Index: third_party/sqlite/src/src/where.c |
diff --git a/third_party/sqlite/src/src/where.c b/third_party/sqlite/src/src/where.c |
index 793b01d1678edeebc90426661e82a05775a6e6a2..e86e26ef1ae8c5805e51a88a7495eb29115538d4 100644 |
--- a/third_party/sqlite/src/src/where.c |
+++ b/third_party/sqlite/src/src/where.c |
@@ -19,6 +19,15 @@ |
#include "sqliteInt.h" |
#include "whereInt.h" |
+/* Forward declaration of methods */ |
+static int whereLoopResize(sqlite3*, WhereLoop*, int); |
+ |
+/* Test variable that can be set to enable WHERE tracing */ |
+#if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) |
+/***/ int sqlite3WhereTrace = 0; |
+#endif |
+ |
+ |
/* |
** Return the estimated number of output rows from a WHERE clause |
*/ |
@@ -60,9 +69,11 @@ int sqlite3WhereBreakLabel(WhereInfo *pWInfo){ |
} |
/* |
-** Return TRUE if an UPDATE or DELETE statement can operate directly on |
-** the rowids returned by a WHERE clause. Return FALSE if doing an |
-** UPDATE or DELETE might change subsequent WHERE clause results. |
+** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to |
+** operate directly on the rowis returned by a WHERE clause. Return |
+** ONEPASS_SINGLE (1) if the statement can operation directly because only |
+** a single row is to be changed. Return ONEPASS_MULTI (2) if the one-pass |
+** optimization can be used on multiple |
** |
** If the ONEPASS optimization is used (if this routine returns true) |
** then also write the indices of open cursors used by ONEPASS |
@@ -76,7 +87,14 @@ int sqlite3WhereBreakLabel(WhereInfo *pWInfo){ |
*/ |
int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){ |
memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2); |
- return pWInfo->okOnePass; |
+#ifdef WHERETRACE_ENABLED |
+ if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){ |
+ sqlite3DebugPrintf("%s cursors: %d %d\n", |
+ pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI", |
+ aiCur[0], aiCur[1]); |
+ } |
+#endif |
+ return pWInfo->eOnePass; |
} |
/* |
@@ -128,152 +146,10 @@ whereOrInsert_done: |
} |
/* |
-** Initialize a preallocated WhereClause structure. |
-*/ |
-static void whereClauseInit( |
- WhereClause *pWC, /* The WhereClause to be initialized */ |
- WhereInfo *pWInfo /* The WHERE processing context */ |
-){ |
- pWC->pWInfo = pWInfo; |
- pWC->pOuter = 0; |
- pWC->nTerm = 0; |
- pWC->nSlot = ArraySize(pWC->aStatic); |
- pWC->a = pWC->aStatic; |
-} |
- |
-/* Forward reference */ |
-static void whereClauseClear(WhereClause*); |
- |
-/* |
-** Deallocate all memory associated with a WhereOrInfo object. |
-*/ |
-static void whereOrInfoDelete(sqlite3 *db, WhereOrInfo *p){ |
- whereClauseClear(&p->wc); |
- sqlite3DbFree(db, p); |
-} |
- |
-/* |
-** Deallocate all memory associated with a WhereAndInfo object. |
-*/ |
-static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){ |
- whereClauseClear(&p->wc); |
- sqlite3DbFree(db, p); |
-} |
- |
-/* |
-** Deallocate a WhereClause structure. The WhereClause structure |
-** itself is not freed. This routine is the inverse of whereClauseInit(). |
-*/ |
-static void whereClauseClear(WhereClause *pWC){ |
- int i; |
- WhereTerm *a; |
- sqlite3 *db = pWC->pWInfo->pParse->db; |
- for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){ |
- if( a->wtFlags & TERM_DYNAMIC ){ |
- sqlite3ExprDelete(db, a->pExpr); |
- } |
- if( a->wtFlags & TERM_ORINFO ){ |
- whereOrInfoDelete(db, a->u.pOrInfo); |
- }else if( a->wtFlags & TERM_ANDINFO ){ |
- whereAndInfoDelete(db, a->u.pAndInfo); |
- } |
- } |
- if( pWC->a!=pWC->aStatic ){ |
- sqlite3DbFree(db, pWC->a); |
- } |
-} |
- |
-/* |
-** Add a single new WhereTerm entry to the WhereClause object pWC. |
-** The new WhereTerm object is constructed from Expr p and with wtFlags. |
-** The index in pWC->a[] of the new WhereTerm is returned on success. |
-** 0 is returned if the new WhereTerm could not be added due to a memory |
-** allocation error. The memory allocation failure will be recorded in |
-** the db->mallocFailed flag so that higher-level functions can detect it. |
-** |
-** This routine will increase the size of the pWC->a[] array as necessary. |
-** |
-** If the wtFlags argument includes TERM_DYNAMIC, then responsibility |
-** for freeing the expression p is assumed by the WhereClause object pWC. |
-** This is true even if this routine fails to allocate a new WhereTerm. |
-** |
-** WARNING: This routine might reallocate the space used to store |
-** WhereTerms. All pointers to WhereTerms should be invalidated after |
-** calling this routine. Such pointers may be reinitialized by referencing |
-** the pWC->a[] array. |
-*/ |
-static int whereClauseInsert(WhereClause *pWC, Expr *p, u8 wtFlags){ |
- WhereTerm *pTerm; |
- int idx; |
- testcase( wtFlags & TERM_VIRTUAL ); |
- if( pWC->nTerm>=pWC->nSlot ){ |
- WhereTerm *pOld = pWC->a; |
- sqlite3 *db = pWC->pWInfo->pParse->db; |
- pWC->a = sqlite3DbMallocRaw(db, sizeof(pWC->a[0])*pWC->nSlot*2 ); |
- if( pWC->a==0 ){ |
- if( wtFlags & TERM_DYNAMIC ){ |
- sqlite3ExprDelete(db, p); |
- } |
- pWC->a = pOld; |
- return 0; |
- } |
- memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm); |
- if( pOld!=pWC->aStatic ){ |
- sqlite3DbFree(db, pOld); |
- } |
- pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]); |
- } |
- pTerm = &pWC->a[idx = pWC->nTerm++]; |
- if( p && ExprHasProperty(p, EP_Unlikely) ){ |
- pTerm->truthProb = sqlite3LogEst(p->iTable) - 99; |
- }else{ |
- pTerm->truthProb = 1; |
- } |
- pTerm->pExpr = sqlite3ExprSkipCollate(p); |
- pTerm->wtFlags = wtFlags; |
- pTerm->pWC = pWC; |
- pTerm->iParent = -1; |
- return idx; |
-} |
- |
-/* |
-** This routine identifies subexpressions in the WHERE clause where |
-** each subexpression is separated by the AND operator or some other |
-** operator specified in the op parameter. The WhereClause structure |
-** is filled with pointers to subexpressions. For example: |
-** |
-** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22) |
-** \________/ \_______________/ \________________/ |
-** slot[0] slot[1] slot[2] |
-** |
-** The original WHERE clause in pExpr is unaltered. All this routine |
-** does is make slot[] entries point to substructure within pExpr. |
-** |
-** In the previous sentence and in the diagram, "slot[]" refers to |
-** the WhereClause.a[] array. The slot[] array grows as needed to contain |
-** all terms of the WHERE clause. |
-*/ |
-static void whereSplit(WhereClause *pWC, Expr *pExpr, u8 op){ |
- pWC->op = op; |
- if( pExpr==0 ) return; |
- if( pExpr->op!=op ){ |
- whereClauseInsert(pWC, pExpr, 0); |
- }else{ |
- whereSplit(pWC, pExpr->pLeft, op); |
- whereSplit(pWC, pExpr->pRight, op); |
- } |
-} |
- |
-/* |
-** Initialize a WhereMaskSet object |
-*/ |
-#define initMaskSet(P) (P)->n=0 |
- |
-/* |
** Return the bitmask for the given cursor number. Return 0 if |
** iCursor is not in the set. |
*/ |
-static Bitmask getMask(WhereMaskSet *pMaskSet, int iCursor){ |
+Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){ |
int i; |
assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 ); |
for(i=0; i<pMaskSet->n; i++){ |
@@ -298,174 +174,45 @@ static void createMask(WhereMaskSet *pMaskSet, int iCursor){ |
} |
/* |
-** These routines walk (recursively) an expression tree and generate |
-** a bitmask indicating which tables are used in that expression |
-** tree. |
-*/ |
-static Bitmask exprListTableUsage(WhereMaskSet*, ExprList*); |
-static Bitmask exprSelectTableUsage(WhereMaskSet*, Select*); |
-static Bitmask exprTableUsage(WhereMaskSet *pMaskSet, Expr *p){ |
- Bitmask mask = 0; |
- if( p==0 ) return 0; |
- if( p->op==TK_COLUMN ){ |
- mask = getMask(pMaskSet, p->iTable); |
- return mask; |
- } |
- mask = exprTableUsage(pMaskSet, p->pRight); |
- mask |= exprTableUsage(pMaskSet, p->pLeft); |
- if( ExprHasProperty(p, EP_xIsSelect) ){ |
- mask |= exprSelectTableUsage(pMaskSet, p->x.pSelect); |
- }else{ |
- mask |= exprListTableUsage(pMaskSet, p->x.pList); |
- } |
- return mask; |
-} |
-static Bitmask exprListTableUsage(WhereMaskSet *pMaskSet, ExprList *pList){ |
- int i; |
- Bitmask mask = 0; |
- if( pList ){ |
- for(i=0; i<pList->nExpr; i++){ |
- mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr); |
- } |
- } |
- return mask; |
-} |
-static Bitmask exprSelectTableUsage(WhereMaskSet *pMaskSet, Select *pS){ |
- Bitmask mask = 0; |
- while( pS ){ |
- SrcList *pSrc = pS->pSrc; |
- mask |= exprListTableUsage(pMaskSet, pS->pEList); |
- mask |= exprListTableUsage(pMaskSet, pS->pGroupBy); |
- mask |= exprListTableUsage(pMaskSet, pS->pOrderBy); |
- mask |= exprTableUsage(pMaskSet, pS->pWhere); |
- mask |= exprTableUsage(pMaskSet, pS->pHaving); |
- if( ALWAYS(pSrc!=0) ){ |
- int i; |
- for(i=0; i<pSrc->nSrc; i++){ |
- mask |= exprSelectTableUsage(pMaskSet, pSrc->a[i].pSelect); |
- mask |= exprTableUsage(pMaskSet, pSrc->a[i].pOn); |
- } |
- } |
- pS = pS->pPrior; |
- } |
- return mask; |
-} |
- |
-/* |
-** Return TRUE if the given operator is one of the operators that is |
-** allowed for an indexable WHERE clause term. The allowed operators are |
-** "=", "<", ">", "<=", ">=", "IN", and "IS NULL" |
-*/ |
-static int allowedOp(int op){ |
- assert( TK_GT>TK_EQ && TK_GT<TK_GE ); |
- assert( TK_LT>TK_EQ && TK_LT<TK_GE ); |
- assert( TK_LE>TK_EQ && TK_LE<TK_GE ); |
- assert( TK_GE==TK_EQ+4 ); |
- return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL; |
-} |
- |
-/* |
-** Commute a comparison operator. Expressions of the form "X op Y" |
-** are converted into "Y op X". |
-** |
-** If left/right precedence rules come into play when determining the |
-** collating sequence, then COLLATE operators are adjusted to ensure |
-** that the collating sequence does not change. For example: |
-** "Y collate NOCASE op X" becomes "X op Y" because any collation sequence on |
-** the left hand side of a comparison overrides any collation sequence |
-** attached to the right. For the same reason the EP_Collate flag |
-** is not commuted. |
-*/ |
-static void exprCommute(Parse *pParse, Expr *pExpr){ |
- u16 expRight = (pExpr->pRight->flags & EP_Collate); |
- u16 expLeft = (pExpr->pLeft->flags & EP_Collate); |
- assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN ); |
- if( expRight==expLeft ){ |
- /* Either X and Y both have COLLATE operator or neither do */ |
- if( expRight ){ |
- /* Both X and Y have COLLATE operators. Make sure X is always |
- ** used by clearing the EP_Collate flag from Y. */ |
- pExpr->pRight->flags &= ~EP_Collate; |
- }else if( sqlite3ExprCollSeq(pParse, pExpr->pLeft)!=0 ){ |
- /* Neither X nor Y have COLLATE operators, but X has a non-default |
- ** collating sequence. So add the EP_Collate marker on X to cause |
- ** it to be searched first. */ |
- pExpr->pLeft->flags |= EP_Collate; |
- } |
- } |
- SWAP(Expr*,pExpr->pRight,pExpr->pLeft); |
- if( pExpr->op>=TK_GT ){ |
- assert( TK_LT==TK_GT+2 ); |
- assert( TK_GE==TK_LE+2 ); |
- assert( TK_GT>TK_EQ ); |
- assert( TK_GT<TK_LE ); |
- assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE ); |
- pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT; |
- } |
-} |
- |
-/* |
-** Translate from TK_xx operator to WO_xx bitmask. |
-*/ |
-static u16 operatorMask(int op){ |
- u16 c; |
- assert( allowedOp(op) ); |
- if( op==TK_IN ){ |
- c = WO_IN; |
- }else if( op==TK_ISNULL ){ |
- c = WO_ISNULL; |
- }else{ |
- assert( (WO_EQ<<(op-TK_EQ)) < 0x7fff ); |
- c = (u16)(WO_EQ<<(op-TK_EQ)); |
- } |
- assert( op!=TK_ISNULL || c==WO_ISNULL ); |
- assert( op!=TK_IN || c==WO_IN ); |
- assert( op!=TK_EQ || c==WO_EQ ); |
- assert( op!=TK_LT || c==WO_LT ); |
- assert( op!=TK_LE || c==WO_LE ); |
- assert( op!=TK_GT || c==WO_GT ); |
- assert( op!=TK_GE || c==WO_GE ); |
- return c; |
-} |
- |
-/* |
** Advance to the next WhereTerm that matches according to the criteria |
** established when the pScan object was initialized by whereScanInit(). |
** Return NULL if there are no more matching WhereTerms. |
*/ |
static WhereTerm *whereScanNext(WhereScan *pScan){ |
int iCur; /* The cursor on the LHS of the term */ |
- int iColumn; /* The column on the LHS of the term. -1 for IPK */ |
+ i16 iColumn; /* The column on the LHS of the term. -1 for IPK */ |
Expr *pX; /* An expression being tested */ |
WhereClause *pWC; /* Shorthand for pScan->pWC */ |
WhereTerm *pTerm; /* The term being tested */ |
int k = pScan->k; /* Where to start scanning */ |
while( pScan->iEquiv<=pScan->nEquiv ){ |
- iCur = pScan->aEquiv[pScan->iEquiv-2]; |
- iColumn = pScan->aEquiv[pScan->iEquiv-1]; |
+ iCur = pScan->aiCur[pScan->iEquiv-1]; |
+ iColumn = pScan->aiColumn[pScan->iEquiv-1]; |
+ if( iColumn==XN_EXPR && pScan->pIdxExpr==0 ) return 0; |
while( (pWC = pScan->pWC)!=0 ){ |
for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){ |
if( pTerm->leftCursor==iCur |
&& pTerm->u.leftColumn==iColumn |
- && (pScan->iEquiv<=2 || !ExprHasProperty(pTerm->pExpr, EP_FromJoin)) |
+ && (iColumn!=XN_EXPR |
+ || sqlite3ExprCompare(pTerm->pExpr->pLeft,pScan->pIdxExpr,iCur)==0) |
+ && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_FromJoin)) |
){ |
if( (pTerm->eOperator & WO_EQUIV)!=0 |
- && pScan->nEquiv<ArraySize(pScan->aEquiv) |
+ && pScan->nEquiv<ArraySize(pScan->aiCur) |
+ && (pX = sqlite3ExprSkipCollate(pTerm->pExpr->pRight))->op==TK_COLUMN |
){ |
int j; |
- pX = sqlite3ExprSkipCollate(pTerm->pExpr->pRight); |
- assert( pX->op==TK_COLUMN ); |
- for(j=0; j<pScan->nEquiv; j+=2){ |
- if( pScan->aEquiv[j]==pX->iTable |
- && pScan->aEquiv[j+1]==pX->iColumn ){ |
+ for(j=0; j<pScan->nEquiv; j++){ |
+ if( pScan->aiCur[j]==pX->iTable |
+ && pScan->aiColumn[j]==pX->iColumn ){ |
break; |
} |
} |
if( j==pScan->nEquiv ){ |
- pScan->aEquiv[j] = pX->iTable; |
- pScan->aEquiv[j+1] = pX->iColumn; |
- pScan->nEquiv += 2; |
+ pScan->aiCur[j] = pX->iTable; |
+ pScan->aiColumn[j] = pX->iColumn; |
+ pScan->nEquiv++; |
} |
} |
if( (pTerm->eOperator & pScan->opMask)!=0 ){ |
@@ -485,11 +232,12 @@ static WhereTerm *whereScanNext(WhereScan *pScan){ |
continue; |
} |
} |
- if( (pTerm->eOperator & WO_EQ)!=0 |
+ if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0 |
&& (pX = pTerm->pExpr->pRight)->op==TK_COLUMN |
- && pX->iTable==pScan->aEquiv[0] |
- && pX->iColumn==pScan->aEquiv[1] |
+ && pX->iTable==pScan->aiCur[0] |
+ && pX->iColumn==pScan->aiColumn[0] |
){ |
+ testcase( pTerm->eOperator & WO_IS ); |
continue; |
} |
pScan->k = k+1; |
@@ -502,7 +250,7 @@ static WhereTerm *whereScanNext(WhereScan *pScan){ |
} |
pScan->pWC = pScan->pOrigWC; |
k = 0; |
- pScan->iEquiv += 2; |
+ pScan->iEquiv++; |
} |
return 0; |
} |
@@ -531,16 +279,19 @@ static WhereTerm *whereScanInit( |
u32 opMask, /* Operator(s) to scan for */ |
Index *pIdx /* Must be compatible with this index */ |
){ |
- int j; |
+ int j = 0; |
/* memset(pScan, 0, sizeof(*pScan)); */ |
pScan->pOrigWC = pWC; |
pScan->pWC = pWC; |
+ pScan->pIdxExpr = 0; |
+ if( pIdx ){ |
+ j = iColumn; |
+ iColumn = pIdx->aiColumn[j]; |
+ if( iColumn==XN_EXPR ) pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr; |
+ } |
if( pIdx && iColumn>=0 ){ |
pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity; |
- for(j=0; pIdx->aiColumn[j]!=iColumn; j++){ |
- if( NEVER(j>pIdx->nColumn) ) return 0; |
- } |
pScan->zCollName = pIdx->azColl[j]; |
}else{ |
pScan->idxaff = 0; |
@@ -548,10 +299,10 @@ static WhereTerm *whereScanInit( |
} |
pScan->opMask = opMask; |
pScan->k = 0; |
- pScan->aEquiv[0] = iCur; |
- pScan->aEquiv[1] = iColumn; |
- pScan->nEquiv = 2; |
- pScan->iEquiv = 2; |
+ pScan->aiCur[0] = iCur; |
+ pScan->aiColumn[0] = iColumn; |
+ pScan->nEquiv = 1; |
+ pScan->iEquiv = 1; |
return whereScanNext(pScan); |
} |
@@ -561,15 +312,16 @@ static WhereTerm *whereScanInit( |
** the WO_xx operator codes specified by the op parameter. |
** Return a pointer to the term. Return 0 if not found. |
** |
+** If pIdx!=0 then search for terms matching the iColumn-th column of pIdx |
+** rather than the iColumn-th column of table iCur. |
+** |
** The term returned might by Y=<expr> if there is another constraint in |
** the WHERE clause that specifies that X=Y. Any such constraints will be |
** identified by the WO_EQUIV bit in the pTerm->eOperator field. The |
-** aEquiv[] array holds X and all its equivalents, with each SQL variable |
-** taking up two slots in aEquiv[]. The first slot is for the cursor number |
-** and the second is for the column number. There are 22 slots in aEquiv[] |
-** so that means we can look for X plus up to 10 other equivalent values. |
-** Hence a search for X will return <expr> if X=A1 and A1=A2 and A2=A3 |
-** and ... and A9=A10 and A10=<expr>. |
+** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11 |
+** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10 |
+** other equivalent values. Hence a search for X will return <expr> if X=A1 |
+** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>. |
** |
** If there are multiple terms in the WHERE clause of the form "X <op> <expr>" |
** then try for the one with no dependencies on <expr> - in other words where |
@@ -578,7 +330,7 @@ static WhereTerm *whereScanInit( |
** the form "X <op> <const-expr>" exist. If no terms with a constant RHS |
** exist, try to return a term that does not use WO_EQUIV. |
*/ |
-static WhereTerm *findTerm( |
+WhereTerm *sqlite3WhereFindTerm( |
WhereClause *pWC, /* The WHERE clause to be searched */ |
int iCur, /* Cursor number of LHS */ |
int iColumn, /* Column number of LHS */ |
@@ -591,9 +343,11 @@ static WhereTerm *findTerm( |
WhereScan scan; |
p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx); |
+ op &= WO_EQ|WO_IS; |
while( p ){ |
if( (p->prereqRight & notReady)==0 ){ |
- if( p->prereqRight==0 && (p->eOperator&WO_EQ)!=0 ){ |
+ if( p->prereqRight==0 && (p->eOperator&op)!=0 ){ |
+ testcase( p->eOperator & WO_IS ); |
return p; |
} |
if( pResult==0 ) pResult = p; |
@@ -603,892 +357,171 @@ static WhereTerm *findTerm( |
return pResult; |
} |
-/* Forward reference */ |
-static void exprAnalyze(SrcList*, WhereClause*, int); |
- |
/* |
-** Call exprAnalyze on all terms in a WHERE clause. |
+** This function searches pList for an entry that matches the iCol-th column |
+** of index pIdx. |
+** |
+** If such an expression is found, its index in pList->a[] is returned. If |
+** no expression is found, -1 is returned. |
*/ |
-static void exprAnalyzeAll( |
- SrcList *pTabList, /* the FROM clause */ |
- WhereClause *pWC /* the WHERE clause to be analyzed */ |
+static int findIndexCol( |
+ Parse *pParse, /* Parse context */ |
+ ExprList *pList, /* Expression list to search */ |
+ int iBase, /* Cursor for table associated with pIdx */ |
+ Index *pIdx, /* Index to match column of */ |
+ int iCol /* Column of index to match */ |
){ |
int i; |
- for(i=pWC->nTerm-1; i>=0; i--){ |
- exprAnalyze(pTabList, pWC, i); |
- } |
-} |
+ const char *zColl = pIdx->azColl[iCol]; |
-#ifndef SQLITE_OMIT_LIKE_OPTIMIZATION |
-/* |
-** Check to see if the given expression is a LIKE or GLOB operator that |
-** can be optimized using inequality constraints. Return TRUE if it is |
-** so and false if not. |
-** |
-** In order for the operator to be optimizible, the RHS must be a string |
-** literal that does not begin with a wildcard. |
-*/ |
-static int isLikeOrGlob( |
- Parse *pParse, /* Parsing and code generating context */ |
- Expr *pExpr, /* Test this expression */ |
- Expr **ppPrefix, /* Pointer to TK_STRING expression with pattern prefix */ |
- int *pisComplete, /* True if the only wildcard is % in the last character */ |
- int *pnoCase /* True if uppercase is equivalent to lowercase */ |
-){ |
- const char *z = 0; /* String on RHS of LIKE operator */ |
- Expr *pRight, *pLeft; /* Right and left size of LIKE operator */ |
- ExprList *pList; /* List of operands to the LIKE operator */ |
- int c; /* One character in z[] */ |
- int cnt; /* Number of non-wildcard prefix characters */ |
- char wc[3]; /* Wildcard characters */ |
- sqlite3 *db = pParse->db; /* Database connection */ |
- sqlite3_value *pVal = 0; |
- int op; /* Opcode of pRight */ |
- |
- if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){ |
- return 0; |
- } |
-#ifdef SQLITE_EBCDIC |
- if( *pnoCase ) return 0; |
-#endif |
- pList = pExpr->x.pList; |
- pLeft = pList->a[1].pExpr; |
- if( pLeft->op!=TK_COLUMN |
- || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT |
- || IsVirtual(pLeft->pTab) |
- ){ |
- /* IMP: R-02065-49465 The left-hand side of the LIKE or GLOB operator must |
- ** be the name of an indexed column with TEXT affinity. */ |
- return 0; |
- } |
- assert( pLeft->iColumn!=(-1) ); /* Because IPK never has AFF_TEXT */ |
- |
- pRight = sqlite3ExprSkipCollate(pList->a[0].pExpr); |
- op = pRight->op; |
- if( op==TK_VARIABLE ){ |
- Vdbe *pReprepare = pParse->pReprepare; |
- int iCol = pRight->iColumn; |
- pVal = sqlite3VdbeGetBoundValue(pReprepare, iCol, SQLITE_AFF_NONE); |
- if( pVal && sqlite3_value_type(pVal)==SQLITE_TEXT ){ |
- z = (char *)sqlite3_value_text(pVal); |
- } |
- sqlite3VdbeSetVarmask(pParse->pVdbe, iCol); |
- assert( pRight->op==TK_VARIABLE || pRight->op==TK_REGISTER ); |
- }else if( op==TK_STRING ){ |
- z = pRight->u.zToken; |
- } |
- if( z ){ |
- cnt = 0; |
- while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){ |
- cnt++; |
- } |
- if( cnt!=0 && 255!=(u8)z[cnt-1] ){ |
- Expr *pPrefix; |
- *pisComplete = c==wc[0] && z[cnt+1]==0; |
- pPrefix = sqlite3Expr(db, TK_STRING, z); |
- if( pPrefix ) pPrefix->u.zToken[cnt] = 0; |
- *ppPrefix = pPrefix; |
- if( op==TK_VARIABLE ){ |
- Vdbe *v = pParse->pVdbe; |
- sqlite3VdbeSetVarmask(v, pRight->iColumn); |
- if( *pisComplete && pRight->u.zToken[1] ){ |
- /* If the rhs of the LIKE expression is a variable, and the current |
- ** value of the variable means there is no need to invoke the LIKE |
- ** function, then no OP_Variable will be added to the program. |
- ** This causes problems for the sqlite3_bind_parameter_name() |
- ** API. To work around them, add a dummy OP_Variable here. |
- */ |
- int r1 = sqlite3GetTempReg(pParse); |
- sqlite3ExprCodeTarget(pParse, pRight, r1); |
- sqlite3VdbeChangeP3(v, sqlite3VdbeCurrentAddr(v)-1, 0); |
- sqlite3ReleaseTempReg(pParse, r1); |
- } |
+ for(i=0; i<pList->nExpr; i++){ |
+ Expr *p = sqlite3ExprSkipCollate(pList->a[i].pExpr); |
+ if( p->op==TK_COLUMN |
+ && p->iColumn==pIdx->aiColumn[iCol] |
+ && p->iTable==iBase |
+ ){ |
+ CollSeq *pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr); |
+ if( pColl && 0==sqlite3StrICmp(pColl->zName, zColl) ){ |
+ return i; |
} |
- }else{ |
- z = 0; |
} |
} |
- sqlite3ValueFree(pVal); |
- return (z!=0); |
+ return -1; |
} |
-#endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ |
- |
-#ifndef SQLITE_OMIT_VIRTUALTABLE |
/* |
-** Check to see if the given expression is of the form |
-** |
-** column MATCH expr |
-** |
-** If it is then return TRUE. If not, return FALSE. |
+** Return TRUE if the iCol-th column of index pIdx is NOT NULL |
*/ |
-static int isMatchOfColumn( |
- Expr *pExpr /* Test this expression */ |
-){ |
- ExprList *pList; |
- |
- if( pExpr->op!=TK_FUNCTION ){ |
- return 0; |
- } |
- if( sqlite3StrICmp(pExpr->u.zToken,"match")!=0 ){ |
- return 0; |
- } |
- pList = pExpr->x.pList; |
- if( pList->nExpr!=2 ){ |
- return 0; |
- } |
- if( pList->a[1].pExpr->op != TK_COLUMN ){ |
- return 0; |
- } |
- return 1; |
-} |
-#endif /* SQLITE_OMIT_VIRTUALTABLE */ |
+static int indexColumnNotNull(Index *pIdx, int iCol){ |
+ int j; |
+ assert( pIdx!=0 ); |
+ assert( iCol>=0 && iCol<pIdx->nColumn ); |
+ j = pIdx->aiColumn[iCol]; |
+ if( j>=0 ){ |
+ return pIdx->pTable->aCol[j].notNull; |
+ }else if( j==(-1) ){ |
+ return 1; |
+ }else{ |
+ assert( j==(-2) ); |
+ return 0; /* Assume an indexed expression can always yield a NULL */ |
-/* |
-** If the pBase expression originated in the ON or USING clause of |
-** a join, then transfer the appropriate markings over to derived. |
-*/ |
-static void transferJoinMarkings(Expr *pDerived, Expr *pBase){ |
- if( pDerived ){ |
- pDerived->flags |= pBase->flags & EP_FromJoin; |
- pDerived->iRightJoinTable = pBase->iRightJoinTable; |
} |
} |
-#if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) |
/* |
-** Analyze a term that consists of two or more OR-connected |
-** subterms. So in: |
-** |
-** ... WHERE (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13) |
-** ^^^^^^^^^^^^^^^^^^^^ |
-** |
-** This routine analyzes terms such as the middle term in the above example. |
-** A WhereOrTerm object is computed and attached to the term under |
-** analysis, regardless of the outcome of the analysis. Hence: |
-** |
-** WhereTerm.wtFlags |= TERM_ORINFO |
-** WhereTerm.u.pOrInfo = a dynamically allocated WhereOrTerm object |
-** |
-** The term being analyzed must have two or more of OR-connected subterms. |
-** A single subterm might be a set of AND-connected sub-subterms. |
-** Examples of terms under analysis: |
-** |
-** (A) t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5 |
-** (B) x=expr1 OR expr2=x OR x=expr3 |
-** (C) t1.x=t2.y OR (t1.x=t2.z AND t1.y=15) |
-** (D) x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*') |
-** (E) (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6) |
-** |
-** CASE 1: |
-** |
-** If all subterms are of the form T.C=expr for some single column of C and |
-** a single table T (as shown in example B above) then create a new virtual |
-** term that is an equivalent IN expression. In other words, if the term |
-** being analyzed is: |
-** |
-** x = expr1 OR expr2 = x OR x = expr3 |
-** |
-** then create a new virtual term like this: |
-** |
-** x IN (expr1,expr2,expr3) |
-** |
-** CASE 2: |
-** |
-** If all subterms are indexable by a single table T, then set |
-** |
-** WhereTerm.eOperator = WO_OR |
-** WhereTerm.u.pOrInfo->indexable |= the cursor number for table T |
-** |
-** A subterm is "indexable" if it is of the form |
-** "T.C <op> <expr>" where C is any column of table T and |
-** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN". |
-** A subterm is also indexable if it is an AND of two or more |
-** subsubterms at least one of which is indexable. Indexable AND |
-** subterms have their eOperator set to WO_AND and they have |
-** u.pAndInfo set to a dynamically allocated WhereAndTerm object. |
-** |
-** From another point of view, "indexable" means that the subterm could |
-** potentially be used with an index if an appropriate index exists. |
-** This analysis does not consider whether or not the index exists; that |
-** is decided elsewhere. This analysis only looks at whether subterms |
-** appropriate for indexing exist. |
-** |
-** All examples A through E above satisfy case 2. But if a term |
-** also satisfies case 1 (such as B) we know that the optimizer will |
-** always prefer case 1, so in that case we pretend that case 2 is not |
-** satisfied. |
-** |
-** It might be the case that multiple tables are indexable. For example, |
-** (E) above is indexable on tables P, Q, and R. |
-** |
-** Terms that satisfy case 2 are candidates for lookup by using |
-** separate indices to find rowids for each subterm and composing |
-** the union of all rowids using a RowSet object. This is similar |
-** to "bitmap indices" in other database engines. |
-** |
-** OTHERWISE: |
+** Return true if the DISTINCT expression-list passed as the third argument |
+** is redundant. |
** |
-** If neither case 1 nor case 2 apply, then leave the eOperator set to |
-** zero. This term is not useful for search. |
+** A DISTINCT list is redundant if any subset of the columns in the |
+** DISTINCT list are collectively unique and individually non-null. |
*/ |
-static void exprAnalyzeOrTerm( |
- SrcList *pSrc, /* the FROM clause */ |
- WhereClause *pWC, /* the complete WHERE clause */ |
- int idxTerm /* Index of the OR-term to be analyzed */ |
+static int isDistinctRedundant( |
+ Parse *pParse, /* Parsing context */ |
+ SrcList *pTabList, /* The FROM clause */ |
+ WhereClause *pWC, /* The WHERE clause */ |
+ ExprList *pDistinct /* The result set that needs to be DISTINCT */ |
){ |
- WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */ |
- Parse *pParse = pWInfo->pParse; /* Parser context */ |
- sqlite3 *db = pParse->db; /* Database connection */ |
- WhereTerm *pTerm = &pWC->a[idxTerm]; /* The term to be analyzed */ |
- Expr *pExpr = pTerm->pExpr; /* The expression of the term */ |
- int i; /* Loop counters */ |
- WhereClause *pOrWc; /* Breakup of pTerm into subterms */ |
- WhereTerm *pOrTerm; /* A Sub-term within the pOrWc */ |
- WhereOrInfo *pOrInfo; /* Additional information associated with pTerm */ |
- Bitmask chngToIN; /* Tables that might satisfy case 1 */ |
- Bitmask indexable; /* Tables that are indexable, satisfying case 2 */ |
+ Table *pTab; |
+ Index *pIdx; |
+ int i; |
+ int iBase; |
- /* |
- ** Break the OR clause into its separate subterms. The subterms are |
- ** stored in a WhereClause structure containing within the WhereOrInfo |
- ** object that is attached to the original OR clause term. |
- */ |
- assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 ); |
- assert( pExpr->op==TK_OR ); |
- pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo)); |
- if( pOrInfo==0 ) return; |
- pTerm->wtFlags |= TERM_ORINFO; |
- pOrWc = &pOrInfo->wc; |
- whereClauseInit(pOrWc, pWInfo); |
- whereSplit(pOrWc, pExpr, TK_OR); |
- exprAnalyzeAll(pSrc, pOrWc); |
- if( db->mallocFailed ) return; |
- assert( pOrWc->nTerm>=2 ); |
+ /* If there is more than one table or sub-select in the FROM clause of |
+ ** this query, then it will not be possible to show that the DISTINCT |
+ ** clause is redundant. */ |
+ if( pTabList->nSrc!=1 ) return 0; |
+ iBase = pTabList->a[0].iCursor; |
+ pTab = pTabList->a[0].pTab; |
- /* |
- ** Compute the set of tables that might satisfy cases 1 or 2. |
+ /* If any of the expressions is an IPK column on table iBase, then return |
+ ** true. Note: The (p->iTable==iBase) part of this test may be false if the |
+ ** current SELECT is a correlated sub-query. |
*/ |
- indexable = ~(Bitmask)0; |
- chngToIN = ~(Bitmask)0; |
- for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){ |
- if( (pOrTerm->eOperator & WO_SINGLE)==0 ){ |
- WhereAndInfo *pAndInfo; |
- assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 ); |
- chngToIN = 0; |
- pAndInfo = sqlite3DbMallocRaw(db, sizeof(*pAndInfo)); |
- if( pAndInfo ){ |
- WhereClause *pAndWC; |
- WhereTerm *pAndTerm; |
- int j; |
- Bitmask b = 0; |
- pOrTerm->u.pAndInfo = pAndInfo; |
- pOrTerm->wtFlags |= TERM_ANDINFO; |
- pOrTerm->eOperator = WO_AND; |
- pAndWC = &pAndInfo->wc; |
- whereClauseInit(pAndWC, pWC->pWInfo); |
- whereSplit(pAndWC, pOrTerm->pExpr, TK_AND); |
- exprAnalyzeAll(pSrc, pAndWC); |
- pAndWC->pOuter = pWC; |
- testcase( db->mallocFailed ); |
- if( !db->mallocFailed ){ |
- for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){ |
- assert( pAndTerm->pExpr ); |
- if( allowedOp(pAndTerm->pExpr->op) ){ |
- b |= getMask(&pWInfo->sMaskSet, pAndTerm->leftCursor); |
- } |
- } |
- } |
- indexable &= b; |
- } |
- }else if( pOrTerm->wtFlags & TERM_COPIED ){ |
- /* Skip this term for now. We revisit it when we process the |
- ** corresponding TERM_VIRTUAL term */ |
- }else{ |
- Bitmask b; |
- b = getMask(&pWInfo->sMaskSet, pOrTerm->leftCursor); |
- if( pOrTerm->wtFlags & TERM_VIRTUAL ){ |
- WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent]; |
- b |= getMask(&pWInfo->sMaskSet, pOther->leftCursor); |
- } |
- indexable &= b; |
- if( (pOrTerm->eOperator & WO_EQ)==0 ){ |
- chngToIN = 0; |
- }else{ |
- chngToIN &= b; |
- } |
- } |
+ for(i=0; i<pDistinct->nExpr; i++){ |
+ Expr *p = sqlite3ExprSkipCollate(pDistinct->a[i].pExpr); |
+ if( p->op==TK_COLUMN && p->iTable==iBase && p->iColumn<0 ) return 1; |
} |
- /* |
- ** Record the set of tables that satisfy case 2. The set might be |
- ** empty. |
- */ |
- pOrInfo->indexable = indexable; |
- pTerm->eOperator = indexable==0 ? 0 : WO_OR; |
- |
- /* |
- ** chngToIN holds a set of tables that *might* satisfy case 1. But |
- ** we have to do some additional checking to see if case 1 really |
- ** is satisfied. |
+ /* Loop through all indices on the table, checking each to see if it makes |
+ ** the DISTINCT qualifier redundant. It does so if: |
** |
- ** chngToIN will hold either 0, 1, or 2 bits. The 0-bit case means |
- ** that there is no possibility of transforming the OR clause into an |
- ** IN operator because one or more terms in the OR clause contain |
- ** something other than == on a column in the single table. The 1-bit |
- ** case means that every term of the OR clause is of the form |
- ** "table.column=expr" for some single table. The one bit that is set |
- ** will correspond to the common table. We still need to check to make |
- ** sure the same column is used on all terms. The 2-bit case is when |
- ** the all terms are of the form "table1.column=table2.column". It |
- ** might be possible to form an IN operator with either table1.column |
- ** or table2.column as the LHS if either is common to every term of |
- ** the OR clause. |
+ ** 1. The index is itself UNIQUE, and |
+ ** |
+ ** 2. All of the columns in the index are either part of the pDistinct |
+ ** list, or else the WHERE clause contains a term of the form "col=X", |
+ ** where X is a constant value. The collation sequences of the |
+ ** comparison and select-list expressions must match those of the index. |
** |
- ** Note that terms of the form "table.column1=table.column2" (the |
- ** same table on both sizes of the ==) cannot be optimized. |
+ ** 3. All of those index columns for which the WHERE clause does not |
+ ** contain a "col=X" term are subject to a NOT NULL constraint. |
*/ |
- if( chngToIN ){ |
- int okToChngToIN = 0; /* True if the conversion to IN is valid */ |
- int iColumn = -1; /* Column index on lhs of IN operator */ |
- int iCursor = -1; /* Table cursor common to all terms */ |
- int j = 0; /* Loop counter */ |
- |
- /* Search for a table and column that appears on one side or the |
- ** other of the == operator in every subterm. That table and column |
- ** will be recorded in iCursor and iColumn. There might not be any |
- ** such table and column. Set okToChngToIN if an appropriate table |
- ** and column is found but leave okToChngToIN false if not found. |
- */ |
- for(j=0; j<2 && !okToChngToIN; j++){ |
- pOrTerm = pOrWc->a; |
- for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){ |
- assert( pOrTerm->eOperator & WO_EQ ); |
- pOrTerm->wtFlags &= ~TERM_OR_OK; |
- if( pOrTerm->leftCursor==iCursor ){ |
- /* This is the 2-bit case and we are on the second iteration and |
- ** current term is from the first iteration. So skip this term. */ |
- assert( j==1 ); |
- continue; |
- } |
- if( (chngToIN & getMask(&pWInfo->sMaskSet, pOrTerm->leftCursor))==0 ){ |
- /* This term must be of the form t1.a==t2.b where t2 is in the |
- ** chngToIN set but t1 is not. This term will be either preceded |
- ** or follwed by an inverted copy (t2.b==t1.a). Skip this term |
- ** and use its inversion. */ |
- testcase( pOrTerm->wtFlags & TERM_COPIED ); |
- testcase( pOrTerm->wtFlags & TERM_VIRTUAL ); |
- assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) ); |
- continue; |
- } |
- iColumn = pOrTerm->u.leftColumn; |
- iCursor = pOrTerm->leftCursor; |
- break; |
- } |
- if( i<0 ){ |
- /* No candidate table+column was found. This can only occur |
- ** on the second iteration */ |
- assert( j==1 ); |
- assert( IsPowerOfTwo(chngToIN) ); |
- assert( chngToIN==getMask(&pWInfo->sMaskSet, iCursor) ); |
- break; |
- } |
- testcase( j==1 ); |
- |
- /* We have found a candidate table and column. Check to see if that |
- ** table and column is common to every term in the OR clause */ |
- okToChngToIN = 1; |
- for(; i>=0 && okToChngToIN; i--, pOrTerm++){ |
- assert( pOrTerm->eOperator & WO_EQ ); |
- if( pOrTerm->leftCursor!=iCursor ){ |
- pOrTerm->wtFlags &= ~TERM_OR_OK; |
- }else if( pOrTerm->u.leftColumn!=iColumn ){ |
- okToChngToIN = 0; |
- }else{ |
- int affLeft, affRight; |
- /* If the right-hand side is also a column, then the affinities |
- ** of both right and left sides must be such that no type |
- ** conversions are required on the right. (Ticket #2249) |
- */ |
- affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight); |
- affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft); |
- if( affRight!=0 && affRight!=affLeft ){ |
- okToChngToIN = 0; |
- }else{ |
- pOrTerm->wtFlags |= TERM_OR_OK; |
- } |
- } |
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ |
+ if( !IsUniqueIndex(pIdx) ) continue; |
+ for(i=0; i<pIdx->nKeyCol; i++){ |
+ if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){ |
+ if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break; |
+ if( indexColumnNotNull(pIdx, i)==0 ) break; |
} |
} |
- |
- /* At this point, okToChngToIN is true if original pTerm satisfies |
- ** case 1. In that case, construct a new virtual term that is |
- ** pTerm converted into an IN operator. |
- */ |
- if( okToChngToIN ){ |
- Expr *pDup; /* A transient duplicate expression */ |
- ExprList *pList = 0; /* The RHS of the IN operator */ |
- Expr *pLeft = 0; /* The LHS of the IN operator */ |
- Expr *pNew; /* The complete IN operator */ |
- |
- for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){ |
- if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue; |
- assert( pOrTerm->eOperator & WO_EQ ); |
- assert( pOrTerm->leftCursor==iCursor ); |
- assert( pOrTerm->u.leftColumn==iColumn ); |
- pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0); |
- pList = sqlite3ExprListAppend(pWInfo->pParse, pList, pDup); |
- pLeft = pOrTerm->pExpr->pLeft; |
- } |
- assert( pLeft!=0 ); |
- pDup = sqlite3ExprDup(db, pLeft, 0); |
- pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0, 0); |
- if( pNew ){ |
- int idxNew; |
- transferJoinMarkings(pNew, pExpr); |
- assert( !ExprHasProperty(pNew, EP_xIsSelect) ); |
- pNew->x.pList = pList; |
- idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); |
- testcase( idxNew==0 ); |
- exprAnalyze(pSrc, pWC, idxNew); |
- pTerm = &pWC->a[idxTerm]; |
- pWC->a[idxNew].iParent = idxTerm; |
- pTerm->nChild = 1; |
- }else{ |
- sqlite3ExprListDelete(db, pList); |
- } |
- pTerm->eOperator = WO_NOOP; /* case 1 trumps case 2 */ |
+ if( i==pIdx->nKeyCol ){ |
+ /* This index implies that the DISTINCT qualifier is redundant. */ |
+ return 1; |
} |
} |
+ |
+ return 0; |
} |
-#endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */ |
+ |
/* |
-** The input to this routine is an WhereTerm structure with only the |
-** "pExpr" field filled in. The job of this routine is to analyze the |
-** subexpression and populate all the other fields of the WhereTerm |
-** structure. |
-** |
-** If the expression is of the form "<expr> <op> X" it gets commuted |
-** to the standard form of "X <op> <expr>". |
-** |
-** If the expression is of the form "X <op> Y" where both X and Y are |
-** columns, then the original expression is unchanged and a new virtual |
-** term of the form "Y <op> X" is added to the WHERE clause and |
-** analyzed separately. The original term is marked with TERM_COPIED |
-** and the new term is marked with TERM_DYNAMIC (because it's pExpr |
-** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it |
-** is a commuted copy of a prior term.) The original term has nChild=1 |
-** and the copy has idxParent set to the index of the original term. |
+** Estimate the logarithm of the input value to base 2. |
*/ |
-static void exprAnalyze( |
- SrcList *pSrc, /* the FROM clause */ |
- WhereClause *pWC, /* the WHERE clause */ |
- int idxTerm /* Index of the term to be analyzed */ |
-){ |
- WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */ |
- WhereTerm *pTerm; /* The term to be analyzed */ |
- WhereMaskSet *pMaskSet; /* Set of table index masks */ |
- Expr *pExpr; /* The expression to be analyzed */ |
- Bitmask prereqLeft; /* Prerequesites of the pExpr->pLeft */ |
- Bitmask prereqAll; /* Prerequesites of pExpr */ |
- Bitmask extraRight = 0; /* Extra dependencies on LEFT JOIN */ |
- Expr *pStr1 = 0; /* RHS of LIKE/GLOB operator */ |
- int isComplete = 0; /* RHS of LIKE/GLOB ends with wildcard */ |
- int noCase = 0; /* LIKE/GLOB distinguishes case */ |
- int op; /* Top-level operator. pExpr->op */ |
- Parse *pParse = pWInfo->pParse; /* Parsing context */ |
- sqlite3 *db = pParse->db; /* Database connection */ |
- |
- if( db->mallocFailed ){ |
- return; |
- } |
- pTerm = &pWC->a[idxTerm]; |
- pMaskSet = &pWInfo->sMaskSet; |
- pExpr = pTerm->pExpr; |
