| Index: third_party/WebKit/Source/wtf/HashTraits.h
|
| diff --git a/third_party/WebKit/Source/wtf/HashTraits.h b/third_party/WebKit/Source/wtf/HashTraits.h
|
| index e280ea52e67c1d9b49b679b4b8f2d5905b52cba8..082aedc77f28c9d7e9ee8836713c987af8f29d3a 100644
|
| --- a/third_party/WebKit/Source/wtf/HashTraits.h
|
| +++ b/third_party/WebKit/Source/wtf/HashTraits.h
|
| @@ -26,280 +26,367 @@
|
| #include "wtf/StdLibExtras.h"
|
| #include "wtf/TypeTraits.h"
|
| #include <limits>
|
| -#include <string.h> // For memset.
|
| +#include <string.h> // For memset.
|
| #include <type_traits>
|
| #include <utility>
|
|
|
| namespace WTF {
|
|
|
| class String;
|
| -template <bool isInteger, typename T> struct GenericHashTraitsBase;
|
| -template <typename T> class OwnPtr;
|
| -template <typename T> class PassOwnPtr;
|
| -template <typename T> struct HashTraits;
|
| +template <bool isInteger, typename T>
|
| +struct GenericHashTraitsBase;
|
| +template <typename T>
|
| +class OwnPtr;
|
| +template <typename T>
|
| +class PassOwnPtr;
|
| +template <typename T>
|
| +struct HashTraits;
|
|
|
| enum ShouldWeakPointersBeMarkedStrongly {
|
| - WeakPointersActStrong,
|
| - WeakPointersActWeak
|
| + WeakPointersActStrong,
|
| + WeakPointersActWeak
|
| };
|
|
|
| -template <typename T> struct GenericHashTraitsBase<false, T> {
|
| - // The emptyValueIsZero flag is used to optimize allocation of empty hash
|
| - // tables with zeroed memory.
|
| - static const bool emptyValueIsZero = false;
|
| -
|
| - // The hasIsEmptyValueFunction flag allows the hash table to automatically
|
| - // generate code to check for the empty value when it can be done with the
|
| - // equality operator, but allows custom functions for cases like String that
|
| - // need them.
|
| - static const bool hasIsEmptyValueFunction = false;
|
| -
|
| - // The starting table size. Can be overridden when we know beforehand that a
|
| - // hash table will have at least N entries.
|
| +template <typename T>
|
| +struct GenericHashTraitsBase<false, T> {
|
| + // The emptyValueIsZero flag is used to optimize allocation of empty hash
|
| + // tables with zeroed memory.
|
| + static const bool emptyValueIsZero = false;
|
| +
|
| + // The hasIsEmptyValueFunction flag allows the hash table to automatically
|
| + // generate code to check for the empty value when it can be done with the
|
| + // equality operator, but allows custom functions for cases like String that
|
| + // need them.
|
| + static const bool hasIsEmptyValueFunction = false;
|
| +
|
| +// The starting table size. Can be overridden when we know beforehand that a
|
| +// hash table will have at least N entries.
|
| #if defined(MEMORY_SANITIZER_INITIAL_SIZE)
|
| - static const unsigned minimumTableSize = 1;
|
| + static const unsigned minimumTableSize = 1;
|
| #else
|
| - static const unsigned minimumTableSize = 8;
|
| + static const unsigned minimumTableSize = 8;
|
| #endif
|
|
|
| - template <typename U = void>
|
| - struct NeedsTracingLazily {
|
| - static const bool value = NeedsTracing<T>::value;
|
| - };
|
| - static const WeakHandlingFlag weakHandlingFlag = IsWeak<T>::value ? WeakHandlingInCollections : NoWeakHandlingInCollections;
|
| + template <typename U = void>
|
| + struct NeedsTracingLazily {
|
| + static const bool value = NeedsTracing<T>::value;
|
| + };
|
| + static const WeakHandlingFlag weakHandlingFlag =
|
| + IsWeak<T>::value ? WeakHandlingInCollections
|
| + : NoWeakHandlingInCollections;
|
| };
|
|
|
| // Default integer traits disallow both 0 and -1 as keys (max value instead of
|
| // -1 for unsigned).
