| Index: src/core/SkGeometry.cpp
|
| diff --git a/src/core/SkGeometry.cpp b/src/core/SkGeometry.cpp
|
| index 5d017981d99baa57384592a5651aeef9f1178e19..629703a1ee5f228f15ab60dedfd03a04f48709c7 100644
|
| --- a/src/core/SkGeometry.cpp
|
| +++ b/src/core/SkGeometry.cpp
|
| @@ -104,44 +104,12 @@ int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]) {
|
| ///////////////////////////////////////////////////////////////////////////////
|
| ///////////////////////////////////////////////////////////////////////////////
|
|
|
| -static Sk2s quad_poly_eval(const Sk2s& A, const Sk2s& B, const Sk2s& C, const Sk2s& t) {
|
| - return (A * t + B) * t + C;
|
| -}
|
| -
|
| -static SkScalar eval_quad(const SkScalar src[], SkScalar t) {
|
| - SkASSERT(src);
|
| - SkASSERT(t >= 0 && t <= SK_Scalar1);
|
| -
|
| -#ifdef DIRECT_EVAL_OF_POLYNOMIALS
|
| - SkScalar C = src[0];
|
| - SkScalar A = src[4] - 2 * src[2] + C;
|
| - SkScalar B = 2 * (src[2] - C);
|
| - return SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
|
| -#else
|
| - SkScalar ab = SkScalarInterp(src[0], src[2], t);
|
| - SkScalar bc = SkScalarInterp(src[2], src[4], t);
|
| - return SkScalarInterp(ab, bc, t);
|
| -#endif
|
| -}
|
| -
|
| -void SkQuadToCoeff(const SkPoint pts[3], SkPoint coeff[3]) {
|
| - Sk2s p0 = from_point(pts[0]);
|
| - Sk2s p1 = from_point(pts[1]);
|
| - Sk2s p2 = from_point(pts[2]);
|
| -
|
| - Sk2s p1minus2 = p1 - p0;
|
| -
|
| - coeff[0] = to_point(p2 - p1 - p1 + p0); // A * t^2
|
| - coeff[1] = to_point(p1minus2 + p1minus2); // B * t
|
| - coeff[2] = pts[0]; // C
|
| -}
|
| -
|
| void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tangent) {
|
| SkASSERT(src);
|
| SkASSERT(t >= 0 && t <= SK_Scalar1);
|
|
|
| if (pt) {
|
| - pt->set(eval_quad(&src[0].fX, t), eval_quad(&src[0].fY, t));
|
| + *pt = SkEvalQuadAt(src, t);
|
| }
|
| if (tangent) {
|
| *tangent = SkEvalQuadTangentAt(src, t);
|
| @@ -149,19 +117,7 @@ void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tange
|
| }
|
|
|
| SkPoint SkEvalQuadAt(const SkPoint src[3], SkScalar t) {
|
| - SkASSERT(src);
|
| - SkASSERT(t >= 0 && t <= SK_Scalar1);
|
| -
|
| - const Sk2s t2(t);
|
| -
|
| - Sk2s P0 = from_point(src[0]);
|
| - Sk2s P1 = from_point(src[1]);
|
| - Sk2s P2 = from_point(src[2]);
|
| -
|
| - Sk2s B = P1 - P0;
|
| - Sk2s A = P2 - P1 - B;
|
| -
|
| - return to_point((A * t2 + B+B) * t2 + P0);
|
| + return to_point(SkQuadCoeff(src).eval(t));
|
| }
|
|
|
| SkVector SkEvalQuadTangentAt(const SkPoint src[3], SkScalar t) {
|
| @@ -333,6 +289,7 @@ void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]) {
|
| ///// CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS /////
|
| //////////////////////////////////////////////////////////////////////////////
|
|
|
