| OLD | NEW |
| 1 /* | 1 /* |
| 2 * Copyright 2014 Google Inc. | 2 * Copyright 2014 Google Inc. |
| 3 * | 3 * |
| 4 * Use of this source code is governed by a BSD-style license that can be | 4 * Use of this source code is governed by a BSD-style license that can be |
| 5 * found in the LICENSE file. | 5 * found in the LICENSE file. |
| 6 */ | 6 */ |
| 7 | 7 |
| 8 #include "SkPatchUtils.h" | 8 #include "SkPatchUtils.h" |
| 9 | 9 |
| 10 #include "SkColorPriv.h" | 10 #include "SkColorPriv.h" |
| (...skipping 12 matching lines...) Expand all Loading... |
| 23 * For the cubic case the first difference gives as a result a quadratic polynom
ial to which we can | 23 * For the cubic case the first difference gives as a result a quadratic polynom
ial to which we can |
| 24 * apply again forward differences and get linear function to which we can apply
again forward | 24 * apply again forward differences and get linear function to which we can apply
again forward |
| 25 * differences to get a constant difference. This is why we keep an array of siz
e 4, the 0th | 25 * differences to get a constant difference. This is why we keep an array of siz
e 4, the 0th |
| 26 * position keeps the sampled value while the next ones keep the quadratic, line
ar and constant | 26 * position keeps the sampled value while the next ones keep the quadratic, line
ar and constant |
| 27 * difference values. | 27 * difference values. |
| 28 */ | 28 */ |
| 29 | 29 |
| 30 class FwDCubicEvaluator { | 30 class FwDCubicEvaluator { |
| 31 | 31 |
| 32 public: | 32 public: |
| 33 FwDCubicEvaluator() | |
| 34 : fMax(0) | |
| 35 , fCurrent(0) | |
| 36 , fDivisions(0) { | |
| 37 memset(fPoints, 0, 4 * sizeof(SkPoint)); | |
| 38 memset(fPoints, 0, 4 * sizeof(SkPoint)); | |
| 39 memset(fPoints, 0, 4 * sizeof(SkPoint)); | |
| 40 } | |
| 41 | 33 |
| 42 /** | 34 /** |
| 43 * Receives the 4 control points of the cubic bezier. | 35 * Receives the 4 control points of the cubic bezier. |
| 44 */ | 36 */ |
| 45 FwDCubicEvaluator(SkPoint a, SkPoint b, SkPoint c, SkPoint d) { | 37 |
| 46 fPoints[0] = a; | 38 explicit FwDCubicEvaluator(const SkPoint points[4]) |
| 47 fPoints[1] = b; | 39 : fCoefs(points) { |
| 48 fPoints[2] = c; | 40 memcpy(fPoints, points, 4 * sizeof(SkPoint)); |
| 49 fPoints[3] = d; | |
| 50 | |
| 51 SkCubicToCoeff(fPoints, fCoefs); | |
| 52 | 41 |
| 53 this->restart(1); | 42 this->restart(1); |
| 54 } | 43 } |
| 55 | 44 |
| 56 explicit FwDCubicEvaluator(const SkPoint points[4]) { | |
| 57 memcpy(fPoints, points, 4 * sizeof(SkPoint)); | |
| 58 | |
| 59 SkCubicToCoeff(fPoints, fCoefs); | |
| 60 | |
| 61 this->restart(1); | |
| 62 } | |
| 63 | |
| 64 /** | 45 /** |
| 65 * Restarts the forward differences evaluator to the first value of t = 0. | 46 * Restarts the forward differences evaluator to the first value of t = 0. |
| 66 */ | 47 */ |
| 67 void restart(int divisions) { | 48 void restart(int divisions) { |
| 68 fDivisions = divisions; | 49 fDivisions = divisions; |
| 69 SkScalar h = 1.f / fDivisions; | |
| 70 fCurrent = 0; | 50 fCurrent = 0; |
| 71 fMax = fDivisions + 1; | 51 fMax = fDivisions + 1; |
| 72 fFwDiff[0] = fCoefs[3]; | 52 Sk2s h = Sk2s(1.f / fDivisions); |
| 73 SkScalar h2 = h * h; | 53 Sk2s h2 = h * h; |
| 74 SkScalar h3 = h2 * h; | 54 Sk2s h3 = h2 * h; |