|
| -template <typename T> struct GenericHashTraitsBase<true, T> : GenericHashTraitsBase<false, T> {
|
| - static const bool emptyValueIsZero = true;
|
| - static void constructDeletedValue(T& slot, bool) { slot = static_cast<T>(-1); }
|
| - static bool isDeletedValue(T value) { return value == static_cast<T>(-1); }
|
| +template <typename T>
|
| +struct GenericHashTraitsBase<true, T> : GenericHashTraitsBase<false, T> {
|
| + static const bool emptyValueIsZero = true;
|
| + static void constructDeletedValue(T& slot, bool) {
|
| + slot = static_cast<T>(-1);
|
| + }
|
| + static bool isDeletedValue(T value) { return value == static_cast<T>(-1); }
|
| };
|
|
|
| -template <typename T> struct GenericHashTraits : GenericHashTraitsBase<std::is_integral<T>::value, T> {
|
| - typedef T TraitType;
|
| - typedef T EmptyValueType;
|
| -
|
| - static T emptyValue() { return T(); }
|
| -
|
| - // Type for functions that do not take ownership, such as contains.
|
| - typedef const T& PeekInType;
|
| - typedef T* IteratorGetType;
|
| - typedef const T* IteratorConstGetType;
|
| - typedef T& IteratorReferenceType;
|
| - typedef const T& IteratorConstReferenceType;
|
| - static IteratorReferenceType getToReferenceConversion(IteratorGetType x) { return *x; }
|
| - static IteratorConstReferenceType getToReferenceConstConversion(IteratorConstGetType x) { return *x; }
|
| - // Type for functions that take ownership, such as add.
|
| - // The store function either not be called or called once to store something
|
| - // passed in. The value passed to the store function will be PassInType.
|
| - typedef const T& PassInType;
|
| - static void store(const T& value, T& storage) { storage = value; }
|
| -
|
| - // Type for return value of functions that transfer ownership, such as take.
|
| - typedef T PassOutType;
|
| - static const T& passOut(const T& value) { return value; }
|
| -
|
| - // Type for return value of functions that do not transfer ownership, such
|
| - // as get.
|
| - // FIXME: We could change this type to const T& for better performance if we
|
| - // figured out a way to handle the return value from emptyValue, which is a
|
| - // temporary.
|
| - typedef T PeekOutType;
|
| - static const T& peek(const T& value) { return value; }
|
| +template <typename T>
|
| +struct GenericHashTraits
|
| + : GenericHashTraitsBase<std::is_integral<T>::value, T> {
|
| + typedef T TraitType;
|
| + typedef T EmptyValueType;
|
| +
|
| + static T emptyValue() { return T(); }
|
| +
|
| + // Type for functions that do not take ownership, such as contains.
|
| + typedef const T& PeekInType;
|
| + typedef T* IteratorGetType;
|
| + typedef const T* IteratorConstGetType;
|
| + typedef T& IteratorReferenceType;
|
| + typedef const T& IteratorConstReferenceType;
|
| + static IteratorReferenceType getToReferenceConversion(IteratorGetType x) {
|
| + return *x;
|
| + }
|
| + static IteratorConstReferenceType getToReferenceConstConversion(
|
| + IteratorConstGetType x) {
|
| + return *x;
|
| + }
|
| + // Type for functions that take ownership, such as add.
|
| + // The store function either not be called or called once to store something
|
| + // passed in. The value passed to the store function will be PassInType.
|
| + typedef const T& PassInType;
|
| + static void store(const T& value, T& storage) { storage = value; }
|
| +
|
| + // Type for return value of functions that transfer ownership, such as take.
|
| + typedef T PassOutType;
|
| + static const T& passOut(const T& value) { return value; }
|
| +
|
| + // Type for return value of functions that do not transfer ownership, such
|
| + // as get.
|
| + // FIXME: We could change this type to const T& for better performance if we
|
| + // figured out a way to handle the return value from emptyValue, which is a
|
| + // temporary.
