Index: src/core/SkGeometry.cpp |
diff --git a/src/core/SkGeometry.cpp b/src/core/SkGeometry.cpp |
index 5d017981d99baa57384592a5651aeef9f1178e19..629703a1ee5f228f15ab60dedfd03a04f48709c7 100644 |
--- a/src/core/SkGeometry.cpp |
+++ b/src/core/SkGeometry.cpp |
@@ -104,44 +104,12 @@ int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]) { |
/////////////////////////////////////////////////////////////////////////////// |
/////////////////////////////////////////////////////////////////////////////// |
-static Sk2s quad_poly_eval(const Sk2s& A, const Sk2s& B, const Sk2s& C, const Sk2s& t) { |
- return (A * t + B) * t + C; |
-} |
- |
-static SkScalar eval_quad(const SkScalar src[], SkScalar t) { |
- SkASSERT(src); |
- SkASSERT(t >= 0 && t <= SK_Scalar1); |
- |
-#ifdef DIRECT_EVAL_OF_POLYNOMIALS |
- SkScalar C = src[0]; |
- SkScalar A = src[4] - 2 * src[2] + C; |
- SkScalar B = 2 * (src[2] - C); |
- return SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C); |
-#else |
- SkScalar ab = SkScalarInterp(src[0], src[2], t); |
- SkScalar bc = SkScalarInterp(src[2], src[4], t); |
- return SkScalarInterp(ab, bc, t); |
-#endif |
-} |
- |
-void SkQuadToCoeff(const SkPoint pts[3], SkPoint coeff[3]) { |
- Sk2s p0 = from_point(pts[0]); |
- Sk2s p1 = from_point(pts[1]); |
- Sk2s p2 = from_point(pts[2]); |
- |
- Sk2s p1minus2 = p1 - p0; |
- |
- coeff[0] = to_point(p2 - p1 - p1 + p0); // A * t^2 |
- coeff[1] = to_point(p1minus2 + p1minus2); // B * t |
- coeff[2] = pts[0]; // C |
-} |
- |
void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tangent) { |
SkASSERT(src); |
SkASSERT(t >= 0 && t <= SK_Scalar1); |
if (pt) { |
- pt->set(eval_quad(&src[0].fX, t), eval_quad(&src[0].fY, t)); |
+ *pt = SkEvalQuadAt(src, t); |
} |
if (tangent) { |
*tangent = SkEvalQuadTangentAt(src, t); |
@@ -149,19 +117,7 @@ void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tange |
} |
SkPoint SkEvalQuadAt(const SkPoint src[3], SkScalar t) { |
- SkASSERT(src); |
- SkASSERT(t >= 0 && t <= SK_Scalar1); |
- |
- const Sk2s t2(t); |
- |
- Sk2s P0 = from_point(src[0]); |
- Sk2s P1 = from_point(src[1]); |
- Sk2s P2 = from_point(src[2]); |
- |
- Sk2s B = P1 - P0; |
- Sk2s A = P2 - P1 - B; |
- |
- return to_point((A * t2 + B+B) * t2 + P0); |
+ return to_point(SkQuadCoeff(src).eval(t)); |
} |
SkVector SkEvalQuadTangentAt(const SkPoint src[3], SkScalar t) { |
@@ -333,6 +289,7 @@ void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]) { |
///// CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS ///// |
////////////////////////////////////////////////////////////////////////////// |
+#ifdef SK_SUPPORT_LEGACY_EVAL_CUBIC |
static SkScalar eval_cubic(const SkScalar src[], SkScalar t) { |
SkASSERT(src); |
SkASSERT(t >= 0 && t <= SK_Scalar1); |
@@ -357,28 +314,30 @@ static SkScalar eval_cubic(const SkScalar src[], SkScalar t) { |
return SkScalarInterp(abc, bcd, t); |
#endif |
} |
+#endif |
-/** return At^2 + Bt + C |
-*/ |
-static SkScalar eval_quadratic(SkScalar A, SkScalar B, SkScalar C, SkScalar t) { |
- SkASSERT(t >= 0 && t <= SK_Scalar1); |
- |
- return SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C); |
-} |
- |
-static SkScalar eval_cubic_derivative(const SkScalar src[], SkScalar t) { |
- SkScalar A = src[6] + 3*(src[2] - src[4]) - src[0]; |
- SkScalar B = 2*(src[4] - 2 * src[2] + src[0]); |
- SkScalar C = src[2] - src[0]; |
+static SkVector eval_cubic_derivative(const SkPoint src[4], SkScalar t) { |
+ SkQuadCoeff coeff; |
+ Sk2s P0 = from_point(src[0]); |
+ Sk2s P1 = from_point(src[1]); |
+ Sk2s P2 = from_point(src[2]); |
+ Sk2s P3 = from_point(src[3]); |
- return eval_quadratic(A, B, C, t); |
+ coeff.fA = P3 + Sk2s(3) * (P1 - P2) - P0; |
+ coeff.fB = times_2(P2 - times_2(P1) + P0); |
+ coeff.fC = P1 - P0; |
+ return to_vector(coeff.eval(t)); |
} |
-static SkScalar eval_cubic_2ndDerivative(const SkScalar src[], SkScalar t) { |
