| OLD | NEW |
| 1 // Copyright 2010 the V8 project authors. All rights reserved. | 1 // Copyright 2010 the V8 project authors. All rights reserved. |
| 2 // Redistribution and use in source and binary forms, with or without | 2 // Redistribution and use in source and binary forms, with or without |
| 3 // modification, are permitted provided that the following conditions are | 3 // modification, are permitted provided that the following conditions are |
| 4 // met: | 4 // met: |
| 5 // | 5 // |
| 6 // * Redistributions of source code must retain the above copyright | 6 // * Redistributions of source code must retain the above copyright |
| 7 // notice, this list of conditions and the following disclaimer. | 7 // notice, this list of conditions and the following disclaimer. |
| 8 // * Redistributions in binary form must reproduce the above | 8 // * Redistributions in binary form must reproduce the above |
| 9 // copyright notice, this list of conditions and the following | 9 // copyright notice, this list of conditions and the following |
| 10 // disclaimer in the documentation and/or other materials provided | 10 // disclaimer in the documentation and/or other materials provided |
| (...skipping 26 matching lines...) Expand all Loading... |
| 37 // Double operations detection based on target architecture. | 37 // Double operations detection based on target architecture. |
| 38 // Linux uses a 80bit wide floating point stack on x86. This induces double | 38 // Linux uses a 80bit wide floating point stack on x86. This induces double |
| 39 // rounding, which in turn leads to wrong results. | 39 // rounding, which in turn leads to wrong results. |
| 40 // An easy way to test if the floating-point operations are correct is to | 40 // An easy way to test if the floating-point operations are correct is to |
| 41 // evaluate: 89255.0/1e22. If the floating-point stack is 64 bits wide then | 41 // evaluate: 89255.0/1e22. If the floating-point stack is 64 bits wide then |
| 42 // the result is equal to 89255e-22. | 42 // the result is equal to 89255e-22. |
| 43 // The best way to test this, is to create a division-function and to compare | 43 // The best way to test this, is to create a division-function and to compare |
| 44 // the output of the division with the expected result. (Inlining must be | 44 // the output of the division with the expected result. (Inlining must be |
| 45 // disabled.) | 45 // disabled.) |
| 46 // On Linux,x86 89255e-22 != Div_double(89255.0/1e22) | 46 // On Linux,x86 89255e-22 != Div_double(89255.0/1e22) |
| 47 #if defined(_M_X64) || defined(__x86_64__) || \ | 47 #if defined(_M_X64) || defined(__x86_64__) || defined(__ARMEL__) || \ |
| 48 defined(__ARMEL__) || defined(__aarch64__) || \ | 48 defined(__aarch64__) || defined(__MIPSEL__) |
| 49 defined(__MIPSEL__) | |
| 50 #define DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS 1 | 49 #define DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS 1 |
| 51 #elif defined(_M_IX86) || defined(__i386__) | 50 #elif defined(_M_IX86) || defined(__i386__) |
| 52 #if defined(_WIN32) | 51 #if defined(_WIN32) |
| 53 // Windows uses a 64bit wide floating point stack. | 52 // Windows uses a 64bit wide floating point stack. |
| 54 #define DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS 1 | 53 #define DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS 1 |
| 55 #else | 54 #else |
| 56 #undef DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS | 55 #undef DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS |
| 57 #endif // _WIN32 | 56 #endif // _WIN32 |
| 58 #else | 57 #else |
| 59 #error Target architecture was not detected as supported by Double-Conversion. | 58 #error Target architecture was not detected as supported by Double-Conversion. |