- assert( pExpr->op!=TK_AS && pExpr->op!=TK_COLLATE ); |
- prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft); |
- op = pExpr->op; |
- if( op==TK_IN ){ |
- assert( pExpr->pRight==0 ); |
- if( ExprHasProperty(pExpr, EP_xIsSelect) ){ |
- pTerm->prereqRight = exprSelectTableUsage(pMaskSet, pExpr->x.pSelect); |
- }else{ |
- pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->x.pList); |
- } |
- }else if( op==TK_ISNULL ){ |
- pTerm->prereqRight = 0; |
- }else{ |
- pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight); |
- } |
- prereqAll = exprTableUsage(pMaskSet, pExpr); |
- if( ExprHasProperty(pExpr, EP_FromJoin) ){ |
- Bitmask x = getMask(pMaskSet, pExpr->iRightJoinTable); |
- prereqAll |= x; |
- extraRight = x-1; /* ON clause terms may not be used with an index |
- ** on left table of a LEFT JOIN. Ticket #3015 */ |
- } |
- pTerm->prereqAll = prereqAll; |
- pTerm->leftCursor = -1; |
- pTerm->iParent = -1; |
- pTerm->eOperator = 0; |
- if( allowedOp(op) ){ |
- Expr *pLeft = sqlite3ExprSkipCollate(pExpr->pLeft); |
- Expr *pRight = sqlite3ExprSkipCollate(pExpr->pRight); |
- u16 opMask = (pTerm->prereqRight & prereqLeft)==0 ? WO_ALL : WO_EQUIV; |
- if( pLeft->op==TK_COLUMN ){ |
- pTerm->leftCursor = pLeft->iTable; |
- pTerm->u.leftColumn = pLeft->iColumn; |
- pTerm->eOperator = operatorMask(op) & opMask; |
- } |
- if( pRight && pRight->op==TK_COLUMN ){ |
- WhereTerm *pNew; |
- Expr *pDup; |
- u16 eExtraOp = 0; /* Extra bits for pNew->eOperator */ |
- if( pTerm->leftCursor>=0 ){ |
- int idxNew; |
- pDup = sqlite3ExprDup(db, pExpr, 0); |
- if( db->mallocFailed ){ |
- sqlite3ExprDelete(db, pDup); |
- return; |
- } |
- idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC); |
- if( idxNew==0 ) return; |
- pNew = &pWC->a[idxNew]; |
- pNew->iParent = idxTerm; |
- pTerm = &pWC->a[idxTerm]; |
- pTerm->nChild = 1; |
- pTerm->wtFlags |= TERM_COPIED; |
- if( pExpr->op==TK_EQ |
- && !ExprHasProperty(pExpr, EP_FromJoin) |
- && OptimizationEnabled(db, SQLITE_Transitive) |
- ){ |
- pTerm->eOperator |= WO_EQUIV; |
- eExtraOp = WO_EQUIV; |
- } |
- }else{ |
- pDup = pExpr; |
- pNew = pTerm; |
- } |
- exprCommute(pParse, pDup); |
- pLeft = sqlite3ExprSkipCollate(pDup->pLeft); |
- pNew->leftCursor = pLeft->iTable; |
- pNew->u.leftColumn = pLeft->iColumn; |
- testcase( (prereqLeft | extraRight) != prereqLeft ); |
- pNew->prereqRight = prereqLeft | extraRight; |
- pNew->prereqAll = prereqAll; |
- pNew->eOperator = (operatorMask(pDup->op) + eExtraOp) & opMask; |
- } |
- } |
- |
-#ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION |
- /* If a term is the BETWEEN operator, create two new virtual terms |
- ** that define the range that the BETWEEN implements. For example: |
- ** |
- ** a BETWEEN b AND c |
- ** |
- ** is converted into: |
- ** |
- ** (a BETWEEN b AND c) AND (a>=b) AND (a<=c) |
- ** |
- ** The two new terms are added onto the end of the WhereClause object. |
- ** The new terms are "dynamic" and are children of the original BETWEEN |
- ** term. That means that if the BETWEEN term is coded, the children are |
- ** skipped. Or, if the children are satisfied by an index, the original |
- ** BETWEEN term is skipped. |
- */ |
- else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){ |
- ExprList *pList = pExpr->x.pList; |
- int i; |
- static const u8 ops[] = {TK_GE, TK_LE}; |
- assert( pList!=0 ); |
- assert( pList->nExpr==2 ); |
- for(i=0; i<2; i++){ |
- Expr *pNewExpr; |
- int idxNew; |
- pNewExpr = sqlite3PExpr(pParse, ops[i], |
- sqlite3ExprDup(db, pExpr->pLeft, 0), |
- sqlite3ExprDup(db, pList->a[i].pExpr, 0), 0); |
- transferJoinMarkings(pNewExpr, pExpr); |
- idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); |
- testcase( idxNew==0 ); |
- exprAnalyze(pSrc, pWC, idxNew); |
- pTerm = &pWC->a[idxTerm]; |
- pWC->a[idxNew].iParent = idxTerm; |
- } |
- pTerm->nChild = 2; |
- } |
-#endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */ |
- |
-#if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) |
- /* Analyze a term that is composed of two or more subterms connected by |
- ** an OR operator. |
- */ |
- else if( pExpr->op==TK_OR ){ |
- assert( pWC->op==TK_AND ); |
- exprAnalyzeOrTerm(pSrc, pWC, idxTerm); |
- pTerm = &pWC->a[idxTerm]; |
- } |
-#endif /* SQLITE_OMIT_OR_OPTIMIZATION */ |
- |
-#ifndef SQLITE_OMIT_LIKE_OPTIMIZATION |
- /* Add constraints to reduce the search space on a LIKE or GLOB |
- ** operator. |
- ** |
- ** A like pattern of the form "x LIKE 'abc%'" is changed into constraints |
- ** |
- ** x>='abc' AND x<'abd' AND x LIKE 'abc%' |
- ** |
- ** The last character of the prefix "abc" is incremented to form the |
- ** termination condition "abd". |
- */ |
- if( pWC->op==TK_AND |
- && isLikeOrGlob(pParse, pExpr, &pStr1, &isComplete, &noCase) |
- ){ |
- Expr *pLeft; /* LHS of LIKE/GLOB operator */ |
- Expr *pStr2; /* Copy of pStr1 - RHS of LIKE/GLOB operator */ |
- Expr *pNewExpr1; |
- Expr *pNewExpr2; |
- int idxNew1; |
- int idxNew2; |
- const char *zCollSeqName; /* Name of collating sequence */ |
- |
- pLeft = pExpr->x.pList->a[1].pExpr; |
- pStr2 = sqlite3ExprDup(db, pStr1, 0); |
- if( !db->mallocFailed ){ |
- u8 c, *pC; /* Last character before the first wildcard */ |
- pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1]; |
- c = *pC; |
- if( noCase ){ |
- /* The point is to increment the last character before the first |
- ** wildcard. But if we increment '@', that will push it into the |
- ** alphabetic range where case conversions will mess up the |
- ** inequality. To avoid this, make sure to also run the full |
- ** LIKE on all candidate expressions by clearing the isComplete flag |
- */ |
- if( c=='A'-1 ) isComplete = 0; |
- c = sqlite3UpperToLower[c]; |
- } |
- *pC = c + 1; |
- } |
- zCollSeqName = noCase ? "NOCASE" : "BINARY"; |
- pNewExpr1 = sqlite3ExprDup(db, pLeft, 0); |
- pNewExpr1 = sqlite3PExpr(pParse, TK_GE, |
- sqlite3ExprAddCollateString(pParse,pNewExpr1,zCollSeqName), |
- pStr1, 0); |
- transferJoinMarkings(pNewExpr1, pExpr); |
- idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC); |
- testcase( idxNew1==0 ); |
- exprAnalyze(pSrc, pWC, idxNew1); |
- pNewExpr2 = sqlite3ExprDup(db, pLeft, 0); |
- pNewExpr2 = sqlite3PExpr(pParse, TK_LT, |
- sqlite3ExprAddCollateString(pParse,pNewExpr2,zCollSeqName), |
- pStr2, 0); |
- transferJoinMarkings(pNewExpr2, pExpr); |
- idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC); |
- testcase( idxNew2==0 ); |
- exprAnalyze(pSrc, pWC, idxNew2); |
- pTerm = &pWC->a[idxTerm]; |
- if( isComplete ){ |
- pWC->a[idxNew1].iParent = idxTerm; |
- pWC->a[idxNew2].iParent = idxTerm; |
- pTerm->nChild = 2; |
- } |
- } |
-#endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ |
- |
-#ifndef SQLITE_OMIT_VIRTUALTABLE |
- /* Add a WO_MATCH auxiliary term to the constraint set if the |
- ** current expression is of the form: column MATCH expr. |
- ** This information is used by the xBestIndex methods of |
- ** virtual tables. The native query optimizer does not attempt |
- ** to do anything with MATCH functions. |
- */ |
- if( isMatchOfColumn(pExpr) ){ |
- int idxNew; |
- Expr *pRight, *pLeft; |
- WhereTerm *pNewTerm; |
- Bitmask prereqColumn, prereqExpr; |
- |
- pRight = pExpr->x.pList->a[0].pExpr; |
- pLeft = pExpr->x.pList->a[1].pExpr; |
- prereqExpr = exprTableUsage(pMaskSet, pRight); |
- prereqColumn = exprTableUsage(pMaskSet, pLeft); |
- if( (prereqExpr & prereqColumn)==0 ){ |
- Expr *pNewExpr; |
- pNewExpr = sqlite3PExpr(pParse, TK_MATCH, |
- 0, sqlite3ExprDup(db, pRight, 0), 0); |
- idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); |
- testcase( idxNew==0 ); |
- pNewTerm = &pWC->a[idxNew]; |
- pNewTerm->prereqRight = prereqExpr; |
- pNewTerm->leftCursor = pLeft->iTable; |
- pNewTerm->u.leftColumn = pLeft->iColumn; |
- pNewTerm->eOperator = WO_MATCH; |
- pNewTerm->iParent = idxTerm; |
- pTerm = &pWC->a[idxTerm]; |
- pTerm->nChild = 1; |
- pTerm->wtFlags |= TERM_COPIED; |
- pNewTerm->prereqAll = pTerm->prereqAll; |
- } |
- } |
-#endif /* SQLITE_OMIT_VIRTUALTABLE */ |
- |
-#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
- /* When sqlite_stat3 histogram data is available an operator of the |
- ** form "x IS NOT NULL" can sometimes be evaluated more efficiently |
- ** as "x>NULL" if x is not an INTEGER PRIMARY KEY. So construct a |
- ** virtual term of that form. |
- ** |
- ** Note that the virtual term must be tagged with TERM_VNULL. This |
- ** TERM_VNULL tag will suppress the not-null check at the beginning |
- ** of the loop. Without the TERM_VNULL flag, the not-null check at |
- ** the start of the loop will prevent any results from being returned. |
- */ |
- if( pExpr->op==TK_NOTNULL |
- && pExpr->pLeft->op==TK_COLUMN |
- && pExpr->pLeft->iColumn>=0 |
- && OptimizationEnabled(db, SQLITE_Stat3) |
- ){ |
- Expr *pNewExpr; |
- Expr *pLeft = pExpr->pLeft; |
- int idxNew; |
- WhereTerm *pNewTerm; |
- |
- pNewExpr = sqlite3PExpr(pParse, TK_GT, |
- sqlite3ExprDup(db, pLeft, 0), |
- sqlite3PExpr(pParse, TK_NULL, 0, 0, 0), 0); |
- |
- idxNew = whereClauseInsert(pWC, pNewExpr, |
- TERM_VIRTUAL|TERM_DYNAMIC|TERM_VNULL); |
- if( idxNew ){ |
- pNewTerm = &pWC->a[idxNew]; |
- pNewTerm->prereqRight = 0; |
- pNewTerm->leftCursor = pLeft->iTable; |
- pNewTerm->u.leftColumn = pLeft->iColumn; |
- pNewTerm->eOperator = WO_GT; |
- pNewTerm->iParent = idxTerm; |
- pTerm = &pWC->a[idxTerm]; |
- pTerm->nChild = 1; |
- pTerm->wtFlags |= TERM_COPIED; |
- pNewTerm->prereqAll = pTerm->prereqAll; |
- } |
- } |
-#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ |
- |
- /* Prevent ON clause terms of a LEFT JOIN from being used to drive |
- ** an index for tables to the left of the join. |
- */ |
- pTerm->prereqRight |= extraRight; |
+static LogEst estLog(LogEst N){ |
+ return N<=10 ? 0 : sqlite3LogEst(N) - 33; |
} |
/* |
-** This function searches pList for an entry that matches the iCol-th column |
-** of index pIdx. |
+** Convert OP_Column opcodes to OP_Copy in previously generated code. |
** |
-** If such an expression is found, its index in pList->a[] is returned. If |
-** no expression is found, -1 is returned. |
-*/ |
-static int findIndexCol( |
- Parse *pParse, /* Parse context */ |
- ExprList *pList, /* Expression list to search */ |
- int iBase, /* Cursor for table associated with pIdx */ |
- Index *pIdx, /* Index to match column of */ |
- int iCol /* Column of index to match */ |
-){ |
- int i; |
- const char *zColl = pIdx->azColl[iCol]; |
- |
- for(i=0; i<pList->nExpr; i++){ |
- Expr *p = sqlite3ExprSkipCollate(pList->a[i].pExpr); |
- if( p->op==TK_COLUMN |
- && p->iColumn==pIdx->aiColumn[iCol] |
- && p->iTable==iBase |
- ){ |
- CollSeq *pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr); |
- if( ALWAYS(pColl) && 0==sqlite3StrICmp(pColl->zName, zColl) ){ |
- return i; |
- } |
- } |
- } |
- |
- return -1; |
-} |
- |
-/* |
-** Return true if the DISTINCT expression-list passed as the third argument |
-** is redundant. |
+** This routine runs over generated VDBE code and translates OP_Column |
+** opcodes into OP_Copy when the table is being accessed via co-routine |
+** instead of via table lookup. |
** |
-** A DISTINCT list is redundant if the database contains some subset of |
-** columns that are unique and non-null. |
+** If the bIncrRowid parameter is 0, then any OP_Rowid instructions on |
+** cursor iTabCur are transformed into OP_Null. Or, if bIncrRowid is non-zero, |
+** then each OP_Rowid is transformed into an instruction to increment the |
+** value stored in its output register. |
*/ |
-static int isDistinctRedundant( |
- Parse *pParse, /* Parsing context */ |
- SrcList *pTabList, /* The FROM clause */ |
- WhereClause *pWC, /* The WHERE clause */ |
- ExprList *pDistinct /* The result set that needs to be DISTINCT */ |
+static void translateColumnToCopy( |
+ Vdbe *v, /* The VDBE containing code to translate */ |
+ int iStart, /* Translate from this opcode to the end */ |
+ int iTabCur, /* OP_Column/OP_Rowid references to this table */ |
+ int iRegister, /* The first column is in this register */ |
+ int bIncrRowid /* If non-zero, transform OP_rowid to OP_AddImm(1) */ |
){ |
- Table *pTab; |
- Index *pIdx; |
- int i; |
- int iBase; |
- |
- /* If there is more than one table or sub-select in the FROM clause of |
- ** this query, then it will not be possible to show that the DISTINCT |
- ** clause is redundant. */ |
- if( pTabList->nSrc!=1 ) return 0; |
- iBase = pTabList->a[0].iCursor; |
- pTab = pTabList->a[0].pTab; |
- |
- /* If any of the expressions is an IPK column on table iBase, then return |
- ** true. Note: The (p->iTable==iBase) part of this test may be false if the |
- ** current SELECT is a correlated sub-query. |
- */ |
- for(i=0; i<pDistinct->nExpr; i++){ |
- Expr *p = sqlite3ExprSkipCollate(pDistinct->a[i].pExpr); |
- if( p->op==TK_COLUMN && p->iTable==iBase && p->iColumn<0 ) return 1; |
- } |
- |
- /* Loop through all indices on the table, checking each to see if it makes |
- ** the DISTINCT qualifier redundant. It does so if: |
- ** |
- ** 1. The index is itself UNIQUE, and |
- ** |
- ** 2. All of the columns in the index are either part of the pDistinct |
- ** list, or else the WHERE clause contains a term of the form "col=X", |
- ** where X is a constant value. The collation sequences of the |
- ** comparison and select-list expressions must match those of the index. |
- ** |
- ** 3. All of those index columns for which the WHERE clause does not |
- ** contain a "col=X" term are subject to a NOT NULL constraint. |
- */ |
- for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ |
- if( !IsUniqueIndex(pIdx) ) continue; |
- for(i=0; i<pIdx->nKeyCol; i++){ |
- i16 iCol = pIdx->aiColumn[i]; |
- if( 0==findTerm(pWC, iBase, iCol, ~(Bitmask)0, WO_EQ, pIdx) ){ |
- int iIdxCol = findIndexCol(pParse, pDistinct, iBase, pIdx, i); |
- if( iIdxCol<0 || pTab->aCol[iCol].notNull==0 ){ |
- break; |
- } |
+ VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart); |
+ int iEnd = sqlite3VdbeCurrentAddr(v); |
+ for(; iStart<iEnd; iStart++, pOp++){ |
+ if( pOp->p1!=iTabCur ) continue; |
+ if( pOp->opcode==OP_Column ){ |
+ pOp->opcode = OP_Copy; |
+ pOp->p1 = pOp->p2 + iRegister; |
+ pOp->p2 = pOp->p3; |
+ pOp->p3 = 0; |
+ }else if( pOp->opcode==OP_Rowid ){ |
+ if( bIncrRowid ){ |
+ /* Increment the value stored in the P2 operand of the OP_Rowid. */ |
+ pOp->opcode = OP_AddImm; |
+ pOp->p1 = pOp->p2; |
+ pOp->p2 = 1; |
+ }else{ |
+ pOp->opcode = OP_Null; |
+ pOp->p1 = 0; |
+ pOp->p3 = 0; |
} |
} |
- if( i==pIdx->nKeyCol ){ |
- /* This index implies that the DISTINCT qualifier is redundant. */ |
- return 1; |
- } |
} |
- |
- return 0; |
-} |
- |
- |
-/* |
-** Estimate the logarithm of the input value to base 2. |
-*/ |
-static LogEst estLog(LogEst N){ |
- return N<=10 ? 0 : sqlite3LogEst(N) - 33; |
} |
/* |
@@ -1549,11 +582,12 @@ static int termCanDriveIndex( |
){ |
char aff; |
if( pTerm->leftCursor!=pSrc->iCursor ) return 0; |
- if( (pTerm->eOperator & WO_EQ)==0 ) return 0; |
+ if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0; |
if( (pTerm->prereqRight & notReady)!=0 ) return 0; |
if( pTerm->u.leftColumn<0 ) return 0; |
aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity; |
if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0; |
+ testcase( pTerm->pExpr->op==TK_IS ); |
return 1; |
} |
#endif |
@@ -1590,6 +624,11 @@ static void constructAutomaticIndex( |
Bitmask idxCols; /* Bitmap of columns used for indexing */ |
Bitmask extraCols; /* Bitmap of additional columns */ |
u8 sentWarning = 0; /* True if a warnning has been issued */ |
+ Expr *pPartial = 0; /* Partial Index Expression */ |
+ int iContinue = 0; /* Jump here to skip excluded rows */ |
+ struct SrcList_item *pTabItem; /* FROM clause term being indexed */ |
+ int addrCounter = 0; /* Address where integer counter is initialized */ |
+ int regBase; /* Array of registers where record is assembled */ |
/* Generate code to skip over the creation and initialization of the |
** transient index on 2nd and subsequent iterations of the loop. */ |
@@ -1605,6 +644,17 @@ static void constructAutomaticIndex( |
pLoop = pLevel->pWLoop; |
idxCols = 0; |
for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ |
+ Expr *pExpr = pTerm->pExpr; |
+ assert( !ExprHasProperty(pExpr, EP_FromJoin) /* prereq always non-zero */ |
+ || pExpr->iRightJoinTable!=pSrc->iCursor /* for the right-hand */ |
+ || pLoop->prereq!=0 ); /* table of a LEFT JOIN */ |
+ if( pLoop->prereq==0 |
+ && (pTerm->wtFlags & TERM_VIRTUAL)==0 |
+ && !ExprHasProperty(pExpr, EP_FromJoin) |
+ && sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor) ){ |
+ pPartial = sqlite3ExprAnd(pParse->db, pPartial, |
+ sqlite3ExprDup(pParse->db, pExpr, 0)); |
+ } |
if( termCanDriveIndex(pTerm, pSrc, notReady) ){ |
int iCol = pTerm->u.leftColumn; |
Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); |
@@ -1617,7 +667,9 @@ static void constructAutomaticIndex( |
sentWarning = 1; |
} |
if( (idxCols & cMask)==0 ){ |
- if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ) return; |
+ if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){ |
+ goto end_auto_index_create; |
+ } |
pLoop->aLTerm[nKeyCol++] = pTerm; |
idxCols |= cMask; |
} |
@@ -1637,7 +689,7 @@ static void constructAutomaticIndex( |
** if they go out of sync. |
*/ |
extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1)); |
- mxBitCol = (pTable->nCol >= BMS-1) ? BMS-1 : pTable->nCol; |
+ mxBitCol = MIN(BMS-1,pTable->nCol); |
testcase( pTable->nCol==BMS-1 ); |
testcase( pTable->nCol==BMS-2 ); |
for(i=0; i<mxBitCol; i++){ |
@@ -1646,11 +698,10 @@ static void constructAutomaticIndex( |
if( pSrc->colUsed & MASKBIT(BMS-1) ){ |
nKeyCol += pTable->nCol - BMS + 1; |
} |
- pLoop->wsFlags |= WHERE_COLUMN_EQ | WHERE_IDX_ONLY; |
/* Construct the Index object to describe this index */ |
pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed); |
- if( pIdx==0 ) return; |
+ if( pIdx==0 ) goto end_auto_index_create; |
pLoop->u.btree.pIndex = pIdx; |
pIdx->zName = "auto-index"; |
pIdx->pTable = pTable; |
@@ -1667,7 +718,7 @@ static void constructAutomaticIndex( |
idxCols |= cMask; |
pIdx->aiColumn[n] = pTerm->u.leftColumn; |
pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight); |
- pIdx->azColl[n] = ALWAYS(pColl) ? pColl->zName : "BINARY"; |
+ pIdx->azColl[n] = pColl ? pColl->zName : sqlite3StrBINARY; |
n++; |
} |
} |
@@ -1679,20 +730,20 @@ static void constructAutomaticIndex( |
for(i=0; i<mxBitCol; i++){ |
if( extraCols & MASKBIT(i) ){ |
pIdx->aiColumn[n] = i; |
- pIdx->azColl[n] = "BINARY"; |
+ pIdx->azColl[n] = sqlite3StrBINARY; |
n++; |
} |
} |
if( pSrc->colUsed & MASKBIT(BMS-1) ){ |
for(i=BMS-1; i<pTable->nCol; i++){ |
pIdx->aiColumn[n] = i; |
- pIdx->azColl[n] = "BINARY"; |
+ pIdx->azColl[n] = sqlite3StrBINARY; |
n++; |
} |
} |
assert( n==nKeyCol ); |
- pIdx->aiColumn[n] = -1; |
- pIdx->azColl[n] = "BINARY"; |
+ pIdx->aiColumn[n] = XN_ROWID; |
+ pIdx->azColl[n] = sqlite3StrBINARY; |
/* Create the automatic index */ |
assert( pLevel->iIdxCur>=0 ); |
@@ -1702,18 +753,48 @@ static void constructAutomaticIndex( |
VdbeComment((v, "for %s", pTable->zName)); |
/* Fill the automatic index with content */ |
- addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v); |
+ sqlite3ExprCachePush(pParse); |
+ pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom]; |
+ if( pTabItem->fg.viaCoroutine ){ |
+ int regYield = pTabItem->regReturn; |
+ addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0); |
+ sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); |
+ addrTop = sqlite3VdbeAddOp1(v, OP_Yield, regYield); |
+ VdbeCoverage(v); |
+ VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName)); |
+ }else{ |
+ addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v); |
+ } |
+ if( pPartial ){ |
+ iContinue = sqlite3VdbeMakeLabel(v); |
+ sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL); |
+ pLoop->wsFlags |= WHERE_PARTIALIDX; |
+ } |
regRecord = sqlite3GetTempReg(pParse); |
- sqlite3GenerateIndexKey(pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0); |
+ regBase = sqlite3GenerateIndexKey( |
+ pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0 |
+ ); |
sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord); |
sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); |
- sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v); |
+ if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue); |
+ if( pTabItem->fg.viaCoroutine ){ |
+ sqlite3VdbeChangeP2(v, addrCounter, regBase+n); |
+ translateColumnToCopy(v, addrTop, pLevel->iTabCur, pTabItem->regResult, 1); |
+ sqlite3VdbeGoto(v, addrTop); |
+ pTabItem->fg.viaCoroutine = 0; |
+ }else{ |
+ sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v); |
+ } |
sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX); |
sqlite3VdbeJumpHere(v, addrTop); |
sqlite3ReleaseTempReg(pParse, regRecord); |
+ sqlite3ExprCachePop(pParse); |
/* Jump here when skipping the initialization */ |
sqlite3VdbeJumpHere(v, addrInit); |
+ |
+end_auto_index_create: |
+ sqlite3ExprDelete(pParse->db, pPartial); |
} |
#endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ |
@@ -1726,6 +807,7 @@ static void constructAutomaticIndex( |
static sqlite3_index_info *allocateIndexInfo( |
Parse *pParse, |
WhereClause *pWC, |
+ Bitmask mUnusable, /* Ignore terms with these prereqs */ |
struct SrcList_item *pSrc, |
ExprList *pOrderBy |
){ |
@@ -1742,12 +824,15 @@ static sqlite3_index_info *allocateIndexInfo( |
** to this virtual table */ |
for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ |
if( pTerm->leftCursor != pSrc->iCursor ) continue; |
+ if( pTerm->prereqRight & mUnusable ) continue; |
assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); |
testcase( pTerm->eOperator & WO_IN ); |
testcase( pTerm->eOperator & WO_ISNULL ); |
+ testcase( pTerm->eOperator & WO_IS ); |
testcase( pTerm->eOperator & WO_ALL ); |
- if( (pTerm->eOperator & ~(WO_ISNULL|WO_EQUIV))==0 ) continue; |
+ if( (pTerm->eOperator & ~(WO_ISNULL|WO_EQUIV|WO_IS))==0 ) continue; |
if( pTerm->wtFlags & TERM_VNULL ) continue; |
+ assert( pTerm->u.leftColumn>=(-1) ); |
nTerm++; |
} |
@@ -1795,16 +880,22 @@ static sqlite3_index_info *allocateIndexInfo( |
for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ |
u8 op; |
if( pTerm->leftCursor != pSrc->iCursor ) continue; |
+ if( pTerm->prereqRight & mUnusable ) continue; |
assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); |
testcase( pTerm->eOperator & WO_IN ); |
+ testcase( pTerm->eOperator & WO_IS ); |
testcase( pTerm->eOperator & WO_ISNULL ); |
testcase( pTerm->eOperator & WO_ALL ); |
- if( (pTerm->eOperator & ~(WO_ISNULL|WO_EQUIV))==0 ) continue; |
+ if( (pTerm->eOperator & ~(WO_ISNULL|WO_EQUIV|WO_IS))==0 ) continue; |
if( pTerm->wtFlags & TERM_VNULL ) continue; |
+ assert( pTerm->u.leftColumn>=(-1) ); |
pIdxCons[j].iColumn = pTerm->u.leftColumn; |
pIdxCons[j].iTermOffset = i; |
op = (u8)pTerm->eOperator & WO_ALL; |
if( op==WO_IN ) op = WO_EQ; |
+ if( op==WO_MATCH ){ |
+ op = pTerm->eMatchOp; |
+ } |
pIdxCons[j].op = op; |
/* The direct assignment in the previous line is possible only because |
** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The |
@@ -1873,18 +964,21 @@ static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){ |
} |
#endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */ |
- |
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
/* |
** Estimate the location of a particular key among all keys in an |
** index. Store the results in aStat as follows: |
** |
-** aStat[0] Est. number of rows less than pVal |
-** aStat[1] Est. number of rows equal to pVal |
+** aStat[0] Est. number of rows less than pRec |
+** aStat[1] Est. number of rows equal to pRec |
** |
-** Return SQLITE_OK on success. |
+** Return the index of the sample that is the smallest sample that |
+** is greater than or equal to pRec. Note that this index is not an index |
+** into the aSample[] array - it is an index into a virtual set of samples |
+** based on the contents of aSample[] and the number of fields in record |
+** pRec. |
*/ |
-static void whereKeyStats( |
+static int whereKeyStats( |
Parse *pParse, /* Database connection */ |
Index *pIdx, /* Index to consider domain of */ |
UnpackedRecord *pRec, /* Vector of values to consider */ |
@@ -1893,67 +987,158 @@ static void whereKeyStats( |
){ |
IndexSample *aSample = pIdx->aSample; |
int iCol; /* Index of required stats in anEq[] etc. */ |
+ int i; /* Index of first sample >= pRec */ |
+ int iSample; /* Smallest sample larger than or equal to pRec */ |
int iMin = 0; /* Smallest sample not yet tested */ |
- int i = pIdx->nSample; /* Smallest sample larger than or equal to pRec */ |
int iTest; /* Next sample to test */ |
int res; /* Result of comparison operation */ |
+ int nField; /* Number of fields in pRec */ |
+ tRowcnt iLower = 0; /* anLt[] + anEq[] of largest sample pRec is > */ |
#ifndef SQLITE_DEBUG |
UNUSED_PARAMETER( pParse ); |
#endif |
assert( pRec!=0 ); |
- iCol = pRec->nField - 1; |
assert( pIdx->nSample>0 ); |
- assert( pRec->nField>0 && iCol<pIdx->nSampleCol ); |
+ assert( pRec->nField>0 && pRec->nField<=pIdx->nSampleCol ); |
+ |
+ /* Do a binary search to find the first sample greater than or equal |
+ ** to pRec. If pRec contains a single field, the set of samples to search |
+ ** is simply the aSample[] array. If the samples in aSample[] contain more |
+ ** than one fields, all fields following the first are ignored. |
+ ** |
+ ** If pRec contains N fields, where N is more than one, then as well as the |
+ ** samples in aSample[] (truncated to N fields), the search also has to |
+ ** consider prefixes of those samples. For example, if the set of samples |
+ ** in aSample is: |
+ ** |
+ ** aSample[0] = (a, 5) |
+ ** aSample[1] = (a, 10) |
+ ** aSample[2] = (b, 5) |
+ ** aSample[3] = (c, 100) |
+ ** aSample[4] = (c, 105) |
+ ** |
+ ** Then the search space should ideally be the samples above and the |
+ ** unique prefixes [a], [b] and [c]. But since that is hard to organize, |
+ ** the code actually searches this set: |
+ ** |
+ ** 0: (a) |
+ ** 1: (a, 5) |
+ ** 2: (a, 10) |
+ ** 3: (a, 10) |
+ ** 4: (b) |
+ ** 5: (b, 5) |
+ ** 6: (c) |
+ ** 7: (c, 100) |
+ ** 8: (c, 105) |
+ ** 9: (c, 105) |
+ ** |
+ ** For each sample in the aSample[] array, N samples are present in the |
+ ** effective sample array. In the above, samples 0 and 1 are based on |
+ ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc. |
+ ** |
+ ** Often, sample i of each block of N effective samples has (i+1) fields. |
+ ** Except, each sample may be extended to ensure that it is greater than or |
+ ** equal to the previous sample in the array. For example, in the above, |
+ ** sample 2 is the first sample of a block of N samples, so at first it |
+ ** appears that it should be 1 field in size. However, that would make it |
+ ** smaller than sample 1, so the binary search would not work. As a result, |
+ ** it is extended to two fields. The duplicates that this creates do not |
+ ** cause any problems. |
+ */ |
+ nField = pRec->nField; |
+ iCol = 0; |
+ iSample = pIdx->nSample * nField; |
do{ |
- iTest = (iMin+i)/2; |
- res = sqlite3VdbeRecordCompare(aSample[iTest].n, aSample[iTest].p, pRec); |
+ int iSamp; /* Index in aSample[] of test sample */ |
+ int n; /* Number of fields in test sample */ |
+ |
+ iTest = (iMin+iSample)/2; |
+ iSamp = iTest / nField; |
+ if( iSamp>0 ){ |
+ /* The proposed effective sample is a prefix of sample aSample[iSamp]. |
+ ** Specifically, the shortest prefix of at least (1 + iTest%nField) |
+ ** fields that is greater than the previous effective sample. */ |
+ for(n=(iTest % nField) + 1; n<nField; n++){ |
+ if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break; |
+ } |
+ }else{ |
+ n = iTest + 1; |
+ } |
+ |
+ pRec->nField = n; |
+ res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec); |
if( res<0 ){ |
+ iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1]; |
+ iMin = iTest+1; |
+ }else if( res==0 && n<nField ){ |
+ iLower = aSample[iSamp].anLt[n-1]; |
iMin = iTest+1; |
+ res = -1; |
}else{ |
- i = iTest; |
+ iSample = iTest; |
+ iCol = n-1; |
} |
- }while( res && iMin<i ); |
+ }while( res && iMin<iSample ); |
+ i = iSample / nField; |
#ifdef SQLITE_DEBUG |
/* The following assert statements check that the binary search code |
** above found the right answer. This block serves no purpose other |
** than to invoke the asserts. */ |
- if( res==0 ){ |
- /* If (res==0) is true, then sample $i must be equal to pRec */ |
- assert( i<pIdx->nSample ); |
- assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec) |
- || pParse->db->mallocFailed ); |
- }else{ |
- /* Otherwise, pRec must be smaller than sample $i and larger than |
- ** sample ($i-1). */ |
- assert( i==pIdx->nSample |
- || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0 |
- || pParse->db->mallocFailed ); |
- assert( i==0 |
- || sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0 |
- || pParse->db->mallocFailed ); |
+ if( pParse->db->mallocFailed==0 ){ |
+ if( res==0 ){ |
+ /* If (res==0) is true, then pRec must be equal to sample i. */ |
+ assert( i<pIdx->nSample ); |
+ assert( iCol==nField-1 ); |
+ pRec->nField = nField; |
+ assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec) |
+ || pParse->db->mallocFailed |
+ ); |
+ }else{ |
+ /* Unless i==pIdx->nSample, indicating that pRec is larger than |
+ ** all samples in the aSample[] array, pRec must be smaller than the |
+ ** (iCol+1) field prefix of sample i. */ |
+ assert( i<=pIdx->nSample && i>=0 ); |
+ pRec->nField = iCol+1; |
+ assert( i==pIdx->nSample |
+ || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0 |
+ || pParse->db->mallocFailed ); |
+ |
+ /* if i==0 and iCol==0, then record pRec is smaller than all samples |
+ ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must |
+ ** be greater than or equal to the (iCol) field prefix of sample i. |
+ ** If (i>0), then pRec must also be greater than sample (i-1). */ |
+ if( iCol>0 ){ |
+ pRec->nField = iCol; |
+ assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0 |
+ || pParse->db->mallocFailed ); |
+ } |
+ if( i>0 ){ |
+ pRec->nField = nField; |
+ assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0 |
+ || pParse->db->mallocFailed ); |
+ } |
+ } |
} |
#endif /* ifdef SQLITE_DEBUG */ |
- /* At this point, aSample[i] is the first sample that is greater than |
- ** or equal to pVal. Or if i==pIdx->nSample, then all samples are less |
- ** than pVal. If aSample[i]==pVal, then res==0. |
- */ |
if( res==0 ){ |
+ /* Record pRec is equal to sample i */ |
+ assert( iCol==nField-1 ); |
aStat[0] = aSample[i].anLt[iCol]; |
aStat[1] = aSample[i].anEq[iCol]; |
}else{ |
- tRowcnt iLower, iUpper, iGap; |
- if( i==0 ){ |
- iLower = 0; |
- iUpper = aSample[0].anLt[iCol]; |
+ /* At this point, the (iCol+1) field prefix of aSample[i] is the first |
+ ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec |
+ ** is larger than all samples in the array. */ |
+ tRowcnt iUpper, iGap; |
+ if( i>=pIdx->nSample ){ |
+ iUpper = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]); |
}else{ |
- i64 nRow0 = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]); |
- iUpper = i>=pIdx->nSample ? nRow0 : aSample[i].anLt[iCol]; |
- iLower = aSample[i-1].anEq[iCol] + aSample[i-1].anLt[iCol]; |
+ iUpper = aSample[i].anLt[iCol]; |
} |
- aStat[1] = pIdx->aAvgEq[iCol]; |
+ |
if( iLower>=iUpper ){ |
iGap = 0; |
}else{ |
@@ -1965,7 +1150,12 @@ static void whereKeyStats( |
iGap = iGap/3; |
} |
aStat[0] = iLower + iGap; |
+ aStat[1] = pIdx->aAvgEq[iCol]; |
} |
+ |
+ /* Restore the pRec->nField value before returning. */ |
+ pRec->nField = nField; |
+ return i; |
} |
#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ |
@@ -1992,6 +1182,21 @@ static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){ |
return nRet; |
} |
+ |
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
+/* |
+** Return the affinity for a single column of an index. |
+*/ |
+static char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){ |
+ assert( iCol>=0 && iCol<pIdx->nColumn ); |
+ if( !pIdx->zColAff ){ |
+ if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB; |
+ } |
+ return pIdx->zColAff[iCol]; |
+} |
+#endif |
+ |
+ |
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
/* |
** This function is called to estimate the number of rows visited by a |
@@ -2041,8 +1246,7 @@ static int whereRangeSkipScanEst( |
int nLower = -1; |
int nUpper = p->nSample+1; |
int rc = SQLITE_OK; |
- int iCol = p->aiColumn[nEq]; |
- u8 aff = iCol>=0 ? p->pTable->aCol[iCol].affinity : SQLITE_AFF_INTEGER; |
+ u8 aff = sqlite3IndexColumnAffinity(db, p, nEq); |
CollSeq *pColl; |
sqlite3_value *p1 = 0; /* Value extracted from pLower */ |
@@ -2116,7 +1320,7 @@ static int whereRangeSkipScanEst( |
** If either of the upper or lower bound is not present, then NULL is passed in |
** place of the corresponding WhereTerm. |
** |
-** The value in (pBuilder->pNew->u.btree.nEq) is the index of the index |
+** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index |
** column subject to the range constraint. Or, equivalently, the number of |
** equality constraints optimized by the proposed index scan. For example, |
** assuming index p is on t1(a, b), and the SQL query is: |
@@ -2132,7 +1336,7 @@ static int whereRangeSkipScanEst( |
** |
** When this function is called, *pnOut is set to the sqlite3LogEst() of the |
** number of rows that the index scan is expected to visit without |
-** considering the range constraints. If nEq is 0, this is the number of |
+** considering the range constraints. If nEq is 0, then *pnOut is the number of |
** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced) |
** to account for the range constraints pLower and pUpper. |
** |
@@ -2156,10 +1360,7 @@ static int whereRangeScanEst( |
Index *p = pLoop->u.btree.pIndex; |
int nEq = pLoop->u.btree.nEq; |
- if( p->nSample>0 |
- && nEq<p->nSampleCol |
- && OptimizationEnabled(pParse->db, SQLITE_Stat3) |
- ){ |
+ if( p->nSample>0 && nEq<p->nSampleCol ){ |
if( nEq==pBuilder->nRecValid ){ |
UnpackedRecord *pRec = pBuilder->pRec; |
tRowcnt a[2]; |
@@ -2175,29 +1376,30 @@ static int whereRangeScanEst( |
** is not a simple variable or literal value), the lower bound of the |
** range is $P. Due to a quirk in the way whereKeyStats() works, even |
** if $L is available, whereKeyStats() is called for both ($P) and |
- ** ($P:$L) and the larger of the two returned values used. |
+ ** ($P:$L) and the larger of the two returned values is used. |
** |
** Similarly, iUpper is to be set to the estimate of the number of rows |
** less than the upper bound of the range query. Where the upper bound |
** is either ($P) or ($P:$U). Again, even if $U is available, both values |
** of iUpper are requested of whereKeyStats() and the smaller used. |
+ ** |
+ ** The number of rows between the two bounds is then just iUpper-iLower. |
*/ |
- tRowcnt iLower; |
- tRowcnt iUpper; |
+ tRowcnt iLower; /* Rows less than the lower bound */ |
+ tRowcnt iUpper; /* Rows less than the upper bound */ |
+ int iLwrIdx = -2; /* aSample[] for the lower bound */ |
+ int iUprIdx = -1; /* aSample[] for the upper bound */ |
if( pRec ){ |
testcase( pRec->nField!=pBuilder->nRecValid ); |
pRec->nField = pBuilder->nRecValid; |
} |
- if( nEq==p->nKeyCol ){ |
- aff = SQLITE_AFF_INTEGER; |
- }else{ |
- aff = p->pTable->aCol[p->aiColumn[nEq]].affinity; |
- } |
+ aff = sqlite3IndexColumnAffinity(pParse->db, p, nEq); |
+ assert( nEq!=p->nKeyCol || aff==SQLITE_AFF_INTEGER ); |
/* Determine iLower and iUpper using ($P) only. */ |
if( nEq==0 ){ |
iLower = 0; |
- iUpper = sqlite3LogEstToInt(p->aiRowLogEst[0]); |
+ iUpper = p->nRowEst0; |
}else{ |
/* Note: this call could be optimized away - since the same values must |
** have been requested when testing key $P in whereEqualScanEst(). */ |
@@ -2221,7 +1423,7 @@ static int whereRangeScanEst( |
rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk); |
if( rc==SQLITE_OK && bOk ){ |
tRowcnt iNew; |
- whereKeyStats(pParse, p, pRec, 0, a); |
+ iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a); |
iNew = a[0] + ((pLower->eOperator & (WO_GT|WO_LE)) ? a[1] : 0); |
if( iNew>iLower ) iLower = iNew; |
nOut--; |
@@ -2236,7 +1438,7 @@ static int whereRangeScanEst( |
rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk); |
if( rc==SQLITE_OK && bOk ){ |
tRowcnt iNew; |
- whereKeyStats(pParse, p, pRec, 1, a); |
+ iUprIdx = whereKeyStats(pParse, p, pRec, 1, a); |
iNew = a[0] + ((pUpper->eOperator & (WO_GT|WO_LE)) ? a[1] : 0); |
if( iNew<iUpper ) iUpper = iNew; |
nOut--; |
@@ -2248,6 +1450,11 @@ static int whereRangeScanEst( |
if( rc==SQLITE_OK ){ |
if( iUpper>iLower ){ |
nNew = sqlite3LogEst(iUpper - iLower); |
+ /* TUNING: If both iUpper and iLower are derived from the same |
+ ** sample, then assume they are 4x more selective. This brings |
+ ** the estimated selectivity more in line with what it would be |
+ ** if estimated without the use of STAT3/4 tables. */ |
+ if( iLwrIdx==iUprIdx ) nNew -= 20; assert( 20==sqlite3LogEst(4) ); |
}else{ |
nNew = 10; assert( 10==sqlite3LogEst(2) ); |
} |
@@ -2272,12 +1479,15 @@ static int whereRangeScanEst( |
nNew = whereRangeAdjust(pLower, nOut); |
nNew = whereRangeAdjust(pUpper, nNew); |
- /* TUNING: If there is both an upper and lower limit, assume the range is |
+ /* TUNING: If there is both an upper and lower limit and neither limit |
+ ** has an application-defined likelihood(), assume the range is |
** reduced by an additional 75%. This means that, by default, an open-ended |
** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the |
** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to |
** match 1/64 of the index. */ |
- if( pLower && pUpper ) nNew -= 20; |
+ if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){ |
+ nNew -= 20; |
+ } |
nOut -= (pLower!=0) + (pUpper!=0); |
if( nNew<10 ) nNew = 10; |
@@ -2318,1455 +1528,95 @@ static int whereEqualScanEst( |
){ |
Index *p = pBuilder->pNew->u.btree.pIndex; |
int nEq = pBuilder->pNew->u.btree.nEq; |
- UnpackedRecord *pRec = pBuilder->pRec; |
- u8 aff; /* Column affinity */ |
- int rc; /* Subfunction return code */ |
- tRowcnt a[2]; /* Statistics */ |
- int bOk; |
- |
- assert( nEq>=1 ); |
- assert( nEq<=p->nColumn ); |
- assert( p->aSample!=0 ); |
- assert( p->nSample>0 ); |
- assert( pBuilder->nRecValid<nEq ); |
- |
- /* If values are not available for all fields of the index to the left |
- ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */ |
- if( pBuilder->nRecValid<(nEq-1) ){ |
- return SQLITE_NOTFOUND; |
- } |
- |
- /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue() |
- ** below would return the same value. */ |
- if( nEq>=p->nColumn ){ |
- *pnRow = 1; |
- return SQLITE_OK; |
- } |
- |
- aff = p->pTable->aCol[p->aiColumn[nEq-1]].affinity; |
- rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq-1, &bOk); |
- pBuilder->pRec = pRec; |
- if( rc!=SQLITE_OK ) return rc; |
- if( bOk==0 ) return SQLITE_NOTFOUND; |
- pBuilder->nRecValid = nEq; |
- |
- whereKeyStats(pParse, p, pRec, 0, a); |
- WHERETRACE(0x10,("equality scan regions: %d\n", (int)a[1])); |
- *pnRow = a[1]; |
- |
- return rc; |
-} |
-#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ |
- |
-#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
-/* |
-** Estimate the number of rows that will be returned based on |
-** an IN constraint where the right-hand side of the IN operator |
-** is a list of values. Example: |
-** |
-** WHERE x IN (1,2,3,4) |
-** |
-** Write the estimated row count into *pnRow and return SQLITE_OK. |
-** If unable to make an estimate, leave *pnRow unchanged and return |
-** non-zero. |
-** |
-** This routine can fail if it is unable to load a collating sequence |
-** required for string comparison, or if unable to allocate memory |
-** for a UTF conversion required for comparison. The error is stored |
-** in the pParse structure. |
-*/ |
-static int whereInScanEst( |
- Parse *pParse, /* Parsing & code generating context */ |
- WhereLoopBuilder *pBuilder, |
- ExprList *pList, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */ |
- tRowcnt *pnRow /* Write the revised row estimate here */ |
-){ |
- Index *p = pBuilder->pNew->u.btree.pIndex; |
- i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]); |
- int nRecValid = pBuilder->nRecValid; |
- int rc = SQLITE_OK; /* Subfunction return code */ |
