |
+ assert( pBt->inTransaction==TRANS_WRITE ); |
+ assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); |
+ |
+#ifdef SQLITE_OMIT_AUTOVACUUM |
+ rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0); |
+ if( rc ){ |
+ return rc; |
+ } |
+#else |
+ if( pBt->autoVacuum ){ |
+ Pgno pgnoMove; /* Move a page here to make room for the root-page */ |
+ MemPage *pPageMove; /* The page to move to. */ |
+ |
+ /* Creating a new table may probably require moving an existing database |
+ ** to make room for the new tables root page. In case this page turns |
+ ** out to be an overflow page, delete all overflow page-map caches |
+ ** held by open cursors. |
+ */ |
+ invalidateAllOverflowCache(pBt); |
+ |
+ /* Read the value of meta[3] from the database to determine where the |
+ ** root page of the new table should go. meta[3] is the largest root-page |
+ ** created so far, so the new root-page is (meta[3]+1). |
+ */ |
+ sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot); |
+ pgnoRoot++; |
+ |
+ /* The new root-page may not be allocated on a pointer-map page, or the |
+ ** PENDING_BYTE page. |
+ */ |
+ while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) || |
+ pgnoRoot==PENDING_BYTE_PAGE(pBt) ){ |
+ pgnoRoot++; |
+ } |
+ assert( pgnoRoot>=3 || CORRUPT_DB ); |
+ testcase( pgnoRoot<3 ); |
+ |
+ /* Allocate a page. The page that currently resides at pgnoRoot will |
+ ** be moved to the allocated page (unless the allocated page happens |
+ ** to reside at pgnoRoot). |
+ */ |
+ rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT); |
+ if( rc!=SQLITE_OK ){ |
+ return rc; |
+ } |
+ |
+ if( pgnoMove!=pgnoRoot ){ |
+ /* pgnoRoot is the page that will be used for the root-page of |
+ ** the new table (assuming an error did not occur). But we were |
+ ** allocated pgnoMove. If required (i.e. if it was not allocated |
+ ** by extending the file), the current page at position pgnoMove |
+ ** is already journaled. |
+ */ |
+ u8 eType = 0; |
+ Pgno iPtrPage = 0; |
+ |
+ /* Save the positions of any open cursors. This is required in |
+ ** case they are holding a reference to an xFetch reference |
+ ** corresponding to page pgnoRoot. */ |
+ rc = saveAllCursors(pBt, 0, 0); |
+ releasePage(pPageMove); |
+ if( rc!=SQLITE_OK ){ |
+ return rc; |
+ } |
+ |
+ /* Move the page currently at pgnoRoot to pgnoMove. */ |
+ rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0); |
+ if( rc!=SQLITE_OK ){ |
+ return rc; |
+ } |
+ rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage); |
+ if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){ |
+ rc = SQLITE_CORRUPT_BKPT; |
+ } |
+ if( rc!=SQLITE_OK ){ |
+ releasePage(pRoot); |
+ return rc; |
+ } |
+ assert( eType!=PTRMAP_ROOTPAGE ); |
+ assert( eType!=PTRMAP_FREEPAGE ); |
+ rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0); |
+ releasePage(pRoot); |
+ |
+ /* Obtain the page at pgnoRoot */ |
+ if( rc!=SQLITE_OK ){ |
+ return rc; |
+ } |
+ rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0); |
+ if( rc!=SQLITE_OK ){ |
+ return rc; |
+ } |
+ rc = sqlite3PagerWrite(pRoot->pDbPage); |
+ if( rc!=SQLITE_OK ){ |
+ releasePage(pRoot); |
+ return rc; |
+ } |
+ }else{ |
+ pRoot = pPageMove; |
+ } |
+ |
+ /* Update the pointer-map and meta-data with the new root-page number. */ |
+ ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc); |
+ if( rc ){ |
+ releasePage(pRoot); |
+ return rc; |
+ } |
+ |
+ /* When the new root page was allocated, page 1 was made writable in |
+ ** order either to increase the database filesize, or to decrement the |
+ ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail. |
+ */ |
+ assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) ); |
+ rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot); |
+ if( NEVER(rc) ){ |
+ releasePage(pRoot); |
+ return rc; |
+ } |
+ |
+ }else{ |
+ rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0); |
+ if( rc ) return rc; |
+ } |
+#endif |
+ assert( sqlite3PagerIswriteable(pRoot->pDbPage) ); |
+ if( createTabFlags & BTREE_INTKEY ){ |
+ ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF; |
+ }else{ |
+ ptfFlags = PTF_ZERODATA | PTF_LEAF; |
+ } |
+ zeroPage(pRoot, ptfFlags); |
+ sqlite3PagerUnref(pRoot->pDbPage); |
+ assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 ); |
+ *piTable = (int)pgnoRoot; |
+ return SQLITE_OK; |
+} |
+SQLITE_PRIVATE int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){ |
+ int rc; |
+ sqlite3BtreeEnter(p); |
+ rc = btreeCreateTable(p, piTable, flags); |
+ sqlite3BtreeLeave(p); |
+ return rc; |
+} |
+ |
+/* |
+** Erase the given database page and all its children. Return |
+** the page to the freelist. |
+*/ |
+static int clearDatabasePage( |
+ BtShared *pBt, /* The BTree that contains the table */ |
+ Pgno pgno, /* Page number to clear */ |
+ int freePageFlag, /* Deallocate page if true */ |
+ int *pnChange /* Add number of Cells freed to this counter */ |
+){ |
+ MemPage *pPage; |
+ int rc; |
+ unsigned char *pCell; |
+ int i; |
+ int hdr; |
+ u16 szCell; |
+ |
+ assert( sqlite3_mutex_held(pBt->mutex) ); |
+ if( pgno>btreePagecount(pBt) ){ |
+ return SQLITE_CORRUPT_BKPT; |
+ } |
+ rc = getAndInitPage(pBt, pgno, &pPage, 0, 0); |
+ if( rc ) return rc; |
+ if( pPage->bBusy ){ |
+ rc = SQLITE_CORRUPT_BKPT; |
+ goto cleardatabasepage_out; |
+ } |
+ pPage->bBusy = 1; |
+ hdr = pPage->hdrOffset; |
+ for(i=0; i<pPage->nCell; i++){ |
+ pCell = findCell(pPage, i); |
+ if( !pPage->leaf ){ |
+ rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange); |
+ if( rc ) goto cleardatabasepage_out; |
+ } |
+ rc = clearCell(pPage, pCell, &szCell); |
+ if( rc ) goto cleardatabasepage_out; |
+ } |
+ if( !pPage->leaf ){ |
+ rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange); |
+ if( rc ) goto cleardatabasepage_out; |
+ }else if( pnChange ){ |
+ assert( pPage->intKey || CORRUPT_DB ); |
+ testcase( !pPage->intKey ); |
+ *pnChange += pPage->nCell; |
+ } |
+ if( freePageFlag ){ |
+ freePage(pPage, &rc); |
+ }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){ |
+ zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF); |
+ } |
+ |
+cleardatabasepage_out: |
+ pPage->bBusy = 0; |
+ releasePage(pPage); |
+ return rc; |
+} |
+ |
+/* |
+** Delete all information from a single table in the database. iTable is |
+** the page number of the root of the table. After this routine returns, |
+** the root page is empty, but still exists. |
+** |
+** This routine will fail with SQLITE_LOCKED if there are any open |
+** read cursors on the table. Open write cursors are moved to the |
+** root of the table. |
+** |
+** If pnChange is not NULL, then table iTable must be an intkey table. The |
+** integer value pointed to by pnChange is incremented by the number of |
+** entries in the table. |
+*/ |
+SQLITE_PRIVATE int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){ |
+ int rc; |
+ BtShared *pBt = p->pBt; |
+ sqlite3BtreeEnter(p); |
+ assert( p->inTrans==TRANS_WRITE ); |
+ |
+ rc = saveAllCursors(pBt, (Pgno)iTable, 0); |
+ |
+ if( SQLITE_OK==rc ){ |
+ /* Invalidate all incrblob cursors open on table iTable (assuming iTable |
+ ** is the root of a table b-tree - if it is not, the following call is |
+ ** a no-op). */ |
+ invalidateIncrblobCursors(p, 0, 1); |
+ rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange); |
+ } |
+ sqlite3BtreeLeave(p); |
+ return rc; |
+} |
+ |
+/* |
+** Delete all information from the single table that pCur is open on. |
+** |
+** This routine only work for pCur on an ephemeral table. |
+*/ |
+SQLITE_PRIVATE int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){ |
+ return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0); |
+} |
+ |
+/* |
+** Erase all information in a table and add the root of the table to |
+** the freelist. Except, the root of the principle table (the one on |
+** page 1) is never added to the freelist. |
+** |
+** This routine will fail with SQLITE_LOCKED if there are any open |
+** cursors on the table. |
+** |
+** If AUTOVACUUM is enabled and the page at iTable is not the last |
+** root page in the database file, then the last root page |
+** in the database file is moved into the slot formerly occupied by |
+** iTable and that last slot formerly occupied by the last root page |
+** is added to the freelist instead of iTable. In this say, all |
+** root pages are kept at the beginning of the database file, which |
+** is necessary for AUTOVACUUM to work right. *piMoved is set to the |
+** page number that used to be the last root page in the file before |
+** the move. If no page gets moved, *piMoved is set to 0. |
+** The last root page is recorded in meta[3] and the value of |
+** meta[3] is updated by this procedure. |
+*/ |
+static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){ |
+ int rc; |
+ MemPage *pPage = 0; |
+ BtShared *pBt = p->pBt; |
+ |
+ assert( sqlite3BtreeHoldsMutex(p) ); |
+ assert( p->inTrans==TRANS_WRITE ); |
+ |
+ /* It is illegal to drop a table if any cursors are open on the |
+ ** database. This is because in auto-vacuum mode the backend may |
+ ** need to move another root-page to fill a gap left by the deleted |
+ ** root page. If an open cursor was using this page a problem would |
+ ** occur. |
+ ** |
+ ** This error is caught long before control reaches this point. |
+ */ |
+ if( NEVER(pBt->pCursor) ){ |
+ sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db); |
+ return SQLITE_LOCKED_SHAREDCACHE; |
+ } |
