| Index: third_party/WebKit/Source/wtf/MathExtras.h
|
| diff --git a/third_party/WebKit/Source/wtf/MathExtras.h b/third_party/WebKit/Source/wtf/MathExtras.h
|
| index 2367947f22e0a2827a78e9b499f4e2cfa2180b51..b4148ab2aea424fe70e574b90b5a3817f58064c5 100644
|
| --- a/third_party/WebKit/Source/wtf/MathExtras.h
|
| +++ b/third_party/WebKit/Source/wtf/MathExtras.h
|
| @@ -61,16 +61,14 @@ const float twoPiFloat = piFloat * 2.0f;
|
|
|
| #if OS(ANDROID) || COMPILER(MSVC)
|
| // ANDROID and MSVC's math.h does not currently supply log2 or log2f.
|
| -inline double log2(double num)
|
| -{
|
| - // This constant is roughly M_LN2, which is not provided by default on Windows and Android.
|
| - return log(num) / 0.693147180559945309417232121458176568;
|
| +inline double log2(double num) {
|
| + // This constant is roughly M_LN2, which is not provided by default on Windows and Android.
|
| + return log(num) / 0.693147180559945309417232121458176568;
|
| }
|
|
|
| -inline float log2f(float num)
|
| -{
|
| - // This constant is roughly M_LN2, which is not provided by default on Windows and Android.
|
| - return logf(num) / 0.693147180559945309417232121458176568f;
|
| +inline float log2f(float num) {
|
| + // This constant is roughly M_LN2, which is not provided by default on Windows and Android.
|
| + return logf(num) / 0.693147180559945309417232121458176568f;
|
| }
|
| #endif
|
|
|
| @@ -80,61 +78,104 @@ inline float log2f(float num)
|
| // around various differences in behavior of Inf.
|
|
|
| // Work around a bug in Win, where atan2(+-infinity, +-infinity) yields NaN instead of specific values.
|
| -inline double wtf_atan2(double x, double y)
|
| -{
|
| - double posInf = std::numeric_limits<double>::infinity();
|
| - double negInf = -std::numeric_limits<double>::infinity();
|
| - double nan = std::numeric_limits<double>::quiet_NaN();
|
| -
|
| - double result = nan;
|
| -
|
| - if (x == posInf && y == posInf)
|
| - result = piOverFourDouble;
|
| - else if (x == posInf && y == negInf)
|
| - result = 3 * piOverFourDouble;
|
| - else if (x == negInf && y == posInf)
|
| - result = -piOverFourDouble;
|
| - else if (x == negInf && y == negInf)
|
| - result = -3 * piOverFourDouble;
|
| - else
|
| - result = ::atan2(x, y);
|
| -
|
| - return result;
|
| +inline double wtf_atan2(double x, double y) {
|
| + double posInf = std::numeric_limits<double>::infinity();
|
| + double negInf = -std::numeric_limits<double>::infinity();
|
| + double nan = std::numeric_limits<double>::quiet_NaN();
|
| +
|
| + double result = nan;
|
| +
|
| + if (x == posInf && y == posInf)
|
| + result = piOverFourDouble;
|
| + else if (x == posInf && y == negInf)
|
| + result = 3 * piOverFourDouble;
|
| + else if (x == negInf && y == posInf)
|
| + result = -piOverFourDouble;
|
| + else if (x == negInf && y == negInf)
|
| + result = -3 * piOverFourDouble;
|
| + else
|
| + result = ::atan2(x, y);
|
| +
|
| + return result;
|
| }
|
|
|
| // Work around a bug in the Microsoft CRT, where fmod(x, +-infinity) yields NaN instead of x.
|
| -inline double wtf_fmod(double x, double y) { return (!std::isinf(x) && std::isinf(y)) ? x : fmod(x, y); }
|
| +inline double wtf_fmod(double x, double y) {
|
| + return (!std::isinf(x) && std::isinf(y)) ? x : fmod(x, y);
|
| +}
|
|
|
| // Work around a bug in the Microsoft CRT, where pow(NaN, 0) yields NaN instead of 1.