| 60 #endif | 59 #endif |
| 61 | 60 |
| 62 | |
| 63 #if defined(_WIN32) && !defined(__MINGW32__) | 61 #if defined(_WIN32) && !defined(__MINGW32__) |
| 64 | 62 |
| 65 typedef signed char int8_t; | 63 typedef signed char int8_t; |
| 66 typedef unsigned char uint8_t; | 64 typedef unsigned char uint8_t; |
| 67 typedef short int16_t; // NOLINT | 65 typedef short int16_t; // NOLINT |
| 68 typedef unsigned short uint16_t; // NOLINT | 66 typedef unsigned short uint16_t; // NOLINT |
| 69 typedef int int32_t; | 67 typedef int int32_t; |
| 70 typedef unsigned int uint32_t; | 68 typedef unsigned int uint32_t; |
| 71 typedef __int64 int64_t; | 69 typedef __int64 int64_t; |
| 72 typedef unsigned __int64 uint64_t; | 70 typedef unsigned __int64 uint64_t; |
| 73 // intptr_t and friends are defined in crtdefs.h through stdio.h. | 71 // intptr_t and friends are defined in crtdefs.h through stdio.h. |
| 74 | 72 |
| 75 #else | 73 #else |
| 76 | 74 |
| 77 #include <stdint.h> | 75 #include <stdint.h> |
| 78 | 76 |
| 79 #endif | 77 #endif |
| 80 | 78 |
| 81 // The following macro works on both 32 and 64-bit platforms. | 79 // The following macro works on both 32 and 64-bit platforms. |
| 82 // Usage: instead of writing 0x1234567890123456 | 80 // Usage: instead of writing 0x1234567890123456 |
| 83 // write UINT64_2PART_C(0x12345678,90123456); | 81 // write UINT64_2PART_C(0x12345678,90123456); |
| 84 #define UINT64_2PART_C(a, b) (((static_cast<uint64_t>(a) << 32) + 0x##b##u)) | 82 #define UINT64_2PART_C(a, b) (((static_cast<uint64_t>(a) << 32) + 0x##b##u)) |
| 85 | 83 |
| 86 | |
| 87 // The expression ARRAY_SIZE(a) is a compile-time constant of type | 84 // The expression ARRAY_SIZE(a) is a compile-time constant of type |
| 88 // size_t which represents the number of elements of the given | 85 // size_t which represents the number of elements of the given |
| 89 // array. You should only use ARRAY_SIZE on statically allocated | 86 // array. You should only use ARRAY_SIZE on statically allocated |
| 90 // arrays. | 87 // arrays. |
| 91 #define ARRAY_SIZE(a) \ | 88 #define ARRAY_SIZE(a) \ |
| 92 ((sizeof(a) / sizeof(*(a))) / \ | 89 ((sizeof(a) / sizeof(*(a))) / \ |
| 93 static_cast<size_t>(!(sizeof(a) % sizeof(*(a))))) | 90 static_cast<size_t>(!(sizeof(a) % sizeof(*(a))))) |
| 94 | 91 |
| 95 // A macro to disallow the evil copy constructor and operator= functions | 92 // A macro to disallow the evil copy constructor and operator= functions |
| 96 // This should be used in the private: declarations for a class | 93 // This should be used in the private: declarations for a class |
| 97 #ifndef DISALLOW_COPY_AND_ASSIGN | 94 #ifndef DISALLOW_COPY_AND_ASSIGN |
| 98 #define DISALLOW_COPY_AND_ASSIGN(TypeName) \ | 95 #define DISALLOW_COPY_AND_ASSIGN(TypeName) \ |
| 99 TypeName(const TypeName&); \ | 96 TypeName(const TypeName&); \ |
| 100 void operator=(const TypeName&) | 97 void operator=(const TypeName&) |
| 101 #endif // DISALLOW_COPY_AND_ASSIGN | 98 #endif // DISALLOW_COPY_AND_ASSIGN |
| 102 | 99 |
| 103 // A macro to disallow all the implicit constructors, namely the | 100 // A macro to disallow all the implicit constructors, namely the |
| 104 // default constructor, copy constructor and operator= functions. | 101 // default constructor, copy constructor and operator= functions. |
| 105 // | 102 // |
| 106 // This should be used in the private: declarations for a class | 103 // This should be used in the private: declarations for a class |
| 107 // that wants to prevent anyone from instantiating it. This is | 104 // that wants to prevent anyone from instantiating it. This is |
| 108 // especially useful for classes containing only static methods. | 105 // especially useful for classes containing only static methods. |