+ |
+ rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0); |
+ if( rc ) return rc; |
+ rc = sqlite3BtreeClearTable(p, iTable, 0); |
+ if( rc ){ |
+ releasePage(pPage); |
+ return rc; |
+ } |
+ |
+ *piMoved = 0; |
+ |
+ if( iTable>1 ){ |
+#ifdef SQLITE_OMIT_AUTOVACUUM |
+ freePage(pPage, &rc); |
+ releasePage(pPage); |
+#else |
+ if( pBt->autoVacuum ){ |
+ Pgno maxRootPgno; |
+ sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno); |
+ |
+ if( iTable==maxRootPgno ){ |
+ /* If the table being dropped is the table with the largest root-page |
+ ** number in the database, put the root page on the free list. |
+ */ |
+ freePage(pPage, &rc); |
+ releasePage(pPage); |
+ if( rc!=SQLITE_OK ){ |
+ return rc; |
+ } |
+ }else{ |
+ /* The table being dropped does not have the largest root-page |
+ ** number in the database. So move the page that does into the |
+ ** gap left by the deleted root-page. |
+ */ |
+ MemPage *pMove; |
+ releasePage(pPage); |
+ rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0); |
+ if( rc!=SQLITE_OK ){ |
+ return rc; |
+ } |
+ rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0); |
+ releasePage(pMove); |
+ if( rc!=SQLITE_OK ){ |
+ return rc; |
+ } |
+ pMove = 0; |
+ rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0); |
+ freePage(pMove, &rc); |
+ releasePage(pMove); |
+ if( rc!=SQLITE_OK ){ |
+ return rc; |
+ } |
+ *piMoved = maxRootPgno; |
+ } |
+ |
+ /* Set the new 'max-root-page' value in the database header. This |
+ ** is the old value less one, less one more if that happens to |
+ ** be a root-page number, less one again if that is the |
+ ** PENDING_BYTE_PAGE. |
+ */ |
+ maxRootPgno--; |
+ while( maxRootPgno==PENDING_BYTE_PAGE(pBt) |
+ || PTRMAP_ISPAGE(pBt, maxRootPgno) ){ |
+ maxRootPgno--; |
+ } |
+ assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) ); |
+ |
+ rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno); |
+ }else{ |
+ freePage(pPage, &rc); |
+ releasePage(pPage); |
+ } |
+#endif |
+ }else{ |
+ /* If sqlite3BtreeDropTable was called on page 1. |
+ ** This really never should happen except in a corrupt |
+ ** database. |
+ */ |
+ zeroPage(pPage, PTF_INTKEY|PTF_LEAF ); |
+ releasePage(pPage); |
+ } |
+ return rc; |
+} |
+SQLITE_PRIVATE int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){ |
+ int rc; |
+ sqlite3BtreeEnter(p); |
+ rc = btreeDropTable(p, iTable, piMoved); |
+ sqlite3BtreeLeave(p); |
+ return rc; |
+} |
+ |
+ |
+/* |
+** This function may only be called if the b-tree connection already |
+** has a read or write transaction open on the database. |
+** |
+** Read the meta-information out of a database file. Meta[0] |
+** is the number of free pages currently in the database. Meta[1] |
+** through meta[15] are available for use by higher layers. Meta[0] |
+** is read-only, the others are read/write. |
+** |
+** The schema layer numbers meta values differently. At the schema |
+** layer (and the SetCookie and ReadCookie opcodes) the number of |
+** free pages is not visible. So Cookie[0] is the same as Meta[1]. |
+** |
+** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead |
+** of reading the value out of the header, it instead loads the "DataVersion" |
+** from the pager. The BTREE_DATA_VERSION value is not actually stored in the |
+** database file. It is a number computed by the pager. But its access |
+** pattern is the same as header meta values, and so it is convenient to |
+** read it from this routine. |
+*/ |
+SQLITE_PRIVATE void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){ |
+ BtShared *pBt = p->pBt; |
+ |
+ sqlite3BtreeEnter(p); |
+ assert( p->inTrans>TRANS_NONE ); |
+ assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) ); |
+ assert( pBt->pPage1 ); |
+ assert( idx>=0 && idx<=15 ); |
+ |
+ if( idx==BTREE_DATA_VERSION ){ |
+ *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iDataVersion; |
+ }else{ |
+ *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]); |
+ } |
+ |
+ /* If auto-vacuum is disabled in this build and this is an auto-vacuum |
+ ** database, mark the database as read-only. */ |
+#ifdef SQLITE_OMIT_AUTOVACUUM |
+ if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){ |
+ pBt->btsFlags |= BTS_READ_ONLY; |
+ } |
+#endif |
+ |
+ sqlite3BtreeLeave(p); |
+} |
+ |
+/* |
+** Write meta-information back into the database. Meta[0] is |
+** read-only and may not be written. |
+*/ |
+SQLITE_PRIVATE int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){ |
+ BtShared *pBt = p->pBt; |
+ unsigned char *pP1; |
+ int rc; |
+ assert( idx>=1 && idx<=15 ); |
+ sqlite3BtreeEnter(p); |
+ assert( p->inTrans==TRANS_WRITE ); |
+ assert( pBt->pPage1!=0 ); |
+ pP1 = pBt->pPage1->aData; |
+ rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); |
+ if( rc==SQLITE_OK ){ |
+ put4byte(&pP1[36 + idx*4], iMeta); |
+#ifndef SQLITE_OMIT_AUTOVACUUM |
+ if( idx==BTREE_INCR_VACUUM ){ |
+ assert( pBt->autoVacuum || iMeta==0 ); |
+ assert( iMeta==0 || iMeta==1 ); |
+ pBt->incrVacuum = (u8)iMeta; |
+ } |
+#endif |
+ } |
+ sqlite3BtreeLeave(p); |
+ return rc; |
+} |
+ |
+#ifndef SQLITE_OMIT_BTREECOUNT |
+/* |
+** The first argument, pCur, is a cursor opened on some b-tree. Count the |
+** number of entries in the b-tree and write the result to *pnEntry. |
+** |
+** SQLITE_OK is returned if the operation is successfully executed. |
+** Otherwise, if an error is encountered (i.e. an IO error or database |
+** corruption) an SQLite error code is returned. |
+*/ |
+SQLITE_PRIVATE int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){ |
+ i64 nEntry = 0; /* Value to return in *pnEntry */ |
+ int rc; /* Return code */ |
+ |
+ if( pCur->pgnoRoot==0 ){ |
+ *pnEntry = 0; |
+ return SQLITE_OK; |
+ } |
+ rc = moveToRoot(pCur); |
+ |
+ /* Unless an error occurs, the following loop runs one iteration for each |
+ ** page in the B-Tree structure (not including overflow pages). |
+ */ |
+ while( rc==SQLITE_OK ){ |
+ int iIdx; /* Index of child node in parent */ |
+ MemPage *pPage; /* Current page of the b-tree */ |
+ |
+ /* If this is a leaf page or the tree is not an int-key tree, then |
+ ** this page contains countable entries. Increment the entry counter |
+ ** accordingly. |
+ */ |
+ pPage = pCur->apPage[pCur->iPage]; |
+ if( pPage->leaf || !pPage->intKey ){ |
+ nEntry += pPage->nCell; |
+ } |
+ |
+ /* pPage is a leaf node. This loop navigates the cursor so that it |
+ ** points to the first interior cell that it points to the parent of |
+ ** the next page in the tree that has not yet been visited. The |
+ ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell |
+ ** of the page, or to the number of cells in the page if the next page |
+ ** to visit is the right-child of its parent. |
+ ** |
+ ** If all pages in the tree have been visited, return SQLITE_OK to the |
+ ** caller. |
+ */ |
+ if( pPage->leaf ){ |
+ do { |
+ if( pCur->iPage==0 ){ |
+ /* All pages of the b-tree have been visited. Return successfully. */ |
+ *pnEntry = nEntry; |
+ return moveToRoot(pCur); |
+ } |
+ moveToParent(pCur); |
+ }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell ); |
+ |
+ pCur->aiIdx[pCur->iPage]++; |
+ pPage = pCur->apPage[pCur->iPage]; |
+ } |
+ |
+ /* Descend to the child node of the cell that the cursor currently |
+ ** points at. This is the right-child if (iIdx==pPage->nCell). |
+ */ |
+ iIdx = pCur->aiIdx[pCur->iPage]; |
+ if( iIdx==pPage->nCell ){ |
+ rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); |
+ }else{ |
+ rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx))); |
+ } |
+ } |
+ |
+ /* An error has occurred. Return an error code. */ |
+ return rc; |
+} |
+#endif |
+ |
+/* |
+** Return the pager associated with a BTree. This routine is used for |
+** testing and debugging only. |
+*/ |
+SQLITE_PRIVATE Pager *sqlite3BtreePager(Btree *p){ |
+ return p->pBt->pPager; |
+} |
+ |
+#ifndef SQLITE_OMIT_INTEGRITY_CHECK |
+/* |
+** Append a message to the error message string. |
+*/ |
+static void checkAppendMsg( |
+ IntegrityCk *pCheck, |
+ const char *zFormat, |
+ ... |
+){ |
+ va_list ap; |
+ if( !pCheck->mxErr ) return; |
+ pCheck->mxErr--; |
+ pCheck->nErr++; |
+ va_start(ap, zFormat); |
+ if( pCheck->errMsg.nChar ){ |
+ sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1); |
+ } |
+ if( pCheck->zPfx ){ |
+ sqlite3XPrintf(&pCheck->errMsg, 0, pCheck->zPfx, pCheck->v1, pCheck->v2); |
+ } |
+ sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap); |
+ va_end(ap); |
+ if( pCheck->errMsg.accError==STRACCUM_NOMEM ){ |
+ pCheck->mallocFailed = 1; |
+ } |
+} |
+#endif /* SQLITE_OMIT_INTEGRITY_CHECK */ |
+ |
+#ifndef SQLITE_OMIT_INTEGRITY_CHECK |
+ |
+/* |
+** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that |
+** corresponds to page iPg is already set. |
+*/ |
+static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){ |
+ assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 ); |
+ return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07))); |
+} |
+ |
+/* |
+** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg. |
+*/ |
+static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){ |
+ assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 ); |
+ pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07)); |
+} |
+ |
+ |
+/* |
+** Add 1 to the reference count for page iPage. If this is the second |
+** reference to the page, add an error message to pCheck->zErrMsg. |
+** Return 1 if there are 2 or more references to the page and 0 if |
