 Chromium Code Reviews
 Chromium Code Reviews Issue 163563003:
  Harmony: implement Math.cbrt, Math.expm1 and Math.log1p.  (Closed) 
  Base URL: https://v8.googlecode.com/svn/branches/bleeding_edge
    
  
    Issue 163563003:
  Harmony: implement Math.cbrt, Math.expm1 and Math.log1p.  (Closed) 
  Base URL: https://v8.googlecode.com/svn/branches/bleeding_edge| Index: src/runtime.cc | 
| diff --git a/src/runtime.cc b/src/runtime.cc | 
| index 3ab39abfcc7676d288c57bba9ff0d81672e6a51c..50f4cba47c820ab64c0bfad0eda78c857b4eedf6 100644 | 
| --- a/src/runtime.cc | 
| +++ b/src/runtime.cc | 
| @@ -7647,33 +7647,111 @@ RUNTIME_FUNCTION(MaybeObject*, Runtime_StringCompare) { | 
| } | 
| -RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_acos) { | 
| +#define RUNTIME_UNARY_MATH(NAME) \ | 
| +RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_##NAME) { \ | 
| + SealHandleScope shs(isolate); \ | 
| + ASSERT(args.length() == 1); \ | 
| + isolate->counters()->math_##NAME()->Increment(); \ | 
| + CONVERT_DOUBLE_ARG_CHECKED(x, 0); \ | 
| + return isolate->heap()->AllocateHeapNumber(std::NAME(x)); \ | 
| +} | 
| + | 
| +RUNTIME_UNARY_MATH(acos) | 
| +RUNTIME_UNARY_MATH(asin) | 
| +RUNTIME_UNARY_MATH(atan) | 
| +RUNTIME_UNARY_MATH(log) | 
| +#undef RUNTIME_UNARY_MATH | 
| + | 
| + | 
| +// Cube root approximation, refer to: http://metamerist.com/cbrt/cbrt.htm | 
| +// Using initial approximation adapted from Kahan's cbrt and 4 iterations | 
| +// of Newton's method. | 
| +inline double CubeRootNewtonIteration(double approx, double x) { | 
| + return (1.0 / 3.0) * (x / (approx * approx) + 2 * approx); | 
| +} | 
| + | 
| + | 
| +inline double CubeRoot(double x) { | 
| + double approx = 0.0; | 
| + unsigned int* p_approx = (unsigned int*) ≈ | 
| + unsigned int* p_x = (unsigned int*) &x; | 
| + p_approx[1] = p_x[1] / 3 + 715094163; // magic number. | 
| 
Jarin
2014/02/18 14:08:53
Nit: could you make this more friendly to big endi
 | 
| + | 
| + approx = CubeRootNewtonIteration(approx, x); | 
| + approx = CubeRootNewtonIteration(approx, x); | 
| + approx = CubeRootNewtonIteration(approx, x); | 
| + return CubeRootNewtonIteration(approx, x); | 
| +} | 
| + | 
| + | 
| +RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_cbrt) { | 
| SealHandleScope shs(isolate); | 
| ASSERT(args.length() == 1); | 
| - isolate->counters()->math_acos()->Increment(); | 
| - | 
| CONVERT_DOUBLE_ARG_CHECKED(x, 0); | 
| - return isolate->heap()->AllocateHeapNumber(std::acos(x)); | 
| + if (x == 0 || std::isinf(x)) return args[0]; | 
| + double result = (x > 0) ? CubeRoot(x) : -CubeRoot(-x); | 
| + return isolate->heap()->AllocateHeapNumber(result); | 
| } | 
| -RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_asin) { | 
| +RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_log1p) { | 
| SealHandleScope shs(isolate); | 
| ASSERT(args.length() == 1); | 
| - isolate->counters()->math_asin()->Increment(); | 
| - | 
| CONVERT_DOUBLE_ARG_CHECKED(x, 0); | 
| - return isolate->heap()->AllocateHeapNumber(std::asin(x)); | 
