Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(884)

Unified Diff: media/audio/win/audio_unified_win.cc

Issue 163343002: Reland 153623004: Remove the unified IO code on the browser (Closed) Base URL: http://git.chromium.org/chromium/src.git@master
Patch Set: fixed the cras bot Created 6 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « media/audio/win/audio_unified_win.h ('k') | media/audio/win/audio_unified_win_unittest.cc » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: media/audio/win/audio_unified_win.cc
diff --git a/media/audio/win/audio_unified_win.cc b/media/audio/win/audio_unified_win.cc
deleted file mode 100644
index 901c8b897fa8f5bfd99f30a94ad24bf2ef63e453..0000000000000000000000000000000000000000
--- a/media/audio/win/audio_unified_win.cc
+++ /dev/null
@@ -1,984 +0,0 @@
-// Copyright (c) 2012 The Chromium Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style license that can be
-// found in the LICENSE file.
-
-#include "media/audio/win/audio_unified_win.h"
-
-#include <Functiondiscoverykeys_devpkey.h>
-
-#include "base/debug/trace_event.h"
-#ifndef NDEBUG
-#include "base/file_util.h"
-#include "base/path_service.h"
-#endif
-#include "base/time/time.h"
-#include "base/win/scoped_com_initializer.h"
-#include "media/audio/win/audio_manager_win.h"
-#include "media/audio/win/avrt_wrapper_win.h"
-#include "media/audio/win/core_audio_util_win.h"
-
-using base::win::ScopedComPtr;
-using base::win::ScopedCOMInitializer;
-using base::win::ScopedCoMem;
-
-// Smoothing factor in exponential smoothing filter where 0 < alpha < 1.
-// Larger values of alpha reduce the level of smoothing.
-// See http://en.wikipedia.org/wiki/Exponential_smoothing for details.
-static const double kAlpha = 0.1;
-
-// Compute a rate compensation which always attracts us back to a specified
-// target level over a period of |kCorrectionTimeSeconds|.
-static const double kCorrectionTimeSeconds = 0.1;
-
-#ifndef NDEBUG
-// Max number of columns in the output text file |kUnifiedAudioDebugFileName|.
-// See LogElementNames enumerator for details on what each column represents.
-static const size_t kMaxNumSampleTypes = 4;
-
-static const size_t kMaxNumParams = 2;
-
-// Max number of rows in the output file |kUnifiedAudioDebugFileName|.
-// Each row corresponds to one set of sample values for (approximately) the
-// same time instant (stored in the first column).
-static const size_t kMaxFileSamples = 10000;
-
-// Name of output debug file used for off-line analysis of measurements which
-// can be utilized for performance tuning of this class.
-static const char kUnifiedAudioDebugFileName[] = "unified_win_debug.txt";
-
-// Name of output debug file used for off-line analysis of measurements.
-// This file will contain a list of audio parameters.
-static const char kUnifiedAudioParamsFileName[] = "unified_win_params.txt";
-#endif
-
-// Use the acquired IAudioClock interface to derive a time stamp of the audio
-// sample which is currently playing through the speakers.
-static double SpeakerStreamPosInMilliseconds(IAudioClock* clock) {
- UINT64 device_frequency = 0, position = 0;
- if (FAILED(clock->GetFrequency(&device_frequency)) ||
- FAILED(clock->GetPosition(&position, NULL))) {
- return 0.0;
- }
- return base::Time::kMillisecondsPerSecond *
- (static_cast<double>(position) / device_frequency);
-}
-
-// Get a time stamp in milliseconds given number of audio frames in |num_frames|
-// using the current sample rate |fs| as scale factor.
-// Example: |num_frames| = 960 and |fs| = 48000 => 20 [ms].
-static double CurrentStreamPosInMilliseconds(UINT64 num_frames, DWORD fs) {
- return base::Time::kMillisecondsPerSecond *
- (static_cast<double>(num_frames) / fs);
-}
-
-// Convert a timestamp in milliseconds to byte units given the audio format
-// in |format|.
-// Example: |ts_milliseconds| equals 10, sample rate is 48000 and frame size
-// is 4 bytes per audio frame => 480 * 4 = 1920 [bytes].
-static int MillisecondsToBytes(double ts_milliseconds,
- const WAVEFORMATPCMEX& format) {
- double seconds = ts_milliseconds / base::Time::kMillisecondsPerSecond;
- return static_cast<int>(seconds * format.Format.nSamplesPerSec *
- format.Format.nBlockAlign + 0.5);
-}
-
-// Convert frame count to milliseconds given the audio format in |format|.