|
| -inline double wtf_pow(double x, double y) { return y == 0 ? 1 : pow(x, y); }
|
| +inline double wtf_pow(double x, double y) {
|
| + return y == 0 ? 1 : pow(x, y);
|
| +}
|
|
|
| #define atan2(x, y) wtf_atan2(x, y)
|
| #define fmod(x, y) wtf_fmod(x, y)
|
| #define pow(x, y) wtf_pow(x, y)
|
|
|
| -#endif // COMPILER(MSVC)
|
| -
|
| -inline double deg2rad(double d) { return d * piDouble / 180.0; }
|
| -inline double rad2deg(double r) { return r * 180.0 / piDouble; }
|
| -inline double deg2grad(double d) { return d * 400.0 / 360.0; }
|
| -inline double grad2deg(double g) { return g * 360.0 / 400.0; }
|
| -inline double turn2deg(double t) { return t * 360.0; }
|
| -inline double deg2turn(double d) { return d / 360.0; }
|
| -inline double rad2grad(double r) { return r * 200.0 / piDouble; }
|
| -inline double grad2rad(double g) { return g * piDouble / 200.0; }
|
| -inline double turn2grad(double t) { return t * 400; }
|
| -inline double grad2turn(double g) { return g / 400; }
|
| -
|
| -inline float deg2rad(float d) { return d * piFloat / 180.0f; }
|
| -inline float rad2deg(float r) { return r * 180.0f / piFloat; }
|
| -inline float deg2grad(float d) { return d * 400.0f / 360.0f; }
|
| -inline float grad2deg(float g) { return g * 360.0f / 400.0f; }
|
| -inline float turn2deg(float t) { return t * 360.0f; }
|
| -inline float deg2turn(float d) { return d / 360.0f; }
|
| -inline float rad2grad(float r) { return r * 200.0f / piFloat; }
|
| -inline float grad2rad(float g) { return g * piFloat / 200.0f; }
|
| -inline float turn2grad(float t) { return t * 400; }
|
| -inline float grad2turn(float g) { return g / 400; }
|
| +#endif // COMPILER(MSVC)
|
| +
|
| +inline double deg2rad(double d) {
|
| + return d * piDouble / 180.0;
|
| +}
|
| +inline double rad2deg(double r) {
|
| + return r * 180.0 / piDouble;
|
| +}
|
| +inline double deg2grad(double d) {
|
| + return d * 400.0 / 360.0;
|
| +}
|
| +inline double grad2deg(double g) {
|
| + return g * 360.0 / 400.0;
|
| +}
|
| +inline double turn2deg(double t) {
|
| + return t * 360.0;
|
| +}
|
| +inline double deg2turn(double d) {
|
| + return d / 360.0;
|
| +}
|
| +inline double rad2grad(double r) {
|
| + return r * 200.0 / piDouble;
|
| +}
|
| +inline double grad2rad(double g) {
|
| + return g * piDouble / 200.0;
|
| +}
|
| +inline double turn2grad(double t) {
|
| + return t * 400;
|
| +}
|
| +inline double grad2turn(double g) {
|
| + return g / 400;
|
| +}
|
| +
|
| +inline float deg2rad(float d) {
|
| + return d * piFloat / 180.0f;
|
| +}
|
| +inline float rad2deg(float r) {
|
| + return r * 180.0f / piFloat;
|
| +}
|
| +inline float deg2grad(float d) {
|
| + return d * 400.0f / 360.0f;
|
| +}
|
| +inline float grad2deg(float g) {
|
| + return g * 360.0f / 400.0f;
|
| +}
|
| +inline float turn2deg(float t) {
|
| + return t * 360.0f;
|
| +}
|
| +inline float deg2turn(float d) {
|
| + return d / 360.0f;
|
| +}
|
| +inline float rad2grad(float r) {
|
| + return r * 200.0f / piFloat;
|
| +}
|
| +inline float grad2rad(float g) {
|
| + return g * piFloat / 200.0f;
|
| +}
|
| +inline float turn2grad(float t) {
|
| + return t * 400;
|
| +}
|
| +inline float grad2turn(float g) {
|
| + return g / 400;
|
| +}
|
|
|
| // clampTo() is implemented by templated helper classes (to allow for partial
|
| // template specialization) as well as several helper functions.