|
| + typedef T PeekOutType;
|
| + static const T& peek(const T& value) { return value; }
|
| };
|
|
|
| -template <typename T> struct HashTraits : GenericHashTraits<T> { };
|
| +template <typename T>
|
| +struct HashTraits : GenericHashTraits<T> {};
|
|
|
| -template <typename T> struct FloatHashTraits : GenericHashTraits<T> {
|
| - static T emptyValue() { return std::numeric_limits<T>::infinity(); }
|
| - static void constructDeletedValue(T& slot, bool) { slot = -std::numeric_limits<T>::infinity(); }
|
| - static bool isDeletedValue(T value) { return value == -std::numeric_limits<T>::infinity(); }
|
| +template <typename T>
|
| +struct FloatHashTraits : GenericHashTraits<T> {
|
| + static T emptyValue() { return std::numeric_limits<T>::infinity(); }
|
| + static void constructDeletedValue(T& slot, bool) {
|
| + slot = -std::numeric_limits<T>::infinity();
|
| + }
|
| + static bool isDeletedValue(T value) {
|
| + return value == -std::numeric_limits<T>::infinity();
|
| + }
|
| };
|
|
|
| -template <> struct HashTraits<float> : FloatHashTraits<float> { };
|
| -template <> struct HashTraits<double> : FloatHashTraits<double> { };
|
| +template <>
|
| +struct HashTraits<float> : FloatHashTraits<float> {};
|
| +template <>
|
| +struct HashTraits<double> : FloatHashTraits<double> {};
|
|
|
| // Default unsigned traits disallow both 0 and max as keys -- use these traits
|
| // to allow zero and disallow max - 1.
|
| -template <typename T> struct UnsignedWithZeroKeyHashTraits : GenericHashTraits<T> {
|
| - static const bool emptyValueIsZero = false;
|
| - static T emptyValue() { return std::numeric_limits<T>::max(); }
|
| - static void constructDeletedValue(T& slot, bool) { slot = std::numeric_limits<T>::max() - 1; }
|
| - static bool isDeletedValue(T value) { return value == std::numeric_limits<T>::max() - 1; }
|
| +template <typename T>
|
| +struct UnsignedWithZeroKeyHashTraits : GenericHashTraits<T> {
|
| + static const bool emptyValueIsZero = false;
|
| + static T emptyValue() { return std::numeric_limits<T>::max(); }
|
| + static void constructDeletedValue(T& slot, bool) {
|
| + slot = std::numeric_limits<T>::max() - 1;
|
| + }
|
| + static bool isDeletedValue(T value) {
|
| + return value == std::numeric_limits<T>::max() - 1;
|
| + }
|
| };
|
|
|
| -template <typename P> struct HashTraits<P*> : GenericHashTraits<P*> {
|
| - static const bool emptyValueIsZero = true;
|
| - static void constructDeletedValue(P*& slot, bool) { slot = reinterpret_cast<P*>(-1); }
|
| - static bool isDeletedValue(P* value) { return value == reinterpret_cast<P*>(-1); }
|
| +template <typename P>
|
| +struct HashTraits<P*> : GenericHashTraits<P*> {
|
| + static const bool emptyValueIsZero = true;
|
| + static void constructDeletedValue(P*& slot, bool) {
|
| + slot = reinterpret_cast<P*>(-1);
|
| + }
|
| + static bool isDeletedValue(P* value) {
|
| + return value == reinterpret_cast<P*>(-1);
|
| + }
|
| };
|
|
|
| -template <typename T> struct SimpleClassHashTraits : GenericHashTraits<T> {
|
| - static const bool emptyValueIsZero = true;
|
| - static void constructDeletedValue(T& slot, bool) { new (NotNull, &slot) T(HashTableDeletedValue); }
|
| - static bool isDeletedValue(const T& value) { return value.isHashTableDeletedValue(); }
|
| +template <typename T>
|
| +struct SimpleClassHashTraits : GenericHashTraits<T> {
|
