Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(22)

Unified Diff: src/runtime.cc

Issue 163563003: Harmony: implement Math.cbrt, Math.expm1 and Math.log1p. (Closed) Base URL: https://v8.googlecode.com/svn/branches/bleeding_edge
Patch Set: . Created 6 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
Index: src/runtime.cc
diff --git a/src/runtime.cc b/src/runtime.cc
index 3ab39abfcc7676d288c57bba9ff0d81672e6a51c..50f4cba47c820ab64c0bfad0eda78c857b4eedf6 100644
--- a/src/runtime.cc
+++ b/src/runtime.cc
@@ -7647,33 +7647,111 @@ RUNTIME_FUNCTION(MaybeObject*, Runtime_StringCompare) {
}
-RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_acos) {
+#define RUNTIME_UNARY_MATH(NAME) \
+RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_##NAME) { \
+ SealHandleScope shs(isolate); \
+ ASSERT(args.length() == 1); \
+ isolate->counters()->math_##NAME()->Increment(); \
+ CONVERT_DOUBLE_ARG_CHECKED(x, 0); \
+ return isolate->heap()->AllocateHeapNumber(std::NAME(x)); \
+}
+
+RUNTIME_UNARY_MATH(acos)
+RUNTIME_UNARY_MATH(asin)
+RUNTIME_UNARY_MATH(atan)
+RUNTIME_UNARY_MATH(log)
+#undef RUNTIME_UNARY_MATH
+
+
+// Cube root approximation, refer to: http://metamerist.com/cbrt/cbrt.htm
+// Using initial approximation adapted from Kahan's cbrt and 4 iterations
+// of Newton's method.
+inline double CubeRootNewtonIteration(double approx, double x) {
+ return (1.0 / 3.0) * (x / (approx * approx) + 2 * approx);
+}
+
+
+inline double CubeRoot(double x) {
+ double approx = 0.0;
+ unsigned int* p_approx = (unsigned int*) ≈
+ unsigned int* p_x = (unsigned int*) &x;
+ p_approx[1] = p_x[1] / 3 + 715094163; // magic number.
Jarin 2014/02/18 14:08:53 Nit: could you make this more friendly to big endi
+
+ approx = CubeRootNewtonIteration(approx, x);
+ approx = CubeRootNewtonIteration(approx, x);
+ approx = CubeRootNewtonIteration(approx, x);
+ return CubeRootNewtonIteration(approx, x);
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_cbrt) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
- isolate->counters()->math_acos()->Increment();
-
CONVERT_DOUBLE_ARG_CHECKED(x, 0);
- return isolate->heap()->AllocateHeapNumber(std::acos(x));
+ if (x == 0 || std::isinf(x)) return args[0];
+ double result = (x > 0) ? CubeRoot(x) : -CubeRoot(-x);
+ return isolate->heap()->AllocateHeapNumber(result);
}
-RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_asin) {
+RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_log1p) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
- isolate->counters()->math_asin()->Increment();
-
CONVERT_DOUBLE_ARG_CHECKED(x, 0);
- return isolate->heap()->AllocateHeapNumber(std::asin(x));
+
+ double x_abs = std::fabs(x);
+ // Use Taylor series to approximate. With y = x + 1;
+ // log(y) at 1 == log(1) + log'(1)(y-1)/1! + log''(1)(y-1)^2/2! + ...
+ // == 0 + x - x^2/2 + x^3/3 ...
+ // The closer x is to 0, the fewer terms are required.
+ static const double threshold_2 = 1.0 / 0x00800000;
+ static const double threshold_3 = 1.0 / 0x00008000;
+ static const double threshold_7 = 1.0 / 0x00000080;
+
+ double result;
+ if (x_abs < threshold_2) {
+ result = x * (1.0/1.0 - x * 1.0/2.0);
+ } else if (x_abs < threshold_3) {
+ result = x * (1.0/1.0 - x * (1.0/2.0 - x * (1.0/3.0)));
+ } else if (x_abs < threshold_7) {
+ result = x * (1.0/1.0 - x * (1.0/2.0 - x * (
+ 1.0/3.0 - x * (1.0/4.0 - x * (
+ 1.0/5.0 - x * (1.0/6.0 - x * (
+ 1.0/7.0)))))));
+ } else { // Use regular log if not close enough to 0.
+ result = std::log(1.0 + x);
+ }
+ return isolate->heap()->AllocateHeapNumber(result);
}
-RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_atan) {
+RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_expm1) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 1);
- isolate->counters()->math_atan()->Increment();
-
CONVERT_DOUBLE_ARG_CHECKED(x, 0);
- return isolate->heap()->AllocateHeapNumber(std::atan(x));
+
+ double x_abs = std::fabs(x);
+ // Use Taylor series to approximate.
+ // exp(x) - 1 at 0 == -1 + exp(0) + exp'(0)*x/1! + exp''(0)*x^2/2! + ...
+ // == x/1! + x^2/2! + x^3/3! + ...
+ // The closer x is to 0, the fewer terms are required.
+ static const double threshold_2 = 1.0 / 0x00400000;
+ static const double threshold_3 = 1.0 / 0x00004000;
+ static const double threshold_6 = 1.0 / 0x00000040;
+
+ double result;
+ if (x_abs < threshold_2) {
+ result = x * (1.0/1.0 + x * (1.0/2.0));
+ } else if (x_abs < threshold_3) {
+ result = x * (1.0/1.0 + x * (1.0/2.0 + x * (1.0/6.0)));
+ } else if (x_abs < threshold_6) {
+ result = x * (1.0/1.0 + x * (1.0/2.0 + x * (
+ 1.0/6.0 + x * (1.0/24.0 + x * (
+ 1.0/120.0 + x * (1.0/720.0))))));
+ } else { // Use regular exp if not close enough to 0.
+ result = std::exp(x) - 1.0;
+ }
+ return isolate->heap()->AllocateHeapNumber(result);
}
@@ -7724,16 +7802,6 @@ RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_floor) {
}
-RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_log) {
- SealHandleScope shs(isolate);
- ASSERT(args.length() == 1);
- isolate->counters()->math_log()->Increment();
-
- CONVERT_DOUBLE_ARG_CHECKED(x, 0);
- return isolate->heap()->AllocateHeapNumber(std::log(x));
-}
-
-
// Slow version of Math.pow. We check for fast paths for special cases.
// Used if SSE2/VFP3 is not available.
RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_pow) {
« src/harmony-math.js ('K') | « src/runtime.h ('k') | test/mjsunit/harmony/math-cbrt.js » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698