|
| @@ -144,11 +185,13 @@ inline float grad2turn(float g) { return g / 400; }
|
| // unsigned warnings
|
| // (2) The default type promotions/conversions are sufficient to handle things
|
| // correctly
|
| -template<typename LimitType, typename ValueType> inline LimitType clampToDirectComparison(ValueType value, LimitType min, LimitType max)
|
| -{
|
| - if (value >= max)
|
| - return max;
|
| - return (value <= min) ? min : static_cast<LimitType>(value);
|
| +template <typename LimitType, typename ValueType>
|
| +inline LimitType clampToDirectComparison(ValueType value,
|
| + LimitType min,
|
| + LimitType max) {
|
| + if (value >= max)
|
| + return max;
|
| + return (value <= min) ? min : static_cast<LimitType>(value);
|
| }
|
|
|
| // For any floating-point limits, or integral limits smaller than long long, we
|
| @@ -163,55 +206,71 @@ template<typename LimitType, typename ValueType> inline LimitType clampToDirectC
|
| // order to only compile the clampToDirectComparison() code for cases where it
|
| // will actually be used; this prevents the compiler from emitting warnings
|
| // about unsafe code (even though we wouldn't actually be executing that code).
|
| -template<bool canUseDirectComparison, typename LimitType, typename ValueType> class ClampToNonLongLongHelper;
|
| -template<typename LimitType, typename ValueType> class ClampToNonLongLongHelper<true, LimitType, ValueType> {
|
| - STATIC_ONLY(ClampToNonLongLongHelper);
|
| -public:
|
| - static inline LimitType clampTo(ValueType value, LimitType min, LimitType max)
|
| - {
|
| - return clampToDirectComparison(value, min, max);
|
| - }
|
| +template <bool canUseDirectComparison, typename LimitType, typename ValueType>
|
| +class ClampToNonLongLongHelper;
|
| +template <typename LimitType, typename ValueType>
|
| +class ClampToNonLongLongHelper<true, LimitType, ValueType> {
|
| + STATIC_ONLY(ClampToNonLongLongHelper);
|
| +
|
| + public:
|
| + static inline LimitType clampTo(ValueType value,
|
| + LimitType min,
|
| + LimitType max) {
|
| + return clampToDirectComparison(value, min, max);
|
| + }
|
| };
|
|
|
| -template<typename LimitType, typename ValueType> class ClampToNonLongLongHelper<false, LimitType, ValueType> {
|
| - STATIC_ONLY(ClampToNonLongLongHelper);
|
| -public:
|
| - static inline LimitType clampTo(ValueType value, LimitType min, LimitType max)
|
| - {
|
| - const double doubleValue = static_cast<double>(value);
|
| - if (doubleValue >= static_cast<double>(max))
|
| - return max;
|
| - if (doubleValue <= static_cast<double>(min))
|
| - return min;
|
| - // If the limit type is integer, we might get better performance by
|
| - // casting |value| (as opposed to |doubleValue|) to the limit type.
|
| - return std::numeric_limits<LimitType>::is_integer ? static_cast<LimitType>(value) : static_cast<LimitType>(doubleValue);
|
| - }
|
| +template <typename LimitType, typename ValueType>
|
| +class ClampToNonLongLongHelper<false, LimitType, ValueType> {
|
| + STATIC_ONLY(ClampToNonLongLongHelper);
|
| +
|
| + public:
|
| + static inline LimitType clampTo(ValueType value,
|
| + LimitType min,
|
| + LimitType max) {
|
| + const double doubleValue = static_cast<double>(value);
|
| + if (doubleValue >= static_cast<double>(max))
|
| + return max;
|
| + if (doubleValue <= static_cast<double>(min))
|
| + return min;
|
| + // If the limit type is integer, we might get better performance by
|
| + // casting |value| (as opposed to |doubleValue|) to the limit type.