| + static const bool emptyValueIsZero = true;
|
| + static void constructDeletedValue(T& slot, bool) {
|
| + new (NotNull, &slot) T(HashTableDeletedValue);
|
| + }
|
| + static bool isDeletedValue(const T& value) {
|
| + return value.isHashTableDeletedValue();
|
| + }
|
| };
|
|
|
| -template <typename P> struct HashTraits<OwnPtr<P>> : SimpleClassHashTraits<OwnPtr<P>> {
|
| - typedef std::nullptr_t EmptyValueType;
|
| +template <typename P>
|
| +struct HashTraits<OwnPtr<P>> : SimpleClassHashTraits<OwnPtr<P>> {
|
| + typedef std::nullptr_t EmptyValueType;
|
|
|
| - static EmptyValueType emptyValue() { return nullptr; }
|
| + static EmptyValueType emptyValue() { return nullptr; }
|
|
|
| - static const bool hasIsEmptyValueFunction = true;
|
| - static bool isEmptyValue(const OwnPtr<P>& value) { return !value; }
|
| + static const bool hasIsEmptyValueFunction = true;
|
| + static bool isEmptyValue(const OwnPtr<P>& value) { return !value; }
|
|
|
| - typedef typename OwnPtr<P>::PtrType PeekInType;
|
| + typedef typename OwnPtr<P>::PtrType PeekInType;
|
|
|
| - typedef PassOwnPtr<P> PassInType;
|
| - static void store(PassOwnPtr<P> value, OwnPtr<P>& storage) { storage = value; }
|
| + typedef PassOwnPtr<P> PassInType;
|
| + static void store(PassOwnPtr<P> value, OwnPtr<P>& storage) {
|
| + storage = value;
|
| + }
|
|
|
| - typedef PassOwnPtr<P> PassOutType;
|
| - static PassOwnPtr<P> passOut(OwnPtr<P>& value) { return value.release(); }
|
| - static PassOwnPtr<P> passOut(std::nullptr_t) { return nullptr; }
|
| + typedef PassOwnPtr<P> PassOutType;
|
| + static PassOwnPtr<P> passOut(OwnPtr<P>& value) { return value.release(); }
|
| + static PassOwnPtr<P> passOut(std::nullptr_t) { return nullptr; }
|
|
|
| - typedef typename OwnPtr<P>::PtrType PeekOutType;
|
| - static PeekOutType peek(const OwnPtr<P>& value) { return value.get(); }
|
| - static PeekOutType peek(std::nullptr_t) { return 0; }
|
| + typedef typename OwnPtr<P>::PtrType PeekOutType;
|
| + static PeekOutType peek(const OwnPtr<P>& value) { return value.get(); }
|
| + static PeekOutType peek(std::nullptr_t) { return 0; }
|
| };
|
|
|
| -template <typename P> struct HashTraits<RefPtr<P>> : SimpleClassHashTraits<RefPtr<P>> {
|
| - typedef std::nullptr_t EmptyValueType;
|
| - static EmptyValueType emptyValue() { return nullptr; }
|
| -
|
| - static const bool hasIsEmptyValueFunction = true;
|
| - static bool isEmptyValue(const RefPtr<P>& value) { return !value; }
|
| -
|
| - typedef RefPtrValuePeeker<P> PeekInType;
|
| - typedef RefPtr<P>* IteratorGetType;
|
| - typedef const RefPtr<P>* IteratorConstGetType;
|
| - typedef RefPtr<P>& IteratorReferenceType;
|
| - typedef const RefPtr<P>& IteratorConstReferenceType;
|
| - static IteratorReferenceType getToReferenceConversion(IteratorGetType x) { return *x; }
|
| - static IteratorConstReferenceType getToReferenceConstConversion(IteratorConstGetType x) { return *x; }
|
| -
|
| - typedef PassRefPtr<P> PassInType;
|
| - static void store(PassRefPtr<P> value, RefPtr<P>& storage) { storage = value; }
|
| -
|
| - typedef PassRefPtr<P> PassOutType;
|
| - static PassOutType passOut(RefPtr<P>& value) { return value.release(); }
|
| - static PassOutType passOut(std::nullptr_t) { return nullptr; }
|
| -
|
| - typedef P* PeekOutType;
|
| - static PeekOutType peek(const RefPtr<P>& value) { return value.get(); }
|
| - static PeekOutType peek(std::nullptr_t) { return 0; }