| 109 #define DISALLOW_IMPLICIT_CONSTRUCTORS(TypeName) \ | 106 #define DISALLOW_IMPLICIT_CONSTRUCTORS(TypeName) \ |
| 110 TypeName() = delete; \ | 107 TypeName() = delete; \ |
| 111 DISALLOW_COPY_AND_ASSIGN(TypeName) | 108 DISALLOW_COPY_AND_ASSIGN(TypeName) |
| 112 | 109 |
| 113 namespace WTF { | 110 namespace WTF { |
| 114 | 111 |
| 115 namespace double_conversion { | 112 namespace double_conversion { |
| 116 | 113 |
| 117 static const int kCharSize = sizeof(char); | 114 static const int kCharSize = sizeof(char); |
| 118 | 115 |
| 119 // Returns the maximum of the two parameters. | 116 // Returns the maximum of the two parameters. |
| 120 template <typename T> | 117 template <typename T> |
| 121 static T Max(T a, T b) { | 118 static T Max(T a, T b) { |
| 122 return a < b ? b : a; | 119 return a < b ? b : a; |
| 120 } |
| 121 |
| 122 // Returns the minimum of the two parameters. |
| 123 template <typename T> |
| 124 static T Min(T a, T b) { |
| 125 return a < b ? a : b; |
| 126 } |
| 127 |
| 128 inline int StrLength(const char* string) { |
| 129 size_t length = strlen(string); |
| 130 ASSERT(length == static_cast<size_t>(static_cast<int>(length))); |
| 131 return static_cast<int>(length); |
| 132 } |
| 133 |
| 134 // This is a simplified version of V8's Vector class. |
| 135 template <typename T> |
| 136 class Vector { |
| 137 public: |
| 138 Vector() : start_(NULL), length_(0) {} |
| 139 Vector(T* data, int length) : start_(data), length_(length) { |
| 140 ASSERT(length == 0 || (length > 0 && data != NULL)); |
| 141 } |
| 142 |
| 143 // Returns a vector using the same backing storage as this one, |
| 144 // spanning from and including 'from', to but not including 'to'. |
| 145 Vector<T> SubVector(int from, int to) { |
| 146 ASSERT(to <= length_); |
| 147 ASSERT(from < to); |
| 148 ASSERT(0 <= from); |
| 149 return Vector<T>(start() + from, to - from); |
| 150 } |
| 151 |
| 152 // Returns the length of the vector. |
| 153 int length() const { return length_; } |
| 154 |
| 155 // Returns whether or not the vector is empty. |
| 156 bool is_empty() const { return length_ == 0; } |
| 157 |
| 158 // Returns the pointer to the start of the data in the vector. |
| 159 T* start() const { return start_; } |
| 160 |
| 161 // Access individual vector elements - checks bounds in debug mode. |
| 162 T& operator[](int index) const { |
| 163 ASSERT(0 <= index && index < length_); |
| 164 return start_[index]; |
| 165 } |
| 166 |
| 167 T& first() { return start_[0]; } |
| 168 |
| 169 T& last() { return start_[length_ - 1]; } |
| 170 |
| 171 private: |
| 172 T* start_; |
| 173 int length_; |
| 174 }; |
| 175 |
| 176 // Helper class for building result strings in a character buffer. The |
| 177 // purpose of the class is to use safe operations that checks the |
| 178 // buffer bounds on all operations in debug mode. |
| 179 class StringBuilder { |
| 180 public: |
| 181 StringBuilder(char* buffer, int size) : buffer_(buffer, size), position_(0) {} |
| 182 |
| 183 ~StringBuilder() { |
| 184 if (!is_finalized()) |
| 185 Finalize(); |
| 186 } |
| 187 |
| 188 int size() const { return buffer_.length(); } |
| 189 |
| 190 // Get the current position in the builder. |
| 191 int position() const { |
| 192 ASSERT(!is_finalized()); |
| 193 return position_; |
| 194 } |
| 195 |
| 196 // Set the current position in the builder. |
| 197 void SetPosition(int position) { |
| 198 ASSERT(!is_finalized()); |
| 199 ASSERT_WITH_SECURITY_IMPLICATION(position < size()); |
| 200 position_ = position; |
| 201 } |
| 202 |
| 203 // Reset the position. |
| 204 void Reset() { position_ = 0; } |
| 205 |
| 206 // Add a single character to the builder. It is not allowed to add |