- tRowcnt nEst; /* Number of rows for a single term */ |
- tRowcnt nRowEst = 0; /* New estimate of the number of rows */ |
- int i; /* Loop counter */ |
- |
- assert( p->aSample!=0 ); |
- for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){ |
- nEst = nRow0; |
- rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst); |
- nRowEst += nEst; |
- pBuilder->nRecValid = nRecValid; |
- } |
- |
- if( rc==SQLITE_OK ){ |
- if( nRowEst > nRow0 ) nRowEst = nRow0; |
- *pnRow = nRowEst; |
- WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst)); |
- } |
- assert( pBuilder->nRecValid==nRecValid ); |
- return rc; |
-} |
-#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ |
- |
-/* |
-** Disable a term in the WHERE clause. Except, do not disable the term |
-** if it controls a LEFT OUTER JOIN and it did not originate in the ON |
-** or USING clause of that join. |
-** |
-** Consider the term t2.z='ok' in the following queries: |
-** |
-** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' |
-** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' |
-** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' |
-** |
-** The t2.z='ok' is disabled in the in (2) because it originates |
-** in the ON clause. The term is disabled in (3) because it is not part |
-** of a LEFT OUTER JOIN. In (1), the term is not disabled. |
-** |
-** Disabling a term causes that term to not be tested in the inner loop |
-** of the join. Disabling is an optimization. When terms are satisfied |
-** by indices, we disable them to prevent redundant tests in the inner |
-** loop. We would get the correct results if nothing were ever disabled, |
-** but joins might run a little slower. The trick is to disable as much |
-** as we can without disabling too much. If we disabled in (1), we'd get |
-** the wrong answer. See ticket #813. |
-*/ |
-static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ |
- if( pTerm |
- && (pTerm->wtFlags & TERM_CODED)==0 |
- && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin)) |
- && (pLevel->notReady & pTerm->prereqAll)==0 |
- ){ |
- pTerm->wtFlags |= TERM_CODED; |
- if( pTerm->iParent>=0 ){ |
- WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent]; |
- if( (--pOther->nChild)==0 ){ |
- disableTerm(pLevel, pOther); |
- } |
- } |
- } |
-} |
- |
-/* |
-** Code an OP_Affinity opcode to apply the column affinity string zAff |
-** to the n registers starting at base. |
-** |
-** As an optimization, SQLITE_AFF_NONE entries (which are no-ops) at the |
-** beginning and end of zAff are ignored. If all entries in zAff are |
-** SQLITE_AFF_NONE, then no code gets generated. |
-** |
-** This routine makes its own copy of zAff so that the caller is free |
-** to modify zAff after this routine returns. |
-*/ |
-static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){ |
- Vdbe *v = pParse->pVdbe; |
- if( zAff==0 ){ |
- assert( pParse->db->mallocFailed ); |
- return; |
- } |
- assert( v!=0 ); |
- |
- /* Adjust base and n to skip over SQLITE_AFF_NONE entries at the beginning |
- ** and end of the affinity string. |
- */ |
- while( n>0 && zAff[0]==SQLITE_AFF_NONE ){ |
- n--; |
- base++; |
- zAff++; |
- } |
- while( n>1 && zAff[n-1]==SQLITE_AFF_NONE ){ |
- n--; |
- } |
- |
- /* Code the OP_Affinity opcode if there is anything left to do. */ |
- if( n>0 ){ |
- sqlite3VdbeAddOp2(v, OP_Affinity, base, n); |
- sqlite3VdbeChangeP4(v, -1, zAff, n); |
- sqlite3ExprCacheAffinityChange(pParse, base, n); |
- } |
-} |
- |
- |
-/* |
-** Generate code for a single equality term of the WHERE clause. An equality |
-** term can be either X=expr or X IN (...). pTerm is the term to be |
-** coded. |
-** |
-** The current value for the constraint is left in register iReg. |
-** |
-** For a constraint of the form X=expr, the expression is evaluated and its |
-** result is left on the stack. For constraints of the form X IN (...) |
-** this routine sets up a loop that will iterate over all values of X. |
-*/ |
-static int codeEqualityTerm( |
- Parse *pParse, /* The parsing context */ |
- WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ |
- WhereLevel *pLevel, /* The level of the FROM clause we are working on */ |
- int iEq, /* Index of the equality term within this level */ |
- int bRev, /* True for reverse-order IN operations */ |
- int iTarget /* Attempt to leave results in this register */ |
-){ |
- Expr *pX = pTerm->pExpr; |
- Vdbe *v = pParse->pVdbe; |
- int iReg; /* Register holding results */ |
- |
- assert( iTarget>0 ); |
- if( pX->op==TK_EQ ){ |
- iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget); |
- }else if( pX->op==TK_ISNULL ){ |
- iReg = iTarget; |
- sqlite3VdbeAddOp2(v, OP_Null, 0, iReg); |
-#ifndef SQLITE_OMIT_SUBQUERY |
- }else{ |
- int eType; |
- int iTab; |
- struct InLoop *pIn; |
- WhereLoop *pLoop = pLevel->pWLoop; |
- |
- if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 |
- && pLoop->u.btree.pIndex!=0 |
- && pLoop->u.btree.pIndex->aSortOrder[iEq] |
- ){ |
- testcase( iEq==0 ); |
- testcase( bRev ); |
- bRev = !bRev; |
- } |
- assert( pX->op==TK_IN ); |
- iReg = iTarget; |
- eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0); |
- if( eType==IN_INDEX_INDEX_DESC ){ |
- testcase( bRev ); |
- bRev = !bRev; |
- } |
- iTab = pX->iTable; |
- sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0); |
- VdbeCoverageIf(v, bRev); |
- VdbeCoverageIf(v, !bRev); |
- assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 ); |
- pLoop->wsFlags |= WHERE_IN_ABLE; |
- if( pLevel->u.in.nIn==0 ){ |
- pLevel->addrNxt = sqlite3VdbeMakeLabel(v); |
- } |
- pLevel->u.in.nIn++; |
- pLevel->u.in.aInLoop = |
- sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop, |
- sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn); |
- pIn = pLevel->u.in.aInLoop; |
- if( pIn ){ |
- pIn += pLevel->u.in.nIn - 1; |
- pIn->iCur = iTab; |
- if( eType==IN_INDEX_ROWID ){ |
- pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg); |
- }else{ |
- pIn->addrInTop = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg); |
- } |
- pIn->eEndLoopOp = bRev ? OP_PrevIfOpen : OP_NextIfOpen; |
- sqlite3VdbeAddOp1(v, OP_IsNull, iReg); VdbeCoverage(v); |
- }else{ |
- pLevel->u.in.nIn = 0; |
- } |
-#endif |
- } |
- disableTerm(pLevel, pTerm); |
- return iReg; |
-} |
- |
-/* |
-** Generate code that will evaluate all == and IN constraints for an |
-** index scan. |
-** |
-** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). |
-** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10 |
-** The index has as many as three equality constraints, but in this |
-** example, the third "c" value is an inequality. So only two |
-** constraints are coded. This routine will generate code to evaluate |
-** a==5 and b IN (1,2,3). The current values for a and b will be stored |
-** in consecutive registers and the index of the first register is returned. |
-** |
-** In the example above nEq==2. But this subroutine works for any value |
-** of nEq including 0. If nEq==0, this routine is nearly a no-op. |
-** The only thing it does is allocate the pLevel->iMem memory cell and |
-** compute the affinity string. |
-** |
-** The nExtraReg parameter is 0 or 1. It is 0 if all WHERE clause constraints |
-** are == or IN and are covered by the nEq. nExtraReg is 1 if there is |
-** an inequality constraint (such as the "c>=5 AND c<10" in the example) that |
-** occurs after the nEq quality constraints. |
-** |
-** This routine allocates a range of nEq+nExtraReg memory cells and returns |
-** the index of the first memory cell in that range. The code that |
-** calls this routine will use that memory range to store keys for |
-** start and termination conditions of the loop. |
-** key value of the loop. If one or more IN operators appear, then |
-** this routine allocates an additional nEq memory cells for internal |
-** use. |
-** |
-** Before returning, *pzAff is set to point to a buffer containing a |
-** copy of the column affinity string of the index allocated using |
-** sqlite3DbMalloc(). Except, entries in the copy of the string associated |
-** with equality constraints that use NONE affinity are set to |
-** SQLITE_AFF_NONE. This is to deal with SQL such as the following: |
-** |
-** CREATE TABLE t1(a TEXT PRIMARY KEY, b); |
-** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b; |
-** |
-** In the example above, the index on t1(a) has TEXT affinity. But since |
-** the right hand side of the equality constraint (t2.b) has NONE affinity, |
-** no conversion should be attempted before using a t2.b value as part of |
-** a key to search the index. Hence the first byte in the returned affinity |
-** string in this example would be set to SQLITE_AFF_NONE. |
-*/ |
-static int codeAllEqualityTerms( |
- Parse *pParse, /* Parsing context */ |
- WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ |
- int bRev, /* Reverse the order of IN operators */ |
- int nExtraReg, /* Number of extra registers to allocate */ |
- char **pzAff /* OUT: Set to point to affinity string */ |
-){ |
- u16 nEq; /* The number of == or IN constraints to code */ |
- u16 nSkip; /* Number of left-most columns to skip */ |
- Vdbe *v = pParse->pVdbe; /* The vm under construction */ |
- Index *pIdx; /* The index being used for this loop */ |
- WhereTerm *pTerm; /* A single constraint term */ |
- WhereLoop *pLoop; /* The WhereLoop object */ |
- int j; /* Loop counter */ |
- int regBase; /* Base register */ |
- int nReg; /* Number of registers to allocate */ |
- char *zAff; /* Affinity string to return */ |
- |
- /* This module is only called on query plans that use an index. */ |
- pLoop = pLevel->pWLoop; |
- assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 ); |
- nEq = pLoop->u.btree.nEq; |
- nSkip = pLoop->u.btree.nSkip; |
- pIdx = pLoop->u.btree.pIndex; |
- assert( pIdx!=0 ); |
- |
- /* Figure out how many memory cells we will need then allocate them. |
- */ |
- regBase = pParse->nMem + 1; |
- nReg = pLoop->u.btree.nEq + nExtraReg; |
- pParse->nMem += nReg; |
- |
- zAff = sqlite3DbStrDup(pParse->db, sqlite3IndexAffinityStr(v, pIdx)); |
- if( !zAff ){ |
- pParse->db->mallocFailed = 1; |
- } |
- |
- if( nSkip ){ |
- int iIdxCur = pLevel->iIdxCur; |
- sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur); |
- VdbeCoverageIf(v, bRev==0); |
- VdbeCoverageIf(v, bRev!=0); |
- VdbeComment((v, "begin skip-scan on %s", pIdx->zName)); |
- j = sqlite3VdbeAddOp0(v, OP_Goto); |
- pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT), |
- iIdxCur, 0, regBase, nSkip); |
- VdbeCoverageIf(v, bRev==0); |
- VdbeCoverageIf(v, bRev!=0); |
- sqlite3VdbeJumpHere(v, j); |
- for(j=0; j<nSkip; j++){ |
- sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j); |
- assert( pIdx->aiColumn[j]>=0 ); |
- VdbeComment((v, "%s", pIdx->pTable->aCol[pIdx->aiColumn[j]].zName)); |
- } |
- } |
- |
- /* Evaluate the equality constraints |
- */ |
- assert( zAff==0 || (int)strlen(zAff)>=nEq ); |
- for(j=nSkip; j<nEq; j++){ |
- int r1; |
- pTerm = pLoop->aLTerm[j]; |
- assert( pTerm!=0 ); |
- /* The following testcase is true for indices with redundant columns. |
- ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */ |
- testcase( (pTerm->wtFlags & TERM_CODED)!=0 ); |
- testcase( pTerm->wtFlags & TERM_VIRTUAL ); |
- r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j); |
- if( r1!=regBase+j ){ |
- if( nReg==1 ){ |
- sqlite3ReleaseTempReg(pParse, regBase); |
- regBase = r1; |
- }else{ |
- sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j); |
- } |
- } |
- testcase( pTerm->eOperator & WO_ISNULL ); |
- testcase( pTerm->eOperator & WO_IN ); |
- if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){ |
- Expr *pRight = pTerm->pExpr->pRight; |
- if( sqlite3ExprCanBeNull(pRight) ){ |
- sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk); |
- VdbeCoverage(v); |
- } |
- if( zAff ){ |
- if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_NONE ){ |
- zAff[j] = SQLITE_AFF_NONE; |
- } |
- if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){ |
- zAff[j] = SQLITE_AFF_NONE; |
- } |
- } |
- } |
- } |
- *pzAff = zAff; |
- return regBase; |
-} |
- |
-#ifndef SQLITE_OMIT_EXPLAIN |
-/* |
-** This routine is a helper for explainIndexRange() below |
-** |
-** pStr holds the text of an expression that we are building up one term |
-** at a time. This routine adds a new term to the end of the expression. |
-** Terms are separated by AND so add the "AND" text for second and subsequent |
-** terms only. |
-*/ |
-static void explainAppendTerm( |
- StrAccum *pStr, /* The text expression being built */ |
- int iTerm, /* Index of this term. First is zero */ |
- const char *zColumn, /* Name of the column */ |
- const char *zOp /* Name of the operator */ |
-){ |
- if( iTerm ) sqlite3StrAccumAppend(pStr, " AND ", 5); |
- sqlite3StrAccumAppendAll(pStr, zColumn); |
- sqlite3StrAccumAppend(pStr, zOp, 1); |
- sqlite3StrAccumAppend(pStr, "?", 1); |
-} |
- |
-/* |
-** Argument pLevel describes a strategy for scanning table pTab. This |
-** function appends text to pStr that describes the subset of table |
-** rows scanned by the strategy in the form of an SQL expression. |
-** |
-** For example, if the query: |
-** |
-** SELECT * FROM t1 WHERE a=1 AND b>2; |
-** |
-** is run and there is an index on (a, b), then this function returns a |
-** string similar to: |
-** |
-** "a=? AND b>?" |
-*/ |
-static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop, Table *pTab){ |
- Index *pIndex = pLoop->u.btree.pIndex; |
- u16 nEq = pLoop->u.btree.nEq; |
- u16 nSkip = pLoop->u.btree.nSkip; |
- int i, j; |
- Column *aCol = pTab->aCol; |
- i16 *aiColumn = pIndex->aiColumn; |
- |
- if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return; |
- sqlite3StrAccumAppend(pStr, " (", 2); |
- for(i=0; i<nEq; i++){ |
- char *z = aiColumn[i] < 0 ? "rowid" : aCol[aiColumn[i]].zName; |
- if( i>=nSkip ){ |
- explainAppendTerm(pStr, i, z, "="); |
- }else{ |
- if( i ) sqlite3StrAccumAppend(pStr, " AND ", 5); |
- sqlite3XPrintf(pStr, 0, "ANY(%s)", z); |
- } |
- } |
- |
- j = i; |
- if( pLoop->wsFlags&WHERE_BTM_LIMIT ){ |
- char *z = aiColumn[j] < 0 ? "rowid" : aCol[aiColumn[j]].zName; |
- explainAppendTerm(pStr, i++, z, ">"); |
- } |
- if( pLoop->wsFlags&WHERE_TOP_LIMIT ){ |
- char *z = aiColumn[j] < 0 ? "rowid" : aCol[aiColumn[j]].zName; |
- explainAppendTerm(pStr, i, z, "<"); |
- } |
- sqlite3StrAccumAppend(pStr, ")", 1); |
-} |
- |
-/* |
-** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN |
-** command. If the query being compiled is an EXPLAIN QUERY PLAN, a single |
-** record is added to the output to describe the table scan strategy in |
-** pLevel. |
-*/ |
-static void explainOneScan( |
- Parse *pParse, /* Parse context */ |
- SrcList *pTabList, /* Table list this loop refers to */ |
- WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */ |
- int iLevel, /* Value for "level" column of output */ |
- int iFrom, /* Value for "from" column of output */ |
- u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */ |
-){ |
-#ifndef SQLITE_DEBUG |
- if( pParse->explain==2 ) |
-#endif |
- { |
- struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom]; |
- Vdbe *v = pParse->pVdbe; /* VM being constructed */ |
- sqlite3 *db = pParse->db; /* Database handle */ |
- int iId = pParse->iSelectId; /* Select id (left-most output column) */ |
- int isSearch; /* True for a SEARCH. False for SCAN. */ |
- WhereLoop *pLoop; /* The controlling WhereLoop object */ |
- u32 flags; /* Flags that describe this loop */ |
- char *zMsg; /* Text to add to EQP output */ |
- StrAccum str; /* EQP output string */ |
- char zBuf[100]; /* Initial space for EQP output string */ |
- |
- pLoop = pLevel->pWLoop; |
- flags = pLoop->wsFlags; |
- if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_ONETABLE_ONLY) ) return; |
- |
- isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 |
- || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0)) |
- || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX)); |
- |
- sqlite3StrAccumInit(&str, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH); |
- str.db = db; |
- sqlite3StrAccumAppendAll(&str, isSearch ? "SEARCH" : "SCAN"); |
- if( pItem->pSelect ){ |
- sqlite3XPrintf(&str, 0, " SUBQUERY %d", pItem->iSelectId); |
- }else{ |
- sqlite3XPrintf(&str, 0, " TABLE %s", pItem->zName); |
- } |
- |
- if( pItem->zAlias ){ |
- sqlite3XPrintf(&str, 0, " AS %s", pItem->zAlias); |
- } |
- if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){ |
- const char *zFmt = 0; |
- Index *pIdx; |
- |
- assert( pLoop->u.btree.pIndex!=0 ); |
- pIdx = pLoop->u.btree.pIndex; |
- assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) ); |
- if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){ |
- if( isSearch ){ |
- zFmt = "PRIMARY KEY"; |
- } |
- }else if( flags & WHERE_AUTO_INDEX ){ |
- zFmt = "AUTOMATIC COVERING INDEX"; |
- }else if( flags & WHERE_IDX_ONLY ){ |
- zFmt = "COVERING INDEX %s"; |
- }else{ |
- zFmt = "INDEX %s"; |
- } |
- if( zFmt ){ |
- sqlite3StrAccumAppend(&str, " USING ", 7); |
- sqlite3XPrintf(&str, 0, zFmt, pIdx->zName); |
- explainIndexRange(&str, pLoop, pItem->pTab); |
- } |
- }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){ |
- const char *zRange; |
- if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){ |
- zRange = "(rowid=?)"; |
- }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){ |
- zRange = "(rowid>? AND rowid<?)"; |
- }else if( flags&WHERE_BTM_LIMIT ){ |
- zRange = "(rowid>?)"; |
- }else{ |
- assert( flags&WHERE_TOP_LIMIT); |
- zRange = "(rowid<?)"; |
- } |
- sqlite3StrAccumAppendAll(&str, " USING INTEGER PRIMARY KEY "); |
- sqlite3StrAccumAppendAll(&str, zRange); |
- } |
-#ifndef SQLITE_OMIT_VIRTUALTABLE |
- else if( (flags & WHERE_VIRTUALTABLE)!=0 ){ |
- sqlite3XPrintf(&str, 0, " VIRTUAL TABLE INDEX %d:%s", |
- pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr); |
- } |
-#endif |
-#ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS |
- if( pLoop->nOut>=10 ){ |
- sqlite3XPrintf(&str, 0, " (~%llu rows)", sqlite3LogEstToInt(pLoop->nOut)); |
- }else{ |
- sqlite3StrAccumAppend(&str, " (~1 row)", 9); |
- } |
-#endif |
- zMsg = sqlite3StrAccumFinish(&str); |
- sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg, P4_DYNAMIC); |
- } |
-} |
-#else |
-# define explainOneScan(u,v,w,x,y,z) |
-#endif /* SQLITE_OMIT_EXPLAIN */ |
- |
- |
-/* |
-** Generate code for the start of the iLevel-th loop in the WHERE clause |
-** implementation described by pWInfo. |
-*/ |
-static Bitmask codeOneLoopStart( |
- WhereInfo *pWInfo, /* Complete information about the WHERE clause */ |
- int iLevel, /* Which level of pWInfo->a[] should be coded */ |
- Bitmask notReady /* Which tables are currently available */ |
-){ |
- int j, k; /* Loop counters */ |
- int iCur; /* The VDBE cursor for the table */ |
- int addrNxt; /* Where to jump to continue with the next IN case */ |
- int omitTable; /* True if we use the index only */ |
- int bRev; /* True if we need to scan in reverse order */ |
- WhereLevel *pLevel; /* The where level to be coded */ |
- WhereLoop *pLoop; /* The WhereLoop object being coded */ |
- WhereClause *pWC; /* Decomposition of the entire WHERE clause */ |
- WhereTerm *pTerm; /* A WHERE clause term */ |
- Parse *pParse; /* Parsing context */ |
- sqlite3 *db; /* Database connection */ |
- Vdbe *v; /* The prepared stmt under constructions */ |
- struct SrcList_item *pTabItem; /* FROM clause term being coded */ |
- int addrBrk; /* Jump here to break out of the loop */ |
- int addrCont; /* Jump here to continue with next cycle */ |
- int iRowidReg = 0; /* Rowid is stored in this register, if not zero */ |
- int iReleaseReg = 0; /* Temp register to free before returning */ |
- |
- pParse = pWInfo->pParse; |
- v = pParse->pVdbe; |
- pWC = &pWInfo->sWC; |
- db = pParse->db; |
- pLevel = &pWInfo->a[iLevel]; |
- pLoop = pLevel->pWLoop; |
- pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; |
- iCur = pTabItem->iCursor; |
- pLevel->notReady = notReady & ~getMask(&pWInfo->sMaskSet, iCur); |
- bRev = (pWInfo->revMask>>iLevel)&1; |
- omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0 |
- && (pWInfo->wctrlFlags & WHERE_FORCE_TABLE)==0; |
- VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName)); |