-static double FrameCountToMilliseconds(int num_frames,
- const WAVEFORMATPCMEX& format) {
- return (base::Time::kMillisecondsPerSecond * num_frames) /
- static_cast<double>(format.Format.nSamplesPerSec);
-}
-
-namespace media {
-
-WASAPIUnifiedStream::WASAPIUnifiedStream(AudioManagerWin* manager,
- const AudioParameters& params,
- const std::string& input_device_id)
- : creating_thread_id_(base::PlatformThread::CurrentId()),
- manager_(manager),
- params_(params),
- input_channels_(params.input_channels()),
- output_channels_(params.channels()),
- input_device_id_(input_device_id),
- share_mode_(CoreAudioUtil::GetShareMode()),
- opened_(false),
- volume_(1.0),
- output_buffer_size_frames_(0),
- input_buffer_size_frames_(0),
- endpoint_render_buffer_size_frames_(0),
- endpoint_capture_buffer_size_frames_(0),
- num_written_frames_(0),
- total_delay_ms_(0.0),
- total_delay_bytes_(0),
- source_(NULL),
- input_callback_received_(false),
- io_sample_rate_ratio_(1),
- target_fifo_frames_(0),
- average_delta_(0),
- fifo_rate_compensation_(1),
- update_output_delay_(false),
- capture_delay_ms_(0) {
- TRACE_EVENT0("audio", "WASAPIUnifiedStream::WASAPIUnifiedStream");
- VLOG(1) << "WASAPIUnifiedStream::WASAPIUnifiedStream()";
- DCHECK(manager_);
-
- VLOG(1) << "Input channels : " << input_channels_;
- VLOG(1) << "Output channels: " << output_channels_;
- VLOG(1) << "Sample rate : " << params_.sample_rate();
- VLOG(1) << "Buffer size : " << params.frames_per_buffer();
-
-#ifndef NDEBUG
- input_time_stamps_.reset(new int64[kMaxFileSamples]);
- num_frames_in_fifo_.reset(new int[kMaxFileSamples]);
- resampler_margin_.reset(new int[kMaxFileSamples]);
- fifo_rate_comps_.reset(new double[kMaxFileSamples]);
- num_elements_.reset(new int[kMaxNumSampleTypes]);
- std::fill(num_elements_.get(), num_elements_.get() + kMaxNumSampleTypes, 0);
- input_params_.reset(new int[kMaxNumParams]);
- output_params_.reset(new int[kMaxNumParams]);
-#endif
-
- DVLOG_IF(1, share_mode_ == AUDCLNT_SHAREMODE_EXCLUSIVE)
- << "Core Audio (WASAPI) EXCLUSIVE MODE is enabled.";
-
- // Load the Avrt DLL if not already loaded. Required to support MMCSS.
- bool avrt_init = avrt::Initialize();
- DCHECK(avrt_init) << "Failed to load the avrt.dll";
-
- // All events are auto-reset events and non-signaled initially.
-
- // Create the event which the audio engine will signal each time a buffer
- // has been recorded.
- capture_event_.Set(CreateEvent(NULL, FALSE, FALSE, NULL));
-
- // Create the event which will be set in Stop() when straeming shall stop.
- stop_streaming_event_.Set(CreateEvent(NULL, FALSE, FALSE, NULL));
-}
-
-WASAPIUnifiedStream::~WASAPIUnifiedStream() {
- VLOG(1) << "WASAPIUnifiedStream::~WASAPIUnifiedStream()";
-#ifndef NDEBUG
- base::FilePath data_file_name;
- PathService::Get(base::DIR_EXE, &data_file_name);
- data_file_name = data_file_name.AppendASCII(kUnifiedAudioDebugFileName);
- data_file_ = base::OpenFile(data_file_name, "wt");
- DVLOG(1) << ">> Output file " << data_file_name.value() << " is created.";
-
- size_t n = 0;
- size_t elements_to_write = *std::min_element(
- num_elements_.get(), num_elements_.get() + kMaxNumSampleTypes);
- while (n < elements_to_write) {
- fprintf(data_file_, "%I64d %d %d %10.9f\n",
- input_time_stamps_[n],
- num_frames_in_fifo_[n],
- resampler_margin_[n],
- fifo_rate_comps_[n]);
- ++n;
- }
- base::CloseFile(data_file_);
-
- base::FilePath param_file_name;
- PathService::Get(base::DIR_EXE, &param_file_name);
- param_file_name = param_file_name.AppendASCII(kUnifiedAudioParamsFileName);
- param_file_ = base::OpenFile(param_file_name, "wt");
- DVLOG(1) << ">> Output file " << param_file_name.value() << " is created.";
- fprintf(param_file_, "%d %d\n", input_params_[0], input_params_[1]);
- fprintf(param_file_, "%d %d\n", output_params_[0], output_params_[1]);
- base::CloseFile(param_file_);
-#endif
-}
-
-bool WASAPIUnifiedStream::Open() {
- TRACE_EVENT0("audio", "WASAPIUnifiedStream::Open");
- DVLOG(1) << "WASAPIUnifiedStream::Open()";
- DCHECK_EQ(GetCurrentThreadId(), creating_thread_id_);
- if (opened_)
- return true;
-
- AudioParameters hw_output_params;
- HRESULT hr = CoreAudioUtil::GetPreferredAudioParameters(
- eRender, eConsole, &hw_output_params);
- if (FAILED(hr)) {
- LOG(ERROR) << "Failed to get preferred output audio parameters.";
- return false;
- }
-
- AudioParameters hw_input_params;
- if (input_device_id_ == AudioManagerBase::kDefaultDeviceId) {
- // Query native parameters for the default capture device.
- hr = CoreAudioUtil::GetPreferredAudioParameters(
- eCapture, eConsole, &hw_input_params);
- } else {
- // Query native parameters for the capture device given by
- // |input_device_id_|.
- hr = CoreAudioUtil::GetPreferredAudioParameters(
- input_device_id_, &hw_input_params);
- }
- if (FAILED(hr)) {
- LOG(ERROR) << "Failed to get preferred input audio parameters.";
- return false;
- }
-
- // It is currently only possible to open up the output audio device using
- // the native number of channels.