|
| + return std::numeric_limits<LimitType>::is_integer
|
| + ? static_cast<LimitType>(value)
|
| + : static_cast<LimitType>(doubleValue);
|
| + }
|
| };
|
|
|
| // The unspecialized version of this templated class handles clamping to
|
| // anything other than [unsigned] long long int limits. It simply uses the
|
| // class above to toggle between the "fast" and "safe" clamp implementations.
|
| -template<typename LimitType, typename ValueType> class ClampToHelper {
|
| -public:
|
| - static inline LimitType clampTo(ValueType value, LimitType min, LimitType max)
|
| - {
|
| - // We only use clampToDirectComparison() when the integerness and
|
| - // signedness of the two types matches.
|
| - //
|
| - // If the integerness of the types doesn't match, then at best
|
| - // clampToDirectComparison() won't be much more efficient than the
|
| - // cast-everything-to-double method, since we'll need to convert to
|
| - // floating point anyway; at worst, we risk incorrect results when
|
| - // clamping a float to a 32-bit integral type due to potential precision
|
| - // loss.
|
| - //
|
| - // If the signedness doesn't match, clampToDirectComparison() will
|
| - // produce warnings about comparing signed vs. unsigned, which are apt
|
| - // since negative signed values will be converted to large unsigned ones
|
| - // and we'll get incorrect results.
|
| - return ClampToNonLongLongHelper<std::numeric_limits<LimitType>::is_integer == std::numeric_limits<ValueType>::is_integer && std::numeric_limits<LimitType>::is_signed == std::numeric_limits<ValueType>::is_signed, LimitType, ValueType>::clampTo(value, min, max);
|
| - }
|
| +template <typename LimitType, typename ValueType>
|
| +class ClampToHelper {
|
| + public:
|
| + static inline LimitType clampTo(ValueType value,
|
| + LimitType min,
|
| + LimitType max) {
|
| + // We only use clampToDirectComparison() when the integerness and
|
| + // signedness of the two types matches.
|
| + //
|
| + // If the integerness of the types doesn't match, then at best
|
| + // clampToDirectComparison() won't be much more efficient than the
|
| + // cast-everything-to-double method, since we'll need to convert to
|
| + // floating point anyway; at worst, we risk incorrect results when
|
| + // clamping a float to a 32-bit integral type due to potential precision
|
| + // loss.
|
| + //
|
| + // If the signedness doesn't match, clampToDirectComparison() will
|
| + // produce warnings about comparing signed vs. unsigned, which are apt
|
| + // since negative signed values will be converted to large unsigned ones
|
| + // and we'll get incorrect results.
|
| + return ClampToNonLongLongHelper <
|
| + std::numeric_limits<LimitType>::is_integer ==
|
| + std::numeric_limits<ValueType>::is_integer &&
|
| + std::numeric_limits<LimitType>::is_signed ==
|
| + std::numeric_limits<ValueType>::is_signed,
|
| + LimitType, ValueType > ::clampTo(value, min, max);
|
| + }
|
| };
|
|
|
| // Clamping to [unsigned] long long int limits requires more care. These may
|
| @@ -219,138 +278,166 @@ public:
|
| // limit type. But that cast is undefined if |value| is floating point and
|
| // outside the representable range of the limit type, so we also have to check
|
| // for that case explicitly.
|
| -template<typename ValueType> class ClampToHelper<long long int, ValueType> {
|
| - STATIC_ONLY(ClampToHelper);
|
| -public:
|
| - static inline long long int clampTo(ValueType value, long long int min, long long int max)
|
| - {
|
| - if (!std::numeric_limits<ValueType>::is_integer) {
|
| - if (value > 0) {
|
| - if (static_cast<double>(value) >= static_cast<double>(std::numeric_limits<long long int>::max()))
|
| - return max;
|
| - } else if (static_cast<double>(value) <= static_cast<double>(std::numeric_limits<long long int>::min())) {
|
| - return min;
|
| - }
|
| - }
|
| - // Note: If |value| were unsigned long long int, it could be larger than
|
| - // the largest long long int, and this code would be wrong; we handle
|
| - // this case with a separate full specialization below.