- |
- /* Create labels for the "break" and "continue" instructions |
- ** for the current loop. Jump to addrBrk to break out of a loop. |
- ** Jump to cont to go immediately to the next iteration of the |
- ** loop. |
- ** |
- ** When there is an IN operator, we also have a "addrNxt" label that |
- ** means to continue with the next IN value combination. When |
- ** there are no IN operators in the constraints, the "addrNxt" label |
- ** is the same as "addrBrk". |
- */ |
- addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v); |
- addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v); |
- |
- /* If this is the right table of a LEFT OUTER JOIN, allocate and |
- ** initialize a memory cell that records if this table matches any |
- ** row of the left table of the join. |
- */ |
- if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){ |
- pLevel->iLeftJoin = ++pParse->nMem; |
- sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin); |
- VdbeComment((v, "init LEFT JOIN no-match flag")); |
- } |
- |
- /* Special case of a FROM clause subquery implemented as a co-routine */ |
- if( pTabItem->viaCoroutine ){ |
- int regYield = pTabItem->regReturn; |
- sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); |
- pLevel->p2 = sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk); |
- VdbeCoverage(v); |
- VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName)); |
- pLevel->op = OP_Goto; |
- }else |
- |
-#ifndef SQLITE_OMIT_VIRTUALTABLE |
- if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ |
- /* Case 1: The table is a virtual-table. Use the VFilter and VNext |
- ** to access the data. |
- */ |
- int iReg; /* P3 Value for OP_VFilter */ |
- int addrNotFound; |
- int nConstraint = pLoop->nLTerm; |
- |
- sqlite3ExprCachePush(pParse); |
- iReg = sqlite3GetTempRange(pParse, nConstraint+2); |
- addrNotFound = pLevel->addrBrk; |
- for(j=0; j<nConstraint; j++){ |
- int iTarget = iReg+j+2; |
- pTerm = pLoop->aLTerm[j]; |
- if( pTerm==0 ) continue; |
- if( pTerm->eOperator & WO_IN ){ |
- codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget); |
- addrNotFound = pLevel->addrNxt; |
- }else{ |
- sqlite3ExprCode(pParse, pTerm->pExpr->pRight, iTarget); |
- } |
- } |
- sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg); |
- sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1); |
- sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg, |
- pLoop->u.vtab.idxStr, |
- pLoop->u.vtab.needFree ? P4_MPRINTF : P4_STATIC); |
- VdbeCoverage(v); |
- pLoop->u.vtab.needFree = 0; |
- for(j=0; j<nConstraint && j<16; j++){ |
- if( (pLoop->u.vtab.omitMask>>j)&1 ){ |
- disableTerm(pLevel, pLoop->aLTerm[j]); |
- } |
- } |
- pLevel->op = OP_VNext; |
- pLevel->p1 = iCur; |
- pLevel->p2 = sqlite3VdbeCurrentAddr(v); |
- sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2); |
- sqlite3ExprCachePop(pParse); |
- }else |
-#endif /* SQLITE_OMIT_VIRTUALTABLE */ |
- |
- if( (pLoop->wsFlags & WHERE_IPK)!=0 |
- && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0 |
- ){ |
- /* Case 2: We can directly reference a single row using an |
- ** equality comparison against the ROWID field. Or |
- ** we reference multiple rows using a "rowid IN (...)" |
- ** construct. |
- */ |
- assert( pLoop->u.btree.nEq==1 ); |
- pTerm = pLoop->aLTerm[0]; |
- assert( pTerm!=0 ); |
- assert( pTerm->pExpr!=0 ); |
- assert( omitTable==0 ); |
- testcase( pTerm->wtFlags & TERM_VIRTUAL ); |
- iReleaseReg = ++pParse->nMem; |
- iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg); |
- if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg); |
- addrNxt = pLevel->addrNxt; |
- sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt); VdbeCoverage(v); |
- sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg); |
- VdbeCoverage(v); |
- sqlite3ExprCacheAffinityChange(pParse, iRowidReg, 1); |
- sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); |
- VdbeComment((v, "pk")); |
- pLevel->op = OP_Noop; |
- }else if( (pLoop->wsFlags & WHERE_IPK)!=0 |
- && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0 |
- ){ |
- /* Case 3: We have an inequality comparison against the ROWID field. |
- */ |
- int testOp = OP_Noop; |
- int start; |
- int memEndValue = 0; |
- WhereTerm *pStart, *pEnd; |
- |
- assert( omitTable==0 ); |
- j = 0; |
- pStart = pEnd = 0; |
- if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++]; |
- if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++]; |
- assert( pStart!=0 || pEnd!=0 ); |
- if( bRev ){ |
- pTerm = pStart; |
- pStart = pEnd; |
- pEnd = pTerm; |
- } |
- if( pStart ){ |
- Expr *pX; /* The expression that defines the start bound */ |
- int r1, rTemp; /* Registers for holding the start boundary */ |
- |
- /* The following constant maps TK_xx codes into corresponding |
- ** seek opcodes. It depends on a particular ordering of TK_xx |
- */ |
- const u8 aMoveOp[] = { |
- /* TK_GT */ OP_SeekGT, |
- /* TK_LE */ OP_SeekLE, |
- /* TK_LT */ OP_SeekLT, |
- /* TK_GE */ OP_SeekGE |
- }; |
- assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */ |
- assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */ |
- assert( TK_GE==TK_GT+3 ); /* ... is correcct. */ |
- |
- assert( (pStart->wtFlags & TERM_VNULL)==0 ); |
- testcase( pStart->wtFlags & TERM_VIRTUAL ); |
- pX = pStart->pExpr; |
- assert( pX!=0 ); |
- testcase( pStart->leftCursor!=iCur ); /* transitive constraints */ |
- r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp); |
- sqlite3VdbeAddOp3(v, aMoveOp[pX->op-TK_GT], iCur, addrBrk, r1); |
- VdbeComment((v, "pk")); |
- VdbeCoverageIf(v, pX->op==TK_GT); |
- VdbeCoverageIf(v, pX->op==TK_LE); |
- VdbeCoverageIf(v, pX->op==TK_LT); |
- VdbeCoverageIf(v, pX->op==TK_GE); |
- sqlite3ExprCacheAffinityChange(pParse, r1, 1); |
- sqlite3ReleaseTempReg(pParse, rTemp); |
- disableTerm(pLevel, pStart); |
- }else{ |
- sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk); |
- VdbeCoverageIf(v, bRev==0); |
- VdbeCoverageIf(v, bRev!=0); |
- } |
- if( pEnd ){ |
- Expr *pX; |
- pX = pEnd->pExpr; |
- assert( pX!=0 ); |
- assert( (pEnd->wtFlags & TERM_VNULL)==0 ); |
- testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */ |
- testcase( pEnd->wtFlags & TERM_VIRTUAL ); |
- memEndValue = ++pParse->nMem; |
- sqlite3ExprCode(pParse, pX->pRight, memEndValue); |
- if( pX->op==TK_LT || pX->op==TK_GT ){ |
- testOp = bRev ? OP_Le : OP_Ge; |
- }else{ |
- testOp = bRev ? OP_Lt : OP_Gt; |
- } |
- disableTerm(pLevel, pEnd); |
- } |
- start = sqlite3VdbeCurrentAddr(v); |
- pLevel->op = bRev ? OP_Prev : OP_Next; |
- pLevel->p1 = iCur; |
- pLevel->p2 = start; |
- assert( pLevel->p5==0 ); |
- if( testOp!=OP_Noop ){ |
- iRowidReg = ++pParse->nMem; |
- sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg); |
- sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); |
- sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg); |
- VdbeCoverageIf(v, testOp==OP_Le); |
- VdbeCoverageIf(v, testOp==OP_Lt); |
- VdbeCoverageIf(v, testOp==OP_Ge); |
- VdbeCoverageIf(v, testOp==OP_Gt); |
- sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL); |
- } |
- }else if( pLoop->wsFlags & WHERE_INDEXED ){ |
- /* Case 4: A scan using an index. |
- ** |
- ** The WHERE clause may contain zero or more equality |
- ** terms ("==" or "IN" operators) that refer to the N |
- ** left-most columns of the index. It may also contain |
- ** inequality constraints (>, <, >= or <=) on the indexed |
- ** column that immediately follows the N equalities. Only |
- ** the right-most column can be an inequality - the rest must |
- ** use the "==" and "IN" operators. For example, if the |
- ** index is on (x,y,z), then the following clauses are all |
- ** optimized: |
- ** |
- ** x=5 |
- ** x=5 AND y=10 |
- ** x=5 AND y<10 |
- ** x=5 AND y>5 AND y<10 |
- ** x=5 AND y=5 AND z<=10 |
- ** |
- ** The z<10 term of the following cannot be used, only |
- ** the x=5 term: |
- ** |
- ** x=5 AND z<10 |
- ** |
- ** N may be zero if there are inequality constraints. |
- ** If there are no inequality constraints, then N is at |
- ** least one. |
- ** |
- ** This case is also used when there are no WHERE clause |
- ** constraints but an index is selected anyway, in order |
- ** to force the output order to conform to an ORDER BY. |
- */ |
- static const u8 aStartOp[] = { |
- 0, |
- 0, |
- OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */ |
- OP_Last, /* 3: (!start_constraints && startEq && bRev) */ |
- OP_SeekGT, /* 4: (start_constraints && !startEq && !bRev) */ |
- OP_SeekLT, /* 5: (start_constraints && !startEq && bRev) */ |
- OP_SeekGE, /* 6: (start_constraints && startEq && !bRev) */ |
- OP_SeekLE /* 7: (start_constraints && startEq && bRev) */ |
- }; |
- static const u8 aEndOp[] = { |
- OP_IdxGE, /* 0: (end_constraints && !bRev && !endEq) */ |
- OP_IdxGT, /* 1: (end_constraints && !bRev && endEq) */ |
- OP_IdxLE, /* 2: (end_constraints && bRev && !endEq) */ |
- OP_IdxLT, /* 3: (end_constraints && bRev && endEq) */ |
- }; |
- u16 nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */ |
- int regBase; /* Base register holding constraint values */ |
- WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */ |
- WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */ |
- int startEq; /* True if range start uses ==, >= or <= */ |
- int endEq; /* True if range end uses ==, >= or <= */ |
- int start_constraints; /* Start of range is constrained */ |
- int nConstraint; /* Number of constraint terms */ |
- Index *pIdx; /* The index we will be using */ |
- int iIdxCur; /* The VDBE cursor for the index */ |
- int nExtraReg = 0; /* Number of extra registers needed */ |
- int op; /* Instruction opcode */ |
- char *zStartAff; /* Affinity for start of range constraint */ |
- char cEndAff = 0; /* Affinity for end of range constraint */ |
- u8 bSeekPastNull = 0; /* True to seek past initial nulls */ |
- u8 bStopAtNull = 0; /* Add condition to terminate at NULLs */ |
- |
- pIdx = pLoop->u.btree.pIndex; |
- iIdxCur = pLevel->iIdxCur; |
- assert( nEq>=pLoop->u.btree.nSkip ); |
- |
- /* If this loop satisfies a sort order (pOrderBy) request that |
- ** was passed to this function to implement a "SELECT min(x) ..." |
- ** query, then the caller will only allow the loop to run for |
- ** a single iteration. This means that the first row returned |
- ** should not have a NULL value stored in 'x'. If column 'x' is |
- ** the first one after the nEq equality constraints in the index, |
- ** this requires some special handling. |
- */ |
- assert( pWInfo->pOrderBy==0 |
- || pWInfo->pOrderBy->nExpr==1 |
- || (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 ); |
- if( (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)!=0 |
- && pWInfo->nOBSat>0 |
- && (pIdx->nKeyCol>nEq) |
- ){ |
- assert( pLoop->u.btree.nSkip==0 ); |
- bSeekPastNull = 1; |
- nExtraReg = 1; |
- } |
- |
- /* Find any inequality constraint terms for the start and end |
- ** of the range. |
- */ |
- j = nEq; |
- if( pLoop->wsFlags & WHERE_BTM_LIMIT ){ |
- pRangeStart = pLoop->aLTerm[j++]; |
- nExtraReg = 1; |
- } |
- if( pLoop->wsFlags & WHERE_TOP_LIMIT ){ |
- pRangeEnd = pLoop->aLTerm[j++]; |
- nExtraReg = 1; |
- if( pRangeStart==0 |
- && (j = pIdx->aiColumn[nEq])>=0 |
- && pIdx->pTable->aCol[j].notNull==0 |
- ){ |
- bSeekPastNull = 1; |
- } |
- } |
- assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 ); |
- |
- /* Generate code to evaluate all constraint terms using == or IN |
- ** and store the values of those terms in an array of registers |
- ** starting at regBase. |
- */ |
- regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff); |
- assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq ); |
- if( zStartAff ) cEndAff = zStartAff[nEq]; |
- addrNxt = pLevel->addrNxt; |
- |
- /* If we are doing a reverse order scan on an ascending index, or |
- ** a forward order scan on a descending index, interchange the |
- ** start and end terms (pRangeStart and pRangeEnd). |
- */ |
- if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC)) |
- || (bRev && pIdx->nKeyCol==nEq) |
- ){ |
- SWAP(WhereTerm *, pRangeEnd, pRangeStart); |
- SWAP(u8, bSeekPastNull, bStopAtNull); |
- } |
- |
- testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 ); |
- testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 ); |
- testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 ); |
- testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 ); |
- startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE); |
- endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE); |
- start_constraints = pRangeStart || nEq>0; |
- |
- /* Seek the index cursor to the start of the range. */ |
- nConstraint = nEq; |
- if( pRangeStart ){ |
- Expr *pRight = pRangeStart->pExpr->pRight; |
- sqlite3ExprCode(pParse, pRight, regBase+nEq); |
- if( (pRangeStart->wtFlags & TERM_VNULL)==0 |
- && sqlite3ExprCanBeNull(pRight) |
- ){ |
- sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); |
- VdbeCoverage(v); |
- } |
- if( zStartAff ){ |
- if( sqlite3CompareAffinity(pRight, zStartAff[nEq])==SQLITE_AFF_NONE){ |
- /* Since the comparison is to be performed with no conversions |
- ** applied to the operands, set the affinity to apply to pRight to |
- ** SQLITE_AFF_NONE. */ |
- zStartAff[nEq] = SQLITE_AFF_NONE; |
- } |
- if( sqlite3ExprNeedsNoAffinityChange(pRight, zStartAff[nEq]) ){ |
- zStartAff[nEq] = SQLITE_AFF_NONE; |
- } |
- } |
- nConstraint++; |
- testcase( pRangeStart->wtFlags & TERM_VIRTUAL ); |
- }else if( bSeekPastNull ){ |
- sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); |
- nConstraint++; |
- startEq = 0; |
- start_constraints = 1; |
- } |
- codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff); |
- op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev]; |
- assert( op!=0 ); |
- sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); |
- VdbeCoverage(v); |
- VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind ); |
- VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last ); |
- VdbeCoverageIf(v, op==OP_SeekGT); testcase( op==OP_SeekGT ); |
- VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE ); |
- VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE ); |
- VdbeCoverageIf(v, op==OP_SeekLT); testcase( op==OP_SeekLT ); |
- |
- /* Load the value for the inequality constraint at the end of the |
- ** range (if any). |
- */ |
- nConstraint = nEq; |
- if( pRangeEnd ){ |
- Expr *pRight = pRangeEnd->pExpr->pRight; |
- sqlite3ExprCacheRemove(pParse, regBase+nEq, 1); |
- sqlite3ExprCode(pParse, pRight, regBase+nEq); |
- if( (pRangeEnd->wtFlags & TERM_VNULL)==0 |
- && sqlite3ExprCanBeNull(pRight) |
- ){ |
- sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); |
- VdbeCoverage(v); |
- } |
- if( sqlite3CompareAffinity(pRight, cEndAff)!=SQLITE_AFF_NONE |
- && !sqlite3ExprNeedsNoAffinityChange(pRight, cEndAff) |
- ){ |
- codeApplyAffinity(pParse, regBase+nEq, 1, &cEndAff); |
- } |
- nConstraint++; |
- testcase( pRangeEnd->wtFlags & TERM_VIRTUAL ); |
- }else if( bStopAtNull ){ |
- sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); |
- endEq = 0; |
- nConstraint++; |
- } |
- sqlite3DbFree(db, zStartAff); |
- |
- /* Top of the loop body */ |
- pLevel->p2 = sqlite3VdbeCurrentAddr(v); |
- |
- /* Check if the index cursor is past the end of the range. */ |
- if( nConstraint ){ |
- op = aEndOp[bRev*2 + endEq]; |
- sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); |
- testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT ); |
- testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE ); |
- testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT ); |
- testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE ); |
- } |
- |
- /* Seek the table cursor, if required */ |
- disableTerm(pLevel, pRangeStart); |
- disableTerm(pLevel, pRangeEnd); |
- if( omitTable ){ |
- /* pIdx is a covering index. No need to access the main table. */ |
- }else if( HasRowid(pIdx->pTable) ){ |
- iRowidReg = ++pParse->nMem; |
- sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg); |
- sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); |
- sqlite3VdbeAddOp2(v, OP_Seek, iCur, iRowidReg); /* Deferred seek */ |
- }else if( iCur!=iIdxCur ){ |
- Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable); |
- iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol); |
- for(j=0; j<pPk->nKeyCol; j++){ |
- k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]); |
- sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j); |
- } |
- sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont, |
- iRowidReg, pPk->nKeyCol); VdbeCoverage(v); |
- } |
- |
- /* Record the instruction used to terminate the loop. Disable |
- ** WHERE clause terms made redundant by the index range scan. |
- */ |
- if( pLoop->wsFlags & WHERE_ONEROW ){ |
- pLevel->op = OP_Noop; |
- }else if( bRev ){ |
- pLevel->op = OP_Prev; |
- }else{ |
- pLevel->op = OP_Next; |
- } |
- pLevel->p1 = iIdxCur; |
- pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0; |
- if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){ |
- pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; |
- }else{ |
- assert( pLevel->p5==0 ); |
- } |
- }else |
- |
-#ifndef SQLITE_OMIT_OR_OPTIMIZATION |
- if( pLoop->wsFlags & WHERE_MULTI_OR ){ |
- /* Case 5: Two or more separately indexed terms connected by OR |
- ** |
- ** Example: |
- ** |
- ** CREATE TABLE t1(a,b,c,d); |
- ** CREATE INDEX i1 ON t1(a); |
- ** CREATE INDEX i2 ON t1(b); |
- ** CREATE INDEX i3 ON t1(c); |
- ** |
- ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13) |
- ** |
- ** In the example, there are three indexed terms connected by OR. |
- ** The top of the loop looks like this: |
- ** |
- ** Null 1 # Zero the rowset in reg 1 |
- ** |
- ** Then, for each indexed term, the following. The arguments to |
- ** RowSetTest are such that the rowid of the current row is inserted |
- ** into the RowSet. If it is already present, control skips the |
- ** Gosub opcode and jumps straight to the code generated by WhereEnd(). |
- ** |
- ** sqlite3WhereBegin(<term>) |
- ** RowSetTest # Insert rowid into rowset |
- ** Gosub 2 A |
- ** sqlite3WhereEnd() |
- ** |
- ** Following the above, code to terminate the loop. Label A, the target |
- ** of the Gosub above, jumps to the instruction right after the Goto. |
- ** |
- ** Null 1 # Zero the rowset in reg 1 |
- ** Goto B # The loop is finished. |
- ** |
- ** A: <loop body> # Return data, whatever. |
- ** |
- ** Return 2 # Jump back to the Gosub |
- ** |
- ** B: <after the loop> |
- ** |
- ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then |
- ** use an ephemeral index instead of a RowSet to record the primary |
- ** keys of the rows we have already seen. |
- ** |
- */ |
- WhereClause *pOrWc; /* The OR-clause broken out into subterms */ |
- SrcList *pOrTab; /* Shortened table list or OR-clause generation */ |
- Index *pCov = 0; /* Potential covering index (or NULL) */ |
- int iCovCur = pParse->nTab++; /* Cursor used for index scans (if any) */ |
- |
- int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */ |
- int regRowset = 0; /* Register for RowSet object */ |
- int regRowid = 0; /* Register holding rowid */ |
- int iLoopBody = sqlite3VdbeMakeLabel(v); /* Start of loop body */ |
- int iRetInit; /* Address of regReturn init */ |
- int untestedTerms = 0; /* Some terms not completely tested */ |
- int ii; /* Loop counter */ |
- u16 wctrlFlags; /* Flags for sub-WHERE clause */ |
- Expr *pAndExpr = 0; /* An ".. AND (...)" expression */ |
- Table *pTab = pTabItem->pTab; |
- |
- pTerm = pLoop->aLTerm[0]; |
- assert( pTerm!=0 ); |
- assert( pTerm->eOperator & WO_OR ); |
- assert( (pTerm->wtFlags & TERM_ORINFO)!=0 ); |
- pOrWc = &pTerm->u.pOrInfo->wc; |
- pLevel->op = OP_Return; |
- pLevel->p1 = regReturn; |
- |
- /* Set up a new SrcList in pOrTab containing the table being scanned |
- ** by this loop in the a[0] slot and all notReady tables in a[1..] slots. |
- ** This becomes the SrcList in the recursive call to sqlite3WhereBegin(). |
- */ |
- if( pWInfo->nLevel>1 ){ |
- int nNotReady; /* The number of notReady tables */ |
- struct SrcList_item *origSrc; /* Original list of tables */ |
- nNotReady = pWInfo->nLevel - iLevel - 1; |
