OLD | NEW |
1 /* | 1 /* |
2 * Copyright 2015 Google Inc. | 2 * Copyright 2015 Google Inc. |
3 * | 3 * |
4 * Use of this source code is governed by a BSD-style license that can be | 4 * Use of this source code is governed by a BSD-style license that can be |
5 * found in the LICENSE file. | 5 * found in the LICENSE file. |
6 */ | 6 */ |
7 | 7 |
8 #include "SkOpts.h" | 8 #include "SkOpts.h" |
9 | 9 |
10 #define SK_OPTS_NS sk_sse41 | 10 #define SK_OPTS_NS sk_sse41 |
11 #include "SkBlurImageFilter_opts.h" | 11 #include "SkBlurImageFilter_opts.h" |
12 | 12 |
13 #ifndef SK_SUPPORT_LEGACY_X86_BLITS | 13 #ifndef SK_SUPPORT_LEGACY_X86_BLITS |
14 | 14 |
15 // This file deals mostly with unpacked 8-bit values, | 15 namespace sk_sse41 { |
16 // i.e. values between 0 and 255, but in 16-bit lanes with 0 at the top. | |
17 | 16 |
18 // So __m128i typically represents 1 or 2 pixels, and m128ix2 represents 4. | 17 // An SSE register holding at most 64 bits of useful data in the low lanes. |
19 struct m128ix2 { __m128i lo, hi; }; | 18 struct m64i { |
| 19 __m128i v; |
| 20 /*implicit*/ m64i(__m128i v) : v(v) {} |
| 21 operator __m128i() const { return v; } |
| 22 }; |
20 | 23 |
21 // unpack{lo,hi}() get our raw pixels unpacked, from half of 4 packed pixels to
2 unpacked pixels. | 24 // Load 4, 2, or 1 constant pixels or coverages (4x replicated). |
22 static inline __m128i unpacklo(__m128i x) { return _mm_cvtepu8_epi16(x); } | 25 static __m128i next4(uint32_t val) { return _mm_set1_epi32(val); } |
23 static inline __m128i unpackhi(__m128i x) { return _mm_unpackhi_epi8(x, _mm_setz
ero_si128()); } | 26 static m64i next2(uint32_t val) { return _mm_set1_epi32(val); } |
| 27 static m64i next1(uint32_t val) { return _mm_set1_epi32(val); } |
24 | 28 |
25 // pack() converts back, from 4 unpacked pixels to 4 packed pixels. | 29 static __m128i next4(uint8_t val) { return _mm_set1_epi8(val); } |
26 static inline __m128i pack(__m128i lo, __m128i hi) { return _mm_packus_epi16(lo,
hi); } | 30 static m64i next2(uint8_t val) { return _mm_set1_epi8(val); } |
| 31 static m64i next1(uint8_t val) { return _mm_set1_epi8(val); } |
27 | 32 |
28 // These nextN() functions abstract over the difference between iterating over | 33 // Load 4, 2, or 1 variable pixels or coverages (4x replicated), |
29 // an array of values and returning a constant value, for uint8_t and uint32_t. | 34 // incrementing the pointer past what we read. |
30 // The nextN() taking pointers increment that pointer past where they read. | 35 static __m128i next4(const uint32_t*& ptr) { |
31 // | 36 auto r = _mm_loadu_si128((const __m128i*)ptr); |
32 // nextN() returns N unpacked pixels or 4N unpacked coverage values. | 37 ptr += 4; |
33 | 38 return r; |
34 static inline __m128i next1(uint8_t val) { return _mm_set1_epi16(val); } | |
35 static inline __m128i next2(uint8_t val) { return _mm_set1_epi16(val); } | |
36 static inline m128ix2 next4(uint8_t val) { return { next2(val), next2(val) }; } | |
37 | |
38 static inline __m128i next1(uint32_t val) { return unpacklo(_mm_cvtsi32_si128(va
l)); } | |
39 static inline __m128i next2(uint32_t val) { return unpacklo(_mm_set1_epi32(val))
; } | |
40 static inline m128ix2 next4(uint32_t val) { return { next2(val), next2(val) }; } | |
41 | |