- if (output_channels_ != hw_output_params.channels()) {
- LOG(ERROR) << "Audio device does not support requested output channels.";
- return false;
- }
-
- // It is currently only possible to open up the input audio device using
- // the native number of channels. If the client asks for a higher channel
- // count, we will do channel upmixing in this class. The most typical
- // example is that the client provides stereo but the hardware can only be
- // opened in mono mode. We will do mono to stereo conversion in this case.
- if (input_channels_ < hw_input_params.channels()) {
- LOG(ERROR) << "Audio device does not support requested input channels.";
- return false;
- } else if (input_channels_ > hw_input_params.channels()) {
- ChannelLayout input_layout =
- GuessChannelLayout(hw_input_params.channels());
- ChannelLayout output_layout = GuessChannelLayout(input_channels_);
- channel_mixer_.reset(new ChannelMixer(input_layout, output_layout));
- DVLOG(1) << "Remixing input channel layout from " << input_layout
- << " to " << output_layout << "; from "
- << hw_input_params.channels() << " channels to "
- << input_channels_;
- }
-
- if (hw_output_params.sample_rate() != params_.sample_rate()) {
- LOG(ERROR) << "Requested sample-rate: " << params_.sample_rate()
- << " must match the hardware sample-rate: "
- << hw_output_params.sample_rate();
- return false;
- }
-
- if (hw_output_params.frames_per_buffer() != params_.frames_per_buffer()) {
- LOG(ERROR) << "Requested buffer size: " << params_.frames_per_buffer()
- << " must match the hardware buffer size: "
- << hw_output_params.frames_per_buffer();
- return false;
- }
-
- // Set up WAVEFORMATPCMEX structures for input and output given the specified
- // audio parameters.
- SetIOFormats(hw_input_params, params_);
-
- // Create the input and output busses.
- input_bus_ = AudioBus::Create(
- hw_input_params.channels(), input_buffer_size_frames_);
- output_bus_ = AudioBus::Create(params_);
-
- // One extra bus is needed for the input channel mixing case.
- if (channel_mixer_) {
- DCHECK_LT(hw_input_params.channels(), input_channels_);
- // The size of the |channel_bus_| must be the same as the size of the
- // output bus to ensure that the channel manager can deal with both
- // resampled and non-resampled data as input.
- channel_bus_ = AudioBus::Create(
- input_channels_, params_.frames_per_buffer());
- }
-
- // Check if FIFO and resampling is required to match the input rate to the
- // output rate. If so, a special thread loop, optimized for this case, will
- // be used. This mode is also called varispeed mode.
- // Note that we can also use this mode when input and output rates are the
- // same but native buffer sizes differ (can happen if two different audio
- // devices are used). For this case, the resampler uses a target ratio of
- // 1.0 but SetRatio is called to compensate for clock-drift. The FIFO is
- // required to compensate for the difference in buffer sizes.
- // TODO(henrika): we could perhaps improve the performance for the second
- // case here by only using the FIFO and avoid resampling. Not sure how much
- // that would give and we risk not compensation for clock drift.
- if (hw_input_params.sample_rate() != params_.sample_rate() ||
- hw_input_params.frames_per_buffer() != params_.frames_per_buffer()) {
- DoVarispeedInitialization(hw_input_params, params_);
- }
-
- // Render side (event driven only in varispeed mode):
-
- ScopedComPtr<IAudioClient> audio_output_client =
- CoreAudioUtil::CreateDefaultClient(eRender, eConsole);
- if (!audio_output_client)
- return false;
-
- if (!CoreAudioUtil::IsFormatSupported(audio_output_client,
- share_mode_,
- &output_format_)) {
- return false;
- }
-
- if (share_mode_ == AUDCLNT_SHAREMODE_SHARED) {
- // The |render_event_| will be NULL unless varispeed mode is utilized.
- hr = CoreAudioUtil::SharedModeInitialize(
- audio_output_client, &output_format_, render_event_.Get(),
- &endpoint_render_buffer_size_frames_);
- } else {
- // TODO(henrika): add support for AUDCLNT_SHAREMODE_EXCLUSIVE.
- }
- if (FAILED(hr))
- return false;
-
- ScopedComPtr<IAudioRenderClient> audio_render_client =
- CoreAudioUtil::CreateRenderClient(audio_output_client);
- if (!audio_render_client)
- return false;
-
- // Capture side (always event driven but format depends on varispeed or not):
-
- ScopedComPtr<IAudioClient> audio_input_client;
- if (input_device_id_ == AudioManagerBase::kDefaultDeviceId) {
- audio_input_client = CoreAudioUtil::CreateDefaultClient(eCapture, eConsole);
- } else {
- ScopedComPtr<IMMDevice> audio_input_device(
- CoreAudioUtil::CreateDevice(input_device_id_));
- audio_input_client = CoreAudioUtil::CreateClient(audio_input_device);
- }
- if (!audio_input_client)
- return false;
-
- if (!CoreAudioUtil::IsFormatSupported(audio_input_client,
- share_mode_,
- &input_format_)) {
- return false;
- }
-
- if (share_mode_ == AUDCLNT_SHAREMODE_SHARED) {
- // Include valid event handle for event-driven initialization.
- // The input side is always event driven independent of if varispeed is
- // used or not.