| +#ifdef SK_SUPPORT_LEGACY_EVAL_CUBIC
|
| static SkScalar eval_cubic(const SkScalar src[], SkScalar t) {
|
| SkASSERT(src);
|
| SkASSERT(t >= 0 && t <= SK_Scalar1);
|
| @@ -357,28 +314,30 @@ static SkScalar eval_cubic(const SkScalar src[], SkScalar t) {
|
| return SkScalarInterp(abc, bcd, t);
|
| #endif
|
| }
|
| +#endif
|
|
|
| -/** return At^2 + Bt + C
|
| -*/
|
| -static SkScalar eval_quadratic(SkScalar A, SkScalar B, SkScalar C, SkScalar t) {
|
| - SkASSERT(t >= 0 && t <= SK_Scalar1);
|
| -
|
| - return SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
|
| -}
|
| -
|
| -static SkScalar eval_cubic_derivative(const SkScalar src[], SkScalar t) {
|
| - SkScalar A = src[6] + 3*(src[2] - src[4]) - src[0];
|
| - SkScalar B = 2*(src[4] - 2 * src[2] + src[0]);
|
| - SkScalar C = src[2] - src[0];
|
| +static SkVector eval_cubic_derivative(const SkPoint src[4], SkScalar t) {
|
| + SkQuadCoeff coeff;
|
| + Sk2s P0 = from_point(src[0]);
|
| + Sk2s P1 = from_point(src[1]);
|
| + Sk2s P2 = from_point(src[2]);
|
| + Sk2s P3 = from_point(src[3]);
|
|
|
| - return eval_quadratic(A, B, C, t);
|
| + coeff.fA = P3 + Sk2s(3) * (P1 - P2) - P0;
|
| + coeff.fB = times_2(P2 - times_2(P1) + P0);
|
| + coeff.fC = P1 - P0;
|
| + return to_vector(coeff.eval(t));
|
| }
|
|
|
| -static SkScalar eval_cubic_2ndDerivative(const SkScalar src[], SkScalar t) {
|
| - SkScalar A = src[6] + 3*(src[2] - src[4]) - src[0];
|
| - SkScalar B = src[4] - 2 * src[2] + src[0];
|
| +static SkVector eval_cubic_2ndDerivative(const SkPoint src[4], SkScalar t) {
|
| + Sk2s P0 = from_point(src[0]);
|
| + Sk2s P1 = from_point(src[1]);
|
| + Sk2s P2 = from_point(src[2]);
|
| + Sk2s P3 = from_point(src[3]);
|
| + Sk2s A = P3 + Sk2s(3) * (P1 - P2) - P0;
|
| + Sk2s B = P2 - times_2(P1) + P0;
|
|
|
| - return SkScalarMulAdd(A, t, B);
|
| + return to_vector(A * Sk2s(t) + B);
|
| }
|
|
|
| void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* loc,
|
| @@ -387,7 +346,11 @@ void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* loc,
|
| SkASSERT(t >= 0 && t <= SK_Scalar1);
|
|
|
| if (loc) {
|
| +#ifdef SK_SUPPORT_LEGACY_EVAL_CUBIC
|
| loc->set(eval_cubic(&src[0].fX, t), eval_cubic(&src[0].fY, t));
|
| +#else
|
| + *loc = to_point(SkCubicCoeff(src).eval(t));
|
| +#endif
|
| }
|
| if (tangent) {
|
| // The derivative equation returns a zero tangent vector when t is 0 or 1, and the
|
| @@ -403,13 +366,11 @@ void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* loc,
|
| *tangent = src[3] - src[0];
|
| }
|
| } else {
|
| - tangent->set(eval_cubic_derivative(&src[0].fX, t),
|
| - eval_cubic_derivative(&src[0].fY, t));
|
| + *tangent = eval_cubic_derivative(src, t);
|
| }
|
| }
|
| if (curvature) {
|
| - curvature->set(eval_cubic_2ndDerivative(&src[0].fX, t),