+** if this is the first reference to the page. |
+** |
+** Also check that the page number is in bounds. |
+*/ |
+static int checkRef(IntegrityCk *pCheck, Pgno iPage){ |
+ if( iPage==0 ) return 1; |
+ if( iPage>pCheck->nPage ){ |
+ checkAppendMsg(pCheck, "invalid page number %d", iPage); |
+ return 1; |
+ } |
+ if( getPageReferenced(pCheck, iPage) ){ |
+ checkAppendMsg(pCheck, "2nd reference to page %d", iPage); |
+ return 1; |
+ } |
+ setPageReferenced(pCheck, iPage); |
+ return 0; |
+} |
+ |
+#ifndef SQLITE_OMIT_AUTOVACUUM |
+/* |
+** Check that the entry in the pointer-map for page iChild maps to |
+** page iParent, pointer type ptrType. If not, append an error message |
+** to pCheck. |
+*/ |
+static void checkPtrmap( |
+ IntegrityCk *pCheck, /* Integrity check context */ |
+ Pgno iChild, /* Child page number */ |
+ u8 eType, /* Expected pointer map type */ |
+ Pgno iParent /* Expected pointer map parent page number */ |
+){ |
+ int rc; |
+ u8 ePtrmapType; |
+ Pgno iPtrmapParent; |
+ |
+ rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent); |
+ if( rc!=SQLITE_OK ){ |
+ if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1; |
+ checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild); |
+ return; |
+ } |
+ |
+ if( ePtrmapType!=eType || iPtrmapParent!=iParent ){ |
+ checkAppendMsg(pCheck, |
+ "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)", |
+ iChild, eType, iParent, ePtrmapType, iPtrmapParent); |
+ } |
+} |
+#endif |
+ |
+/* |
+** Check the integrity of the freelist or of an overflow page list. |
+** Verify that the number of pages on the list is N. |
+*/ |
+static void checkList( |
+ IntegrityCk *pCheck, /* Integrity checking context */ |
+ int isFreeList, /* True for a freelist. False for overflow page list */ |
+ int iPage, /* Page number for first page in the list */ |
+ int N /* Expected number of pages in the list */ |
+){ |
+ int i; |
+ int expected = N; |
+ int iFirst = iPage; |
+ while( N-- > 0 && pCheck->mxErr ){ |
+ DbPage *pOvflPage; |
+ unsigned char *pOvflData; |
+ if( iPage<1 ){ |
+ checkAppendMsg(pCheck, |
+ "%d of %d pages missing from overflow list starting at %d", |
+ N+1, expected, iFirst); |
+ break; |
+ } |
+ if( checkRef(pCheck, iPage) ) break; |
+ if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){ |
+ checkAppendMsg(pCheck, "failed to get page %d", iPage); |
+ break; |
+ } |
+ pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage); |
+ if( isFreeList ){ |
+ int n = get4byte(&pOvflData[4]); |
+#ifndef SQLITE_OMIT_AUTOVACUUM |
+ if( pCheck->pBt->autoVacuum ){ |
+ checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0); |
+ } |
+#endif |
+ if( n>(int)pCheck->pBt->usableSize/4-2 ){ |
+ checkAppendMsg(pCheck, |
+ "freelist leaf count too big on page %d", iPage); |
+ N--; |
+ }else{ |
+ for(i=0; i<n; i++){ |
+ Pgno iFreePage = get4byte(&pOvflData[8+i*4]); |
+#ifndef SQLITE_OMIT_AUTOVACUUM |
+ if( pCheck->pBt->autoVacuum ){ |
+ checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0); |
+ } |
+#endif |
+ checkRef(pCheck, iFreePage); |
+ } |
+ N -= n; |
+ } |
+ } |
+#ifndef SQLITE_OMIT_AUTOVACUUM |
+ else{ |
+ /* If this database supports auto-vacuum and iPage is not the last |
+ ** page in this overflow list, check that the pointer-map entry for |
+ ** the following page matches iPage. |
+ */ |
+ if( pCheck->pBt->autoVacuum && N>0 ){ |
+ i = get4byte(pOvflData); |
+ checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage); |
+ } |
+ } |
+#endif |
+ iPage = get4byte(pOvflData); |
+ sqlite3PagerUnref(pOvflPage); |
+ |
+ if( isFreeList && N<(iPage!=0) ){ |
+ checkAppendMsg(pCheck, "free-page count in header is too small"); |
+ } |
+ } |
+} |
+#endif /* SQLITE_OMIT_INTEGRITY_CHECK */ |
+ |
+/* |
+** An implementation of a min-heap. |
+** |
+** aHeap[0] is the number of elements on the heap. aHeap[1] is the |
+** root element. The daughter nodes of aHeap[N] are aHeap[N*2] |
+** and aHeap[N*2+1]. |
+** |
+** The heap property is this: Every node is less than or equal to both |
+** of its daughter nodes. A consequence of the heap property is that the |
+** root node aHeap[1] is always the minimum value currently in the heap. |
+** |
+** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto |
+** the heap, preserving the heap property. The btreeHeapPull() routine |
+** removes the root element from the heap (the minimum value in the heap) |
+** and then moves other nodes around as necessary to preserve the heap |
+** property. |
+** |
+** This heap is used for cell overlap and coverage testing. Each u32 |
+** entry represents the span of a cell or freeblock on a btree page. |
+** The upper 16 bits are the index of the first byte of a range and the |
+** lower 16 bits are the index of the last byte of that range. |
+*/ |
+static void btreeHeapInsert(u32 *aHeap, u32 x){ |
+ u32 j, i = ++aHeap[0]; |
+ aHeap[i] = x; |
+ while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){ |
+ x = aHeap[j]; |
+ aHeap[j] = aHeap[i]; |
+ aHeap[i] = x; |
+ i = j; |
+ } |
+} |
+static int btreeHeapPull(u32 *aHeap, u32 *pOut){ |
+ u32 j, i, x; |
+ if( (x = aHeap[0])==0 ) return 0; |
+ *pOut = aHeap[1]; |
+ aHeap[1] = aHeap[x]; |
+ aHeap[x] = 0xffffffff; |
+ aHeap[0]--; |
+ i = 1; |
+ while( (j = i*2)<=aHeap[0] ){ |
+ if( aHeap[j]>aHeap[j+1] ) j++; |
+ if( aHeap[i]<aHeap[j] ) break; |
+ x = aHeap[i]; |
+ aHeap[i] = aHeap[j]; |
+ aHeap[j] = x; |
+ i = j; |
+ } |
+ return 1; |
+} |
+ |
+#ifndef SQLITE_OMIT_INTEGRITY_CHECK |
+/* |
+** Do various sanity checks on a single page of a tree. Return |
+** the tree depth. Root pages return 0. Parents of root pages |
+** return 1, and so forth. |
+** |
+** These checks are done: |
+** |
+** 1. Make sure that cells and freeblocks do not overlap |
+** but combine to completely cover the page. |
+** 2. Make sure integer cell keys are in order. |
+** 3. Check the integrity of overflow pages. |
+** 4. Recursively call checkTreePage on all children. |
+** 5. Verify that the depth of all children is the same. |
+*/ |
+static int checkTreePage( |
+ IntegrityCk *pCheck, /* Context for the sanity check */ |
+ int iPage, /* Page number of the page to check */ |
+ i64 *piMinKey, /* Write minimum integer primary key here */ |
+ i64 maxKey /* Error if integer primary key greater than this */ |
+){ |
+ MemPage *pPage = 0; /* The page being analyzed */ |
+ int i; /* Loop counter */ |
+ int rc; /* Result code from subroutine call */ |
+ int depth = -1, d2; /* Depth of a subtree */ |
+ int pgno; /* Page number */ |
+ int nFrag; /* Number of fragmented bytes on the page */ |
+ int hdr; /* Offset to the page header */ |
+ int cellStart; /* Offset to the start of the cell pointer array */ |
+ int nCell; /* Number of cells */ |
+ int doCoverageCheck = 1; /* True if cell coverage checking should be done */ |
+ int keyCanBeEqual = 1; /* True if IPK can be equal to maxKey |
+ ** False if IPK must be strictly less than maxKey */ |
+ u8 *data; /* Page content */ |
+ u8 *pCell; /* Cell content */ |
+ u8 *pCellIdx; /* Next element of the cell pointer array */ |
+ BtShared *pBt; /* The BtShared object that owns pPage */ |
+ u32 pc; /* Address of a cell */ |
+ u32 usableSize; /* Usable size of the page */ |
+ u32 contentOffset; /* Offset to the start of the cell content area */ |
+ u32 *heap = 0; /* Min-heap used for checking cell coverage */ |
+ u32 x, prev = 0; /* Next and previous entry on the min-heap */ |
+ const char *saved_zPfx = pCheck->zPfx; |
+ int saved_v1 = pCheck->v1; |
+ int saved_v2 = pCheck->v2; |
+ u8 savedIsInit = 0; |
+ |
+ /* Check that the page exists |
+ */ |
+ pBt = pCheck->pBt; |
+ usableSize = pBt->usableSize; |
+ if( iPage==0 ) return 0; |
+ if( checkRef(pCheck, iPage) ) return 0; |
+ pCheck->zPfx = "Page %d: "; |
+ pCheck->v1 = iPage; |
+ if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){ |
+ checkAppendMsg(pCheck, |
+ "unable to get the page. error code=%d", rc); |
+ goto end_of_check; |
+ } |
+ |
+ /* Clear MemPage.isInit to make sure the corruption detection code in |
+ ** btreeInitPage() is executed. */ |
+ savedIsInit = pPage->isInit; |
+ pPage->isInit = 0; |
+ if( (rc = btreeInitPage(pPage))!=0 ){ |
+ assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */ |
+ checkAppendMsg(pCheck, |
+ "btreeInitPage() returns error code %d", rc); |
+ goto end_of_check; |
+ } |
+ data = pPage->aData; |
+ hdr = pPage->hdrOffset; |
+ |
+ /* Set up for cell analysis */ |
+ pCheck->zPfx = "On tree page %d cell %d: "; |
+ contentOffset = get2byteNotZero(&data[hdr+5]); |
+ assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */ |
+ |
+ /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the |
+ ** number of cells on the page. */ |
+ nCell = get2byte(&data[hdr+3]); |
+ assert( pPage->nCell==nCell ); |
+ |
+ /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page |
+ ** immediately follows the b-tree page header. */ |
+ cellStart = hdr + 12 - 4*pPage->leaf; |
+ assert( pPage->aCellIdx==&data[cellStart] ); |
+ pCellIdx = &data[cellStart + 2*(nCell-1)]; |
+ |
+ if( !pPage->leaf ){ |
+ /* Analyze the right-child page of internal pages */ |
+ pgno = get4byte(&data[hdr+8]); |
+#ifndef SQLITE_OMIT_AUTOVACUUM |
+ if( pBt->autoVacuum ){ |
+ pCheck->zPfx = "On page %d at right child: "; |
+ checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage); |
+ } |
+#endif |
+ depth = checkTreePage(pCheck, pgno, &maxKey, maxKey); |
+ keyCanBeEqual = 0; |
+ }else{ |
