| OLD | NEW |
| 1 | 1 |
| 2 /* | 2 /* |
| 3 * Copyright 2006 The Android Open Source Project | 3 * Copyright 2006 The Android Open Source Project |
| 4 * | 4 * |
| 5 * Use of this source code is governed by a BSD-style license that can be | 5 * Use of this source code is governed by a BSD-style license that can be |
| 6 * found in the LICENSE file. | 6 * found in the LICENSE file. |
| 7 */ | 7 */ |
| 8 | 8 |
| 9 | 9 |
| 10 #ifndef SkFloatingPoint_DEFINED | 10 #ifndef SkFloatingPoint_DEFINED |
| (...skipping 109 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 120 #define sk_double_ceil2int(x) (int)ceil(x) | 120 #define sk_double_ceil2int(x) (int)ceil(x) |
| 121 | 121 |
| 122 extern const uint32_t gIEEENotANumber; | 122 extern const uint32_t gIEEENotANumber; |
| 123 extern const uint32_t gIEEEInfinity; | 123 extern const uint32_t gIEEEInfinity; |
| 124 extern const uint32_t gIEEENegativeInfinity; | 124 extern const uint32_t gIEEENegativeInfinity; |
| 125 | 125 |
| 126 #define SK_FloatNaN (*SkTCast<const float*>(&gIEEENotANumber)) | 126 #define SK_FloatNaN (*SkTCast<const float*>(&gIEEENotANumber)) |
| 127 #define SK_FloatInfinity (*SkTCast<const float*>(&gIEEEInfinity)) | 127 #define SK_FloatInfinity (*SkTCast<const float*>(&gIEEEInfinity)) |
| 128 #define SK_FloatNegativeInfinity (*SkTCast<const float*>(&gIEEENegativeInfini
ty)) | 128 #define SK_FloatNegativeInfinity (*SkTCast<const float*>(&gIEEENegativeInfini
ty)) |
| 129 | 129 |
| 130 // We forward declare this to break an #include cycle. | 130 static inline float sk_float_rsqrt_portable(float x) { |
| 131 // (SkScalar -> SkFloatingPoint -> SkOpts.h -> SkXfermode -> SkColor -> SkScalar
) | 131 // Get initial estimate. |
| 132 namespace SkOpts { extern float (*rsqrt)(float); } | 132 int i = *SkTCast<int*>(&x); |
| 133 i = 0x5F1FFFF9 - (i>>1); |
| 134 float estimate = *SkTCast<float*>(&i); |
| 135 |
| 136 // One step of Newton's method to refine. |
| 137 const float estimate_sq = estimate*estimate; |
| 138 estimate *= 0.703952253f*(2.38924456f-x*estimate_sq); |
| 139 return estimate; |
| 140 } |
| 133 | 141 |
| 134 // Fast, approximate inverse square root. | 142 // Fast, approximate inverse square root. |
| 135 // Compare to name-brand "1.0f / sk_float_sqrt(x)". Should be around 10x faster
on SSE, 2x on NEON. | 143 // Compare to name-brand "1.0f / sk_float_sqrt(x)". Should be around 10x faster
on SSE, 2x on NEON. |
| 136 static inline float sk_float_rsqrt(const float x) { | 144 static inline float sk_float_rsqrt(float x) { |
| 137 // We want all this inlined, so we'll inline SIMD and just take the hit when we
don't know we've got | 145 // We want all this inlined, so we'll inline SIMD and just take the hit when we
don't know we've got |
| 138 // it at compile time. This is going to be too fast to productively hide behind
a function pointer. | 146 // it at compile time. This is going to be too fast to productively hide behind
a function pointer. |
| 139 // | 147 // |
| 140 // We do one step of Newton's method to refine the estimates in the NEON and nul
l paths. No | 148 // We do one step of Newton's method to refine the estimates in the NEON and por
table paths. No |
| 141 // refinement is faster, but very innacurate. Two steps is more accurate, but s
lower than 1/sqrt. | 149 // refinement is faster, but very innacurate. Two steps is more accurate, but s
lower than 1/sqrt. |
| 142 // | 150 // |
| 143 // Optimized constants in the null path courtesy of http://rrrola.wz.cz/inv_sqrt
.html | 151 // Optimized constants in the portable path courtesy of http://rrrola.wz.cz/inv_
sqrt.html |
| 144 #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE1 | 152 #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE1 |
| 145 return _mm_cvtss_f32(_mm_rsqrt_ss(_mm_set_ss(x))); | 153 return _mm_cvtss_f32(_mm_rsqrt_ss(_mm_set_ss(x))); |
| 146 #elif defined(SK_ARM_HAS_NEON) | 154 #elif defined(SK_ARM_HAS_NEON) |
| 147 // Get initial estimate. | 155 // Get initial estimate. |
| 148 const float32x2_t xx = vdup_n_f32(x); // Clever readers will note we're doi
ng everything 2x. | 156 const float32x2_t xx = vdup_n_f32(x); // Clever readers will note we're doi
ng everything 2x. |
| 149 float32x2_t estimate = vrsqrte_f32(xx); | 157 float32x2_t estimate = vrsqrte_f32(xx); |
| 150 | 158 |
| 151 // One step of Newton's method to refine. | 159 // One step of Newton's method to refine. |
| 152 const float32x2_t estimate_sq = vmul_f32(estimate, estimate); | 160 const float32x2_t estimate_sq = vmul_f32(estimate, estimate); |
| 153 estimate = vmul_f32(estimate, vrsqrts_f32(xx, estimate_sq)); | 161 estimate = vmul_f32(estimate, vrsqrts_f32(xx, estimate_sq)); |
| 154 return vget_lane_f32(estimate, 0); // 1 will work fine too; the answer's in
both places. | 162 return vget_lane_f32(estimate, 0); // 1 will work fine too; the answer's in
both places. |
| 155 #else | 163 #else |
| 156 // Perhaps runtime-detected NEON, or a portable fallback. | 164 return sk_float_rsqrt_portable(x); |
| 157 return SkOpts::rsqrt(x); | |
| 158 #endif | 165 #endif |
| 159 } | 166 } |
| 160 | 167 |
| 161 // This is the number of significant digits we can print in a string such that w
hen we read that | 168 // This is the number of significant digits we can print in a string such that w
hen we read that |
| 162 // string back we get the floating point number we expect. The minimum value C
requires is 6, but | 169 // string back we get the floating point number we expect. The minimum value C
requires is 6, but |
| 163 // most compilers support 9 | 170 // most compilers support 9 |
| 164 #ifdef FLT_DECIMAL_DIG | 171 #ifdef FLT_DECIMAL_DIG |
| 165 #define SK_FLT_DECIMAL_DIG FLT_DECIMAL_DIG | 172 #define SK_FLT_DECIMAL_DIG FLT_DECIMAL_DIG |
| 166 #else | 173 #else |
| 167 #define SK_FLT_DECIMAL_DIG 9 | 174 #define SK_FLT_DECIMAL_DIG 9 |
| 168 #endif | 175 #endif |
| 169 | 176 |
| 170 #endif | 177 #endif |
| OLD | NEW |