|
| - eval_cubic_2ndDerivative(&src[0].fY, t));
|
| + *curvature = eval_cubic_2ndDerivative(src, t);
|
| }
|
| }
|
|
|
| @@ -454,26 +415,6 @@ void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t) {
|
| dst[6] = src[3];
|
| }
|
|
|
| -void SkCubicToCoeff(const SkPoint pts[4], SkPoint coeff[4]) {
|
| - Sk2s p0 = from_point(pts[0]);
|
| - Sk2s p1 = from_point(pts[1]);
|
| - Sk2s p2 = from_point(pts[2]);
|
| - Sk2s p3 = from_point(pts[3]);
|
| -
|
| - const Sk2s three(3);
|
| - Sk2s p1minusp2 = p1 - p2;
|
| -
|
| - Sk2s D = p0;
|
| - Sk2s A = p3 + three * p1minusp2 - D;
|
| - Sk2s B = three * (D - p1minusp2 - p1);
|
| - Sk2s C = three * (p1 - D);
|
| -
|
| - coeff[0] = to_point(A);
|
| - coeff[1] = to_point(B);
|
| - coeff[2] = to_point(C);
|
| - coeff[3] = to_point(D);
|
| -}
|
| -
|
| /* http://code.google.com/p/skia/issues/detail?id=32
|
|
|
| This test code would fail when we didn't check the return result of
|
| @@ -1092,24 +1033,7 @@ void SkConic::chopAt(SkScalar t1, SkScalar t2, SkConic* dst) const {
|
| }
|
|
|
| SkPoint SkConic::evalAt(SkScalar t) const {
|
| - Sk2s p0 = from_point(fPts[0]);
|
| - Sk2s p1 = from_point(fPts[1]);
|
| - Sk2s p2 = from_point(fPts[2]);
|
| - Sk2s tt(t);
|
| - Sk2s ww(fW);
|
| - Sk2s one(1);
|
| -
|
| - Sk2s p1w = p1 * ww;
|
| - Sk2s C = p0;
|
| - Sk2s A = p2 - times_2(p1w) + p0;
|
| - Sk2s B = times_2(p1w - C);
|
| - Sk2s numer = quad_poly_eval(A, B, C, tt);
|
| -
|
| - B = times_2(ww - one);
|
| - A = Sk2s(0)-B;
|
| - Sk2s denom = quad_poly_eval(A, B, one, tt);
|
| -
|
| - return to_point(numer / denom);
|
| + return to_point(SkConicCoeff(*this).eval(t));
|
| }
|
|
|
| SkVector SkConic::evalTangentAt(SkScalar t) const {
|
| @@ -1131,7 +1055,7 @@ SkVector SkConic::evalTangentAt(SkScalar t) const {
|
| Sk2s A = ww * p20 - p20;
|
| Sk2s B = p20 - C - C;
|
|
|
| - return to_vector(quad_poly_eval(A, B, C, Sk2s(t)));
|
| + return to_vector(SkQuadCoeff(A, B, C).eval(t));
|
| }
|
|
|
| void SkConic::evalAt(SkScalar t, SkPoint* pt, SkVector* tangent) const {
|
| @@ -1149,10 +1073,6 @@ static SkScalar subdivide_w_value(SkScalar w) {
|
| return SkScalarSqrt(SK_ScalarHalf + w * SK_ScalarHalf);
|
| }
|
|
|
| -static Sk2s twice(const Sk2s& value) {
|
| - return value + value;
|
| -}
|
| -
|
| void SkConic::chop(SkConic * SK_RESTRICT dst) const {
|
| Sk2s scale = Sk2s(SkScalarInvert(SK_Scalar1 + fW));
|
| SkScalar newW = subdivide_w_value(fW);
|
| @@ -1163,7 +1083,7 @@ void SkConic::chop(SkConic * SK_RESTRICT dst) const {
|
| Sk2s ww(fW);
|
|
|
| Sk2s wp1 = ww * p1;
|
| - Sk2s m = (p0 + twice(wp1) + p2) * scale * Sk2s(0.5f);
|
| + Sk2s m = (p0 + times_2(wp1) + p2) * scale * Sk2s(0.5f);
|
|
|
| dst[0].fPts[0] = fPts[0];
|
| dst[0].fPts[1] = to_point((p0 + wp1) * scale);
|
|
|