+ /* For leaf pages, the coverage check will occur in the same loop |
+ ** as the other cell checks, so initialize the heap. */ |
+ heap = pCheck->heap; |
+ heap[0] = 0; |
+ } |
+ |
+ /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte |
+ ** integer offsets to the cell contents. */ |
+ for(i=nCell-1; i>=0 && pCheck->mxErr; i--){ |
+ CellInfo info; |
+ |
+ /* Check cell size */ |
+ pCheck->v2 = i; |
+ assert( pCellIdx==&data[cellStart + i*2] ); |
+ pc = get2byteAligned(pCellIdx); |
+ pCellIdx -= 2; |
+ if( pc<contentOffset || pc>usableSize-4 ){ |
+ checkAppendMsg(pCheck, "Offset %d out of range %d..%d", |
+ pc, contentOffset, usableSize-4); |
+ doCoverageCheck = 0; |
+ continue; |
+ } |
+ pCell = &data[pc]; |
+ pPage->xParseCell(pPage, pCell, &info); |
+ if( pc+info.nSize>usableSize ){ |
+ checkAppendMsg(pCheck, "Extends off end of page"); |
+ doCoverageCheck = 0; |
+ continue; |
+ } |
+ |
+ /* Check for integer primary key out of range */ |
+ if( pPage->intKey ){ |
+ if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){ |
+ checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey); |
+ } |
+ maxKey = info.nKey; |
+ } |
+ |
+ /* Check the content overflow list */ |
+ if( info.nPayload>info.nLocal ){ |
+ int nPage; /* Number of pages on the overflow chain */ |
+ Pgno pgnoOvfl; /* First page of the overflow chain */ |
+ assert( pc + info.nSize - 4 <= usableSize ); |
+ nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4); |
+ pgnoOvfl = get4byte(&pCell[info.nSize - 4]); |
+#ifndef SQLITE_OMIT_AUTOVACUUM |
+ if( pBt->autoVacuum ){ |
+ checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage); |
+ } |
+#endif |
+ checkList(pCheck, 0, pgnoOvfl, nPage); |
+ } |
+ |
+ if( !pPage->leaf ){ |
+ /* Check sanity of left child page for internal pages */ |
+ pgno = get4byte(pCell); |
+#ifndef SQLITE_OMIT_AUTOVACUUM |
+ if( pBt->autoVacuum ){ |
+ checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage); |
+ } |
+#endif |
+ d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey); |
+ keyCanBeEqual = 0; |
+ if( d2!=depth ){ |
+ checkAppendMsg(pCheck, "Child page depth differs"); |
+ depth = d2; |
+ } |
+ }else{ |
+ /* Populate the coverage-checking heap for leaf pages */ |
+ btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1)); |
+ } |
+ } |
+ *piMinKey = maxKey; |
+ |
+ /* Check for complete coverage of the page |
+ */ |
+ pCheck->zPfx = 0; |
+ if( doCoverageCheck && pCheck->mxErr>0 ){ |
+ /* For leaf pages, the min-heap has already been initialized and the |
+ ** cells have already been inserted. But for internal pages, that has |
+ ** not yet been done, so do it now */ |
+ if( !pPage->leaf ){ |
+ heap = pCheck->heap; |
+ heap[0] = 0; |
+ for(i=nCell-1; i>=0; i--){ |
+ u32 size; |
+ pc = get2byteAligned(&data[cellStart+i*2]); |
+ size = pPage->xCellSize(pPage, &data[pc]); |
+ btreeHeapInsert(heap, (pc<<16)|(pc+size-1)); |
+ } |
+ } |
+ /* Add the freeblocks to the min-heap |
+ ** |
+ ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header |
+ ** is the offset of the first freeblock, or zero if there are no |
+ ** freeblocks on the page. |
+ */ |
+ i = get2byte(&data[hdr+1]); |
+ while( i>0 ){ |
+ int size, j; |
+ assert( (u32)i<=usableSize-4 ); /* Enforced by btreeInitPage() */ |
+ size = get2byte(&data[i+2]); |
+ assert( (u32)(i+size)<=usableSize ); /* Enforced by btreeInitPage() */ |
+ btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1)); |
+ /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a |
+ ** big-endian integer which is the offset in the b-tree page of the next |
+ ** freeblock in the chain, or zero if the freeblock is the last on the |
+ ** chain. */ |
+ j = get2byte(&data[i]); |
+ /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of |
+ ** increasing offset. */ |
+ assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */ |
+ assert( (u32)j<=usableSize-4 ); /* Enforced by btreeInitPage() */ |
+ i = j; |
+ } |
+ /* Analyze the min-heap looking for overlap between cells and/or |
+ ** freeblocks, and counting the number of untracked bytes in nFrag. |
+ ** |
+ ** Each min-heap entry is of the form: (start_address<<16)|end_address. |
+ ** There is an implied first entry the covers the page header, the cell |
+ ** pointer index, and the gap between the cell pointer index and the start |
+ ** of cell content. |
+ ** |
+ ** The loop below pulls entries from the min-heap in order and compares |
+ ** the start_address against the previous end_address. If there is an |
+ ** overlap, that means bytes are used multiple times. If there is a gap, |
+ ** that gap is added to the fragmentation count. |
+ */ |
+ nFrag = 0; |
+ prev = contentOffset - 1; /* Implied first min-heap entry */ |
+ while( btreeHeapPull(heap,&x) ){ |
+ if( (prev&0xffff)>=(x>>16) ){ |
+ checkAppendMsg(pCheck, |
+ "Multiple uses for byte %u of page %d", x>>16, iPage); |
+ break; |
+ }else{ |
+ nFrag += (x>>16) - (prev&0xffff) - 1; |
+ prev = x; |
+ } |
+ } |
+ nFrag += usableSize - (prev&0xffff) - 1; |
+ /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments |
+ ** is stored in the fifth field of the b-tree page header. |
+ ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the |
+ ** number of fragmented free bytes within the cell content area. |
+ */ |
+ if( heap[0]==0 && nFrag!=data[hdr+7] ){ |
+ checkAppendMsg(pCheck, |
+ "Fragmentation of %d bytes reported as %d on page %d", |
+ nFrag, data[hdr+7], iPage); |
+ } |
+ } |
+ |
+end_of_check: |
+ if( !doCoverageCheck ) pPage->isInit = savedIsInit; |
+ releasePage(pPage); |
+ pCheck->zPfx = saved_zPfx; |
+ pCheck->v1 = saved_v1; |
+ pCheck->v2 = saved_v2; |
+ return depth+1; |
+} |
+#endif /* SQLITE_OMIT_INTEGRITY_CHECK */ |
+ |
+#ifndef SQLITE_OMIT_INTEGRITY_CHECK |
+/* |
+** This routine does a complete check of the given BTree file. aRoot[] is |
+** an array of pages numbers were each page number is the root page of |
+** a table. nRoot is the number of entries in aRoot. |
+** |
+** A read-only or read-write transaction must be opened before calling |
+** this function. |
+** |
+** Write the number of error seen in *pnErr. Except for some memory |
+** allocation errors, an error message held in memory obtained from |
+** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is |
+** returned. If a memory allocation error occurs, NULL is returned. |
+*/ |
+SQLITE_PRIVATE char *sqlite3BtreeIntegrityCheck( |
+ Btree *p, /* The btree to be checked */ |
+ int *aRoot, /* An array of root pages numbers for individual trees */ |
+ int nRoot, /* Number of entries in aRoot[] */ |
+ int mxErr, /* Stop reporting errors after this many */ |
+ int *pnErr /* Write number of errors seen to this variable */ |
+){ |
+ Pgno i; |
+ IntegrityCk sCheck; |
+ BtShared *pBt = p->pBt; |
+ int savedDbFlags = pBt->db->flags; |
+ char zErr[100]; |
+ VVA_ONLY( int nRef ); |
+ |
+ sqlite3BtreeEnter(p); |
+ assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE ); |
+ assert( (nRef = sqlite3PagerRefcount(pBt->pPager))>=0 ); |
+ sCheck.pBt = pBt; |
+ sCheck.pPager = pBt->pPager; |
+ sCheck.nPage = btreePagecount(sCheck.pBt); |
+ sCheck.mxErr = mxErr; |
+ sCheck.nErr = 0; |
+ sCheck.mallocFailed = 0; |
+ sCheck.zPfx = 0; |
+ sCheck.v1 = 0; |
+ sCheck.v2 = 0; |
+ sCheck.aPgRef = 0; |
+ sCheck.heap = 0; |
+ sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH); |
+ if( sCheck.nPage==0 ){ |
+ goto integrity_ck_cleanup; |
+ } |
+ |
+ sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1); |
+ if( !sCheck.aPgRef ){ |
+ sCheck.mallocFailed = 1; |
+ goto integrity_ck_cleanup; |
+ } |
+ sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize ); |
+ if( sCheck.heap==0 ){ |
+ sCheck.mallocFailed = 1; |
+ goto integrity_ck_cleanup; |
+ } |
+ |
+ i = PENDING_BYTE_PAGE(pBt); |
+ if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i); |
+ |
+ /* Check the integrity of the freelist |
+ */ |
+ sCheck.zPfx = "Main freelist: "; |
+ checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]), |
+ get4byte(&pBt->pPage1->aData[36])); |
+ sCheck.zPfx = 0; |
+ |
+ /* Check all the tables. |
+ */ |
+ testcase( pBt->db->flags & SQLITE_CellSizeCk ); |
+ pBt->db->flags &= ~SQLITE_CellSizeCk; |
+ for(i=0; (int)i<nRoot && sCheck.mxErr; i++){ |
+ i64 notUsed; |
+ if( aRoot[i]==0 ) continue; |
+#ifndef SQLITE_OMIT_AUTOVACUUM |
+ if( pBt->autoVacuum && aRoot[i]>1 ){ |
+ checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0); |
+ } |
+#endif |
+ checkTreePage(&sCheck, aRoot[i], ¬Used, LARGEST_INT64); |
+ } |
+ pBt->db->flags = savedDbFlags; |
+ |
+ /* Make sure every page in the file is referenced |
+ */ |
+ for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){ |
+#ifdef SQLITE_OMIT_AUTOVACUUM |
+ if( getPageReferenced(&sCheck, i)==0 ){ |
+ checkAppendMsg(&sCheck, "Page %d is never used", i); |
+ } |
+#else |
+ /* If the database supports auto-vacuum, make sure no tables contain |
+ ** references to pointer-map pages. |
+ */ |
+ if( getPageReferenced(&sCheck, i)==0 && |
+ (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){ |
+ checkAppendMsg(&sCheck, "Page %d is never used", i); |
+ } |
+ if( getPageReferenced(&sCheck, i)!=0 && |
+ (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){ |
+ checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i); |
+ } |
+#endif |
+ } |
+ |
+ /* Clean up and report errors. |
+ */ |
+integrity_ck_cleanup: |
+ sqlite3PageFree(sCheck.heap); |
+ sqlite3_free(sCheck.aPgRef); |
+ if( sCheck.mallocFailed ){ |