|
| - return clampToDirectComparison(static_cast<long long int>(value), min, max);
|
| +template <typename ValueType>
|
| +class ClampToHelper<long long int, ValueType> {
|
| + STATIC_ONLY(ClampToHelper);
|
| +
|
| + public:
|
| + static inline long long int clampTo(ValueType value,
|
| + long long int min,
|
| + long long int max) {
|
| + if (!std::numeric_limits<ValueType>::is_integer) {
|
| + if (value > 0) {
|
| + if (static_cast<double>(value) >=
|
| + static_cast<double>(std::numeric_limits<long long int>::max()))
|
| + return max;
|
| + } else if (static_cast<double>(value) <=
|
| + static_cast<double>(
|
| + std::numeric_limits<long long int>::min())) {
|
| + return min;
|
| + }
|
| }
|
| + // Note: If |value| were unsigned long long int, it could be larger than
|
| + // the largest long long int, and this code would be wrong; we handle
|
| + // this case with a separate full specialization below.
|
| + return clampToDirectComparison(static_cast<long long int>(value), min, max);
|
| + }
|
| };
|
|
|
| // This specialization handles the case where the above partial specialization
|
| // would be potentially incorrect.
|
| -template<> class ClampToHelper<long long int, unsigned long long int> {
|
| - STATIC_ONLY(ClampToHelper);
|
| -public:
|
| - static inline long long int clampTo(unsigned long long int value, long long int min, long long int max)
|
| - {
|
| - if (max <= 0 || value >= static_cast<unsigned long long int>(max))
|
| - return max;
|
| - const long long int longLongValue = static_cast<long long int>(value);
|
| - return (longLongValue <= min) ? min : longLongValue;
|
| - }
|
| +template <>
|
| +class ClampToHelper<long long int, unsigned long long int> {
|
| + STATIC_ONLY(ClampToHelper);
|
| +
|
| + public:
|
| + static inline long long int clampTo(unsigned long long int value,
|
| + long long int min,
|
| + long long int max) {
|
| + if (max <= 0 || value >= static_cast<unsigned long long int>(max))
|
| + return max;
|
| + const long long int longLongValue = static_cast<long long int>(value);
|
| + return (longLongValue <= min) ? min : longLongValue;
|
| + }
|
| };
|
|
|
| // This is similar to the partial specialization that clamps to long long int,
|
| // but because the lower-bound check is done for integer value types as well, we
|
| // don't need a <unsigned long long int, long long int> full specialization.
|
| -template<typename ValueType> class ClampToHelper<unsigned long long int, ValueType> {
|
| - STATIC_ONLY(ClampToHelper);
|
| -public:
|
| - static inline unsigned long long int clampTo(ValueType value, unsigned long long int min, unsigned long long int max)
|
| - {
|
| - if (value <= 0)
|
| - return min;
|
| - if (!std::numeric_limits<ValueType>::is_integer) {
|
| - if (static_cast<double>(value) >= static_cast<double>(std::numeric_limits<unsigned long long int>::max()))
|
| - return max;
|
| - }
|
| - return clampToDirectComparison(static_cast<unsigned long long int>(value), min, max);
|
| +template <typename ValueType>
|
| +class ClampToHelper<unsigned long long int, ValueType> {
|
| + STATIC_ONLY(ClampToHelper);
|
| +
|
| + public:
|
| + static inline unsigned long long int clampTo(ValueType value,
|
| + unsigned long long int min,
|
| + unsigned long long int max) {
|
| + if (value <= 0)
|
| + return min;
|
| + if (!std::numeric_limits<ValueType>::is_integer) {
|
| + if (static_cast<double>(value) >=
|
| + static_cast<double>(
|
| + std::numeric_limits<unsigned long long int>::max()))
|
| + return max;
|
| }
|
| + return clampToDirectComparison(static_cast<unsigned long long int>(value),
|
| + min, max);
|
| + }
|
| };
|
|
|
| -template<typename T> inline T defaultMaximumForClamp() { return std::numeric_limits<T>::max(); }
|
| +template <typename T>
|
| +inline T defaultMaximumForClamp() {
|
| + return std::numeric_limits<T>::max();
|
| +}
|
| // This basically reimplements C++11's std::numeric_limits<T>::lowest().