- hr = CoreAudioUtil::SharedModeInitialize(
- audio_input_client, &input_format_, capture_event_.Get(),
- &endpoint_capture_buffer_size_frames_);
- } else {
- // TODO(henrika): add support for AUDCLNT_SHAREMODE_EXCLUSIVE.
- }
- if (FAILED(hr))
- return false;
-
- ScopedComPtr<IAudioCaptureClient> audio_capture_client =
- CoreAudioUtil::CreateCaptureClient(audio_input_client);
- if (!audio_capture_client)
- return false;
-
- // Varispeed mode requires additional preparations.
- if (VarispeedMode())
- ResetVarispeed();
-
- // Store all valid COM interfaces.
- audio_output_client_ = audio_output_client;
- audio_render_client_ = audio_render_client;
- audio_input_client_ = audio_input_client;
- audio_capture_client_ = audio_capture_client;
-
- opened_ = true;
- return SUCCEEDED(hr);
-}
-
-void WASAPIUnifiedStream::Start(AudioSourceCallback* callback) {
- TRACE_EVENT0("audio", "WASAPIUnifiedStream::Start");
- DVLOG(1) << "WASAPIUnifiedStream::Start()";
- DCHECK_EQ(GetCurrentThreadId(), creating_thread_id_);
- CHECK(callback);
- CHECK(opened_);
-
- if (audio_io_thread_) {
- CHECK_EQ(callback, source_);
- return;
- }
-
- source_ = callback;
-
- if (VarispeedMode()) {
- ResetVarispeed();
- fifo_rate_compensation_ = 1.0;
- average_delta_ = 0.0;
- input_callback_received_ = false;
- update_output_delay_ = false;
- }
-
- // Create and start the thread that will listen for capture events.
- // We will also listen on render events on the same thread if varispeed
- // mode is utilized.
- audio_io_thread_.reset(
- new base::DelegateSimpleThread(this, "wasapi_io_thread"));
- audio_io_thread_->Start();
- if (!audio_io_thread_->HasBeenStarted()) {
- DLOG(ERROR) << "Failed to start WASAPI IO thread.";
- return;
- }
-
- // Start input streaming data between the endpoint buffer and the audio
- // engine.
- HRESULT hr = audio_input_client_->Start();
- if (FAILED(hr)) {
- StopAndJoinThread(hr);
- return;
- }
-
- // Ensure that the endpoint buffer is prepared with silence.
- if (share_mode_ == AUDCLNT_SHAREMODE_SHARED) {
- if (!CoreAudioUtil::FillRenderEndpointBufferWithSilence(
- audio_output_client_, audio_render_client_)) {
- DLOG(WARNING) << "Failed to prepare endpoint buffers with silence.";
- return;
- }
- }
- num_written_frames_ = endpoint_render_buffer_size_frames_;
-
- // Start output streaming data between the endpoint buffer and the audio
- // engine.
- hr = audio_output_client_->Start();
- if (FAILED(hr)) {
- StopAndJoinThread(hr);
- return;
- }
-}
-
-void WASAPIUnifiedStream::Stop() {
- TRACE_EVENT0("audio", "WASAPIUnifiedStream::Stop");
- DVLOG(1) << "WASAPIUnifiedStream::Stop()";
- DCHECK_EQ(GetCurrentThreadId(), creating_thread_id_);
- if (!audio_io_thread_)
- return;
-
- // Stop input audio streaming.
- HRESULT hr = audio_input_client_->Stop();
- if (FAILED(hr)) {
- DLOG_IF(ERROR, hr != AUDCLNT_E_NOT_INITIALIZED)
- << "Failed to stop input streaming: " << std::hex << hr;
- }
-
- // Stop output audio streaming.
- hr = audio_output_client_->Stop();
- if (FAILED(hr)) {
- DLOG_IF(ERROR, hr != AUDCLNT_E_NOT_INITIALIZED)
- << "Failed to stop output streaming: " << std::hex << hr;
- }
-
- // Wait until the thread completes and perform cleanup.
- SetEvent(stop_streaming_event_.Get());
- audio_io_thread_->Join();
- audio_io_thread_.reset();
-
- // Ensure that we don't quit the main thread loop immediately next
- // time Start() is called.
- ResetEvent(stop_streaming_event_.Get());
-
- // Clear source callback, it'll be set again on the next Start() call.
- source_ = NULL;
-
- // Flush all pending data and reset the audio clock stream position to 0.
- hr = audio_output_client_->Reset();
- if (FAILED(hr)) {
- DLOG_IF(ERROR, hr != AUDCLNT_E_NOT_INITIALIZED)
- << "Failed to reset output streaming: " << std::hex << hr;
- }
-
- audio_input_client_->Reset();
- if (FAILED(hr)) {
- DLOG_IF(ERROR, hr != AUDCLNT_E_NOT_INITIALIZED)
- << "Failed to reset input streaming: " << std::hex << hr;
- }
-
- // Extra safety check to ensure that the buffers are cleared.
- // If the buffers are not cleared correctly, the next call to Start()
- // would fail with AUDCLNT_E_BUFFER_ERROR at IAudioRenderClient::GetBuffer().
- // TODO(henrika): this check is is only needed for shared-mode streams.