+ sqlite3StrAccumReset(&sCheck.errMsg); |
+ sCheck.nErr++; |
+ } |
+ *pnErr = sCheck.nErr; |
+ if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg); |
+ /* Make sure this analysis did not leave any unref() pages. */ |
+ assert( nRef==sqlite3PagerRefcount(pBt->pPager) ); |
+ sqlite3BtreeLeave(p); |
+ return sqlite3StrAccumFinish(&sCheck.errMsg); |
+} |
+#endif /* SQLITE_OMIT_INTEGRITY_CHECK */ |
+ |
+/* |
+** Return the full pathname of the underlying database file. Return |
+** an empty string if the database is in-memory or a TEMP database. |
+** |
+** The pager filename is invariant as long as the pager is |
+** open so it is safe to access without the BtShared mutex. |
+*/ |
+SQLITE_PRIVATE const char *sqlite3BtreeGetFilename(Btree *p){ |
+ assert( p->pBt->pPager!=0 ); |
+ return sqlite3PagerFilename(p->pBt->pPager, 1); |
+} |
+ |
+/* |
+** Return the pathname of the journal file for this database. The return |
+** value of this routine is the same regardless of whether the journal file |
+** has been created or not. |
+** |
+** The pager journal filename is invariant as long as the pager is |
+** open so it is safe to access without the BtShared mutex. |
+*/ |
+SQLITE_PRIVATE const char *sqlite3BtreeGetJournalname(Btree *p){ |
+ assert( p->pBt->pPager!=0 ); |
+ return sqlite3PagerJournalname(p->pBt->pPager); |
+} |
+ |
+/* |
+** Return non-zero if a transaction is active. |
+*/ |
+SQLITE_PRIVATE int sqlite3BtreeIsInTrans(Btree *p){ |
+ assert( p==0 || sqlite3_mutex_held(p->db->mutex) ); |
+ return (p && (p->inTrans==TRANS_WRITE)); |
+} |
+ |
+#ifndef SQLITE_OMIT_WAL |
+/* |
+** Run a checkpoint on the Btree passed as the first argument. |
+** |
+** Return SQLITE_LOCKED if this or any other connection has an open |
+** transaction on the shared-cache the argument Btree is connected to. |
+** |
+** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART. |
+*/ |
+SQLITE_PRIVATE int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){ |
+ int rc = SQLITE_OK; |
+ if( p ){ |
+ BtShared *pBt = p->pBt; |
+ sqlite3BtreeEnter(p); |
+ if( pBt->inTransaction!=TRANS_NONE ){ |
+ rc = SQLITE_LOCKED; |
+ }else{ |
+ rc = sqlite3PagerCheckpoint(pBt->pPager, eMode, pnLog, pnCkpt); |
+ } |
+ sqlite3BtreeLeave(p); |
+ } |
+ return rc; |
+} |
+#endif |
+ |
+/* |
+** Return non-zero if a read (or write) transaction is active. |
+*/ |
+SQLITE_PRIVATE int sqlite3BtreeIsInReadTrans(Btree *p){ |
+ assert( p ); |
+ assert( sqlite3_mutex_held(p->db->mutex) ); |
+ return p->inTrans!=TRANS_NONE; |
+} |
+ |
+SQLITE_PRIVATE int sqlite3BtreeIsInBackup(Btree *p){ |
+ assert( p ); |
+ assert( sqlite3_mutex_held(p->db->mutex) ); |
+ return p->nBackup!=0; |
+} |
+ |
+/* |
+** This function returns a pointer to a blob of memory associated with |
+** a single shared-btree. The memory is used by client code for its own |
+** purposes (for example, to store a high-level schema associated with |
+** the shared-btree). The btree layer manages reference counting issues. |
+** |
+** The first time this is called on a shared-btree, nBytes bytes of memory |
+** are allocated, zeroed, and returned to the caller. For each subsequent |
+** call the nBytes parameter is ignored and a pointer to the same blob |
+** of memory returned. |
+** |
+** If the nBytes parameter is 0 and the blob of memory has not yet been |
+** allocated, a null pointer is returned. If the blob has already been |
+** allocated, it is returned as normal. |
+** |
+** Just before the shared-btree is closed, the function passed as the |
+** xFree argument when the memory allocation was made is invoked on the |
+** blob of allocated memory. The xFree function should not call sqlite3_free() |
+** on the memory, the btree layer does that. |
+*/ |
+SQLITE_PRIVATE void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){ |
+ BtShared *pBt = p->pBt; |
+ sqlite3BtreeEnter(p); |
+ if( !pBt->pSchema && nBytes ){ |
+ pBt->pSchema = sqlite3DbMallocZero(0, nBytes); |
+ pBt->xFreeSchema = xFree; |
+ } |
+ sqlite3BtreeLeave(p); |
+ return pBt->pSchema; |
+} |
+ |
+/* |
+** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared |
+** btree as the argument handle holds an exclusive lock on the |
+** sqlite_master table. Otherwise SQLITE_OK. |
+*/ |
+SQLITE_PRIVATE int sqlite3BtreeSchemaLocked(Btree *p){ |
+ int rc; |
+ assert( sqlite3_mutex_held(p->db->mutex) ); |
+ sqlite3BtreeEnter(p); |
+ rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK); |
+ assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE ); |
+ sqlite3BtreeLeave(p); |
+ return rc; |
+} |
+ |
+ |
+#ifndef SQLITE_OMIT_SHARED_CACHE |
+/* |
+** Obtain a lock on the table whose root page is iTab. The |
+** lock is a write lock if isWritelock is true or a read lock |
+** if it is false. |
+*/ |
+SQLITE_PRIVATE int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){ |
+ int rc = SQLITE_OK; |
+ assert( p->inTrans!=TRANS_NONE ); |
+ if( p->sharable ){ |
+ u8 lockType = READ_LOCK + isWriteLock; |
+ assert( READ_LOCK+1==WRITE_LOCK ); |
+ assert( isWriteLock==0 || isWriteLock==1 ); |
+ |
+ sqlite3BtreeEnter(p); |
+ rc = querySharedCacheTableLock(p, iTab, lockType); |
+ if( rc==SQLITE_OK ){ |
+ rc = setSharedCacheTableLock(p, iTab, lockType); |
+ } |
+ sqlite3BtreeLeave(p); |
+ } |
+ return rc; |
+} |
+#endif |
+ |
+#ifndef SQLITE_OMIT_INCRBLOB |
+/* |
+** Argument pCsr must be a cursor opened for writing on an |
+** INTKEY table currently pointing at a valid table entry. |
+** This function modifies the data stored as part of that entry. |
+** |
+** Only the data content may only be modified, it is not possible to |
+** change the length of the data stored. If this function is called with |
+** parameters that attempt to write past the end of the existing data, |
+** no modifications are made and SQLITE_CORRUPT is returned. |
+*/ |
+SQLITE_PRIVATE int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){ |
+ int rc; |
+ assert( cursorHoldsMutex(pCsr) ); |
+ assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) ); |
+ assert( pCsr->curFlags & BTCF_Incrblob ); |
+ |
+ rc = restoreCursorPosition(pCsr); |
+ if( rc!=SQLITE_OK ){ |
+ return rc; |
+ } |
+ assert( pCsr->eState!=CURSOR_REQUIRESEEK ); |
+ if( pCsr->eState!=CURSOR_VALID ){ |
+ return SQLITE_ABORT; |
+ } |
+ |
+ /* Save the positions of all other cursors open on this table. This is |
+ ** required in case any of them are holding references to an xFetch |
+ ** version of the b-tree page modified by the accessPayload call below. |
+ ** |
+ ** Note that pCsr must be open on a INTKEY table and saveCursorPosition() |
+ ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence |
+ ** saveAllCursors can only return SQLITE_OK. |
+ */ |
+ VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr); |
+ assert( rc==SQLITE_OK ); |
+ |
+ /* Check some assumptions: |
+ ** (a) the cursor is open for writing, |
+ ** (b) there is a read/write transaction open, |
+ ** (c) the connection holds a write-lock on the table (if required), |
+ ** (d) there are no conflicting read-locks, and |
+ ** (e) the cursor points at a valid row of an intKey table. |
+ */ |
+ if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){ |
+ return SQLITE_READONLY; |
+ } |
+ assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0 |
+ && pCsr->pBt->inTransaction==TRANS_WRITE ); |
+ assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) ); |
+ assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) ); |
+ assert( pCsr->apPage[pCsr->iPage]->intKey ); |
+ |
+ return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1); |
+} |
+ |
+/* |
+** Mark this cursor as an incremental blob cursor. |
+*/ |
+SQLITE_PRIVATE void sqlite3BtreeIncrblobCursor(BtCursor *pCur){ |
+ pCur->curFlags |= BTCF_Incrblob; |
+ pCur->pBtree->hasIncrblobCur = 1; |
+} |
+#endif |
+ |
+/* |
+** Set both the "read version" (single byte at byte offset 18) and |
+** "write version" (single byte at byte offset 19) fields in the database |
+** header to iVersion. |
+*/ |
+SQLITE_PRIVATE int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){ |
+ BtShared *pBt = pBtree->pBt; |
+ int rc; /* Return code */ |
+ |
+ assert( iVersion==1 || iVersion==2 ); |
+ |
+ /* If setting the version fields to 1, do not automatically open the |
+ ** WAL connection, even if the version fields are currently set to 2. |
+ */ |
+ pBt->btsFlags &= ~BTS_NO_WAL; |
+ if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL; |
+ |
+ rc = sqlite3BtreeBeginTrans(pBtree, 0); |
+ if( rc==SQLITE_OK ){ |
+ u8 *aData = pBt->pPage1->aData; |
+ if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){ |
+ rc = sqlite3BtreeBeginTrans(pBtree, 2); |
+ if( rc==SQLITE_OK ){ |
+ rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); |
+ if( rc==SQLITE_OK ){ |
+ aData[18] = (u8)iVersion; |
+ aData[19] = (u8)iVersion; |
+ } |
+ } |
+ } |
+ } |
+ |
+ pBt->btsFlags &= ~BTS_NO_WAL; |
+ return rc; |
+} |
+ |
+/* |
+** Return true if the cursor has a hint specified. This routine is |
+** only used from within assert() statements |
+*/ |
+SQLITE_PRIVATE int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){ |
+ return (pCsr->hints & mask)!=0; |
+} |
+ |
+/* |
+** Return true if the given Btree is read-only. |
+*/ |
+SQLITE_PRIVATE int sqlite3BtreeIsReadonly(Btree *p){ |
+ return (p->pBt->btsFlags & BTS_READ_ONLY)!=0; |
+} |
+ |
+/* |
+** Return the size of the header added to each page by this module. |
+*/ |