|
| -template<typename T> inline T defaultMinimumForClamp() { return std::numeric_limits<T>::min(); }
|
| -template<> inline float defaultMinimumForClamp<float>() { return -std::numeric_limits<float>::max(); }
|
| -template<> inline double defaultMinimumForClamp<double>() { return -std::numeric_limits<double>::max(); }
|
| +template <typename T>
|
| +inline T defaultMinimumForClamp() {
|
| + return std::numeric_limits<T>::min();
|
| +}
|
| +template <>
|
| +inline float defaultMinimumForClamp<float>() {
|
| + return -std::numeric_limits<float>::max();
|
| +}
|
| +template <>
|
| +inline double defaultMinimumForClamp<double>() {
|
| + return -std::numeric_limits<double>::max();
|
| +}
|
|
|
| // And, finally, the actual function for people to call.
|
| -template<typename LimitType, typename ValueType> inline LimitType clampTo(ValueType value, LimitType min = defaultMinimumForClamp<LimitType>(), LimitType max = defaultMaximumForClamp<LimitType>())
|
| -{
|
| - ASSERT(!std::isnan(static_cast<double>(value)));
|
| - ASSERT(min <= max); // This also ensures |min| and |max| aren't NaN.
|
| - return ClampToHelper<LimitType, ValueType>::clampTo(value, min, max);
|
| +template <typename LimitType, typename ValueType>
|
| +inline LimitType clampTo(ValueType value,
|
| + LimitType min = defaultMinimumForClamp<LimitType>(),
|
| + LimitType max = defaultMaximumForClamp<LimitType>()) {
|
| + ASSERT(!std::isnan(static_cast<double>(value)));
|
| + ASSERT(min <= max); // This also ensures |min| and |max| aren't NaN.
|
| + return ClampToHelper<LimitType, ValueType>::clampTo(value, min, max);
|
| }
|
|
|
| -inline bool isWithinIntRange(float x)
|
| -{
|
| - return x > static_cast<float>(std::numeric_limits<int>::min()) && x < static_cast<float>(std::numeric_limits<int>::max());
|
| +inline bool isWithinIntRange(float x) {
|
| + return x > static_cast<float>(std::numeric_limits<int>::min()) &&
|
| + x < static_cast<float>(std::numeric_limits<int>::max());
|
| }
|
|
|
| -static size_t greatestCommonDivisor(size_t a, size_t b)
|
| -{
|
| - return b ? greatestCommonDivisor(b, a % b) : a;
|
| +static size_t greatestCommonDivisor(size_t a, size_t b) {
|
| + return b ? greatestCommonDivisor(b, a % b) : a;
|
| }
|
|
|
| -inline size_t lowestCommonMultiple(size_t a, size_t b)
|
| -{
|
| - return a && b ? a / greatestCommonDivisor(a, b) * b : 0;
|
| +inline size_t lowestCommonMultiple(size_t a, size_t b) {
|
| + return a && b ? a / greatestCommonDivisor(a, b) * b : 0;
|
| }
|
|
|
| #ifndef UINT64_C
|
| #if COMPILER(MSVC)
|
| -#define UINT64_C(c) c ## ui64
|
| +#define UINT64_C(c) c##ui64
|
| #else
|
| -#define UINT64_C(c) c ## ull
|
| +#define UINT64_C(c) c##ull
|
| #endif
|
| #endif
|
|
|
| // Calculate d % 2^{64}.