- UINT32 num_queued_frames = 0;
- audio_output_client_->GetCurrentPadding(&num_queued_frames);
- DCHECK_EQ(0u, num_queued_frames);
-}
-
-void WASAPIUnifiedStream::Close() {
- TRACE_EVENT0("audio", "WASAPIUnifiedStream::Close");
- DVLOG(1) << "WASAPIUnifiedStream::Close()";
- DCHECK_EQ(GetCurrentThreadId(), creating_thread_id_);
-
- // It is valid to call Close() before calling open or Start().
- // It is also valid to call Close() after Start() has been called.
- Stop();
-
- // Inform the audio manager that we have been closed. This will cause our
- // destruction.
- manager_->ReleaseOutputStream(this);
-}
-
-void WASAPIUnifiedStream::SetVolume(double volume) {
- DVLOG(1) << "SetVolume(volume=" << volume << ")";
- if (volume < 0 || volume > 1)
- return;
- volume_ = volume;
-}
-
-void WASAPIUnifiedStream::GetVolume(double* volume) {
- DVLOG(1) << "GetVolume()";
- *volume = static_cast<double>(volume_);
-}
-
-
-void WASAPIUnifiedStream::ProvideInput(int frame_delay, AudioBus* audio_bus) {
- // TODO(henrika): utilize frame_delay?
- // A non-zero framed delay means multiple callbacks were necessary to
- // fulfill the requested number of frames.
- if (frame_delay > 0)
- DVLOG(3) << "frame_delay: " << frame_delay;
-
-#ifndef NDEBUG
- resampler_margin_[num_elements_[RESAMPLER_MARGIN]] =
- fifo_->frames() - audio_bus->frames();
- num_elements_[RESAMPLER_MARGIN]++;
-#endif
-
- if (fifo_->frames() < audio_bus->frames()) {
- DVLOG(ERROR) << "Not enough data in the FIFO ("
- << fifo_->frames() << " < " << audio_bus->frames() << ")";
- audio_bus->Zero();
- return;
- }
-
- fifo_->Consume(audio_bus, 0, audio_bus->frames());
-}
-
-void WASAPIUnifiedStream::SetIOFormats(const AudioParameters& input_params,
- const AudioParameters& output_params) {
- for (int n = 0; n < 2; ++n) {
- const AudioParameters& params = (n == 0) ? input_params : output_params;
- WAVEFORMATPCMEX* xformat = (n == 0) ? &input_format_ : &output_format_;
- WAVEFORMATEX* format = &xformat->Format;
-
- // Begin with the WAVEFORMATEX structure that specifies the basic format.
- format->wFormatTag = WAVE_FORMAT_EXTENSIBLE;
- format->nChannels = params.channels();
- format->nSamplesPerSec = params.sample_rate();
- format->wBitsPerSample = params.bits_per_sample();
- format->nBlockAlign = (format->wBitsPerSample / 8) * format->nChannels;
- format->nAvgBytesPerSec = format->nSamplesPerSec * format->nBlockAlign;
- format->cbSize = sizeof(WAVEFORMATEXTENSIBLE) - sizeof(WAVEFORMATEX);
-
- // Add the parts which are unique to WAVE_FORMAT_EXTENSIBLE.
- // Note that we always open up using the native channel layout.
- (*xformat).Samples.wValidBitsPerSample = format->wBitsPerSample;
- (*xformat).dwChannelMask =
- CoreAudioUtil::GetChannelConfig(
- std::string(), n == 0 ? eCapture : eRender);
- (*xformat).SubFormat = KSDATAFORMAT_SUBTYPE_PCM;
- }
-
- input_buffer_size_frames_ = input_params.frames_per_buffer();
- output_buffer_size_frames_ = output_params.frames_per_buffer();
- VLOG(1) << "#audio frames per input buffer : " << input_buffer_size_frames_;
- VLOG(1) << "#audio frames per output buffer: " << output_buffer_size_frames_;
-
-#ifndef NDEBUG
- input_params_[0] = input_format_.Format.nSamplesPerSec;
- input_params_[1] = input_buffer_size_frames_;
- output_params_[0] = output_format_.Format.nSamplesPerSec;
- output_params_[1] = output_buffer_size_frames_;
-#endif
-}
-
-void WASAPIUnifiedStream::DoVarispeedInitialization(
- const AudioParameters& input_params, const AudioParameters& output_params) {
- DVLOG(1) << "WASAPIUnifiedStream::DoVarispeedInitialization()";
-
- // A FIFO is required in this mode for input to output buffering.
- // Note that it will add some latency.
- fifo_.reset(new AudioFifo(input_params.channels(), kFifoSize));
- VLOG(1) << "Using FIFO of size " << fifo_->max_frames()
- << " (#channels=" << input_params.channels() << ")";
-
- // Create the multi channel resampler using the initial sample rate ratio.
- // We will call MultiChannelResampler::SetRatio() during runtime to
- // allow arbitrary combinations of input and output devices running off
- // different clocks and using different drivers, with potentially
- // differing sample-rates. Note that the requested block size is given by
- // the native input buffer size |input_buffer_size_frames_|.
- io_sample_rate_ratio_ = input_params.sample_rate() /
- static_cast<double>(output_params.sample_rate());
- DVLOG(2) << "io_sample_rate_ratio: " << io_sample_rate_ratio_;
- resampler_.reset(new MultiChannelResampler(
- input_params.channels(), io_sample_rate_ratio_, input_buffer_size_frames_,
- base::Bind(&WASAPIUnifiedStream::ProvideInput, base::Unretained(this))));
- VLOG(1) << "Resampling from " << input_params.sample_rate() << " to "
- << output_params.sample_rate();
-
- // The optimal number of frames we'd like to keep in the FIFO at all times.