+SQLITE_PRIVATE int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); } |
+ |
+/************** End of btree.c ***********************************************/ |
+/************** Begin file backup.c ******************************************/ |
+/* |
+** 2009 January 28 |
+** |
+** The author disclaims copyright to this source code. In place of |
+** a legal notice, here is a blessing: |
+** |
+** May you do good and not evil. |
+** May you find forgiveness for yourself and forgive others. |
+** May you share freely, never taking more than you give. |
+** |
+************************************************************************* |
+** This file contains the implementation of the sqlite3_backup_XXX() |
+** API functions and the related features. |
+*/ |
+/* #include "sqliteInt.h" */ |
+/* #include "btreeInt.h" */ |
+ |
+/* |
+** Structure allocated for each backup operation. |
+*/ |
+struct sqlite3_backup { |
+ sqlite3* pDestDb; /* Destination database handle */ |
+ Btree *pDest; /* Destination b-tree file */ |
+ u32 iDestSchema; /* Original schema cookie in destination */ |
+ int bDestLocked; /* True once a write-transaction is open on pDest */ |
+ |
+ Pgno iNext; /* Page number of the next source page to copy */ |
+ sqlite3* pSrcDb; /* Source database handle */ |
+ Btree *pSrc; /* Source b-tree file */ |
+ |
+ int rc; /* Backup process error code */ |
+ |
+ /* These two variables are set by every call to backup_step(). They are |
+ ** read by calls to backup_remaining() and backup_pagecount(). |
+ */ |
+ Pgno nRemaining; /* Number of pages left to copy */ |
+ Pgno nPagecount; /* Total number of pages to copy */ |
+ |
+ int isAttached; /* True once backup has been registered with pager */ |
+ sqlite3_backup *pNext; /* Next backup associated with source pager */ |
+}; |
+ |
+/* |
+** THREAD SAFETY NOTES: |
+** |
+** Once it has been created using backup_init(), a single sqlite3_backup |
+** structure may be accessed via two groups of thread-safe entry points: |
+** |
+** * Via the sqlite3_backup_XXX() API function backup_step() and |
+** backup_finish(). Both these functions obtain the source database |
+** handle mutex and the mutex associated with the source BtShared |
+** structure, in that order. |
+** |
+** * Via the BackupUpdate() and BackupRestart() functions, which are |
+** invoked by the pager layer to report various state changes in |
+** the page cache associated with the source database. The mutex |
+** associated with the source database BtShared structure will always |
+** be held when either of these functions are invoked. |
+** |
+** The other sqlite3_backup_XXX() API functions, backup_remaining() and |
+** backup_pagecount() are not thread-safe functions. If they are called |
+** while some other thread is calling backup_step() or backup_finish(), |
+** the values returned may be invalid. There is no way for a call to |
+** BackupUpdate() or BackupRestart() to interfere with backup_remaining() |
+** or backup_pagecount(). |
+** |
+** Depending on the SQLite configuration, the database handles and/or |
+** the Btree objects may have their own mutexes that require locking. |
+** Non-sharable Btrees (in-memory databases for example), do not have |
+** associated mutexes. |
+*/ |
+ |
+/* |
+** Return a pointer corresponding to database zDb (i.e. "main", "temp") |
+** in connection handle pDb. If such a database cannot be found, return |
+** a NULL pointer and write an error message to pErrorDb. |
+** |
+** If the "temp" database is requested, it may need to be opened by this |
+** function. If an error occurs while doing so, return 0 and write an |
+** error message to pErrorDb. |
+*/ |
+static Btree *findBtree(sqlite3 *pErrorDb, sqlite3 *pDb, const char *zDb){ |
+ int i = sqlite3FindDbName(pDb, zDb); |
+ |
+ if( i==1 ){ |
+ Parse *pParse; |
+ int rc = 0; |
+ pParse = sqlite3StackAllocZero(pErrorDb, sizeof(*pParse)); |
+ if( pParse==0 ){ |
+ sqlite3ErrorWithMsg(pErrorDb, SQLITE_NOMEM, "out of memory"); |
+ rc = SQLITE_NOMEM; |
+ }else{ |
+ pParse->db = pDb; |
+ if( sqlite3OpenTempDatabase(pParse) ){ |
+ sqlite3ErrorWithMsg(pErrorDb, pParse->rc, "%s", pParse->zErrMsg); |
+ rc = SQLITE_ERROR; |
+ } |
+ sqlite3DbFree(pErrorDb, pParse->zErrMsg); |
+ sqlite3ParserReset(pParse); |
+ sqlite3StackFree(pErrorDb, pParse); |
+ } |
+ if( rc ){ |
+ return 0; |
+ } |
+ } |
+ |
+ if( i<0 ){ |
+ sqlite3ErrorWithMsg(pErrorDb, SQLITE_ERROR, "unknown database %s", zDb); |
+ return 0; |
+ } |
+ |
+ return pDb->aDb[i].pBt; |
+} |
+ |
+/* |
+** Attempt to set the page size of the destination to match the page size |
+** of the source. |
+*/ |
+static int setDestPgsz(sqlite3_backup *p){ |
+ int rc; |
+ rc = sqlite3BtreeSetPageSize(p->pDest,sqlite3BtreeGetPageSize(p->pSrc),-1,0); |
+ return rc; |
+} |
+ |
+/* |
+** Check that there is no open read-transaction on the b-tree passed as the |
+** second argument. If there is not, return SQLITE_OK. Otherwise, if there |
+** is an open read-transaction, return SQLITE_ERROR and leave an error |
+** message in database handle db. |
+*/ |
+static int checkReadTransaction(sqlite3 *db, Btree *p){ |
+ if( sqlite3BtreeIsInReadTrans(p) ){ |
+ sqlite3ErrorWithMsg(db, SQLITE_ERROR, "destination database is in use"); |
+ return SQLITE_ERROR; |
+ } |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Create an sqlite3_backup process to copy the contents of zSrcDb from |
+** connection handle pSrcDb to zDestDb in pDestDb. If successful, return |
+** a pointer to the new sqlite3_backup object. |
+** |
+** If an error occurs, NULL is returned and an error code and error message |
+** stored in database handle pDestDb. |
+*/ |
+SQLITE_API sqlite3_backup *SQLITE_STDCALL sqlite3_backup_init( |
+ sqlite3* pDestDb, /* Database to write to */ |
+ const char *zDestDb, /* Name of database within pDestDb */ |
+ sqlite3* pSrcDb, /* Database connection to read from */ |
+ const char *zSrcDb /* Name of database within pSrcDb */ |
+){ |
+ sqlite3_backup *p; /* Value to return */ |
+ |
+#ifdef SQLITE_ENABLE_API_ARMOR |
+ if( !sqlite3SafetyCheckOk(pSrcDb)||!sqlite3SafetyCheckOk(pDestDb) ){ |
+ (void)SQLITE_MISUSE_BKPT; |
+ return 0; |
+ } |
+#endif |
+ |
+ /* Lock the source database handle. The destination database |
+ ** handle is not locked in this routine, but it is locked in |
+ ** sqlite3_backup_step(). The user is required to ensure that no |
+ ** other thread accesses the destination handle for the duration |
+ ** of the backup operation. Any attempt to use the destination |
+ ** database connection while a backup is in progress may cause |
+ ** a malfunction or a deadlock. |
+ */ |
+ sqlite3_mutex_enter(pSrcDb->mutex); |
+ sqlite3_mutex_enter(pDestDb->mutex); |
+ |
+ if( pSrcDb==pDestDb ){ |
+ sqlite3ErrorWithMsg( |
+ pDestDb, SQLITE_ERROR, "source and destination must be distinct" |
+ ); |
+ p = 0; |
+ }else { |
+ /* Allocate space for a new sqlite3_backup object... |
+ ** EVIDENCE-OF: R-64852-21591 The sqlite3_backup object is created by a |
+ ** call to sqlite3_backup_init() and is destroyed by a call to |
+ ** sqlite3_backup_finish(). */ |
+ p = (sqlite3_backup *)sqlite3MallocZero(sizeof(sqlite3_backup)); |
+ if( !p ){ |
+ sqlite3Error(pDestDb, SQLITE_NOMEM); |
+ } |
+ } |
+ |
+ /* If the allocation succeeded, populate the new object. */ |
+ if( p ){ |
+ p->pSrc = findBtree(pDestDb, pSrcDb, zSrcDb); |
+ p->pDest = findBtree(pDestDb, pDestDb, zDestDb); |
+ p->pDestDb = pDestDb; |
+ p->pSrcDb = pSrcDb; |
+ p->iNext = 1; |
+ p->isAttached = 0; |
+ |
+ if( 0==p->pSrc || 0==p->pDest |
+ || setDestPgsz(p)==SQLITE_NOMEM |
+ || checkReadTransaction(pDestDb, p->pDest)!=SQLITE_OK |
+ ){ |
+ /* One (or both) of the named databases did not exist or an OOM |
+ ** error was hit. Or there is a transaction open on the destination |
+ ** database. The error has already been written into the pDestDb |
+ ** handle. All that is left to do here is free the sqlite3_backup |
+ ** structure. */ |
+ sqlite3_free(p); |
+ p = 0; |
+ } |
+ } |
+ if( p ){ |
+ p->pSrc->nBackup++; |
+ } |
+ |
+ sqlite3_mutex_leave(pDestDb->mutex); |
+ sqlite3_mutex_leave(pSrcDb->mutex); |
+ return p; |
+} |
+ |
+/* |
+** Argument rc is an SQLite error code. Return true if this error is |
+** considered fatal if encountered during a backup operation. All errors |
+** are considered fatal except for SQLITE_BUSY and SQLITE_LOCKED. |
+*/ |
+static int isFatalError(int rc){ |
+ return (rc!=SQLITE_OK && rc!=SQLITE_BUSY && ALWAYS(rc!=SQLITE_LOCKED)); |
+} |
+ |
+/* |
+** Parameter zSrcData points to a buffer containing the data for |
+** page iSrcPg from the source database. Copy this data into the |
+** destination database. |
+*/ |
+static int backupOnePage( |
+ sqlite3_backup *p, /* Backup handle */ |
+ Pgno iSrcPg, /* Source database page to backup */ |
+ const u8 *zSrcData, /* Source database page data */ |
+ int bUpdate /* True for an update, false otherwise */ |
+){ |
+ Pager * const pDestPager = sqlite3BtreePager(p->pDest); |
+ const int nSrcPgsz = sqlite3BtreeGetPageSize(p->pSrc); |
+ int nDestPgsz = sqlite3BtreeGetPageSize(p->pDest); |
+ const int nCopy = MIN(nSrcPgsz, nDestPgsz); |
+ const i64 iEnd = (i64)iSrcPg*(i64)nSrcPgsz; |
+#ifdef SQLITE_HAS_CODEC |
+ /* Use BtreeGetReserveNoMutex() for the source b-tree, as although it is |
+ ** guaranteed that the shared-mutex is held by this thread, handle |
+ ** p->pSrc may not actually be the owner. */ |
+ int nSrcReserve = sqlite3BtreeGetReserveNoMutex(p->pSrc); |