| + | 
| + double x_abs = std::fabs(x); | 
| + // Use Taylor series to approximate. With y = x + 1; | 
| + // log(y) at 1 == log(1) + log'(1)(y-1)/1! + log''(1)(y-1)^2/2! + ... | 
| + // == 0 + x - x^2/2 + x^3/3 ... | 
| + // The closer x is to 0, the fewer terms are required. | 
| + static const double threshold_2 = 1.0 / 0x00800000; | 
| + static const double threshold_3 = 1.0 / 0x00008000; | 
| + static const double threshold_7 = 1.0 / 0x00000080; | 
| + | 
| + double result; | 
| + if (x_abs < threshold_2) { | 
| + result = x * (1.0/1.0 - x * 1.0/2.0); | 
| + } else if (x_abs < threshold_3) { | 
| + result = x * (1.0/1.0 - x * (1.0/2.0 - x * (1.0/3.0))); | 
| + } else if (x_abs < threshold_7) { | 
| + result = x * (1.0/1.0 - x * (1.0/2.0 - x * ( | 
| + 1.0/3.0 - x * (1.0/4.0 - x * ( | 
| + 1.0/5.0 - x * (1.0/6.0 - x * ( | 
| + 1.0/7.0))))))); | 
| + } else { // Use regular log if not close enough to 0. | 
| + result = std::log(1.0 + x); | 
| + } | 
| + return isolate->heap()->AllocateHeapNumber(result); | 
| } | 
| -RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_atan) { | 
| +RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_expm1) { | 
| SealHandleScope shs(isolate); | 
| ASSERT(args.length() == 1); | 
| - isolate->counters()->math_atan()->Increment(); | 
| - | 
| CONVERT_DOUBLE_ARG_CHECKED(x, 0); | 
| - return isolate->heap()->AllocateHeapNumber(std::atan(x)); | 
| + | 
| + double x_abs = std::fabs(x); | 
| + // Use Taylor series to approximate. | 
| + // exp(x) - 1 at 0 == -1 + exp(0) + exp'(0)*x/1! + exp''(0)*x^2/2! + ... | 
| + // == x/1! + x^2/2! + x^3/3! + ... | 
| + // The closer x is to 0, the fewer terms are required. | 
| + static const double threshold_2 = 1.0 / 0x00400000; | 
| + static const double threshold_3 = 1.0 / 0x00004000; | 
| + static const double threshold_6 = 1.0 / 0x00000040; | 
| + | 
| + double result; | 
| + if (x_abs < threshold_2) { | 
| + result = x * (1.0/1.0 + x * (1.0/2.0)); | 
| + } else if (x_abs < threshold_3) { | 
| + result = x * (1.0/1.0 + x * (1.0/2.0 + x * (1.0/6.0))); | 
| + } else if (x_abs < threshold_6) { | 
| + result = x * (1.0/1.0 + x * (1.0/2.0 + x * ( | 
| + 1.0/6.0 + x * (1.0/24.0 + x * ( | 
| + 1.0/120.0 + x * (1.0/720.0)))))); | 
| + } else { // Use regular exp if not close enough to 0. | 
| + result = std::exp(x) - 1.0; | 
| + } | 
| + return isolate->heap()->AllocateHeapNumber(result); | 
| } | 
| @@ -7724,16 +7802,6 @@ RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_floor) { | 
| } | 
| -RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_log) { | 
| - SealHandleScope shs(isolate); | 
| - ASSERT(args.length() == 1); | 
| - isolate->counters()->math_log()->Increment(); | 
| - | 
| - CONVERT_DOUBLE_ARG_CHECKED(x, 0); | 
| - return isolate->heap()->AllocateHeapNumber(std::log(x)); | 
| -} | 
| - | 
| - | 
| // Slow version of Math.pow. We check for fast paths for special cases. | 
| // Used if SSE2/VFP3 is not available. | 
| RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_pow) { |