| 207 // 0-characters; use the Finalize() method to terminate the string |
| 208 // instead. |
| 209 void AddCharacter(char c) { |
| 210 ASSERT(c != '\0'); |
| 211 ASSERT(!is_finalized() && position_ < buffer_.length()); |
| 212 buffer_[position_++] = c; |
| 213 } |
| 214 |
| 215 // Add an entire string to the builder. Uses strlen() internally to |
| 216 // compute the length of the input string. |
| 217 void AddString(const char* s) { AddSubstring(s, StrLength(s)); } |
| 218 |
| 219 // Add the first 'n' characters of the given string 's' to the |
| 220 // builder. The input string must have enough characters. |
| 221 void AddSubstring(const char* s, int n) { |
| 222 ASSERT(!is_finalized() && position_ + n < buffer_.length()); |
| 223 ASSERT_WITH_SECURITY_IMPLICATION(static_cast<size_t>(n) <= strlen(s)); |
| 224 memcpy(&buffer_[position_], s, n * kCharSize); |
| 225 position_ += n; |
| 226 } |
| 227 |
| 228 // Add character padding to the builder. If count is non-positive, |
| 229 // nothing is added to the builder. |
| 230 void AddPadding(char c, int count) { |
| 231 for (int i = 0; i < count; i++) { |
| 232 AddCharacter(c); |
| 123 } | 233 } |
| 234 } |
| 124 | 235 |
| 236 // Finalize the string by 0-terminating it and returning the buffer. |
| 237 char* Finalize() { |
| 238 ASSERT(!is_finalized() && position_ < buffer_.length()); |
| 239 buffer_[position_] = '\0'; |
| 240 // Make sure nobody managed to add a 0-character to the |
| 241 // buffer while building the string. |
| 242 ASSERT(strlen(buffer_.start()) == static_cast<size_t>(position_)); |
| 243 position_ = -1; |
| 244 ASSERT(is_finalized()); |
| 245 return buffer_.start(); |
| 246 } |
| 125 | 247 |
| 126 // Returns the minimum of the two parameters. | 248 private: |
| 127 template <typename T> | 249 Vector<char> buffer_; |
| 128 static T Min(T a, T b) { | 250 int position_; |
| 129 return a < b ? a : b; | |
| 130 } | |
| 131 | 251 |
| 252 bool is_finalized() const { return position_ < 0; } |
| 132 | 253 |
| 133 inline int StrLength(const char* string) { | 254 DISALLOW_IMPLICIT_CONSTRUCTORS(StringBuilder); |
| 134 size_t length = strlen(string); | 255 }; |
| 135 ASSERT(length == static_cast<size_t>(static_cast<int>(length))); | |
| 136 return static_cast<int>(length); | |
| 137 } | |
| 138 | 256 |
| 139 // This is a simplified version of V8's Vector class. | 257 // The type-based aliasing rule allows the compiler to assume that pointers of |
| 140 template <typename T> | 258 // different types (for some definition of different) never alias each other. |
| 141 class Vector { | 259 // Thus the following code does not work: |
| 142 public: | 260 // |
| 143 Vector() : start_(NULL), length_(0) {} | 261 // float f = foo(); |
| 144 Vector(T* data, int length) : start_(data), length_(length) { | 262 // int fbits = *(int*)(&f); |
| 145 ASSERT(length == 0 || (length > 0 && data != NULL)); | 263 // |
| 146 } | 264 // The compiler 'knows' that the int pointer can't refer to f since the types |
| 265 // don't match, so the compiler may cache f in a register, leaving random data |
| 266 // in fbits. Using C++ style casts makes no difference, however a pointer to |
| 267 // char data is assumed to alias any other pointer. This is the 'memcpy |
| 268 // exception'. |
| 269 // |
| 270 // Bit_cast uses the memcpy exception to move the bits from a variable of one |
| 271 // type of a variable of another type. Of course the end result is likely to |
| 272 // be implementation dependent. Most compilers (gcc-4.2 and MSVC 2005) |
| 273 // will completely optimize BitCast away. |
| 274 // |
| 275 // There is an additional use for BitCast. |
| 276 // Recent gccs will warn when they see casts that may result in breakage due to |
| 277 // the type-based aliasing rule. If you have checked that there is no breakage |