- pOrTab = sqlite3StackAllocRaw(db, |
- sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0])); |
- if( pOrTab==0 ) return notReady; |
- pOrTab->nAlloc = (u8)(nNotReady + 1); |
- pOrTab->nSrc = pOrTab->nAlloc; |
- memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem)); |
- origSrc = pWInfo->pTabList->a; |
- for(k=1; k<=nNotReady; k++){ |
- memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k])); |
- } |
- }else{ |
- pOrTab = pWInfo->pTabList; |
- } |
- |
- /* Initialize the rowset register to contain NULL. An SQL NULL is |
- ** equivalent to an empty rowset. Or, create an ephemeral index |
- ** capable of holding primary keys in the case of a WITHOUT ROWID. |
- ** |
- ** Also initialize regReturn to contain the address of the instruction |
- ** immediately following the OP_Return at the bottom of the loop. This |
- ** is required in a few obscure LEFT JOIN cases where control jumps |
- ** over the top of the loop into the body of it. In this case the |
- ** correct response for the end-of-loop code (the OP_Return) is to |
- ** fall through to the next instruction, just as an OP_Next does if |
- ** called on an uninitialized cursor. |
- */ |
- if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ |
- if( HasRowid(pTab) ){ |
- regRowset = ++pParse->nMem; |
- sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset); |
- }else{ |
- Index *pPk = sqlite3PrimaryKeyIndex(pTab); |
- regRowset = pParse->nTab++; |
- sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol); |
- sqlite3VdbeSetP4KeyInfo(pParse, pPk); |
- } |
- regRowid = ++pParse->nMem; |
- } |
- iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn); |
- |
- /* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y |
- ** Then for every term xN, evaluate as the subexpression: xN AND z |
- ** That way, terms in y that are factored into the disjunction will |
- ** be picked up by the recursive calls to sqlite3WhereBegin() below. |
- ** |
- ** Actually, each subexpression is converted to "xN AND w" where w is |
- ** the "interesting" terms of z - terms that did not originate in the |
- ** ON or USING clause of a LEFT JOIN, and terms that are usable as |
- ** indices. |
- ** |
- ** This optimization also only applies if the (x1 OR x2 OR ...) term |
- ** is not contained in the ON clause of a LEFT JOIN. |
- ** See ticket http://www.sqlite.org/src/info/f2369304e4 |
- */ |
- if( pWC->nTerm>1 ){ |
- int iTerm; |
- for(iTerm=0; iTerm<pWC->nTerm; iTerm++){ |
- Expr *pExpr = pWC->a[iTerm].pExpr; |
- if( &pWC->a[iTerm] == pTerm ) continue; |
- if( ExprHasProperty(pExpr, EP_FromJoin) ) continue; |
- testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO ); |
- testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL ); |
- if( pWC->a[iTerm].wtFlags & (TERM_ORINFO|TERM_VIRTUAL) ) continue; |
- if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue; |
- pExpr = sqlite3ExprDup(db, pExpr, 0); |
- pAndExpr = sqlite3ExprAnd(db, pAndExpr, pExpr); |
- } |
- if( pAndExpr ){ |
- pAndExpr = sqlite3PExpr(pParse, TK_AND, 0, pAndExpr, 0); |
- } |
- } |
+ UnpackedRecord *pRec = pBuilder->pRec; |
+ u8 aff; /* Column affinity */ |
+ int rc; /* Subfunction return code */ |
+ tRowcnt a[2]; /* Statistics */ |
+ int bOk; |
- /* Run a separate WHERE clause for each term of the OR clause. After |
- ** eliminating duplicates from other WHERE clauses, the action for each |
- ** sub-WHERE clause is to to invoke the main loop body as a subroutine. |
- */ |
- wctrlFlags = WHERE_OMIT_OPEN_CLOSE |
- | WHERE_FORCE_TABLE |
- | WHERE_ONETABLE_ONLY; |
- for(ii=0; ii<pOrWc->nTerm; ii++){ |
- WhereTerm *pOrTerm = &pOrWc->a[ii]; |
- if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){ |
- WhereInfo *pSubWInfo; /* Info for single OR-term scan */ |
- Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */ |
- int j1 = 0; /* Address of jump operation */ |
- if( pAndExpr && !ExprHasProperty(pOrExpr, EP_FromJoin) ){ |
- pAndExpr->pLeft = pOrExpr; |
- pOrExpr = pAndExpr; |
- } |
- /* Loop through table entries that match term pOrTerm. */ |
- WHERETRACE(0xffff, ("Subplan for OR-clause:\n")); |
- pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0, |
- wctrlFlags, iCovCur); |
- assert( pSubWInfo || pParse->nErr || db->mallocFailed ); |
- if( pSubWInfo ){ |
- WhereLoop *pSubLoop; |
- explainOneScan( |
- pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0 |
- ); |
- /* This is the sub-WHERE clause body. First skip over |
- ** duplicate rows from prior sub-WHERE clauses, and record the |
- ** rowid (or PRIMARY KEY) for the current row so that the same |
- ** row will be skipped in subsequent sub-WHERE clauses. |
- */ |
- if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ |
- int r; |
- int iSet = ((ii==pOrWc->nTerm-1)?-1:ii); |
- if( HasRowid(pTab) ){ |
- r = sqlite3ExprCodeGetColumn(pParse, pTab, -1, iCur, regRowid, 0); |
- j1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0, r,iSet); |
- VdbeCoverage(v); |
- }else{ |
- Index *pPk = sqlite3PrimaryKeyIndex(pTab); |
- int nPk = pPk->nKeyCol; |
- int iPk; |
- |
- /* Read the PK into an array of temp registers. */ |
- r = sqlite3GetTempRange(pParse, nPk); |
- for(iPk=0; iPk<nPk; iPk++){ |
- int iCol = pPk->aiColumn[iPk]; |
- sqlite3ExprCodeGetColumn(pParse, pTab, iCol, iCur, r+iPk, 0); |
- } |
+ assert( nEq>=1 ); |
+ assert( nEq<=p->nColumn ); |
+ assert( p->aSample!=0 ); |
+ assert( p->nSample>0 ); |
+ assert( pBuilder->nRecValid<nEq ); |
- /* Check if the temp table already contains this key. If so, |
- ** the row has already been included in the result set and |
- ** can be ignored (by jumping past the Gosub below). Otherwise, |
- ** insert the key into the temp table and proceed with processing |
- ** the row. |
- ** |
- ** Use some of the same optimizations as OP_RowSetTest: If iSet |
- ** is zero, assume that the key cannot already be present in |
- ** the temp table. And if iSet is -1, assume that there is no |
- ** need to insert the key into the temp table, as it will never |
- ** be tested for. */ |
- if( iSet ){ |
- j1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk); |
- VdbeCoverage(v); |
- } |
- if( iSet>=0 ){ |
- sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid); |
- sqlite3VdbeAddOp3(v, OP_IdxInsert, regRowset, regRowid, 0); |
- if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); |
- } |
+ /* If values are not available for all fields of the index to the left |
+ ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */ |
+ if( pBuilder->nRecValid<(nEq-1) ){ |
+ return SQLITE_NOTFOUND; |
+ } |
- /* Release the array of temp registers */ |
- sqlite3ReleaseTempRange(pParse, r, nPk); |
- } |
- } |
+ /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue() |
+ ** below would return the same value. */ |
+ if( nEq>=p->nColumn ){ |
+ *pnRow = 1; |
+ return SQLITE_OK; |
+ } |
- /* Invoke the main loop body as a subroutine */ |
- sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody); |
- |
- /* Jump here (skipping the main loop body subroutine) if the |
- ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */ |
- if( j1 ) sqlite3VdbeJumpHere(v, j1); |
- |
- /* The pSubWInfo->untestedTerms flag means that this OR term |
- ** contained one or more AND term from a notReady table. The |
- ** terms from the notReady table could not be tested and will |
- ** need to be tested later. |
- */ |
- if( pSubWInfo->untestedTerms ) untestedTerms = 1; |
- |
- /* If all of the OR-connected terms are optimized using the same |
- ** index, and the index is opened using the same cursor number |
- ** by each call to sqlite3WhereBegin() made by this loop, it may |
- ** be possible to use that index as a covering index. |
- ** |
- ** If the call to sqlite3WhereBegin() above resulted in a scan that |
- ** uses an index, and this is either the first OR-connected term |
- ** processed or the index is the same as that used by all previous |
- ** terms, set pCov to the candidate covering index. Otherwise, set |
- ** pCov to NULL to indicate that no candidate covering index will |
- ** be available. |
- */ |
- pSubLoop = pSubWInfo->a[0].pWLoop; |
- assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); |
- if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0 |
- && (ii==0 || pSubLoop->u.btree.pIndex==pCov) |
- && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex)) |
- ){ |
- assert( pSubWInfo->a[0].iIdxCur==iCovCur ); |
- pCov = pSubLoop->u.btree.pIndex; |
- wctrlFlags |= WHERE_REOPEN_IDX; |
- }else{ |
- pCov = 0; |
- } |
+ aff = sqlite3IndexColumnAffinity(pParse->db, p, nEq-1); |
+ rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq-1, &bOk); |
+ pBuilder->pRec = pRec; |
+ if( rc!=SQLITE_OK ) return rc; |
+ if( bOk==0 ) return SQLITE_NOTFOUND; |
+ pBuilder->nRecValid = nEq; |
- /* Finish the loop through table entries that match term pOrTerm. */ |
- sqlite3WhereEnd(pSubWInfo); |
- } |
- } |
- } |
- pLevel->u.pCovidx = pCov; |
- if( pCov ) pLevel->iIdxCur = iCovCur; |
- if( pAndExpr ){ |
- pAndExpr->pLeft = 0; |
- sqlite3ExprDelete(db, pAndExpr); |
- } |
- sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v)); |
- sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrBrk); |
- sqlite3VdbeResolveLabel(v, iLoopBody); |
- |
- if( pWInfo->nLevel>1 ) sqlite3StackFree(db, pOrTab); |
- if( !untestedTerms ) disableTerm(pLevel, pTerm); |
- }else |
-#endif /* SQLITE_OMIT_OR_OPTIMIZATION */ |
- |
- { |
- /* Case 6: There is no usable index. We must do a complete |
- ** scan of the entire table. |
- */ |
- static const u8 aStep[] = { OP_Next, OP_Prev }; |
- static const u8 aStart[] = { OP_Rewind, OP_Last }; |
- assert( bRev==0 || bRev==1 ); |
- if( pTabItem->isRecursive ){ |
- /* Tables marked isRecursive have only a single row that is stored in |
- ** a pseudo-cursor. No need to Rewind or Next such cursors. */ |
- pLevel->op = OP_Noop; |
- }else{ |
- pLevel->op = aStep[bRev]; |
- pLevel->p1 = iCur; |
- pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk); |
- VdbeCoverageIf(v, bRev==0); |
- VdbeCoverageIf(v, bRev!=0); |
- pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; |
- } |
- } |
+ whereKeyStats(pParse, p, pRec, 0, a); |
+ WHERETRACE(0x10,("equality scan regions: %d\n", (int)a[1])); |
+ *pnRow = a[1]; |
+ |
+ return rc; |
+} |
+#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ |
- /* Insert code to test every subexpression that can be completely |
- ** computed using the current set of tables. |
- */ |
- for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ |
- Expr *pE; |
- testcase( pTerm->wtFlags & TERM_VIRTUAL ); |
- testcase( pTerm->wtFlags & TERM_CODED ); |
- if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; |
- if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ |
- testcase( pWInfo->untestedTerms==0 |
- && (pWInfo->wctrlFlags & WHERE_ONETABLE_ONLY)!=0 ); |
- pWInfo->untestedTerms = 1; |
- continue; |
- } |
- pE = pTerm->pExpr; |
- assert( pE!=0 ); |
- if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){ |
- continue; |
- } |
- sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL); |
- pTerm->wtFlags |= TERM_CODED; |
- } |
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
+/* |
+** Estimate the number of rows that will be returned based on |
+** an IN constraint where the right-hand side of the IN operator |
+** is a list of values. Example: |
+** |
+** WHERE x IN (1,2,3,4) |
+** |
+** Write the estimated row count into *pnRow and return SQLITE_OK. |
+** If unable to make an estimate, leave *pnRow unchanged and return |
+** non-zero. |
+** |
+** This routine can fail if it is unable to load a collating sequence |
+** required for string comparison, or if unable to allocate memory |
+** for a UTF conversion required for comparison. The error is stored |
+** in the pParse structure. |
+*/ |
+static int whereInScanEst( |
+ Parse *pParse, /* Parsing & code generating context */ |
+ WhereLoopBuilder *pBuilder, |
+ ExprList *pList, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */ |
+ tRowcnt *pnRow /* Write the revised row estimate here */ |
+){ |
+ Index *p = pBuilder->pNew->u.btree.pIndex; |
+ i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]); |
+ int nRecValid = pBuilder->nRecValid; |
+ int rc = SQLITE_OK; /* Subfunction return code */ |
+ tRowcnt nEst; /* Number of rows for a single term */ |
+ tRowcnt nRowEst = 0; /* New estimate of the number of rows */ |
+ int i; /* Loop counter */ |
- /* Insert code to test for implied constraints based on transitivity |
- ** of the "==" operator. |
- ** |
- ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123" |
- ** and we are coding the t1 loop and the t2 loop has not yet coded, |
- ** then we cannot use the "t1.a=t2.b" constraint, but we can code |
- ** the implied "t1.a=123" constraint. |
- */ |
- for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ |
- Expr *pE, *pEAlt; |
- WhereTerm *pAlt; |
- if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; |
- if( pTerm->eOperator!=(WO_EQUIV|WO_EQ) ) continue; |
- if( pTerm->leftCursor!=iCur ) continue; |
- if( pLevel->iLeftJoin ) continue; |
- pE = pTerm->pExpr; |
- assert( !ExprHasProperty(pE, EP_FromJoin) ); |
- assert( (pTerm->prereqRight & pLevel->notReady)!=0 ); |
- pAlt = findTerm(pWC, iCur, pTerm->u.leftColumn, notReady, WO_EQ|WO_IN, 0); |
- if( pAlt==0 ) continue; |
- if( pAlt->wtFlags & (TERM_CODED) ) continue; |
- testcase( pAlt->eOperator & WO_EQ ); |
- testcase( pAlt->eOperator & WO_IN ); |
- VdbeModuleComment((v, "begin transitive constraint")); |
- pEAlt = sqlite3StackAllocRaw(db, sizeof(*pEAlt)); |
- if( pEAlt ){ |
- *pEAlt = *pAlt->pExpr; |
- pEAlt->pLeft = pE->pLeft; |
- sqlite3ExprIfFalse(pParse, pEAlt, addrCont, SQLITE_JUMPIFNULL); |
- sqlite3StackFree(db, pEAlt); |
- } |
+ assert( p->aSample!=0 ); |
+ for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){ |
+ nEst = nRow0; |
+ rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst); |
+ nRowEst += nEst; |
+ pBuilder->nRecValid = nRecValid; |
} |
- /* For a LEFT OUTER JOIN, generate code that will record the fact that |
- ** at least one row of the right table has matched the left table. |
- */ |
- if( pLevel->iLeftJoin ){ |
- pLevel->addrFirst = sqlite3VdbeCurrentAddr(v); |
- sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin); |
- VdbeComment((v, "record LEFT JOIN hit")); |
- sqlite3ExprCacheClear(pParse); |
- for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){ |
- testcase( pTerm->wtFlags & TERM_VIRTUAL ); |
- testcase( pTerm->wtFlags & TERM_CODED ); |
- if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; |
- if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ |
- assert( pWInfo->untestedTerms ); |
- continue; |
- } |
- assert( pTerm->pExpr ); |
- sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL); |
- pTerm->wtFlags |= TERM_CODED; |
- } |
+ if( rc==SQLITE_OK ){ |
+ if( nRowEst > nRow0 ) nRowEst = nRow0; |
+ *pnRow = nRowEst; |
+ WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst)); |
} |
- |
- return pLevel->notReady; |
+ assert( pBuilder->nRecValid==nRecValid ); |
+ return rc; |
} |
+#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ |
+ |
#ifdef WHERETRACE_ENABLED |
/* |
@@ -3781,9 +1631,10 @@ static void whereTermPrint(WhereTerm *pTerm, int iTerm){ |
if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V'; |
if( pTerm->eOperator & WO_EQUIV ) zType[1] = 'E'; |
if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) zType[2] = 'L'; |
- sqlite3DebugPrintf("TERM-%-3d %p %s cursor=%-3d prob=%-3d op=0x%03x\n", |
- iTerm, pTerm, zType, pTerm->leftCursor, pTerm->truthProb, |
- pTerm->eOperator); |
+ sqlite3DebugPrintf( |
+ "TERM-%-3d %p %s cursor=%-3d prob=%-3d op=0x%03x wtFlags=0x%04x\n", |
+ iTerm, pTerm, zType, pTerm->leftCursor, pTerm->truthProb, |
+ pTerm->eOperator, pTerm->wtFlags); |
sqlite3TreeViewExpr(0, pTerm->pExpr, 0); |
} |
} |
@@ -3826,7 +1677,7 @@ static void whereLoopPrint(WhereLoop *p, WhereClause *pWC){ |
sqlite3_free(z); |
} |
if( p->wsFlags & WHERE_SKIPSCAN ){ |
- sqlite3DebugPrintf(" f %05x %d-%d", p->wsFlags, p->nLTerm,p->u.btree.nSkip); |
+ sqlite3DebugPrintf(" f %05x %d-%d", p->wsFlags, p->nLTerm,p->nSkip); |
}else{ |
sqlite3DebugPrintf(" f %05x N %d", p->wsFlags, p->nLTerm); |
} |
@@ -3862,7 +1713,6 @@ static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){ |
p->u.vtab.idxStr = 0; |
}else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){ |
sqlite3DbFree(db, p->u.btree.pIndex->zColAff); |
- sqlite3KeyInfoUnref(p->u.btree.pIndex->pKeyInfo); |
sqlite3DbFree(db, p->u.btree.pIndex); |
p->u.btree.pIndex = 0; |
} |
@@ -3926,7 +1776,14 @@ static void whereLoopDelete(sqlite3 *db, WhereLoop *p){ |
*/ |
static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){ |
if( ALWAYS(pWInfo) ){ |
- whereClauseClear(&pWInfo->sWC); |
+ int i; |
+ for(i=0; i<pWInfo->nLevel; i++){ |
+ WhereLevel *pLevel = &pWInfo->a[i]; |
+ if( pLevel->pWLoop && (pLevel->pWLoop->wsFlags & WHERE_IN_ABLE) ){ |
+ sqlite3DbFree(db, pLevel->u.in.aInLoop); |
+ } |
+ } |
+ sqlite3WhereClauseClear(&pWInfo->sWC); |
while( pWInfo->pLoops ){ |
WhereLoop *p = pWInfo->pLoops; |
pWInfo->pLoops = p->pNextLoop; |
@@ -3937,10 +1794,11 @@ static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){ |
} |
/* |
-** Return TRUE if both of the following are true: |
+** Return TRUE if all of the following are true: |
** |
** (1) X has the same or lower cost that Y |
** (2) X is a proper subset of Y |
+** (3) X skips at least as many columns as Y |
** |
** By "proper subset" we mean that X uses fewer WHERE clause terms |
** than Y and that every WHERE clause term used by X is also used |
@@ -3948,19 +1806,25 @@ static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){ |
** |
** If X is a proper subset of Y then Y is a better choice and ought |
** to have a lower cost. This routine returns TRUE when that cost |
-** relationship is inverted and needs to be adjusted. |
+** relationship is inverted and needs to be adjusted. The third rule |
+** was added because if X uses skip-scan less than Y it still might |
+** deserve a lower cost even if it is a proper subset of Y. |
*/ |
static int whereLoopCheaperProperSubset( |
const WhereLoop *pX, /* First WhereLoop to compare */ |
const WhereLoop *pY /* Compare against this WhereLoop */ |
){ |
int i, j; |
- if( pX->nLTerm >= pY->nLTerm ) return 0; /* X is not a subset of Y */ |
+ if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){ |
+ return 0; /* X is not a subset of Y */ |
+ } |
+ if( pY->nSkip > pX->nSkip ) return 0; |
if( pX->rRun >= pY->rRun ){ |
if( pX->rRun > pY->rRun ) return 0; /* X costs more than Y */ |
if( pX->nOut > pY->nOut ) return 0; /* X costs more than Y */ |
} |
for(i=pX->nLTerm-1; i>=0; i--){ |
+ if( pX->aLTerm[i]==0 ) continue; |
for(j=pY->nLTerm-1; j>=0; j--){ |
if( pY->aLTerm[j]==pX->aLTerm[i] ) break; |
} |
@@ -3982,33 +1846,24 @@ static int whereLoopCheaperProperSubset( |
** To say "WhereLoop X is a proper subset of Y" means that X uses fewer |
** WHERE clause terms than Y and that every WHERE clause term used by X is |
** also used by Y. |
-** |
-** This adjustment is omitted for SKIPSCAN loops. In a SKIPSCAN loop, the |
-** WhereLoop.nLTerm field is not an accurate measure of the number of WHERE |
-** clause terms covered, since some of the first nLTerm entries in aLTerm[] |
-** will be NULL (because they are skipped). That makes it more difficult |
-** to compare the loops. We could add extra code to do the comparison, and |
-** perhaps we will someday. But SKIPSCAN is sufficiently uncommon, and this |
-** adjustment is sufficient minor, that it is very difficult to construct |
-** a test case where the extra code would improve the query plan. Better |
-** to avoid the added complexity and just omit cost adjustments to SKIPSCAN |
-** loops. |
*/ |
static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){ |
if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return; |
- if( (pTemplate->wsFlags & WHERE_SKIPSCAN)!=0 ) return; |
for(; p; p=p->pNextLoop){ |
if( p->iTab!=pTemplate->iTab ) continue; |
if( (p->wsFlags & WHERE_INDEXED)==0 ) continue; |
- if( (p->wsFlags & WHERE_SKIPSCAN)!=0 ) continue; |
if( whereLoopCheaperProperSubset(p, pTemplate) ){ |