42 static inline __m128i next1(const uint8_t*& ptr) { return _mm_set1_epi16(*ptr++)
; } | |
43 static inline __m128i next2(const uint8_t*& ptr) { | |
44 auto r = _mm_cvtsi32_si128(*(const uint16_t*)ptr); | |
45 ptr += 2; | |
46 const int _ = ~0; | |
47 return _mm_shuffle_epi8(r, _mm_setr_epi8(0,_,0,_,0,_,0,_, 1,_,1,_,1,_,1,_)); | |
48 } | 39 } |
49 static inline m128ix2 next4(const uint8_t*& ptr) { | 40 static m64i next2(const uint32_t*& ptr) { |
50 auto r = _mm_cvtsi32_si128(*(const uint32_t*)ptr); | 41 auto r = _mm_loadl_epi64((const __m128i*)ptr); |
51 ptr += 4; | |
52 const int _ = ~0; | |
53 auto lo = _mm_shuffle_epi8(r, _mm_setr_epi8(0,_,0,_,0,_,0,_, 1,_,1,_,1,_,1,_
)), | |
54 hi = _mm_shuffle_epi8(r, _mm_setr_epi8(2,_,2,_,2,_,2,_, 3,_,3,_,3,_,3,_
)); | |
55 return { lo, hi }; | |
56 } | |
57 | |
58 static inline __m128i next1(const uint32_t*& ptr) { return unpacklo(_mm_cvtsi32_
si128(*ptr++)); } | |
59 static inline __m128i next2(const uint32_t*& ptr) { | |
60 auto r = unpacklo(_mm_loadl_epi64((const __m128i*)ptr)); | |
61 ptr += 2; | 42 ptr += 2; |
62 return r; | 43 return r; |
63 } | 44 } |
64 static inline m128ix2 next4(const uint32_t*& ptr) { | 45 static m64i next1(const uint32_t*& ptr) { |
65 auto packed = _mm_loadu_si128((const __m128i*)ptr); | 46 auto r = _mm_cvtsi32_si128(*ptr); |
66 ptr += 4; | 47 ptr += 1; |
67 return { unpacklo(packed), unpackhi(packed) }; | 48 return r; |
68 } | 49 } |
69 | 50 |
70 // Divide by 255 with rounding. | 51 // xyzw -> xxxx yyyy zzzz wwww |
71 // (x+127)/255 == ((x+128)*257)>>16. | 52 static __m128i replicate_coverage(__m128i xyzw) { |
72 // Sometimes we can be more efficient by breaking this into two parts. | 53 const uint8_t mask[] = { 0,0,0,0, 1,1,1,1, 2,2,2,2, 3,3,3,3 }; |
73 static inline __m128i div255_part1(__m128i x) { return _mm_add_epi16(x, _mm_set1
_epi16(128)); } | 54 return _mm_shuffle_epi8(xyzw, _mm_load_si128((const __m128i*)mask)); |
74 static inline __m128i div255_part2(__m128i x) { return _mm_mulhi_epu16(x, _mm_se
t1_epi16(257)); } | |
75 static inline __m128i div255(__m128i x) { return div255_part2(div255_part1(x));
} | |
76 | |
77 // (x*y+127)/255, a byte multiply. | |
78 static inline __m128i scale(__m128i x, __m128i y) { | |
79 return div255(_mm_mullo_epi16(x, y)); | |
80 } | 55 } |
81 | 56 |
82 // (255 - x). | 57 static __m128i next4(const uint8_t*& ptr) { |
83 static inline __m128i inv(__m128i x) { | 58 auto r = replicate_coverage(_mm_cvtsi32_si128(*(const uint32_t*)ptr)); |
84 return _mm_xor_si128(_mm_set1_epi16(0x00ff), x); // This seems a bit faster
than _mm_sub_epi16. | 59 ptr += 4; |
| 60 return r; |
85 } | 61 } |
86 | 62 static m64i next2(const uint8_t*& ptr) { |
87 // ARGB argb -> AAAA aaaa | 63 auto r = replicate_coverage(_mm_cvtsi32_si128(*(const uint16_t*)ptr)); |
88 static inline __m128i alphas(__m128i px) { | 64 ptr += 2; |
89 const int a = 2 * (SK_A32_SHIFT/8); // SK_A32_SHIFT is typically 24, so thi
s is typically 6. | 65 return r; |
90 const int _ = ~0; | 66 } |
91 return _mm_shuffle_epi8(px, _mm_setr_epi8(a+0,_,a+0,_,a+0,_,a+0,_, a+8,_,a+8
,_,a+8,_,a+8,_)); | 67 static m64i next1(const uint8_t*& ptr) { |
| 68 auto r = replicate_coverage(_mm_cvtsi32_si128(*ptr)); |
| 69 ptr += 1; |
| 70 return r; |
92 } | 71 } |
93 | 72 |
94 // For i = 0...n, tgt = fn(dst,src,cov), where Dst,Src,and Cov can be constants