+ int nDestReserve = sqlite3BtreeGetOptimalReserve(p->pDest); |
+#endif |
+ int rc = SQLITE_OK; |
+ i64 iOff; |
+ |
+ assert( sqlite3BtreeGetReserveNoMutex(p->pSrc)>=0 ); |
+ assert( p->bDestLocked ); |
+ assert( !isFatalError(p->rc) ); |
+ assert( iSrcPg!=PENDING_BYTE_PAGE(p->pSrc->pBt) ); |
+ assert( zSrcData ); |
+ |
+ /* Catch the case where the destination is an in-memory database and the |
+ ** page sizes of the source and destination differ. |
+ */ |
+ if( nSrcPgsz!=nDestPgsz && sqlite3PagerIsMemdb(pDestPager) ){ |
+ rc = SQLITE_READONLY; |
+ } |
+ |
+#ifdef SQLITE_HAS_CODEC |
+ /* Backup is not possible if the page size of the destination is changing |
+ ** and a codec is in use. |
+ */ |
+ if( nSrcPgsz!=nDestPgsz && sqlite3PagerGetCodec(pDestPager)!=0 ){ |
+ rc = SQLITE_READONLY; |
+ } |
+ |
+ /* Backup is not possible if the number of bytes of reserve space differ |
+ ** between source and destination. If there is a difference, try to |
+ ** fix the destination to agree with the source. If that is not possible, |
+ ** then the backup cannot proceed. |
+ */ |
+ if( nSrcReserve!=nDestReserve ){ |
+ u32 newPgsz = nSrcPgsz; |
+ rc = sqlite3PagerSetPagesize(pDestPager, &newPgsz, nSrcReserve); |
+ if( rc==SQLITE_OK && newPgsz!=nSrcPgsz ) rc = SQLITE_READONLY; |
+ } |
+#endif |
+ |
+ /* This loop runs once for each destination page spanned by the source |
+ ** page. For each iteration, variable iOff is set to the byte offset |
+ ** of the destination page. |
+ */ |
+ for(iOff=iEnd-(i64)nSrcPgsz; rc==SQLITE_OK && iOff<iEnd; iOff+=nDestPgsz){ |
+ DbPage *pDestPg = 0; |
+ Pgno iDest = (Pgno)(iOff/nDestPgsz)+1; |
+ if( iDest==PENDING_BYTE_PAGE(p->pDest->pBt) ) continue; |
+ if( SQLITE_OK==(rc = sqlite3PagerGet(pDestPager, iDest, &pDestPg, 0)) |
+ && SQLITE_OK==(rc = sqlite3PagerWrite(pDestPg)) |
+ ){ |
+ const u8 *zIn = &zSrcData[iOff%nSrcPgsz]; |
+ u8 *zDestData = sqlite3PagerGetData(pDestPg); |
+ u8 *zOut = &zDestData[iOff%nDestPgsz]; |
+ |
+ /* Copy the data from the source page into the destination page. |
+ ** Then clear the Btree layer MemPage.isInit flag. Both this module |
+ ** and the pager code use this trick (clearing the first byte |
+ ** of the page 'extra' space to invalidate the Btree layers |
+ ** cached parse of the page). MemPage.isInit is marked |
+ ** "MUST BE FIRST" for this purpose. |
+ */ |
+ memcpy(zOut, zIn, nCopy); |
+ ((u8 *)sqlite3PagerGetExtra(pDestPg))[0] = 0; |
+ if( iOff==0 && bUpdate==0 ){ |
+ sqlite3Put4byte(&zOut[28], sqlite3BtreeLastPage(p->pSrc)); |
+ } |
+ } |
+ sqlite3PagerUnref(pDestPg); |
+ } |
+ |
+ return rc; |
+} |
+ |
+/* |
+** If pFile is currently larger than iSize bytes, then truncate it to |
+** exactly iSize bytes. If pFile is not larger than iSize bytes, then |
+** this function is a no-op. |
+** |
+** Return SQLITE_OK if everything is successful, or an SQLite error |
+** code if an error occurs. |
+*/ |
+static int backupTruncateFile(sqlite3_file *pFile, i64 iSize){ |
+ i64 iCurrent; |
+ int rc = sqlite3OsFileSize(pFile, &iCurrent); |
+ if( rc==SQLITE_OK && iCurrent>iSize ){ |
+ rc = sqlite3OsTruncate(pFile, iSize); |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Register this backup object with the associated source pager for |
+** callbacks when pages are changed or the cache invalidated. |
+*/ |
+static void attachBackupObject(sqlite3_backup *p){ |
+ sqlite3_backup **pp; |
+ assert( sqlite3BtreeHoldsMutex(p->pSrc) ); |
+ pp = sqlite3PagerBackupPtr(sqlite3BtreePager(p->pSrc)); |
+ p->pNext = *pp; |
+ *pp = p; |
+ p->isAttached = 1; |
+} |
+ |
+/* |
+** Copy nPage pages from the source b-tree to the destination. |
+*/ |
+SQLITE_API int SQLITE_STDCALL sqlite3_backup_step(sqlite3_backup *p, int nPage){ |
+ int rc; |
+ int destMode; /* Destination journal mode */ |
+ int pgszSrc = 0; /* Source page size */ |
+ int pgszDest = 0; /* Destination page size */ |
+ |
+#ifdef SQLITE_ENABLE_API_ARMOR |
+ if( p==0 ) return SQLITE_MISUSE_BKPT; |
+#endif |
+ sqlite3_mutex_enter(p->pSrcDb->mutex); |
+ sqlite3BtreeEnter(p->pSrc); |
+ if( p->pDestDb ){ |
+ sqlite3_mutex_enter(p->pDestDb->mutex); |
+ } |
+ |
+ rc = p->rc; |
+ if( !isFatalError(rc) ){ |
+ Pager * const pSrcPager = sqlite3BtreePager(p->pSrc); /* Source pager */ |
+ Pager * const pDestPager = sqlite3BtreePager(p->pDest); /* Dest pager */ |
+ int ii; /* Iterator variable */ |
+ int nSrcPage = -1; /* Size of source db in pages */ |
+ int bCloseTrans = 0; /* True if src db requires unlocking */ |
+ |
+ /* If the source pager is currently in a write-transaction, return |
+ ** SQLITE_BUSY immediately. |
+ */ |
+ if( p->pDestDb && p->pSrc->pBt->inTransaction==TRANS_WRITE ){ |
+ rc = SQLITE_BUSY; |
+ }else{ |
+ rc = SQLITE_OK; |
+ } |
+ |
+ /* Lock the destination database, if it is not locked already. */ |
+ if( SQLITE_OK==rc && p->bDestLocked==0 |
+ && SQLITE_OK==(rc = sqlite3BtreeBeginTrans(p->pDest, 2)) |
+ ){ |
+ p->bDestLocked = 1; |
+ sqlite3BtreeGetMeta(p->pDest, BTREE_SCHEMA_VERSION, &p->iDestSchema); |
+ } |
+ |
+ /* If there is no open read-transaction on the source database, open |
+ ** one now. If a transaction is opened here, then it will be closed |
+ ** before this function exits. |
+ */ |
+ if( rc==SQLITE_OK && 0==sqlite3BtreeIsInReadTrans(p->pSrc) ){ |
+ rc = sqlite3BtreeBeginTrans(p->pSrc, 0); |
+ bCloseTrans = 1; |
+ } |
+ |
+ /* Do not allow backup if the destination database is in WAL mode |
+ ** and the page sizes are different between source and destination */ |
+ pgszSrc = sqlite3BtreeGetPageSize(p->pSrc); |
+ pgszDest = sqlite3BtreeGetPageSize(p->pDest); |
+ destMode = sqlite3PagerGetJournalMode(sqlite3BtreePager(p->pDest)); |
+ if( SQLITE_OK==rc && destMode==PAGER_JOURNALMODE_WAL && pgszSrc!=pgszDest ){ |
+ rc = SQLITE_READONLY; |
+ } |
+ |
+ /* Now that there is a read-lock on the source database, query the |
+ ** source pager for the number of pages in the database. |
+ */ |
+ nSrcPage = (int)sqlite3BtreeLastPage(p->pSrc); |
+ assert( nSrcPage>=0 ); |
+ for(ii=0; (nPage<0 || ii<nPage) && p->iNext<=(Pgno)nSrcPage && !rc; ii++){ |
+ const Pgno iSrcPg = p->iNext; /* Source page number */ |
+ if( iSrcPg!=PENDING_BYTE_PAGE(p->pSrc->pBt) ){ |
+ DbPage *pSrcPg; /* Source page object */ |
+ rc = sqlite3PagerGet(pSrcPager, iSrcPg, &pSrcPg,PAGER_GET_READONLY); |
+ if( rc==SQLITE_OK ){ |
+ rc = backupOnePage(p, iSrcPg, sqlite3PagerGetData(pSrcPg), 0); |
+ sqlite3PagerUnref(pSrcPg); |
+ } |
+ } |
+ p->iNext++; |
+ } |
+ if( rc==SQLITE_OK ){ |
+ p->nPagecount = nSrcPage; |
+ p->nRemaining = nSrcPage+1-p->iNext; |
+ if( p->iNext>(Pgno)nSrcPage ){ |
+ rc = SQLITE_DONE; |
+ }else if( !p->isAttached ){ |
+ attachBackupObject(p); |
+ } |
+ } |
+ |
+ /* Update the schema version field in the destination database. This |
+ ** is to make sure that the schema-version really does change in |
+ ** the case where the source and destination databases have the |
+ ** same schema version. |
+ */ |
+ if( rc==SQLITE_DONE ){ |
+ if( nSrcPage==0 ){ |
+ rc = sqlite3BtreeNewDb(p->pDest); |
+ nSrcPage = 1; |
+ } |
+ if( rc==SQLITE_OK || rc==SQLITE_DONE ){ |
+ rc = sqlite3BtreeUpdateMeta(p->pDest,1,p->iDestSchema+1); |
+ } |
+ if( rc==SQLITE_OK ){ |
+ if( p->pDestDb ){ |
+ sqlite3ResetAllSchemasOfConnection(p->pDestDb); |
+ } |
+ if( destMode==PAGER_JOURNALMODE_WAL ){ |
+ rc = sqlite3BtreeSetVersion(p->pDest, 2); |
+ } |
+ } |
+ if( rc==SQLITE_OK ){ |
+ int nDestTruncate; |
+ /* Set nDestTruncate to the final number of pages in the destination |
+ ** database. The complication here is that the destination page |
+ ** size may be different to the source page size. |
+ ** |
+ ** If the source page size is smaller than the destination page size, |
+ ** round up. In this case the call to sqlite3OsTruncate() below will |
+ ** fix the size of the file. However it is important to call |
+ ** sqlite3PagerTruncateImage() here so that any pages in the |
+ ** destination file that lie beyond the nDestTruncate page mark are |
+ ** journalled by PagerCommitPhaseOne() before they are destroyed |
+ ** by the file truncation. |
+ */ |
+ assert( pgszSrc==sqlite3BtreeGetPageSize(p->pSrc) ); |
+ assert( pgszDest==sqlite3BtreeGetPageSize(p->pDest) ); |
+ if( pgszSrc<pgszDest ){ |
+ int ratio = pgszDest/pgszSrc; |
+ nDestTruncate = (nSrcPage+ratio-1)/ratio; |
+ if( nDestTruncate==(int)PENDING_BYTE_PAGE(p->pDest->pBt) ){ |
+ nDestTruncate--; |
+ } |
+ }else{ |
+ nDestTruncate = nSrcPage * (pgszSrc/pgszDest); |
+ } |
+ assert( nDestTruncate>0 ); |
+ |
+ if( pgszSrc<pgszDest ){ |
+ /* If the source page-size is smaller than the destination page-size, |
+ ** two extra things may need to happen: |
+ ** |
+ ** * The destination may need to be truncated, and |
+ ** |
+ ** * Data stored on the pages immediately following the |
+ ** pending-byte page in the source database may need to be |
+ ** copied into the destination database. |
+ */ |
+ const i64 iSize = (i64)pgszSrc * (i64)nSrcPage; |
+ sqlite3_file * const pFile = sqlite3PagerFile(pDestPager); |
+ Pgno iPg; |
+ int nDstPage; |
+ i64 iOff; |
+ i64 iEnd; |
+ |
+ assert( pFile ); |
+ assert( nDestTruncate==0 |
+ || (i64)nDestTruncate*(i64)pgszDest >= iSize || ( |
+ nDestTruncate==(int)(PENDING_BYTE_PAGE(p->pDest->pBt)-1) |
+ && iSize>=PENDING_BYTE && iSize<=PENDING_BYTE+pgszDest |
+ )); |
+ |
+ /* This block ensures that all data required to recreate the original |
+ ** database has been stored in the journal for pDestPager and the |