- // The actual size will vary but the goal is to ensure that the average size
- // is given by this value.
- target_fifo_frames_ = kTargetFifoSafetyFactor * input_buffer_size_frames_;
- VLOG(1) << "Target FIFO size: " << target_fifo_frames_;
-
- // Create the event which the audio engine will signal each time it
- // wants an audio buffer to render.
- render_event_.Set(CreateEvent(NULL, FALSE, FALSE, NULL));
-
- // Allocate memory for temporary audio bus used to store resampled input
- // audio.
- resampled_bus_ = AudioBus::Create(
- input_params.channels(), output_buffer_size_frames_);
-
- // Buffer initial silence corresponding to target I/O buffering.
- ResetVarispeed();
-}
-
-void WASAPIUnifiedStream::ResetVarispeed() {
- DCHECK(VarispeedMode());
-
- // Buffer initial silence corresponding to target I/O buffering.
- fifo_->Clear();
- scoped_ptr<AudioBus> silence =
- AudioBus::Create(input_format_.Format.nChannels,
- target_fifo_frames_);
- silence->Zero();
- fifo_->Push(silence.get());
- resampler_->Flush();
-}
-
-void WASAPIUnifiedStream::Run() {
- ScopedCOMInitializer com_init(ScopedCOMInitializer::kMTA);
-
- // Increase the thread priority.
- audio_io_thread_->SetThreadPriority(base::kThreadPriority_RealtimeAudio);
-
- // Enable MMCSS to ensure that this thread receives prioritized access to
- // CPU resources.
- // TODO(henrika): investigate if it is possible to include these additional
- // settings in SetThreadPriority() as well.
- DWORD task_index = 0;
- HANDLE mm_task = avrt::AvSetMmThreadCharacteristics(L"Pro Audio",
- &task_index);
- bool mmcss_is_ok =
- (mm_task && avrt::AvSetMmThreadPriority(mm_task, AVRT_PRIORITY_CRITICAL));
- if (!mmcss_is_ok) {
- // Failed to enable MMCSS on this thread. It is not fatal but can lead
- // to reduced QoS at high load.
- DWORD err = GetLastError();
- LOG(WARNING) << "Failed to enable MMCSS (error code=" << err << ").";
- }
-
- // The IAudioClock interface enables us to monitor a stream's data
- // rate and the current position in the stream. Allocate it before we
- // start spinning.
- ScopedComPtr<IAudioClock> audio_output_clock;
- HRESULT hr = audio_output_client_->GetService(
- __uuidof(IAudioClock), audio_output_clock.ReceiveVoid());
- LOG_IF(WARNING, FAILED(hr)) << "Failed to create IAudioClock: "
- << std::hex << hr;
-
- bool streaming = true;
- bool error = false;
-
- HANDLE wait_array[3];
- size_t num_handles = 0;
- wait_array[num_handles++] = stop_streaming_event_;
- wait_array[num_handles++] = capture_event_;
- if (render_event_) {
- // One extra event handle is needed in varispeed mode.
- wait_array[num_handles++] = render_event_;
- }
-
- // Keep streaming audio until stop event is signaled.
- // Capture events are always used but render events are only active in
- // varispeed mode.
- while (streaming && !error) {
- // Wait for a close-down event, or a new capture event.
- DWORD wait_result = WaitForMultipleObjects(num_handles,
- wait_array,
- FALSE,
- INFINITE);
- switch (wait_result) {
- case WAIT_OBJECT_0 + 0:
- // |stop_streaming_event_| has been set.
- streaming = false;
- break;
- case WAIT_OBJECT_0 + 1:
- // |capture_event_| has been set
- if (VarispeedMode()) {
- ProcessInputAudio();
- } else {
- ProcessInputAudio();
- ProcessOutputAudio(audio_output_clock);
- }
- break;
- case WAIT_OBJECT_0 + 2:
- DCHECK(VarispeedMode());
- // |render_event_| has been set
- ProcessOutputAudio(audio_output_clock);
- break;
- default:
- error = true;
- break;
- }
- }
-
- if (streaming && error) {
- // Stop audio streaming since something has gone wrong in our main thread
- // loop. Note that, we are still in a "started" state, hence a Stop() call
- // is required to join the thread properly.
- audio_input_client_->Stop();
- audio_output_client_->Stop();
- PLOG(ERROR) << "WASAPI streaming failed.";
- }
-
- // Disable MMCSS.
- if (mm_task && !avrt::AvRevertMmThreadCharacteristics(mm_task)) {
- PLOG(WARNING) << "Failed to disable MMCSS";
- }
-}
-
-void WASAPIUnifiedStream::ProcessInputAudio() {
- TRACE_EVENT0("audio", "WASAPIUnifiedStream::ProcessInputAudio");
-
- BYTE* data_ptr = NULL;
- UINT32 num_captured_frames = 0;
- DWORD flags = 0;
- UINT64 device_position = 0;
- UINT64 capture_time_stamp = 0;
-
- const int bytes_per_sample = input_format_.Format.wBitsPerSample >> 3;
-
- base::TimeTicks now_tick = base::TimeTicks::HighResNow();
-
-#ifndef NDEBUG
- if (VarispeedMode()) {
- input_time_stamps_[num_elements_[INPUT_TIME_STAMP]] =
- now_tick.ToInternalValue();
- num_elements_[INPUT_TIME_STAMP]++;
- }
-#endif
-
- // Retrieve the amount of data in the capture endpoint buffer.
