Index: src/runtime.cc |
diff --git a/src/runtime.cc b/src/runtime.cc |
index 50621a997d0b64c03ad3cce486030d4ccbb6cf50..3b56d328ba63d5c2ffeb9371c86af1da8429a2f8 100644 |
--- a/src/runtime.cc |
+++ b/src/runtime.cc |
@@ -7647,33 +7647,110 @@ RUNTIME_FUNCTION(MaybeObject*, Runtime_StringCompare) { |
} |
-RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_acos) { |
+#define RUNTIME_UNARY_MATH(NAME) \ |
+RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_##NAME) { \ |
+ SealHandleScope shs(isolate); \ |
+ ASSERT(args.length() == 1); \ |
+ isolate->counters()->math_##NAME()->Increment(); \ |
+ CONVERT_DOUBLE_ARG_CHECKED(x, 0); \ |
+ return isolate->heap()->AllocateHeapNumber(std::NAME(x)); \ |
+} |
+ |
+RUNTIME_UNARY_MATH(acos) |
+RUNTIME_UNARY_MATH(asin) |
+RUNTIME_UNARY_MATH(atan) |
+RUNTIME_UNARY_MATH(log) |
+#undef RUNTIME_UNARY_MATH |
+ |
+ |
+// Cube root approximation, refer to: http://metamerist.com/cbrt/cbrt.htm |
+// Using initial approximation adapted from Kahan's cbrt and 4 iterations |
+// of Newton's method. |
+inline double CubeRootNewtonIteration(double approx, double x) { |
+ return (1.0 / 3.0) * (x / (approx * approx) + 2 * approx); |
+} |
+ |
+ |
+inline double CubeRoot(double x) { |
+ static const uint64_t magic = V8_2PART_UINT64_C(0x2A9F7893, 00000000); |
+ uint64_t xhigh = double_to_uint64(x); |
+ double approx = uint64_to_double(xhigh / 3 + magic); |
+ |
+ approx = CubeRootNewtonIteration(approx, x); |
+ approx = CubeRootNewtonIteration(approx, x); |
+ approx = CubeRootNewtonIteration(approx, x); |
+ return CubeRootNewtonIteration(approx, x); |
+} |
+ |
+ |
+RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_cbrt) { |
SealHandleScope shs(isolate); |
ASSERT(args.length() == 1); |
- isolate->counters()->math_acos()->Increment(); |
- |
CONVERT_DOUBLE_ARG_CHECKED(x, 0); |
- return isolate->heap()->AllocateHeapNumber(std::acos(x)); |
+ if (x == 0 || std::isinf(x)) return args[0]; |
+ double result = (x > 0) ? CubeRoot(x) : -CubeRoot(-x); |
+ return isolate->heap()->AllocateHeapNumber(result); |
} |
-RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_asin) { |
+RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_log1p) { |
SealHandleScope shs(isolate); |
ASSERT(args.length() == 1); |
- isolate->counters()->math_asin()->Increment(); |
- |
CONVERT_DOUBLE_ARG_CHECKED(x, 0); |
- return isolate->heap()->AllocateHeapNumber(std::asin(x)); |
+ |
+ double x_abs = std::fabs(x); |
+ // Use Taylor series to approximate. With y = x + 1; |
+ // log(y) at 1 == log(1) + log'(1)(y-1)/1! + log''(1)(y-1)^2/2! + ... |
+ // == 0 + x - x^2/2 + x^3/3 ... |
+ // The closer x is to 0, the fewer terms are required. |
+ static const double threshold_2 = 1.0 / 0x00800000; |
+ static const double threshold_3 = 1.0 / 0x00008000; |
+ static const double threshold_7 = 1.0 / 0x00000080; |
+ |
+ double result; |
+ if (x_abs < threshold_2) { |
+ result = x * (1.0/1.0 - x * 1.0/2.0); |
+ } else if (x_abs < threshold_3) { |
+ result = x * (1.0/1.0 - x * (1.0/2.0 - x * (1.0/3.0))); |
+ } else if (x_abs < threshold_7) { |
+ result = x * (1.0/1.0 - x * (1.0/2.0 - x * ( |
+ 1.0/3.0 - x * (1.0/4.0 - x * ( |
+ 1.0/5.0 - x * (1.0/6.0 - x * ( |
+ 1.0/7.0))))))); |
+ } else { // Use regular log if not close enough to 0. |
+ result = std::log(1.0 + x); |
+ } |
+ return isolate->heap()->AllocateHeapNumber(result); |
} |
-RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_atan) { |
+RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_expm1) { |
SealHandleScope shs(isolate); |
ASSERT(args.length() == 1); |
- isolate->counters()->math_atan()->Increment(); |
- |
CONVERT_DOUBLE_ARG_CHECKED(x, 0); |
- return isolate->heap()->AllocateHeapNumber(std::atan(x)); |
+ |
+ double x_abs = std::fabs(x); |
+ // Use Taylor series to approximate. |
+ // exp(x) - 1 at 0 == -1 + exp(0) + exp'(0)*x/1! + exp''(0)*x^2/2! + ... |
+ // == x/1! + x^2/2! + x^3/3! + ... |
+ // The closer x is to 0, the fewer terms are required. |
+ static const double threshold_2 = 1.0 / 0x00400000; |
+ static const double threshold_3 = 1.0 / 0x00004000; |
+ static const double threshold_6 = 1.0 / 0x00000040; |
+ |
+ double result; |
+ if (x_abs < threshold_2) { |
+ result = x * (1.0/1.0 + x * (1.0/2.0)); |
+ } else if (x_abs < threshold_3) { |
+ result = x * (1.0/1.0 + x * (1.0/2.0 + x * (1.0/6.0))); |
+ } else if (x_abs < threshold_6) { |
+ result = x * (1.0/1.0 + x * (1.0/2.0 + x * ( |
+ 1.0/6.0 + x * (1.0/24.0 + x * ( |
+ 1.0/120.0 + x * (1.0/720.0)))))); |
+ } else { // Use regular exp if not close enough to 0. |
+ result = std::exp(x) - 1.0; |
+ } |
+ return isolate->heap()->AllocateHeapNumber(result); |
} |
@@ -7724,16 +7801,6 @@ RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_floor) { |
} |
-RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_log) { |
- SealHandleScope shs(isolate); |
- ASSERT(args.length() == 1); |
- isolate->counters()->math_log()->Increment(); |
- |
- CONVERT_DOUBLE_ARG_CHECKED(x, 0); |
- return isolate->heap()->AllocateHeapNumber(std::log(x)); |
-} |
- |
- |
// Slow version of Math.pow. We check for fast paths for special cases. |
// Used if SSE2/VFP3 is not available. |
RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_pow) { |