|
| +template <typename P>
|
| +struct HashTraits<RefPtr<P>> : SimpleClassHashTraits<RefPtr<P>> {
|
| + typedef std::nullptr_t EmptyValueType;
|
| + static EmptyValueType emptyValue() { return nullptr; }
|
| +
|
| + static const bool hasIsEmptyValueFunction = true;
|
| + static bool isEmptyValue(const RefPtr<P>& value) { return !value; }
|
| +
|
| + typedef RefPtrValuePeeker<P> PeekInType;
|
| + typedef RefPtr<P>* IteratorGetType;
|
| + typedef const RefPtr<P>* IteratorConstGetType;
|
| + typedef RefPtr<P>& IteratorReferenceType;
|
| + typedef const RefPtr<P>& IteratorConstReferenceType;
|
| + static IteratorReferenceType getToReferenceConversion(IteratorGetType x) {
|
| + return *x;
|
| + }
|
| + static IteratorConstReferenceType getToReferenceConstConversion(
|
| + IteratorConstGetType x) {
|
| + return *x;
|
| + }
|
| +
|
| + typedef PassRefPtr<P> PassInType;
|
| + static void store(PassRefPtr<P> value, RefPtr<P>& storage) {
|
| + storage = value;
|
| + }
|
| +
|
| + typedef PassRefPtr<P> PassOutType;
|
| + static PassOutType passOut(RefPtr<P>& value) { return value.release(); }
|
| + static PassOutType passOut(std::nullptr_t) { return nullptr; }
|
| +
|
| + typedef P* PeekOutType;
|
| + static PeekOutType peek(const RefPtr<P>& value) { return value.get(); }
|
| + static PeekOutType peek(std::nullptr_t) { return 0; }
|
| };
|
|
|
| -template <typename T> struct HashTraits<RawPtr<T>> : HashTraits<T*> { };
|
| +template <typename T>
|
| +struct HashTraits<RawPtr<T>> : HashTraits<T*> {};
|
|
|
| -template <> struct HashTraits<String> : SimpleClassHashTraits<String> {
|
| - static const bool hasIsEmptyValueFunction = true;
|
| - static bool isEmptyValue(const String&);
|
| +template <>
|
| +struct HashTraits<String> : SimpleClassHashTraits<String> {
|
| + static const bool hasIsEmptyValueFunction = true;
|
| + static bool isEmptyValue(const String&);
|
| };
|
|
|
| // This struct template is an implementation detail of the
|
| // isHashTraitsEmptyValue function, which selects either the emptyValue function
|
| // or the isEmptyValue function to check for empty values.
|
| -template <typename Traits, bool hasEmptyValueFunction> struct HashTraitsEmptyValueChecker;
|
| -template <typename Traits> struct HashTraitsEmptyValueChecker<Traits, true> {
|
| - template <typename T> static bool isEmptyValue(const T& value) { return Traits::isEmptyValue(value); }
|
| +template <typename Traits, bool hasEmptyValueFunction>
|
| +struct HashTraitsEmptyValueChecker;
|
| +template <typename Traits>
|
| +struct HashTraitsEmptyValueChecker<Traits, true> {
|
| + template <typename T>
|
| + static bool isEmptyValue(const T& value) {
|
| + return Traits::isEmptyValue(value);
|
| + }
|
| };
|
| -template <typename Traits> struct HashTraitsEmptyValueChecker<Traits, false> {
|
| - template <typename T> static bool isEmptyValue(const T& value) { return value == Traits::emptyValue(); }
|
| +template <typename Traits>
|
| +struct HashTraitsEmptyValueChecker<Traits, false> {
|
| + template <typename T>
|
| + static bool isEmptyValue(const T& value) {
|
| + return value == Traits::emptyValue();
|
| + }
|
| };
|
| -template <typename Traits, typename T> inline bool isHashTraitsEmptyValue(const T& value)
|
| -{
|
| - return HashTraitsEmptyValueChecker<Traits, Traits::hasIsEmptyValueFunction>::isEmptyValue(value);
|