| 278 // you can use BitCast to cast one pointer type to another. This confuses gcc |
| 279 // enough that it can no longer see that you have cast one pointer type to |
| 280 // another thus avoiding the warning. |
| 281 template <class Dest, class Source> |
| 282 inline Dest BitCast(const Source& source) { |
| 283 // Compile time assertion: sizeof(Dest) == sizeof(Source) |
| 284 // A compile error here means your Dest and Source have different sizes. |
| 285 static_assert(sizeof(Dest) == sizeof(Source), "sizes should be equal"); |
| 147 | 286 |
| 148 // Returns a vector using the same backing storage as this one, | 287 Dest dest; |
| 149 // spanning from and including 'from', to but not including 'to'. | 288 memcpy(&dest, &source, sizeof(dest)); |
| 150 Vector<T> SubVector(int from, int to) { | 289 return dest; |
| 151 ASSERT(to <= length_); | 290 } |
| 152 ASSERT(from < to); | |
| 153 ASSERT(0 <= from); | |
| 154 return Vector<T>(start() + from, to - from); | |
| 155 } | |
| 156 | 291 |
| 157 // Returns the length of the vector. | 292 template <class Dest, class Source> |
| 158 int length() const { return length_; } | 293 inline Dest BitCast(Source* source) { |
| 159 | 294 return BitCast<Dest>(reinterpret_cast<uintptr_t>(source)); |
| 160 // Returns whether or not the vector is empty. | 295 } |
| 161 bool is_empty() const { return length_ == 0; } | |
| 162 | |
| 163 // Returns the pointer to the start of the data in the vector. | |
| 164 T* start() const { return start_; } | |
| 165 | |
| 166 // Access individual vector elements - checks bounds in debug mode. | |
| 167 T& operator[](int index) const { | |
| 168 ASSERT(0 <= index && index < length_); | |
| 169 return start_[index]; | |
| 170 } | |
| 171 | |
| 172 T& first() { return start_[0]; } | |
| 173 | |
| 174 T& last() { return start_[length_ - 1]; } | |
| 175 | |
| 176 private: | |
| 177 T* start_; | |
| 178 int length_; | |
| 179 }; | |
| 180 | |
| 181 | |
| 182 // Helper class for building result strings in a character buffer. The | |
| 183 // purpose of the class is to use safe operations that checks the | |
| 184 // buffer bounds on all operations in debug mode. | |
| 185 class StringBuilder { | |
| 186 public: | |
| 187 StringBuilder(char* buffer, int size) | |
| 188 : buffer_(buffer, size), position_(0) { } | |
| 189 | |
| 190 ~StringBuilder() { if (!is_finalized()) Finalize(); } | |
| 191 | |
| 192 int size() const { return buffer_.length(); } | |
| 193 | |
| 194 // Get the current position in the builder. | |
| 195 int position() const { | |
| 196 ASSERT(!is_finalized()); | |
| 197 return position_; | |
| 198 } | |
| 199 | |
| 200 // Set the current position in the builder. | |
| 201 void SetPosition(int position) | |
| 202 { | |
| 203 ASSERT(!is_finalized()); | |
| 204 ASSERT_WITH_SECURITY_IMPLICATION(position < size()); | |
| 205 position_ = position; | |
| 206 } | |
| 207 | |
| 208 // Reset the position. | |
| 209 void Reset() { position_ = 0; } | |
| 210 | |
| 211 // Add a single character to the builder. It is not allowed to add | |
| 212 // 0-characters; use the Finalize() method to terminate the string | |
| 213 // instead. | |
| 214 void AddCharacter(char c) { | |
| 215 ASSERT(c != '\0'); | |
| 216 ASSERT(!is_finalized() && position_ < buffer_.length()); | |
| 217 buffer_[position_++] = c; | |
| 218 } | |
| 219 | |
| 220 // Add an entire string to the builder. Uses strlen() internally to | |
| 221 // compute the length of the input string. | |
| 222 void AddString(const char* s) { | |
| 223 AddSubstring(s, StrLength(s)); | |
| 224 } | |
| 225 | |
| 226 // Add the first 'n' characters of the given string 's' to the | |
| 227 // builder. The input string must have enough characters. | |
