OLD | NEW |
1 /* | 1 /* |
2 * Copyright 2014 Google Inc. | 2 * Copyright 2014 Google Inc. |
3 * | 3 * |
4 * Use of this source code is governed by a BSD-style license that can be | 4 * Use of this source code is governed by a BSD-style license that can be |
5 * found in the LICENSE file. | 5 * found in the LICENSE file. |
6 */ | 6 */ |
7 | 7 |
8 #include "SkPatchUtils.h" | 8 #include "SkPatchUtils.h" |
9 | 9 |
10 #include "SkColorPriv.h" | 10 #include "SkColorPriv.h" |
(...skipping 12 matching lines...) Expand all Loading... |
23 * For the cubic case the first difference gives as a result a quadratic polynom
ial to which we can | 23 * For the cubic case the first difference gives as a result a quadratic polynom
ial to which we can |
24 * apply again forward differences and get linear function to which we can apply
again forward | 24 * apply again forward differences and get linear function to which we can apply
again forward |
25 * differences to get a constant difference. This is why we keep an array of siz
e 4, the 0th | 25 * differences to get a constant difference. This is why we keep an array of siz
e 4, the 0th |
26 * position keeps the sampled value while the next ones keep the quadratic, line
ar and constant | 26 * position keeps the sampled value while the next ones keep the quadratic, line
ar and constant |
27 * difference values. | 27 * difference values. |
28 */ | 28 */ |
29 | 29 |
30 class FwDCubicEvaluator { | 30 class FwDCubicEvaluator { |
31 | 31 |
32 public: | 32 public: |
33 FwDCubicEvaluator() | |
34 : fMax(0) | |
35 , fCurrent(0) | |
36 , fDivisions(0) { | |
37 memset(fPoints, 0, 4 * sizeof(SkPoint)); | |
38 memset(fPoints, 0, 4 * sizeof(SkPoint)); | |
39 memset(fPoints, 0, 4 * sizeof(SkPoint)); | |
40 } | |
41 | 33 |
42 /** | 34 /** |
43 * Receives the 4 control points of the cubic bezier. | 35 * Receives the 4 control points of the cubic bezier. |
44 */ | 36 */ |
45 FwDCubicEvaluator(SkPoint a, SkPoint b, SkPoint c, SkPoint d) { | 37 |
46 fPoints[0] = a; | 38 explicit FwDCubicEvaluator(const SkPoint points[4]) |
47 fPoints[1] = b; | 39 : fCoefs(points) { |
48 fPoints[2] = c; | 40 memcpy(fPoints, points, 4 * sizeof(SkPoint)); |
49 fPoints[3] = d; | |
50 | |
51 SkCubicToCoeff(fPoints, fCoefs); | |
52 | 41 |
53 this->restart(1); | 42 this->restart(1); |
54 } | 43 } |
55 | 44 |
56 explicit FwDCubicEvaluator(const SkPoint points[4]) { | |
57 memcpy(fPoints, points, 4 * sizeof(SkPoint)); | |
58 | |
59 SkCubicToCoeff(fPoints, fCoefs); | |
60 | |
61 this->restart(1); | |
62 } | |
63 | |
64 /** | 45 /** |
65 * Restarts the forward differences evaluator to the first value of t = 0. | 46 * Restarts the forward differences evaluator to the first value of t = 0. |
66 */ | 47 */ |
67 void restart(int divisions) { | 48 void restart(int divisions) { |
68 fDivisions = divisions; | 49 fDivisions = divisions; |
69 SkScalar h = 1.f / fDivisions; | |
70 fCurrent = 0; | 50 fCurrent = 0; |
71 fMax = fDivisions + 1; | 51 fMax = fDivisions + 1; |
72 fFwDiff[0] = fCoefs[3]; | 52 Sk2s h = Sk2s(1.f / fDivisions); |
73 SkScalar h2 = h * h; | 53 Sk2s h2 = h * h; |
74 SkScalar h3 = h2 * h; | 54 Sk2s h3 = h2 * h; |