| +template <typename Traits, typename T>
|
| +inline bool isHashTraitsEmptyValue(const T& value) {
|
| + return HashTraitsEmptyValueChecker<
|
| + Traits, Traits::hasIsEmptyValueFunction>::isEmptyValue(value);
|
| }
|
|
|
| template <typename FirstTraitsArg, typename SecondTraitsArg>
|
| -struct PairHashTraits : GenericHashTraits<std::pair<typename FirstTraitsArg::TraitType, typename SecondTraitsArg::TraitType>> {
|
| - typedef FirstTraitsArg FirstTraits;
|
| - typedef SecondTraitsArg SecondTraits;
|
| - typedef std::pair<typename FirstTraits::TraitType, typename SecondTraits::TraitType> TraitType;
|
| - typedef std::pair<typename FirstTraits::EmptyValueType, typename SecondTraits::EmptyValueType> EmptyValueType;
|
| -
|
| - static const bool emptyValueIsZero = FirstTraits::emptyValueIsZero && SecondTraits::emptyValueIsZero;
|
| - static EmptyValueType emptyValue() { return std::make_pair(FirstTraits::emptyValue(), SecondTraits::emptyValue()); }
|
| -
|
| - static const unsigned minimumTableSize = FirstTraits::minimumTableSize;
|
| -
|
| - static void constructDeletedValue(TraitType& slot, bool zeroValue)
|
| - {
|
| - FirstTraits::constructDeletedValue(slot.first, zeroValue);
|
| - // For GC collections the memory for the backing is zeroed when it is
|
| - // allocated, and the constructors may take advantage of that,
|
| - // especially if a GC occurs during insertion of an entry into the
|
| - // table. This slot is being marked deleted, but If the slot is reused
|
| - // at a later point, the same assumptions around memory zeroing must
|
| - // hold as they did at the initial allocation. Therefore we zero the
|
| - // value part of the slot here for GC collections.
|
| - if (zeroValue)
|
| - memset(reinterpret_cast<void*>(&slot.second), 0, sizeof(slot.second));
|
| - }
|
| - static bool isDeletedValue(const TraitType& value) { return FirstTraits::isDeletedValue(value.first); }
|
| +struct PairHashTraits
|
| + : GenericHashTraits<std::pair<typename FirstTraitsArg::TraitType,
|
| + typename SecondTraitsArg::TraitType>> {
|
| + typedef FirstTraitsArg FirstTraits;
|
| + typedef SecondTraitsArg SecondTraits;
|
| + typedef std::pair<typename FirstTraits::TraitType,
|
| + typename SecondTraits::TraitType>
|
| + TraitType;
|
| + typedef std::pair<typename FirstTraits::EmptyValueType,
|
| + typename SecondTraits::EmptyValueType>
|
| + EmptyValueType;
|
| +
|
| + static const bool emptyValueIsZero =
|
| + FirstTraits::emptyValueIsZero && SecondTraits::emptyValueIsZero;
|
| + static EmptyValueType emptyValue() {
|
| + return std::make_pair(FirstTraits::emptyValue(),
|
| + SecondTraits::emptyValue());
|
| + }
|
| +
|
| + static const unsigned minimumTableSize = FirstTraits::minimumTableSize;
|
| +
|
| + static void constructDeletedValue(TraitType& slot, bool zeroValue) {
|
| + FirstTraits::constructDeletedValue(slot.first, zeroValue);
|
| + // For GC collections the memory for the backing is zeroed when it is
|
| + // allocated, and the constructors may take advantage of that,
|
| + // especially if a GC occurs during insertion of an entry into the
|
| + // table. This slot is being marked deleted, but If the slot is reused
|
| + // at a later point, the same assumptions around memory zeroing must
|
| + // hold as they did at the initial allocation. Therefore we zero the
|
| + // value part of the slot here for GC collections.