+ ** journal synced to disk. So at this point we may safely modify |
+ ** the database file in any way, knowing that if a power failure |
+ ** occurs, the original database will be reconstructed from the |
+ ** journal file. */ |
+ sqlite3PagerPagecount(pDestPager, &nDstPage); |
+ for(iPg=nDestTruncate; rc==SQLITE_OK && iPg<=(Pgno)nDstPage; iPg++){ |
+ if( iPg!=PENDING_BYTE_PAGE(p->pDest->pBt) ){ |
+ DbPage *pPg; |
+ rc = sqlite3PagerGet(pDestPager, iPg, &pPg, 0); |
+ if( rc==SQLITE_OK ){ |
+ rc = sqlite3PagerWrite(pPg); |
+ sqlite3PagerUnref(pPg); |
+ } |
+ } |
+ } |
+ if( rc==SQLITE_OK ){ |
+ rc = sqlite3PagerCommitPhaseOne(pDestPager, 0, 1); |
+ } |
+ |
+ /* Write the extra pages and truncate the database file as required */ |
+ iEnd = MIN(PENDING_BYTE + pgszDest, iSize); |
+ for( |
+ iOff=PENDING_BYTE+pgszSrc; |
+ rc==SQLITE_OK && iOff<iEnd; |
+ iOff+=pgszSrc |
+ ){ |
+ PgHdr *pSrcPg = 0; |
+ const Pgno iSrcPg = (Pgno)((iOff/pgszSrc)+1); |
+ rc = sqlite3PagerGet(pSrcPager, iSrcPg, &pSrcPg, 0); |
+ if( rc==SQLITE_OK ){ |
+ u8 *zData = sqlite3PagerGetData(pSrcPg); |
+ rc = sqlite3OsWrite(pFile, zData, pgszSrc, iOff); |
+ } |
+ sqlite3PagerUnref(pSrcPg); |
+ } |
+ if( rc==SQLITE_OK ){ |
+ rc = backupTruncateFile(pFile, iSize); |
+ } |
+ |
+ /* Sync the database file to disk. */ |
+ if( rc==SQLITE_OK ){ |
+ rc = sqlite3PagerSync(pDestPager, 0); |
+ } |
+ }else{ |
+ sqlite3PagerTruncateImage(pDestPager, nDestTruncate); |
+ rc = sqlite3PagerCommitPhaseOne(pDestPager, 0, 0); |
+ } |
+ |
+ /* Finish committing the transaction to the destination database. */ |
+ if( SQLITE_OK==rc |
+ && SQLITE_OK==(rc = sqlite3BtreeCommitPhaseTwo(p->pDest, 0)) |
+ ){ |
+ rc = SQLITE_DONE; |
+ } |
+ } |
+ } |
+ |
+ /* If bCloseTrans is true, then this function opened a read transaction |
+ ** on the source database. Close the read transaction here. There is |
+ ** no need to check the return values of the btree methods here, as |
+ ** "committing" a read-only transaction cannot fail. |
+ */ |
+ if( bCloseTrans ){ |
+ TESTONLY( int rc2 ); |
+ TESTONLY( rc2 = ) sqlite3BtreeCommitPhaseOne(p->pSrc, 0); |
+ TESTONLY( rc2 |= ) sqlite3BtreeCommitPhaseTwo(p->pSrc, 0); |
+ assert( rc2==SQLITE_OK ); |
+ } |
+ |
+ if( rc==SQLITE_IOERR_NOMEM ){ |
+ rc = SQLITE_NOMEM; |
+ } |
+ p->rc = rc; |
+ } |
+ if( p->pDestDb ){ |
+ sqlite3_mutex_leave(p->pDestDb->mutex); |
+ } |
+ sqlite3BtreeLeave(p->pSrc); |
+ sqlite3_mutex_leave(p->pSrcDb->mutex); |
+ return rc; |
+} |
+ |
+/* |
+** Release all resources associated with an sqlite3_backup* handle. |
+*/ |
+SQLITE_API int SQLITE_STDCALL sqlite3_backup_finish(sqlite3_backup *p){ |
+ sqlite3_backup **pp; /* Ptr to head of pagers backup list */ |
+ sqlite3 *pSrcDb; /* Source database connection */ |
+ int rc; /* Value to return */ |
+ |
+ /* Enter the mutexes */ |
+ if( p==0 ) return SQLITE_OK; |
+ pSrcDb = p->pSrcDb; |
+ sqlite3_mutex_enter(pSrcDb->mutex); |
+ sqlite3BtreeEnter(p->pSrc); |
+ if( p->pDestDb ){ |
+ sqlite3_mutex_enter(p->pDestDb->mutex); |
+ } |
+ |
+ /* Detach this backup from the source pager. */ |
+ if( p->pDestDb ){ |
+ p->pSrc->nBackup--; |
+ } |
+ if( p->isAttached ){ |
+ pp = sqlite3PagerBackupPtr(sqlite3BtreePager(p->pSrc)); |
+ while( *pp!=p ){ |
+ pp = &(*pp)->pNext; |
+ } |
+ *pp = p->pNext; |
+ } |
+ |
+ /* If a transaction is still open on the Btree, roll it back. */ |
+ sqlite3BtreeRollback(p->pDest, SQLITE_OK, 0); |
+ |
+ /* Set the error code of the destination database handle. */ |
+ rc = (p->rc==SQLITE_DONE) ? SQLITE_OK : p->rc; |
+ if( p->pDestDb ){ |
+ sqlite3Error(p->pDestDb, rc); |
+ |
+ /* Exit the mutexes and free the backup context structure. */ |
+ sqlite3LeaveMutexAndCloseZombie(p->pDestDb); |
+ } |
+ sqlite3BtreeLeave(p->pSrc); |
+ if( p->pDestDb ){ |
+ /* EVIDENCE-OF: R-64852-21591 The sqlite3_backup object is created by a |
+ ** call to sqlite3_backup_init() and is destroyed by a call to |
+ ** sqlite3_backup_finish(). */ |
+ sqlite3_free(p); |
+ } |
+ sqlite3LeaveMutexAndCloseZombie(pSrcDb); |
+ return rc; |
+} |
+ |
+/* |
+** Return the number of pages still to be backed up as of the most recent |
+** call to sqlite3_backup_step(). |
+*/ |
+SQLITE_API int SQLITE_STDCALL sqlite3_backup_remaining(sqlite3_backup *p){ |
+#ifdef SQLITE_ENABLE_API_ARMOR |
+ if( p==0 ){ |
+ (void)SQLITE_MISUSE_BKPT; |
+ return 0; |
+ } |
+#endif |
+ return p->nRemaining; |
+} |
+ |
+/* |
+** Return the total number of pages in the source database as of the most |
+** recent call to sqlite3_backup_step(). |
+*/ |
+SQLITE_API int SQLITE_STDCALL sqlite3_backup_pagecount(sqlite3_backup *p){ |
+#ifdef SQLITE_ENABLE_API_ARMOR |
+ if( p==0 ){ |
+ (void)SQLITE_MISUSE_BKPT; |
+ return 0; |
+ } |
+#endif |
+ return p->nPagecount; |
+} |
+ |
+/* |
+** This function is called after the contents of page iPage of the |
+** source database have been modified. If page iPage has already been |
+** copied into the destination database, then the data written to the |
+** destination is now invalidated. The destination copy of iPage needs |
+** to be updated with the new data before the backup operation is |
+** complete. |
+** |
+** It is assumed that the mutex associated with the BtShared object |
+** corresponding to the source database is held when this function is |
+** called. |
+*/ |
+static SQLITE_NOINLINE void backupUpdate( |
+ sqlite3_backup *p, |
+ Pgno iPage, |
+ const u8 *aData |
+){ |
+ assert( p!=0 ); |
+ do{ |
+ assert( sqlite3_mutex_held(p->pSrc->pBt->mutex) ); |
+ if( !isFatalError(p->rc) && iPage<p->iNext ){ |
+ /* The backup process p has already copied page iPage. But now it |
+ ** has been modified by a transaction on the source pager. Copy |
+ ** the new data into the backup. |
+ */ |
+ int rc; |
+ assert( p->pDestDb ); |
+ sqlite3_mutex_enter(p->pDestDb->mutex); |
+ rc = backupOnePage(p, iPage, aData, 1); |
+ sqlite3_mutex_leave(p->pDestDb->mutex); |
+ assert( rc!=SQLITE_BUSY && rc!=SQLITE_LOCKED ); |
+ if( rc!=SQLITE_OK ){ |
+ p->rc = rc; |
+ } |
+ } |
+ }while( (p = p->pNext)!=0 ); |
+} |
+SQLITE_PRIVATE void sqlite3BackupUpdate(sqlite3_backup *pBackup, Pgno iPage, const u8 *aData){ |
+ if( pBackup ) backupUpdate(pBackup, iPage, aData); |
+} |
+ |
+/* |
+** Restart the backup process. This is called when the pager layer |
+** detects that the database has been modified by an external database |
+** connection. In this case there is no way of knowing which of the |
+** pages that have been copied into the destination database are still |
+** valid and which are not, so the entire process needs to be restarted. |
+** |
+** It is assumed that the mutex associated with the BtShared object |
+** corresponding to the source database is held when this function is |
+** called. |
+*/ |
+SQLITE_PRIVATE void sqlite3BackupRestart(sqlite3_backup *pBackup){ |
+ sqlite3_backup *p; /* Iterator variable */ |
+ for(p=pBackup; p; p=p->pNext){ |
+ assert( sqlite3_mutex_held(p->pSrc->pBt->mutex) ); |
+ p->iNext = 1; |
+ } |
+} |
+ |
+#ifndef SQLITE_OMIT_VACUUM |
+/* |
+** Copy the complete content of pBtFrom into pBtTo. A transaction |
+** must be active for both files. |
+** |
+** The size of file pTo may be reduced by this operation. If anything |
+** goes wrong, the transaction on pTo is rolled back. If successful, the |
+** transaction is committed before returning. |
+*/ |
+SQLITE_PRIVATE int sqlite3BtreeCopyFile(Btree *pTo, Btree *pFrom){ |
+ int rc; |
+ sqlite3_file *pFd; /* File descriptor for database pTo */ |
+ sqlite3_backup b; |
+ sqlite3BtreeEnter(pTo); |
+ sqlite3BtreeEnter(pFrom); |
+ |
+ assert( sqlite3BtreeIsInTrans(pTo) ); |
+ pFd = sqlite3PagerFile(sqlite3BtreePager(pTo)); |
+ if( pFd->pMethods ){ |
+ i64 nByte = sqlite3BtreeGetPageSize(pFrom)*(i64)sqlite3BtreeLastPage(pFrom); |
+ rc = sqlite3OsFileControl(pFd, SQLITE_FCNTL_OVERWRITE, &nByte); |
+ if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK; |
+ if( rc ) goto copy_finished; |
+ } |
+ |
+ /* Set up an sqlite3_backup object. sqlite3_backup.pDestDb must be set |
+ ** to 0. This is used by the implementations of sqlite3_backup_step() |
+ ** and sqlite3_backup_finish() to detect that they are being called |
+ ** from this function, not directly by the user. |
+ */ |
+ memset(&b, 0, sizeof(b)); |
+ b.pSrcDb = pFrom->db; |
+ b.pSrc = pFrom; |
+ b.pDest = pTo; |
+ b.iNext = 1; |
+ |
+#ifdef SQLITE_HAS_CODEC |
+ sqlite3PagerAlignReserve(sqlite3BtreePager(pTo), sqlite3BtreePager(pFrom)); |
+#endif |
+ |
+ /* 0x7FFFFFFF is the hard limit for the number of pages in a database |
+ ** file. By passing this as the number of pages to copy to |
+ ** sqlite3_backup_step(), we can guarantee that the copy finishes |
+ ** within a single call (unless an error occurs). The assert() statement |
+ ** checks this assumption - (p->rc) should be set to either SQLITE_DONE |
+ ** or an error code. |
+ */ |
+ sqlite3_backup_step(&b, 0x7FFFFFFF); |
+ assert( b.rc!=SQLITE_OK ); |
+ rc = sqlite3_backup_finish(&b); |
+ if( rc==SQLITE_OK ){ |
+ pTo->pBt->btsFlags &= ~BTS_PAGESIZE_FIXED; |
+ }else{ |
+ sqlite3PagerClearCache(sqlite3BtreePager(b.pDest)); |
+ } |
+ |
+ assert( sqlite3BtreeIsInTrans(pTo)==0 ); |
+copy_finished: |
+ sqlite3BtreeLeave(pFrom); |
+ sqlite3BtreeLeave(pTo); |
+ return rc; |
+} |
+#endif /* SQLITE_OMIT_VACUUM */ |
+ |
+/************** End of backup.c **********************************************/ |
+ |
+/* Chain include. */ |
+#include "sqlite3.03.c" |