| 75 | 55 Sk2s fwDiff3 = Sk2s(6) * fCoefs.fA * h3; |
| 76 fFwDiff[3].set(6.f * fCoefs[0].x() * h3, 6.f * fCoefs[0].y() * h3); //6a
h^3 | 56 fFwDiff[3] = to_point(fwDiff3); |
| 77 fFwDiff[2].set(fFwDiff[3].x() + 2.f * fCoefs[1].x() * h2, //6ah^3 + 2bh^
2 | 57 fFwDiff[2] = to_point(fwDiff3 + times_2(fCoefs.fB) * h2); |
| 78 fFwDiff[3].y() + 2.f * fCoefs[1].y() * h2); | 58 fFwDiff[1] = to_point(fCoefs.fA * h3 + fCoefs.fB * h2 + fCoefs.fC * h); |
| 79 fFwDiff[1].set(fCoefs[0].x() * h3 + fCoefs[1].x() * h2 + fCoefs[2].x() *
h,//ah^3 + bh^2 +ch | 59 fFwDiff[0] = to_point(fCoefs.fD); |
| 80 fCoefs[0].y() * h3 + fCoefs[1].y() * h2 + fCoefs[2].y() *
h); | |
| 81 } | 60 } |
| 82 | 61 |
| 83 /** | 62 /** |
| 84 * Check if the evaluator is still within the range of 0<=t<=1 | 63 * Check if the evaluator is still within the range of 0<=t<=1 |
| 85 */ | 64 */ |
| 86 bool done() const { | 65 bool done() const { |
| 87 return fCurrent > fMax; | 66 return fCurrent > fMax; |
| 88 } | 67 } |
| 89 | 68 |
| 90 /** | 69 /** |
| 91 * Call next to obtain the SkPoint sampled and move to the next one. | 70 * Call next to obtain the SkPoint sampled and move to the next one. |
| 92 */ | 71 */ |
| 93 SkPoint next() { | 72 SkPoint next() { |
| 94 SkPoint point = fFwDiff[0]; | 73 SkPoint point = fFwDiff[0]; |
| 95 fFwDiff[0] += fFwDiff[1]; | 74 fFwDiff[0] += fFwDiff[1]; |
| 96 fFwDiff[1] += fFwDiff[2]; | 75 fFwDiff[1] += fFwDiff[2]; |
| 97 fFwDiff[2] += fFwDiff[3]; | 76 fFwDiff[2] += fFwDiff[3]; |
| 98 fCurrent++; | 77 fCurrent++; |
| 99 return point; | 78 return point; |
| 100 } | 79 } |
| 101 | 80 |
| 102 const SkPoint* getCtrlPoints() const { | 81 const SkPoint* getCtrlPoints() const { |
| 103 return fPoints; | 82 return fPoints; |
| 104 } | 83 } |
| 105 | 84 |
| 106 private: | 85 private: |
| 86 SkCubicCoeff fCoefs; |
| 107 int fMax, fCurrent, fDivisions; | 87 int fMax, fCurrent, fDivisions; |
| 108 SkPoint fFwDiff[4], fCoefs[4], fPoints[4]; | 88 SkPoint fFwDiff[4], fPoints[4]; |
| 109 }; | 89 }; |
| 110 | 90 |
| 111 //////////////////////////////////////////////////////////////////////////////// | 91 //////////////////////////////////////////////////////////////////////////////// |
| 112 | 92 |
| 113 // size in pixels of each partition per axis, adjust this knob | 93 // size in pixels of each partition per axis, adjust this knob |
| 114 static const int kPartitionSize = 10; | 94 static const int kPartitionSize = 10; |
| 115 | 95 |
| 116 /** | 96 /** |
| 117 * Calculate the approximate arc length given a bezier curve's control points. | 97 * Calculate the approximate arc length given a bezier curve's control points. |
| 118 */ | 98 */ |
| (...skipping 203 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 322 data->fIndices[i + 4] = data->fIndices[i + 2]; | 302 data->fIndices[i + 4] = data->fIndices[i + 2]; |
| 323 data->fIndices[i + 5] = (x + 1) * stride + y; | 303 data->fIndices[i + 5] = (x + 1) * stride + y; |
| 324 } | 304 } |
| 325 v = SkScalarClampMax(v + 1.f / lodY, 1); | 305 v = SkScalarClampMax(v + 1.f / lodY, 1); |
| 326 } | 306 } |
| 327 u = SkScalarClampMax(u + 1.f / lodX, 1); | 307 u = SkScalarClampMax(u + 1.f / lodX, 1); |
| 328 } | 308 } |
| 329 return true; | 309 return true; |
| 330 | 310 |
| 331 } | 311 } |
| OLD | NEW |