|
| + if (zeroValue)
|
| + memset(reinterpret_cast<void*>(&slot.second), 0, sizeof(slot.second));
|
| + }
|
| + static bool isDeletedValue(const TraitType& value) {
|
| + return FirstTraits::isDeletedValue(value.first);
|
| + }
|
| };
|
|
|
| template <typename First, typename Second>
|
| -struct HashTraits<std::pair<First, Second>> : public PairHashTraits<HashTraits<First>, HashTraits<Second>> { };
|
| +struct HashTraits<std::pair<First, Second>>
|
| + : public PairHashTraits<HashTraits<First>, HashTraits<Second>> {};
|
|
|
| template <typename KeyTypeArg, typename ValueTypeArg>
|
| struct KeyValuePair {
|
| - typedef KeyTypeArg KeyType;
|
| -
|
| - KeyValuePair(const KeyTypeArg& _key, const ValueTypeArg& _value)
|
| - : key(_key)
|
| - , value(_value)
|
| - {
|
| - }
|
| -
|
| - template <typename OtherKeyType, typename OtherValueType>
|
| - KeyValuePair(const KeyValuePair<OtherKeyType, OtherValueType>& other)
|
| - : key(other.key)
|
| - , value(other.value)
|
| - {
|
| - }
|
| -
|
| - KeyTypeArg key;
|
| - ValueTypeArg value;
|
| + typedef KeyTypeArg KeyType;
|
| +
|
| + KeyValuePair(const KeyTypeArg& _key, const ValueTypeArg& _value)
|
| + : key(_key), value(_value) {}
|
| +
|
| + template <typename OtherKeyType, typename OtherValueType>
|
| + KeyValuePair(const KeyValuePair<OtherKeyType, OtherValueType>& other)
|
| + : key(other.key), value(other.value) {}
|
| +
|
| + KeyTypeArg key;
|
| + ValueTypeArg value;
|
| };
|
|
|
| template <typename KeyTraitsArg, typename ValueTraitsArg>
|
| -struct KeyValuePairHashTraits : GenericHashTraits<KeyValuePair<typename KeyTraitsArg::TraitType, typename ValueTraitsArg::TraitType>> {
|
| - typedef KeyTraitsArg KeyTraits;
|
| - typedef ValueTraitsArg ValueTraits;
|
| - typedef KeyValuePair<typename KeyTraits::TraitType, typename ValueTraits::TraitType> TraitType;
|
| - typedef KeyValuePair<typename KeyTraits::EmptyValueType, typename ValueTraits::EmptyValueType> EmptyValueType;
|
| -
|
| - static const bool emptyValueIsZero = KeyTraits::emptyValueIsZero && ValueTraits::emptyValueIsZero;
|
| - static EmptyValueType emptyValue() { return KeyValuePair<typename KeyTraits::EmptyValueType, typename ValueTraits::EmptyValueType>(KeyTraits::emptyValue(), ValueTraits::emptyValue()); }
|
| -
|
| - template <typename U = void>
|
| - struct NeedsTracingLazily {
|
| - static const bool value = NeedsTracingTrait<KeyTraits>::value || NeedsTracingTrait<ValueTraits>::value;
|
| - };
|
| - static const WeakHandlingFlag weakHandlingFlag = (KeyTraits::weakHandlingFlag == WeakHandlingInCollections || ValueTraits::weakHandlingFlag == WeakHandlingInCollections) ? WeakHandlingInCollections : NoWeakHandlingInCollections;
|
| -
|
| - static const unsigned minimumTableSize = KeyTraits::minimumTableSize;
|
| -
|
| - static void constructDeletedValue(TraitType& slot, bool zeroValue)
|
| - {
|
| - KeyTraits::constructDeletedValue(slot.key, zeroValue);
|
| - // See similar code in this file for why we need to do this.