| 228 void AddSubstring(const char* s, int n) { | |
| 229 ASSERT(!is_finalized() && position_ + n < buffer_.length()); | |
| 230 ASSERT_WITH_SECURITY_IMPLICATION(static_cast<size_t>(n) <= strlen(s)
); | |
| 231 memcpy(&buffer_[position_], s, n * kCharSize); | |
| 232 position_ += n; | |
| 233 } | |
| 234 | |
| 235 | |
| 236 // Add character padding to the builder. If count is non-positive, | |
| 237 // nothing is added to the builder. | |
| 238 void AddPadding(char c, int count) { | |
| 239 for (int i = 0; i < count; i++) { | |
| 240 AddCharacter(c); | |
| 241 } | |
| 242 } | |
| 243 | |
| 244 // Finalize the string by 0-terminating it and returning the buffer. | |
| 245 char* Finalize() { | |
| 246 ASSERT(!is_finalized() && position_ < buffer_.length()); | |
| 247 buffer_[position_] = '\0'; | |
| 248 // Make sure nobody managed to add a 0-character to the | |
| 249 // buffer while building the string. | |
| 250 ASSERT(strlen(buffer_.start()) == static_cast<size_t>(position_)); | |
| 251 position_ = -1; | |
| 252 ASSERT(is_finalized()); | |
| 253 return buffer_.start(); | |
| 254 } | |
| 255 | |
| 256 private: | |
| 257 Vector<char> buffer_; | |
| 258 int position_; | |
| 259 | |
| 260 bool is_finalized() const { return position_ < 0; } | |
| 261 | |
| 262 DISALLOW_IMPLICIT_CONSTRUCTORS(StringBuilder); | |
| 263 }; | |
| 264 | |
| 265 // The type-based aliasing rule allows the compiler to assume that pointers
of | |
| 266 // different types (for some definition of different) never alias each other
. | |
| 267 // Thus the following code does not work: | |
| 268 // | |
| 269 // float f = foo(); | |
| 270 // int fbits = *(int*)(&f); | |
| 271 // | |
| 272 // The compiler 'knows' that the int pointer can't refer to f since the type
s | |
| 273 // don't match, so the compiler may cache f in a register, leaving random da
ta | |
| 274 // in fbits. Using C++ style casts makes no difference, however a pointer t
o | |
| 275 // char data is assumed to alias any other pointer. This is the 'memcpy | |
| 276 // exception'. | |
| 277 // | |
| 278 // Bit_cast uses the memcpy exception to move the bits from a variable of on
e | |
| 279 // type of a variable of another type. Of course the end result is likely t
o | |
| 280 // be implementation dependent. Most compilers (gcc-4.2 and MSVC 2005) | |
| 281 // will completely optimize BitCast away. | |
| 282 // | |
| 283 // There is an additional use for BitCast. | |
| 284 // Recent gccs will warn when they see casts that may result in breakage due
to | |
| 285 // the type-based aliasing rule. If you have checked that there is no break
age | |
| 286 // you can use BitCast to cast one pointer type to another. This confuses g
cc | |
| 287 // enough that it can no longer see that you have cast one pointer type to | |
| 288 // another thus avoiding the warning. | |
| 289 template <class Dest, class Source> | |
| 290 inline Dest BitCast(const Source& source) { | |
| 291 // Compile time assertion: sizeof(Dest) == sizeof(Source) | |
| 292 // A compile error here means your Dest and Source have different sizes. | |
| 293 static_assert(sizeof(Dest) == sizeof(Source), "sizes should be equal"); | |
| 294 | |
| 295 Dest dest; | |
| 296 memcpy(&dest, &source, sizeof(dest)); | |
| 297 return dest; | |
| 298 } | |
| 299 | |
| 300 template <class Dest, class Source> | |
| 301 inline Dest BitCast(Source* source) { | |
| 302 return BitCast<Dest>(reinterpret_cast<uintptr_t>(source)); | |
| 303 } | |
| 304 | 296 |
| 305 } // namespace double_conversion | 297 } // namespace double_conversion |
| 306 | 298 |
| 307 } // namespace WTF | 299 } // namespace WTF |
| 308 | 300 |
| 309 #endif // DOUBLE_CONVERSION_UTILS_H_ | 301 #endif // DOUBLE_CONVERSION_UTILS_H_ |
| OLD | NEW |