75 | 55 Sk2s fwDiff3 = Sk2s(6) * fCoefs.fA * h3; |
76 fFwDiff[3].set(6.f * fCoefs[0].x() * h3, 6.f * fCoefs[0].y() * h3); //6a
h^3 | 56 fFwDiff[3] = to_point(fwDiff3); |
77 fFwDiff[2].set(fFwDiff[3].x() + 2.f * fCoefs[1].x() * h2, //6ah^3 + 2bh^
2 | 57 fFwDiff[2] = to_point(fwDiff3 + times_2(fCoefs.fB) * h2); |
78 fFwDiff[3].y() + 2.f * fCoefs[1].y() * h2); | 58 fFwDiff[1] = to_point(fCoefs.fA * h3 + fCoefs.fB * h2 + fCoefs.fC * h); |
79 fFwDiff[1].set(fCoefs[0].x() * h3 + fCoefs[1].x() * h2 + fCoefs[2].x() *
h,//ah^3 + bh^2 +ch | 59 fFwDiff[0] = to_point(fCoefs.fD); |
80 fCoefs[0].y() * h3 + fCoefs[1].y() * h2 + fCoefs[2].y() *
h); | |
81 } | 60 } |
82 | 61 |
83 /** | 62 /** |
84 * Check if the evaluator is still within the range of 0<=t<=1 | 63 * Check if the evaluator is still within the range of 0<=t<=1 |
85 */ | 64 */ |
86 bool done() const { | 65 bool done() const { |
87 return fCurrent > fMax; | 66 return fCurrent > fMax; |
88 } | 67 } |
89 | 68 |
90 /** | 69 /** |
91 * Call next to obtain the SkPoint sampled and move to the next one. | 70 * Call next to obtain the SkPoint sampled and move to the next one. |
92 */ | 71 */ |
93 SkPoint next() { | 72 SkPoint next() { |
94 SkPoint point = fFwDiff[0]; | 73 SkPoint point = fFwDiff[0]; |
95 fFwDiff[0] += fFwDiff[1]; | 74 fFwDiff[0] += fFwDiff[1]; |
96 fFwDiff[1] += fFwDiff[2]; | 75 fFwDiff[1] += fFwDiff[2]; |
97 fFwDiff[2] += fFwDiff[3]; | 76 fFwDiff[2] += fFwDiff[3]; |
98 fCurrent++; | 77 fCurrent++; |
99 return point; | 78 return point; |
100 } | 79 } |
101 | 80 |
102 const SkPoint* getCtrlPoints() const { | 81 const SkPoint* getCtrlPoints() const { |
103 return fPoints; | 82 return fPoints; |
104 } | 83 } |
105 | 84 |
106 private: | 85 private: |
| 86 SkCubicCoeff fCoefs; |
107 int fMax, fCurrent, fDivisions; | 87 int fMax, fCurrent, fDivisions; |
108 SkPoint fFwDiff[4], fCoefs[4], fPoints[4]; | 88 SkPoint fFwDiff[4], fPoints[4]; |
109 }; | 89 }; |
110 | 90 |
111 //////////////////////////////////////////////////////////////////////////////// | 91 //////////////////////////////////////////////////////////////////////////////// |
112 | 92 |
113 // size in pixels of each partition per axis, adjust this knob | 93 // size in pixels of each partition per axis, adjust this knob |
114 static const int kPartitionSize = 10; | 94 static const int kPartitionSize = 10; |
115 | 95 |
116 /** | 96 /** |
117 * Calculate the approximate arc length given a bezier curve's control points. | 97 * Calculate the approximate arc length given a bezier curve's control points. |
118 */ | 98 */ |
(...skipping 203 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
322 data->fIndices[i + 4] = data->fIndices[i + 2]; | 302 data->fIndices[i + 4] = data->fIndices[i + 2]; |
323 data->fIndices[i + 5] = (x + 1) * stride + y; | 303 data->fIndices[i + 5] = (x + 1) * stride + y; |
324 } | 304 } |
325 v = SkScalarClampMax(v + 1.f / lodY, 1); | 305 v = SkScalarClampMax(v + 1.f / lodY, 1); |
326 } | 306 } |
327 u = SkScalarClampMax(u + 1.f / lodX, 1); | 307 u = SkScalarClampMax(u + 1.f / lodX, 1); |
328 } | 308 } |
329 return true; | 309 return true; |
330 | 310 |
331 } | 311 } |
OLD | NEW |