|
| - if (zeroValue)
|
| - memset(reinterpret_cast<void*>(&slot.value), 0, sizeof(slot.value));
|
| - }
|
| - static bool isDeletedValue(const TraitType& value) { return KeyTraits::isDeletedValue(value.key); }
|
| +struct KeyValuePairHashTraits
|
| + : GenericHashTraits<KeyValuePair<typename KeyTraitsArg::TraitType,
|
| + typename ValueTraitsArg::TraitType>> {
|
| + typedef KeyTraitsArg KeyTraits;
|
| + typedef ValueTraitsArg ValueTraits;
|
| + typedef KeyValuePair<typename KeyTraits::TraitType,
|
| + typename ValueTraits::TraitType>
|
| + TraitType;
|
| + typedef KeyValuePair<typename KeyTraits::EmptyValueType,
|
| + typename ValueTraits::EmptyValueType>
|
| + EmptyValueType;
|
| +
|
| + static const bool emptyValueIsZero =
|
| + KeyTraits::emptyValueIsZero && ValueTraits::emptyValueIsZero;
|
| + static EmptyValueType emptyValue() {
|
| + return KeyValuePair<typename KeyTraits::EmptyValueType,
|
| + typename ValueTraits::EmptyValueType>(
|
| + KeyTraits::emptyValue(), ValueTraits::emptyValue());
|
| + }
|
| +
|
| + template <typename U = void>
|
| + struct NeedsTracingLazily {
|
| + static const bool value = NeedsTracingTrait<KeyTraits>::value ||
|
| + NeedsTracingTrait<ValueTraits>::value;
|
| + };
|
| + static const WeakHandlingFlag weakHandlingFlag =
|
| + (KeyTraits::weakHandlingFlag == WeakHandlingInCollections ||
|
| + ValueTraits::weakHandlingFlag == WeakHandlingInCollections)
|
| + ? WeakHandlingInCollections
|
| + : NoWeakHandlingInCollections;
|
| +
|
| + static const unsigned minimumTableSize = KeyTraits::minimumTableSize;
|
| +
|
| + static void constructDeletedValue(TraitType& slot, bool zeroValue) {
|
| + KeyTraits::constructDeletedValue(slot.key, zeroValue);
|
| + // See similar code in this file for why we need to do this.
|
| + if (zeroValue)
|
| + memset(reinterpret_cast<void*>(&slot.value), 0, sizeof(slot.value));
|
| + }
|
| + static bool isDeletedValue(const TraitType& value) {
|
| + return KeyTraits::isDeletedValue(value.key);
|
| + }
|
| };
|
|
|
| template <typename Key, typename Value>
|
| -struct HashTraits<KeyValuePair<Key, Value>> : public KeyValuePairHashTraits<HashTraits<Key>, HashTraits<Value>> { };
|
| +struct HashTraits<KeyValuePair<Key, Value>>
|
| + : public KeyValuePairHashTraits<HashTraits<Key>, HashTraits<Value>> {};
|
|
|
| template <typename T>
|
| struct NullableHashTraits : public HashTraits<T> {
|
| - static const bool emptyValueIsZero = false;
|
| - static T emptyValue() { return reinterpret_cast<T>(1); }
|
| + static const bool emptyValueIsZero = false;
|
| + static T emptyValue() { return reinterpret_cast<T>(1); }
|
| };
|
|
|
| // This is for tracing inside collections that have special support for weak
|
| @@ -309,14 +396,17 @@ struct NullableHashTraits : public HashTraits<T> {
|
| // handling. Default implementation for non-weak types is to use the regular
|
| // non-weak TraceTrait. Default implementation for types with weakness is to
|
| // call traceInCollection on the type's trait.
|
| -template <WeakHandlingFlag weakHandlingFlag, ShouldWeakPointersBeMarkedStrongly strongify, typename T, typename Traits>
|
| +template <WeakHandlingFlag weakHandlingFlag,
|
| + ShouldWeakPointersBeMarkedStrongly strongify,
|
| + typename T,
|
| + typename Traits>
|
| struct TraceInCollectionTrait;
|
|
|
| -} // namespace WTF
|
| +} // namespace WTF
|
|
|
| using WTF::HashTraits;
|
| using WTF::PairHashTraits;
|
| using WTF::NullableHashTraits;
|
| using WTF::SimpleClassHashTraits;
|
|
|
| -#endif // WTF_HashTraits_h
|
| +#endif // WTF_HashTraits_h
|
|
|