or arrays. | 73 // For i = 0...n, tgt = fn(dst,src,cov), where Dst,Src,and Cov can be constants
or arrays. |
95 template <typename Dst, typename Src, typename Cov, typename Fn> | 74 template <typename Dst, typename Src, typename Cov, typename Fn> |
96 static inline void loop(int n, uint32_t* t, const Dst dst, const Src src, const
Cov cov, Fn&& fn) { | 75 static void loop(int n, uint32_t* t, const Dst dst, const Src src, const Cov cov
, Fn&& fn) { |
97 // We don't want to muck with the callers' pointers, so we make them const a
nd copy here. | 76 // We don't want to muck with the callers' pointers, so we make them const a
nd copy here. |
98 Dst d = dst; | 77 Dst d = dst; |
99 Src s = src; | 78 Src s = src; |
100 Cov c = cov; | 79 Cov c = cov; |
101 | 80 |
102 // Writing this as a single while-loop helps hoist loop invariants from fn. | 81 // Writing this as a single while-loop helps hoist loop invariants from fn. |
103 while (n) { | 82 while (n) { |
104 if (n >= 4) { | 83 if (n >= 4) { |
105 auto d4 = next4(d), | 84 _mm_storeu_si128((__m128i*)t, fn(next4(d), next4(s), next4(c))); |
106 s4 = next4(s), | |
107 c4 = next4(c); | |
108 auto lo = fn(d4.lo, s4.lo, c4.lo), | |
109 hi = fn(d4.hi, s4.hi, c4.hi); | |
110 _mm_storeu_si128((__m128i*)t, pack(lo,hi)); | |
111 t += 4; | 85 t += 4; |
112 n -= 4; | 86 n -= 4; |
113 continue; | 87 continue; |
114 } | 88 } |
115 if (n & 2) { | 89 if (n & 2) { |
116 auto r = fn(next2(d), next2(s), next2(c)); | 90 _mm_storel_epi64((__m128i*)t, fn(next2(d), next2(s), next2(c))); |
117 _mm_storel_epi64((__m128i*)t, pack(r,r)); | |
118 t += 2; | 91 t += 2; |
119 } | 92 } |
120 if (n & 1) { | 93 if (n & 1) { |
121 auto r = fn(next1(d), next1(s), next1(c)); | 94 *t = _mm_cvtsi128_si32(fn(next1(d), next1(s), next1(c))); |
122 *t = _mm_cvtsi128_si32(pack(r,r)); | |
123 } | 95 } |
124 return; | 96 return; |
125 } | 97 } |
126 } | 98 } |
127 | 99 |
128 namespace sk_sse41 { | 100 // packed |
| 101 // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~ // |
| 102 // unpacked |
| 103 |
| 104 // Everything on the packed side of the squiggly line deals with densely packed
8-bit data, |
| 105 // e.g. [BGRA bgra ... ] for pixels or [ CCCC cccc ... ] for coverage. |
| 106 // |
| 107 // Everything on the unpacked side of the squiggly line deals with unpacked 8-bi
t data, |
| 108 // e.g [B_G_ R_A_ b_g_ r_a_ ] for pixels or [ C_C_ C_C_ c_c_ c_c_ c_c_ ] for cov
erage, |
| 109 // where _ is a zero byte. |
| 110 // |
| 111 // Adapt<Fn> / adapt(fn) allow the two sides to interoperate, |
| 112 // by unpacking arguments, calling fn, then packing the results. |
| 113 // |
| 114 // This lets us write most of our code in terms of unpacked inputs (considerably
simpler) |
| 115 // and all the packing and unpacking is handled automatically. |
| 116 |
| 117 template <typename Fn> |
| 118 struct Adapt { |
| 119 Fn fn; |
| 120 |
| 121 __m128i operator()(__m128i d, __m128i s, __m128i c) { |
| 122 auto lo = [](__m128i x) { return _mm_unpacklo_epi8(x, _mm_setzero_si128(
)); }; |
| 123 auto hi = [](__m128i x) { return _mm_unpackhi_epi8(x, _mm_setzero_si128(
)); }; |
| 124 return _mm_packus_epi16(fn(lo(d), lo(s), lo(c)), |
| 125 fn(hi(d), hi(s), hi(c))); |
| 126 } |
| 127 |
| 128 m64i operator()(const m64i& d, const m64i& s, const m64i& c) { |