- // |endpoint_capture_time_stamp| is the value of the performance
- // counter at the time that the audio endpoint device recorded
- // the device position of the first audio frame in the data packet.
- HRESULT hr = audio_capture_client_->GetBuffer(&data_ptr,
- &num_captured_frames,
- &flags,
- &device_position,
- &capture_time_stamp);
- if (FAILED(hr)) {
- DLOG(ERROR) << "Failed to get data from the capture buffer";
- return;
- }
-
- if (hr == AUDCLNT_S_BUFFER_EMPTY) {
- // The return coded is a success code but a new packet is *not* available
- // and none of the output parameters in the GetBuffer() call contains valid
- // values. Best we can do is to deliver silence and avoid setting
- // |input_callback_received_| since this only seems to happen for the
- // initial event(s) on some devices.
- input_bus_->Zero();
- } else {
- // Valid data has been recorded and it is now OK to set the flag which
- // informs the render side that capturing has started.
- input_callback_received_ = true;
- }
-
- if (num_captured_frames != 0) {
- if (flags & AUDCLNT_BUFFERFLAGS_SILENT) {
- // Clear out the capture buffer since silence is reported.
- input_bus_->Zero();
- } else {
- // Store captured data in an audio bus after de-interleaving
- // the data to match the audio bus structure.
- input_bus_->FromInterleaved(
- data_ptr, num_captured_frames, bytes_per_sample);
- }
- }
-
- hr = audio_capture_client_->ReleaseBuffer(num_captured_frames);
- DLOG_IF(ERROR, FAILED(hr)) << "Failed to release capture buffer";
-
- // Buffer input into FIFO if varispeed mode is used. The render event
- // will drive resampling of this data to match the output side.
- if (VarispeedMode()) {
- int available_frames = fifo_->max_frames() - fifo_->frames();
- if (input_bus_->frames() <= available_frames) {
- fifo_->Push(input_bus_.get());
- }
-#ifndef NDEBUG
- num_frames_in_fifo_[num_elements_[NUM_FRAMES_IN_FIFO]] =
- fifo_->frames();
- num_elements_[NUM_FRAMES_IN_FIFO]++;
-#endif
- }
-
- // Save resource by not asking for new delay estimates each time.
- // These estimates are fairly stable and it is perfectly safe to only
- // sample at a rate of ~1Hz.
- // TODO(henrika): we might have to increase the update rate in varispeed
- // mode since the delay variations are higher in this mode.
- if ((now_tick - last_delay_sample_time_).InMilliseconds() >
- kTimeDiffInMillisecondsBetweenDelayMeasurements &&
- input_callback_received_) {
- // Calculate the estimated capture delay, i.e., the latency between
- // the recording time and the time we when we are notified about
- // the recorded data. Note that the capture time stamp is given in
- // 100-nanosecond (0.1 microseconds) units.
- base::TimeDelta diff =
- now_tick - base::TimeTicks::FromInternalValue(0.1 * capture_time_stamp);
- capture_delay_ms_ = diff.InMillisecondsF();
-
- last_delay_sample_time_ = now_tick;
- update_output_delay_ = true;
- }
-}
-
-void WASAPIUnifiedStream::ProcessOutputAudio(IAudioClock* audio_output_clock) {
- TRACE_EVENT0("audio", "WASAPIUnifiedStream::ProcessOutputAudio");
-
- if (!input_callback_received_) {
- if (share_mode_ == AUDCLNT_SHAREMODE_SHARED) {
- if (!CoreAudioUtil::FillRenderEndpointBufferWithSilence(
- audio_output_client_, audio_render_client_))
- DLOG(WARNING) << "Failed to prepare endpoint buffers with silence.";
- }
- return;
- }
-
- // Rate adjusted resampling is required in varispeed mode. It means that
- // recorded audio samples will be read from the FIFO, resampled to match the
- // output sample-rate and then stored in |resampled_bus_|.
- if (VarispeedMode()) {
- // Calculate a varispeed rate scalar factor to compensate for drift between
- // input and output. We use the actual number of frames still in the FIFO
- // compared with the ideal value of |target_fifo_frames_|.
- int delta = fifo_->frames() - target_fifo_frames_;
-
- // Average |delta| because it can jitter back/forth quite frequently
- // by +/- the hardware buffer-size *if* the input and output callbacks are
- // happening at almost exactly the same time. Also, if the input and output
- // sample-rates are different then |delta| will jitter quite a bit due to
- // the rate conversion happening in the varispeed, plus the jittering of
- // the callbacks. The average value is what's important here.
- // We use an exponential smoothing filter to reduce the variations.
- average_delta_ += kAlpha * (delta - average_delta_);
-
- // Compute a rate compensation which always attracts us back to the
- // |target_fifo_frames_| over a period of kCorrectionTimeSeconds.
- double correction_time_frames =
- kCorrectionTimeSeconds * output_format_.Format.nSamplesPerSec;
- fifo_rate_compensation_ =
- (correction_time_frames + average_delta_) / correction_time_frames;
-
-#ifndef NDEBUG
- fifo_rate_comps_[num_elements_[RATE_COMPENSATION]] =
- fifo_rate_compensation_;
- num_elements_[RATE_COMPENSATION]++;
-#endif
-
- // Adjust for FIFO drift.