|
| -inline void doubleToInteger(double d, unsigned long long& value)
|
| -{
|
| - if (std::isnan(d) || std::isinf(d)) {
|
| - value = 0;
|
| +inline void doubleToInteger(double d, unsigned long long& value) {
|
| + if (std::isnan(d) || std::isinf(d)) {
|
| + value = 0;
|
| + } else {
|
| + // -2^{64} < fmodValue < 2^{64}.
|
| + double fmodValue =
|
| + fmod(trunc(d), std::numeric_limits<unsigned long long>::max() + 1.0);
|
| + if (fmodValue >= 0) {
|
| + // 0 <= fmodValue < 2^{64}.
|
| + // 0 <= value < 2^{64}. This cast causes no loss.
|
| + value = static_cast<unsigned long long>(fmodValue);
|
| } else {
|
| - // -2^{64} < fmodValue < 2^{64}.
|
| - double fmodValue = fmod(trunc(d), std::numeric_limits<unsigned long long>::max() + 1.0);
|
| - if (fmodValue >= 0) {
|
| - // 0 <= fmodValue < 2^{64}.
|
| - // 0 <= value < 2^{64}. This cast causes no loss.
|
| - value = static_cast<unsigned long long>(fmodValue);
|
| - } else {
|
| - // -2^{64} < fmodValue < 0.
|
| - // 0 < fmodValueInUnsignedLongLong < 2^{64}. This cast causes no loss.
|
| - unsigned long long fmodValueInUnsignedLongLong = static_cast<unsigned long long>(-fmodValue);
|
| - // -1 < (std::numeric_limits<unsigned long long>::max() - fmodValueInUnsignedLongLong) < 2^{64} - 1.
|
| - // 0 < value < 2^{64}.
|
| - value = std::numeric_limits<unsigned long long>::max() - fmodValueInUnsignedLongLong + 1;
|
| - }
|
| + // -2^{64} < fmodValue < 0.
|
| + // 0 < fmodValueInUnsignedLongLong < 2^{64}. This cast causes no loss.
|
| + unsigned long long fmodValueInUnsignedLongLong =
|
| + static_cast<unsigned long long>(-fmodValue);
|
| + // -1 < (std::numeric_limits<unsigned long long>::max() - fmodValueInUnsignedLongLong) < 2^{64} - 1.
|
| + // 0 < value < 2^{64}.
|
| + value = std::numeric_limits<unsigned long long>::max() -
|
| + fmodValueInUnsignedLongLong + 1;
|
| }
|
| + }
|
| }
|
|
|
| namespace WTF {
|
|
|
| -inline unsigned fastLog2(unsigned i)
|
| -{
|
| - unsigned log2 = 0;
|
| - if (i & (i - 1))
|
| - log2 += 1;
|
| - if (i >> 16)
|
| - log2 += 16, i >>= 16;
|
| - if (i >> 8)
|
| - log2 += 8, i >>= 8;
|
| - if (i >> 4)
|
| - log2 += 4, i >>= 4;
|
| - if (i >> 2)
|
| - log2 += 2, i >>= 2;
|
| - if (i >> 1)
|
| - log2 += 1;
|
| - return log2;
|
| -}
|
| -
|
| -} // namespace WTF
|
| -
|
| -#endif // #ifndef WTF_MathExtras_h
|
| +inline unsigned fastLog2(unsigned i) {
|
| + unsigned log2 = 0;
|
| + if (i & (i - 1))
|
| + log2 += 1;
|
| + if (i >> 16)
|
| + log2 += 16, i >>= 16;
|
| + if (i >> 8)
|
| + log2 += 8, i >>= 8;
|
| + if (i >> 4)
|
| + log2 += 4, i >>= 4;
|
| + if (i >> 2)
|
| + log2 += 2, i >>= 2;
|
| + if (i >> 1)
|
| + log2 += 1;
|
| + return log2;
|
| +}
|
| +
|
| +} // namespace WTF
|
| +
|
| +#endif // #ifndef WTF_MathExtras_h
|
|
|