| 129 auto lo = [](__m128i x) { return _mm_unpacklo_epi8(x, _mm_setzero_si128(
)); }; |
| 130 auto r = fn(lo(d), lo(s), lo(c)); |
| 131 return _mm_packus_epi16(r, r); |
| 132 } |
| 133 }; |
| 134 |
| 135 template <typename Fn> |
| 136 static Adapt<Fn> adapt(Fn&& fn) { return { fn }; } |
| 137 |
| 138 // These helpers all work exclusively with unpacked 8-bit values, |
| 139 // except div255() with is 16-bit -> unpacked 8-bit, and mul255() which is the r
everse. |
| 140 |
| 141 // Divide by 255 with rounding. |
| 142 // (x+127)/255 == ((x+128)*257)>>16. |
| 143 // Sometimes we can be more efficient by breaking this into two parts. |
| 144 static __m128i div255_part1(__m128i x) { return _mm_add_epi16(x, _mm_set1_epi16(
128)); } |
| 145 static __m128i div255_part2(__m128i x) { return _mm_mulhi_epu16(x, _mm_set1_epi1
6(257)); } |
| 146 static __m128i div255(__m128i x) { return div255_part2(div255_part1(x)); } |
| 147 |
| 148 // (x*y+127)/255, a byte multiply. |
| 149 static __m128i scale(__m128i x, __m128i y) { return div255(_mm_mullo_epi16(x, y)
); } |
| 150 |
| 151 // (255 * x). |
| 152 static __m128i mul255(__m128i x) { return _mm_sub_epi16(_mm_slli_epi16(x, 8), x)
; } |
| 153 |
| 154 // (255 - x). |
| 155 static __m128i inv(__m128i x) { return _mm_xor_si128(_mm_set1_epi16(0x00ff), x);
} |
| 156 |
| 157 // ARGB argb -> AAAA aaaa |
| 158 static __m128i alphas(__m128i px) { |
| 159 const int a = 2 * (SK_A32_SHIFT/8); // SK_A32_SHIFT is typically 24, so thi
s is typically 6. |
| 160 const int _ = ~0; |
| 161 return _mm_shuffle_epi8(px, _mm_setr_epi8(a+0,_,a+0,_,a+0,_,a+0,_, a+8,_,a+8
,_,a+8,_,a+8,_)); |
| 162 } |
129 | 163 |
130 // SrcOver, with a constant source and full coverage. | 164 // SrcOver, with a constant source and full coverage. |
131 static void blit_row_color32(SkPMColor* tgt, const SkPMColor* dst, int n, SkPMCo
lor src) { | 165 static void blit_row_color32(SkPMColor* tgt, const SkPMColor* dst, int n, SkPMCo
lor src) { |
132 // We want to calculate s + (d * inv(alphas(s)) + 127)/255. | 166 // We want to calculate s + (d * inv(alphas(s)) + 127)/255. |
133 // We'd generally do that div255 as s + ((d * inv(alphas(s)) + 128)*257)>>16
. | 167 // We'd generally do that div255 as s + ((d * inv(alphas(s)) + 128)*257)>>16
. |
134 | 168 |
135 // But we can go one step further to ((s*255 + 128 + d*inv(alphas(s)))*257)>
>16. | 169 // But we can go one step further to ((s*255 + 128 + d*inv(alphas(s)))*257)>
>16. |
136 // This lets us hoist (s*255+128) and inv(alphas(s)) out of the loop. | 170 // This lets us hoist (s*255+128) and inv(alphas(s)) out of the loop. |
137 __m128i s = next2(src), | 171 __m128i s = _mm_unpacklo_epi8(_mm_set1_epi32(src), _mm_setzero_si128()), |
138 s_255_128 = div255_part1(_mm_mullo_epi16(s, _mm_set1_epi16(255))), | 172 s_255_128 = div255_part1(mul255(s)), |
139 A = inv(alphas(s)); | 173 A = inv(alphas(s)); |
140 | 174 |
141 const uint8_t cov = 0xff; | 175 const uint8_t cov = 0xff; |
142 loop(n, tgt, dst, src, cov, [=](__m128i d, __m128i, __m128i) { | 176 loop(n, tgt, dst, src, cov, adapt([=](__m128i d, __m128i, __m128i) { |
143 return div255_part2(_mm_add_epi16(s_255_128, _mm_mullo_epi16(d, A))); | 177 return div255_part2(_mm_add_epi16(s_255_128, _mm_mullo_epi16(d, A))); |
144 }); | 178 })); |
145 } | 179 } |
146 | 180 |