- const double new_ratio = io_sample_rate_ratio_ * fifo_rate_compensation_;
- resampler_->SetRatio(new_ratio);
- // Get resampled input audio from FIFO where the size is given by the
- // output side.
- resampler_->Resample(resampled_bus_->frames(), resampled_bus_.get());
- }
-
- // Derive a new total delay estimate if the capture side has set the
- // |update_output_delay_| flag.
- if (update_output_delay_) {
- // Calculate the estimated render delay, i.e., the time difference
- // between the time when data is added to the endpoint buffer and
- // when the data is played out on the actual speaker.
- const double stream_pos = CurrentStreamPosInMilliseconds(
- num_written_frames_ + output_buffer_size_frames_,
- output_format_.Format.nSamplesPerSec);
- const double speaker_pos =
- SpeakerStreamPosInMilliseconds(audio_output_clock);
- const double render_delay_ms = stream_pos - speaker_pos;
- const double fifo_delay_ms = VarispeedMode() ?
- FrameCountToMilliseconds(target_fifo_frames_, input_format_) : 0;
-
- // Derive the total delay, i.e., the sum of the input and output
- // delays. Also convert the value into byte units. An extra FIFO delay
- // is added for varispeed usage cases.
- total_delay_ms_ = VarispeedMode() ?
- capture_delay_ms_ + render_delay_ms + fifo_delay_ms :
- capture_delay_ms_ + render_delay_ms;
- DVLOG(2) << "total_delay_ms : " << total_delay_ms_;
- DVLOG(3) << " capture_delay_ms: " << capture_delay_ms_;
- DVLOG(3) << " render_delay_ms : " << render_delay_ms;
- DVLOG(3) << " fifo_delay_ms : " << fifo_delay_ms;
- total_delay_bytes_ = MillisecondsToBytes(total_delay_ms_, output_format_);
-
- // Wait for new signal from the capture side.
- update_output_delay_ = false;
- }
-
- // Select source depending on if varispeed is utilized or not.
- // Also, the source might be the output of a channel mixer if channel mixing
- // is required to match the native input channels to the number of input
- // channels used by the client (given by |input_channels_| in this case).
- AudioBus* input_bus = VarispeedMode() ?
- resampled_bus_.get() : input_bus_.get();
- if (channel_mixer_) {
- DCHECK_EQ(input_bus->frames(), channel_bus_->frames());
- // Most common case is 1->2 channel upmixing.
- channel_mixer_->Transform(input_bus, channel_bus_.get());
- // Use the output from the channel mixer as new input bus.
- input_bus = channel_bus_.get();
- }
-
- // Prepare for rendering by calling OnMoreIOData().
- int frames_filled = source_->OnMoreIOData(
- input_bus,
- output_bus_.get(),
- AudioBuffersState(0, total_delay_bytes_));
- DCHECK_EQ(frames_filled, output_bus_->frames());
-
- // Keep track of number of rendered frames since we need it for
- // our delay calculations.
- num_written_frames_ += frames_filled;
-
- // Derive the the amount of available space in the endpoint buffer.
- // Avoid render attempt if there is no room for a captured packet.
- UINT32 num_queued_frames = 0;
- audio_output_client_->GetCurrentPadding(&num_queued_frames);
- if (endpoint_render_buffer_size_frames_ - num_queued_frames <
- output_buffer_size_frames_)
- return;
-
- // Grab all available space in the rendering endpoint buffer
- // into which the client can write a data packet.
- uint8* audio_data = NULL;
- HRESULT hr = audio_render_client_->GetBuffer(output_buffer_size_frames_,
- &audio_data);
- if (FAILED(hr)) {
- DLOG(ERROR) << "Failed to access render buffer";
- return;
- }
-
- const int bytes_per_sample = output_format_.Format.wBitsPerSample >> 3;
-
- // Convert the audio bus content to interleaved integer data using
- // |audio_data| as destination.
- output_bus_->Scale(volume_);
- output_bus_->ToInterleaved(
- output_buffer_size_frames_, bytes_per_sample, audio_data);
-
- // Release the buffer space acquired in the GetBuffer() call.
- audio_render_client_->ReleaseBuffer(output_buffer_size_frames_, 0);
- DLOG_IF(ERROR, FAILED(hr)) << "Failed to release render buffer";
-
- return;
-}
-
-void WASAPIUnifiedStream::HandleError(HRESULT err) {
- CHECK((started() && GetCurrentThreadId() == audio_io_thread_->tid()) ||
- (!started() && GetCurrentThreadId() == creating_thread_id_));
- NOTREACHED() << "Error code: " << std::hex << err;
- if (source_)
- source_->OnError(this);
-}
-
-void WASAPIUnifiedStream::StopAndJoinThread(HRESULT err) {
- CHECK(GetCurrentThreadId() == creating_thread_id_);
- DCHECK(audio_io_thread_.get());
- SetEvent(stop_streaming_event_.Get());
- audio_io_thread_->Join();
- audio_io_thread_.reset();
- HandleError(err);
-}
-
-} // namespace media
« no previous file with comments | « media/audio/win/audio_unified_win.h ('k') | media/audio/win/audio_unified_win_unittest.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698