- SkScalar A = src[6] + 3*(src[2] - src[4]) - src[0]; |
- SkScalar B = src[4] - 2 * src[2] + src[0]; |
+static SkVector eval_cubic_2ndDerivative(const SkPoint src[4], SkScalar t) { |
+ Sk2s P0 = from_point(src[0]); |
+ Sk2s P1 = from_point(src[1]); |
+ Sk2s P2 = from_point(src[2]); |
+ Sk2s P3 = from_point(src[3]); |
+ Sk2s A = P3 + Sk2s(3) * (P1 - P2) - P0; |
+ Sk2s B = P2 - times_2(P1) + P0; |
- return SkScalarMulAdd(A, t, B); |
+ return to_vector(A * Sk2s(t) + B); |
} |
void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* loc, |
@@ -387,7 +346,11 @@ void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* loc, |
SkASSERT(t >= 0 && t <= SK_Scalar1); |
if (loc) { |
+#ifdef SK_SUPPORT_LEGACY_EVAL_CUBIC |
loc->set(eval_cubic(&src[0].fX, t), eval_cubic(&src[0].fY, t)); |
+#else |
+ *loc = to_point(SkCubicCoeff(src).eval(t)); |
+#endif |
} |
if (tangent) { |
// The derivative equation returns a zero tangent vector when t is 0 or 1, and the |
@@ -403,13 +366,11 @@ void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* loc, |
*tangent = src[3] - src[0]; |
} |
} else { |
- tangent->set(eval_cubic_derivative(&src[0].fX, t), |
- eval_cubic_derivative(&src[0].fY, t)); |
+ *tangent = eval_cubic_derivative(src, t); |
} |
} |
if (curvature) { |
- curvature->set(eval_cubic_2ndDerivative(&src[0].fX, t), |
- eval_cubic_2ndDerivative(&src[0].fY, t)); |
+ *curvature = eval_cubic_2ndDerivative(src, t); |
} |
} |
@@ -454,26 +415,6 @@ void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t) { |
dst[6] = src[3]; |
} |
-void SkCubicToCoeff(const SkPoint pts[4], SkPoint coeff[4]) { |
- Sk2s p0 = from_point(pts[0]); |
- Sk2s p1 = from_point(pts[1]); |
- Sk2s p2 = from_point(pts[2]); |
- Sk2s p3 = from_point(pts[3]); |
- |
- const Sk2s three(3); |
- Sk2s p1minusp2 = p1 - p2; |
- |
- Sk2s D = p0; |
- Sk2s A = p3 + three * p1minusp2 - D; |
- Sk2s B = three * (D - p1minusp2 - p1); |
- Sk2s C = three * (p1 - D); |
- |
- coeff[0] = to_point(A); |
- coeff[1] = to_point(B); |
- coeff[2] = to_point(C); |
- coeff[3] = to_point(D); |
-} |
- |
/* http://code.google.com/p/skia/issues/detail?id=32 |
This test code would fail when we didn't check the return result of |
@@ -1092,24 +1033,7 @@ void SkConic::chopAt(SkScalar t1, SkScalar t2, SkConic* dst) const { |
} |
SkPoint SkConic::evalAt(SkScalar t) const { |
- Sk2s p0 = from_point(fPts[0]); |
- Sk2s p1 = from_point(fPts[1]); |
- Sk2s p2 = from_point(fPts[2]); |
- Sk2s tt(t); |
- Sk2s ww(fW); |
- Sk2s one(1); |
- |
- Sk2s p1w = p1 * ww; |
- Sk2s C = p0; |
- Sk2s A = p2 - times_2(p1w) + p0; |
- Sk2s B = times_2(p1w - C); |
- Sk2s numer = quad_poly_eval(A, B, C, tt); |
- |
- B = times_2(ww - one); |
- A = Sk2s(0)-B; |
- Sk2s denom = quad_poly_eval(A, B, one, tt); |
- |
- return to_point(numer / denom); |
+ return to_point(SkConicCoeff(*this).eval(t)); |
} |
SkVector SkConic::evalTangentAt(SkScalar t) const { |
@@ -1131,7 +1055,7 @@ SkVector SkConic::evalTangentAt(SkScalar t) const { |
Sk2s A = ww * p20 - p20; |
Sk2s B = p20 - C - C; |
- return to_vector(quad_poly_eval(A, B, C, Sk2s(t))); |
+ return to_vector(SkQuadCoeff(A, B, C).eval(t)); |
} |
void SkConic::evalAt(SkScalar t, SkPoint* pt, SkVector* tangent) const { |
@@ -1149,10 +1073,6 @@ static SkScalar subdivide_w_value(SkScalar w) { |
return SkScalarSqrt(SK_ScalarHalf + w * SK_ScalarHalf); |
} |
-static Sk2s twice(const Sk2s& value) { |
- return value + value; |
-} |
- |
void SkConic::chop(SkConic * SK_RESTRICT dst) const { |
Sk2s scale = Sk2s(SkScalarInvert(SK_Scalar1 + fW)); |
SkScalar newW = subdivide_w_value(fW); |
@@ -1163,7 +1083,7 @@ void SkConic::chop(SkConic * SK_RESTRICT dst) const { |
Sk2s ww(fW); |
Sk2s wp1 = ww * p1; |
- Sk2s m = (p0 + twice(wp1) + p2) * scale * Sk2s(0.5f); |
+ Sk2s m = (p0 + times_2(wp1) + p2) * scale * Sk2s(0.5f); |
dst[0].fPts[0] = fPts[0]; |
dst[0].fPts[1] = to_point((p0 + wp1) * scale); |