147 // SrcOver, with a constant source and variable coverage. | 181 // SrcOver, with a constant source and variable coverage. |
148 // If the source is opaque, SrcOver becomes Src. | 182 // If the source is opaque, SrcOver becomes Src. |
149 static void blit_mask_d32_a8(SkPMColor* dst, size_t dstRB, | 183 static void blit_mask_d32_a8(SkPMColor* dst, size_t dstRB, |
150 const SkAlpha* cov, size_t covRB, | 184 const SkAlpha* cov, size_t covRB, |
151 SkColor color, int w, int h) { | 185 SkColor color, int w, int h) { |
152 if (SkColorGetA(color) == 0xFF) { | 186 if (SkColorGetA(color) == 0xFF) { |
153 const SkPMColor src = SkSwizzle_BGRA_to_PMColor(color); | 187 const SkPMColor src = SkSwizzle_BGRA_to_PMColor(color); |
154 while (h --> 0) { | 188 while (h --> 0) { |
155 loop(w, dst, (const SkPMColor*)dst, src, cov, [](__m128i d, __m128i
s, __m128i c) { | 189 loop(w, dst, (const SkPMColor*)dst, src, cov, |
| 190 adapt([](__m128i d, __m128i s, __m128i c) { |
156 // Src blend mode: a simple lerp from d to s by c. | 191 // Src blend mode: a simple lerp from d to s by c. |
157 // TODO: try a pmaddubsw version? | 192 // TODO: try a pmaddubsw version? |
158 return div255(_mm_add_epi16(_mm_mullo_epi16(inv(c),d), _mm_mullo
_epi16(c,s))); | 193 return div255(_mm_add_epi16(_mm_mullo_epi16(inv(c),d), |
159 }); | 194 _mm_mullo_epi16( c ,s))); |
| 195 })); |
160 dst += dstRB / sizeof(*dst); | 196 dst += dstRB / sizeof(*dst); |
161 cov += covRB / sizeof(*cov); | 197 cov += covRB / sizeof(*cov); |
162 } | 198 } |
163 } else { | 199 } else { |
164 const SkPMColor src = SkPreMultiplyColor(color); | 200 const SkPMColor src = SkPreMultiplyColor(color); |
165 while (h --> 0) { | 201 while (h --> 0) { |
166 loop(w, dst, (const SkPMColor*)dst, src, cov, [](__m128i d, __m128i
s, __m128i c) { | 202 loop(w, dst, (const SkPMColor*)dst, src, cov, |
| 203 adapt([](__m128i d, __m128i s, __m128i c) { |
167 // SrcOver blend mode, with coverage folded into source alpha. | 204 // SrcOver blend mode, with coverage folded into source alpha. |
168 __m128i sc = scale(s,c), | 205 __m128i sc = scale(s,c), |
169 AC = inv(alphas(sc)); | 206 AC = inv(alphas(sc)); |
170 return _mm_add_epi16(sc, scale(d,AC)); | 207 return _mm_add_epi16(sc, scale(d,AC)); |
171 }); | 208 })); |
172 dst += dstRB / sizeof(*dst); | 209 dst += dstRB / sizeof(*dst); |
173 cov += covRB / sizeof(*cov); | 210 cov += covRB / sizeof(*cov); |
174 } | 211 } |
175 } | 212 } |
176 } | 213 } |
177 | 214 |
178 } // namespace sk_sse41 | 215 } // namespace sk_sse41 |
| 216 |
179 #endif | 217 #endif |
180 | 218 |
181 namespace SkOpts { | 219 namespace SkOpts { |
182 void Init_sse41() { | 220 void Init_sse41() { |
183 box_blur_xx = sk_sse41::box_blur_xx; | 221 box_blur_xx = sk_sse41::box_blur_xx; |
184 box_blur_xy = sk_sse41::box_blur_xy; | 222 box_blur_xy = sk_sse41::box_blur_xy; |
185 box_blur_yx = sk_sse41::box_blur_yx; | 223 box_blur_yx = sk_sse41::box_blur_yx; |
186 | 224 |
187 #ifndef SK_SUPPORT_LEGACY_X86_BLITS | 225 #ifndef SK_SUPPORT_LEGACY_X86_BLITS |
188 blit_row_color32 = sk_sse41::blit_row_color32; | 226 blit_row_color32 = sk_sse41::blit_row_color32; |
189 blit_mask_d32_a8 = sk_sse41::blit_mask_d32_a8; | 227 blit_mask_d32_a8 = sk_sse41::blit_mask_d32_a8; |
190 #endif | 228 #endif |
191 } | 229 } |
192 } | 230 } |
OLD | NEW |