/* Adjust pTemplate cost downward so that it is cheaper than its |
- ** subset p */ |
+ ** subset p. */ |
+ WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n", |
+ pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut-1)); |
pTemplate->rRun = p->rRun; |
pTemplate->nOut = p->nOut - 1; |
}else if( whereLoopCheaperProperSubset(pTemplate, p) ){ |
/* Adjust pTemplate cost upward so that it is costlier than p since |
** pTemplate is a proper subset of p */ |
+ WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n", |
+ pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut+1)); |
pTemplate->rRun = p->rRun; |
pTemplate->nOut = p->nOut + 1; |
} |
@@ -4053,8 +1908,9 @@ static WhereLoop **whereLoopFindLesser( |
/* Any loop using an appliation-defined index (or PRIMARY KEY or |
** UNIQUE constraint) with one or more == constraints is better |
- ** than an automatic index. */ |
+ ** than an automatic index. Unless it is a skip-scan. */ |
if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 |
+ && (pTemplate->nSkip)==0 |
&& (pTemplate->wsFlags & WHERE_INDEXED)!=0 |
&& (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0 |
&& (p->prereq & pTemplate->prereq)==pTemplate->prereq |
@@ -4124,18 +1980,20 @@ static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){ |
** and prereqs. |
*/ |
if( pBuilder->pOrSet!=0 ){ |
+ if( pTemplate->nLTerm ){ |
#if WHERETRACE_ENABLED |
- u16 n = pBuilder->pOrSet->n; |
- int x = |
+ u16 n = pBuilder->pOrSet->n; |
+ int x = |
#endif |
- whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun, |
+ whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun, |
pTemplate->nOut); |
#if WHERETRACE_ENABLED /* 0x8 */ |
- if( sqlite3WhereTrace & 0x8 ){ |
- sqlite3DebugPrintf(x?" or-%d: ":" or-X: ", n); |
- whereLoopPrint(pTemplate, pBuilder->pWC); |
- } |
+ if( sqlite3WhereTrace & 0x8 ){ |
+ sqlite3DebugPrintf(x?" or-%d: ":" or-X: ", n); |
+ whereLoopPrint(pTemplate, pBuilder->pWC); |
+ } |
#endif |
+ } |
return SQLITE_OK; |
} |
@@ -4213,10 +2071,30 @@ static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){ |
** Adjust the WhereLoop.nOut value downward to account for terms of the |
** WHERE clause that reference the loop but which are not used by an |
** index. |
-** |
-** In the current implementation, the first extra WHERE clause term reduces |
-** the number of output rows by a factor of 10 and each additional term |
-** reduces the number of output rows by sqrt(2). |
+* |
+** For every WHERE clause term that is not used by the index |
+** and which has a truth probability assigned by one of the likelihood(), |
+** likely(), or unlikely() SQL functions, reduce the estimated number |
+** of output rows by the probability specified. |
+** |
+** TUNING: For every WHERE clause term that is not used by the index |
+** and which does not have an assigned truth probability, heuristics |
+** described below are used to try to estimate the truth probability. |
+** TODO --> Perhaps this is something that could be improved by better |
+** table statistics. |
+** |
+** Heuristic 1: Estimate the truth probability as 93.75%. The 93.75% |
+** value corresponds to -1 in LogEst notation, so this means decrement |
+** the WhereLoop.nOut field for every such WHERE clause term. |
+** |
+** Heuristic 2: If there exists one or more WHERE clause terms of the |
+** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the |
+** final output row estimate is no greater than 1/4 of the total number |
+** of rows in the table. In other words, assume that x==EXPR will filter |
+** out at least 3 out of 4 rows. If EXPR is -1 or 0 or 1, then maybe the |
+** "x" column is boolean or else -1 or 0 or 1 is a common default value |
+** on the "x" column and so in that case only cap the output row estimate |
+** at 1/2 instead of 1/4. |
*/ |
static void whereLoopOutputAdjust( |
WhereClause *pWC, /* The WHERE clause */ |
@@ -4225,9 +2103,10 @@ static void whereLoopOutputAdjust( |
){ |
WhereTerm *pTerm, *pX; |
Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf); |
- int i, j; |
- int nEq = 0; /* Number of = constraints not within likely()/unlikely() */ |
+ int i, j, k; |
+ LogEst iReduce = 0; /* pLoop->nOut should not exceed nRow-iReduce */ |
+ assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); |
for(i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++){ |
if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) break; |
if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue; |
@@ -4240,20 +2119,27 @@ static void whereLoopOutputAdjust( |
} |
if( j<0 ){ |
if( pTerm->truthProb<=0 ){ |
+ /* If a truth probability is specified using the likelihood() hints, |
+ ** then use the probability provided by the application. */ |
pLoop->nOut += pTerm->truthProb; |
}else{ |
+ /* In the absence of explicit truth probabilities, use heuristics to |
+ ** guess a reasonable truth probability. */ |
pLoop->nOut--; |
- if( pTerm->eOperator&WO_EQ ) nEq++; |
+ if( pTerm->eOperator&(WO_EQ|WO_IS) ){ |
+ Expr *pRight = pTerm->pExpr->pRight; |
+ testcase( pTerm->pExpr->op==TK_IS ); |
+ if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){ |
+ k = 10; |
+ }else{ |
+ k = 20; |
+ } |
+ if( iReduce<k ) iReduce = k; |
+ } |
} |
} |
} |
- /* TUNING: If there is at least one equality constraint in the WHERE |
- ** clause that does not have a likelihood() explicitly assigned to it |
- ** then do not let the estimated number of output rows exceed half |
- ** the number of rows in the table. */ |
- if( nEq && pLoop->nOut>nRow-10 ){ |
- pLoop->nOut = nRow - 10; |
- } |
+ if( pLoop->nOut > nRow-iReduce ) pLoop->nOut = nRow - iReduce; |
} |
/* |
@@ -4294,10 +2180,9 @@ static int whereLoopAddBtreeIndex( |
Bitmask saved_prereq; /* Original value of pNew->prereq */ |
u16 saved_nLTerm; /* Original value of pNew->nLTerm */ |
u16 saved_nEq; /* Original value of pNew->u.btree.nEq */ |
- u16 saved_nSkip; /* Original value of pNew->u.btree.nSkip */ |
+ u16 saved_nSkip; /* Original value of pNew->nSkip */ |
u32 saved_wsFlags; /* Original value of pNew->wsFlags */ |
LogEst saved_nOut; /* Original value of pNew->nOut */ |
- int iCol; /* Index of the column in the table */ |
int rc = SQLITE_OK; /* Return code */ |
LogEst rSize; /* Number of rows in the table */ |
LogEst rLogSize; /* Logarithm of table size */ |
@@ -4310,65 +2195,26 @@ static int whereLoopAddBtreeIndex( |
assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 ); |
if( pNew->wsFlags & WHERE_BTM_LIMIT ){ |
opMask = WO_LT|WO_LE; |
- }else if( pProbe->tnum<=0 || (pSrc->jointype & JT_LEFT)!=0 ){ |
+ }else if( /*pProbe->tnum<=0 ||*/ (pSrc->fg.jointype & JT_LEFT)!=0 ){ |
opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE; |
}else{ |
- opMask = WO_EQ|WO_IN|WO_ISNULL|WO_GT|WO_GE|WO_LT|WO_LE; |
+ opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS; |
} |
if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE); |
assert( pNew->u.btree.nEq<pProbe->nColumn ); |
- iCol = pProbe->aiColumn[pNew->u.btree.nEq]; |
- pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, iCol, |
- opMask, pProbe); |
saved_nEq = pNew->u.btree.nEq; |
- saved_nSkip = pNew->u.btree.nSkip; |
+ saved_nSkip = pNew->nSkip; |
saved_nLTerm = pNew->nLTerm; |
saved_wsFlags = pNew->wsFlags; |
saved_prereq = pNew->prereq; |
saved_nOut = pNew->nOut; |
+ pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq, |
+ opMask, pProbe); |
pNew->rSetup = 0; |
rSize = pProbe->aiRowLogEst[0]; |
rLogSize = estLog(rSize); |
- |
- /* Consider using a skip-scan if there are no WHERE clause constraints |
- ** available for the left-most terms of the index, and if the average |
- ** number of repeats in the left-most terms is at least 18. |
- ** |
- ** The magic number 18 is selected on the basis that scanning 17 rows |
- ** is almost always quicker than an index seek (even though if the index |
- ** contains fewer than 2^17 rows we assume otherwise in other parts of |
- ** the code). And, even if it is not, it should not be too much slower. |
- ** On the other hand, the extra seeks could end up being significantly |
- ** more expensive. */ |
- assert( 42==sqlite3LogEst(18) ); |
- if( saved_nEq==saved_nSkip |
- && saved_nEq+1<pProbe->nKeyCol |
- && pProbe->aiRowLogEst[saved_nEq+1]>=42 /* TUNING: Minimum for skip-scan */ |
- && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK |
- ){ |
- LogEst nIter; |
- pNew->u.btree.nEq++; |
- pNew->u.btree.nSkip++; |
- pNew->aLTerm[pNew->nLTerm++] = 0; |
- pNew->wsFlags |= WHERE_SKIPSCAN; |
- nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1]; |
- if( pTerm ){ |
- /* TUNING: When estimating skip-scan for a term that is also indexable, |
- ** multiply the cost of the skip-scan by 2.0, to make it a little less |
- ** desirable than the regular index lookup. */ |
- nIter += 10; assert( 10==sqlite3LogEst(2) ); |
- } |
- pNew->nOut -= nIter; |
- /* TUNING: Because uncertainties in the estimates for skip-scan queries, |
- ** add a 1.375 fudge factor to make skip-scan slightly less likely. */ |
- nIter += 5; |
- whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul); |
- pNew->nOut = saved_nOut; |
- pNew->u.btree.nEq = saved_nEq; |
- pNew->u.btree.nSkip = saved_nSkip; |
- } |
for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){ |
u16 eOp = pTerm->eOperator; /* Shorthand for pTerm->eOperator */ |
LogEst rCostIdx; |
@@ -4378,12 +2224,16 @@ static int whereLoopAddBtreeIndex( |
int nRecValid = pBuilder->nRecValid; |
#endif |
if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0) |
- && (iCol<0 || pSrc->pTab->aCol[iCol].notNull) |
+ && indexColumnNotNull(pProbe, saved_nEq) |
){ |
continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */ |
} |
if( pTerm->prereqRight & pNew->maskSelf ) continue; |
+ /* Do not allow the upper bound of a LIKE optimization range constraint |
+ ** to mix with a lower range bound from some other source */ |
+ if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue; |
+ |
pNew->wsFlags = saved_wsFlags; |
pNew->u.btree.nEq = saved_nEq; |
pNew->nLTerm = saved_nLTerm; |
@@ -4410,10 +2260,14 @@ static int whereLoopAddBtreeIndex( |
assert( nIn>0 ); /* RHS always has 2 or more terms... The parser |
** changes "x IN (?)" into "x=?". */ |
- }else if( eOp & (WO_EQ) ){ |
+ }else if( eOp & (WO_EQ|WO_IS) ){ |
+ int iCol = pProbe->aiColumn[saved_nEq]; |
pNew->wsFlags |= WHERE_COLUMN_EQ; |
- if( iCol<0 || (nInMul==0 && pNew->u.btree.nEq==pProbe->nKeyCol-1) ){ |
- if( iCol>=0 && !IsUniqueIndex(pProbe) ){ |
+ assert( saved_nEq==pNew->u.btree.nEq ); |
+ if( iCol==XN_ROWID |
+ || (iCol>0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1) |
+ ){ |
+ if( iCol>=0 && pProbe->uniqNotNull==0 ){ |
pNew->wsFlags |= WHERE_UNQ_WANTED; |
}else{ |
pNew->wsFlags |= WHERE_ONEROW; |
@@ -4427,6 +2281,17 @@ static int whereLoopAddBtreeIndex( |
pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT; |
pBtm = pTerm; |
pTop = 0; |
+ if( pTerm->wtFlags & TERM_LIKEOPT ){ |
+ /* Range contraints that come from the LIKE optimization are |
+ ** always used in pairs. */ |
+ pTop = &pTerm[1]; |
+ assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm ); |
+ assert( pTop->wtFlags & TERM_LIKEOPT ); |
+ assert( pTop->eOperator==WO_LT ); |
+ if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */ |
+ pNew->aLTerm[pNew->nLTerm++] = pTop; |
+ pNew->wsFlags |= WHERE_TOP_LIMIT; |
+ } |
}else{ |
assert( eOp & (WO_LT|WO_LE) ); |
testcase( eOp & WO_LT ); |
@@ -4449,10 +2314,10 @@ static int whereLoopAddBtreeIndex( |
whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew); |
}else{ |
int nEq = ++pNew->u.btree.nEq; |
- assert( eOp & (WO_ISNULL|WO_EQ|WO_IN) ); |
+ assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) ); |
assert( pNew->nOut==saved_nOut ); |
- if( pTerm->truthProb<=0 && iCol>=0 ){ |
+ if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){ |
assert( (eOp & WO_IN) || nIn==0 ); |
testcase( eOp & WO_IN ); |
pNew->nOut += pTerm->truthProb; |
@@ -4463,12 +2328,12 @@ static int whereLoopAddBtreeIndex( |
if( nInMul==0 |
&& pProbe->nSample |
&& pNew->u.btree.nEq<=pProbe->nSampleCol |
- && OptimizationEnabled(db, SQLITE_Stat3) |
&& ((eOp & WO_IN)==0 || !ExprHasProperty(pTerm->pExpr, EP_xIsSelect)) |
){ |
Expr *pExpr = pTerm->pExpr; |
- if( (eOp & (WO_EQ|WO_ISNULL))!=0 ){ |
+ if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){ |
testcase( eOp & WO_EQ ); |
+ testcase( eOp & WO_IS ); |
testcase( eOp & WO_ISNULL ); |
rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut); |
}else{ |
@@ -4531,10 +2396,45 @@ static int whereLoopAddBtreeIndex( |
} |
pNew->prereq = saved_prereq; |
pNew->u.btree.nEq = saved_nEq; |
- pNew->u.btree.nSkip = saved_nSkip; |
+ pNew->nSkip = saved_nSkip; |
pNew->wsFlags = saved_wsFlags; |
pNew->nOut = saved_nOut; |
pNew->nLTerm = saved_nLTerm; |
+ |
+ /* Consider using a skip-scan if there are no WHERE clause constraints |
+ ** available for the left-most terms of the index, and if the average |
+ ** number of repeats in the left-most terms is at least 18. |
+ ** |
+ ** The magic number 18 is selected on the basis that scanning 17 rows |
+ ** is almost always quicker than an index seek (even though if the index |
+ ** contains fewer than 2^17 rows we assume otherwise in other parts of |
+ ** the code). And, even if it is not, it should not be too much slower. |
+ ** On the other hand, the extra seeks could end up being significantly |
+ ** more expensive. */ |
+ assert( 42==sqlite3LogEst(18) ); |
+ if( saved_nEq==saved_nSkip |
+ && saved_nEq+1<pProbe->nKeyCol |
+ && pProbe->noSkipScan==0 |
+ && pProbe->aiRowLogEst[saved_nEq+1]>=42 /* TUNING: Minimum for skip-scan */ |
+ && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK |
+ ){ |
+ LogEst nIter; |
+ pNew->u.btree.nEq++; |
+ pNew->nSkip++; |
+ pNew->aLTerm[pNew->nLTerm++] = 0; |
+ pNew->wsFlags |= WHERE_SKIPSCAN; |
+ nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1]; |
+ pNew->nOut -= nIter; |
+ /* TUNING: Because uncertainties in the estimates for skip-scan queries, |
+ ** add a 1.375 fudge factor to make skip-scan slightly less likely. */ |
+ nIter += 5; |
+ whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul); |
+ pNew->nOut = saved_nOut; |
+ pNew->u.btree.nEq = saved_nEq; |
+ pNew->nSkip = saved_nSkip; |
+ pNew->wsFlags = saved_wsFlags; |
+ } |
+ |
return rc; |
} |
@@ -4552,18 +2452,25 @@ static int indexMightHelpWithOrderBy( |
int iCursor |
){ |
ExprList *pOB; |
+ ExprList *aColExpr; |
int ii, jj; |
if( pIndex->bUnordered ) return 0; |
if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0; |
for(ii=0; ii<pOB->nExpr; ii++){ |
Expr *pExpr = sqlite3ExprSkipCollate(pOB->a[ii].pExpr); |
- if( pExpr->op!=TK_COLUMN ) return 0; |
- if( pExpr->iTable==iCursor ){ |
+ if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){ |
if( pExpr->iColumn<0 ) return 1; |
for(jj=0; jj<pIndex->nKeyCol; jj++){ |
if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1; |
} |
+ }else if( (aColExpr = pIndex->aColExpr)!=0 ){ |
+ for(jj=0; jj<pIndex->nKeyCol; jj++){ |
+ if( pIndex->aiColumn[jj]!=XN_EXPR ) continue; |
+ if( sqlite3ExprCompare(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){ |
+ return 1; |
+ } |
+ } |
} |
} |
return 0; |
@@ -4593,8 +2500,17 @@ static Bitmask columnsInIndex(Index *pIdx){ |
static int whereUsablePartialIndex(int iTab, WhereClause *pWC, Expr *pWhere){ |
int i; |
WhereTerm *pTerm; |
+ while( pWhere->op==TK_AND ){ |
+ if( !whereUsablePartialIndex(iTab,pWC,pWhere->pLeft) ) return 0; |
+ pWhere = pWhere->pRight; |
+ } |
for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ |
- if( sqlite3ExprImpliesExpr(pTerm->pExpr, pWhere, iTab) ) return 1; |
+ Expr *pExpr = pTerm->pExpr; |
+ if( sqlite3ExprImpliesExpr(pExpr, pWhere, iTab) |
+ && (!ExprHasProperty(pExpr, EP_FromJoin) || pExpr->iRightJoinTable==iTab) |
+ ){ |
+ return 1; |
+ } |
} |
return 0; |
} |
@@ -4663,9 +2579,9 @@ static int whereLoopAddBtree( |
pWC = pBuilder->pWC; |
assert( !IsVirtual(pSrc->pTab) ); |
- if( pSrc->pIndex ){ |
+ if( pSrc->pIBIndex ){ |
/* An INDEXED BY clause specifies a particular index to use */ |
- pProbe = pSrc->pIndex; |
+ pProbe = pSrc->pIBIndex; |
}else if( !HasRowid(pTab) ){ |
pProbe = pTab->pIndex; |
}else{ |
@@ -4685,7 +2601,7 @@ static int whereLoopAddBtree( |
aiRowEstPk[0] = pTab->nRowLogEst; |
aiRowEstPk[1] = 0; |
pFirst = pSrc->pTab->pIndex; |
- if( pSrc->notIndexed==0 ){ |
+ if( pSrc->fg.notIndexed==0 ){ |
/* The real indices of the table are only considered if the |
** NOT INDEXED qualifier is omitted from the FROM clause */ |
sPk.pNext = pFirst; |
@@ -4697,14 +2613,14 @@ static int whereLoopAddBtree( |
#ifndef SQLITE_OMIT_AUTOMATIC_INDEX |
/* Automatic indexes */ |
- if( !pBuilder->pOrSet |
+ if( !pBuilder->pOrSet /* Not part of an OR optimization */ |
+ && (pWInfo->wctrlFlags & WHERE_NO_AUTOINDEX)==0 |
&& (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0 |
- && pSrc->pIndex==0 |
- && !pSrc->viaCoroutine |
- && !pSrc->notIndexed |
- && HasRowid(pTab) |
- && !pSrc->isCorrelated |
- && !pSrc->isRecursive |
+ && pSrc->pIBIndex==0 /* Has no INDEXED BY clause */ |
+ && !pSrc->fg.notIndexed /* Has no NOT INDEXED clause */ |
+ && HasRowid(pTab) /* Not WITHOUT ROWID table. (FIXME: Why not?) */ |
+ && !pSrc->fg.isCorrelated /* Not a correlated subquery */ |
+ && !pSrc->fg.isRecursive /* Not a recursive common table expression. */ |
){ |
/* Generate auto-index WhereLoops */ |
WhereTerm *pTerm; |
@@ -4713,7 +2629,7 @@ static int whereLoopAddBtree( |
if( pTerm->prereqRight & pNew->maskSelf ) continue; |
if( termCanDriveIndex(pTerm, pSrc, 0) ){ |
pNew->u.btree.nEq = 1; |
- pNew->u.btree.nSkip = 0; |
+ pNew->nSkip = 0; |
pNew->u.btree.pIndex = 0; |
pNew->nLTerm = 1; |
pNew->aLTerm[0] = pTerm; |
@@ -4754,7 +2670,7 @@ static int whereLoopAddBtree( |
} |
rSize = pProbe->aiRowLogEst[0]; |
pNew->u.btree.nEq = 0; |
- pNew->u.btree.nSkip = 0; |
+ pNew->nSkip = 0; |
pNew->nLTerm = 0; |
pNew->iSortIdx = 0; |
pNew->rSetup = 0; |
@@ -4825,7 +2741,7 @@ static int whereLoopAddBtree( |
/* If there was an INDEXED BY clause, then only that one index is |
** considered. */ |
- if( pSrc->pIndex ) break; |
+ if( pSrc->pIBIndex ) break; |
} |
return rc; |
} |
@@ -4834,10 +2750,32 @@ static int whereLoopAddBtree( |
/* |
** Add all WhereLoop objects for a table of the join identified by |
** pBuilder->pNew->iTab. That table is guaranteed to be a virtual table. |
+** |
+** If there are no LEFT or CROSS JOIN joins in the query, both mExtra and |
+** mUnusable are set to 0. Otherwise, mExtra is a mask of all FROM clause |
+** entries that occur before the virtual table in the FROM clause and are |
+** separated from it by at least one LEFT or CROSS JOIN. Similarly, the |
+** mUnusable mask contains all FROM clause entries that occur after the |
+** virtual table and are separated from it by at least one LEFT or |
+** CROSS JOIN. |
+** |
+** For example, if the query were: |
+** |
+** ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6; |
+** |
+** then mExtra corresponds to (t1, t2) and mUnusable to (t5, t6). |
+** |
+** All the tables in mExtra must be scanned before the current virtual |
+** table. So any terms for which all prerequisites are satisfied by |
+** mExtra may be specified as "usable" in all calls to xBestIndex. |
+** Conversely, all tables in mUnusable must be scanned after the current |
+** virtual table, so any terms for which the prerequisites overlap with |
+** mUnusable should always be configured as "not-usable" for xBestIndex. |
*/ |
static int whereLoopAddVirtual( |
WhereLoopBuilder *pBuilder, /* WHERE clause information */ |
- Bitmask mExtra |
+ Bitmask mExtra, /* Tables that must be scanned before this one */ |
+ Bitmask mUnusable /* Tables that must be scanned after this one */ |
){ |
WhereInfo *pWInfo; /* WHERE analysis context */ |
Parse *pParse; /* The parsing context */ |
@@ -4858,6 +2796,7 @@ static int whereLoopAddVirtual( |
WhereLoop *pNew; |
int rc = SQLITE_OK; |
+ assert( (mExtra & mUnusable)==0 ); |
pWInfo = pBuilder->pWInfo; |
pParse = pWInfo->pParse; |
db = pParse->db; |
@@ -4866,7 +2805,7 @@ static int whereLoopAddVirtual( |
pSrc = &pWInfo->pTabList->a[pNew->iTab]; |
pTab = pSrc->pTab; |
assert( IsVirtual(pTab) ); |
- pIdxInfo = allocateIndexInfo(pParse, pWC, pSrc, pBuilder->pOrderBy); |
+ pIdxInfo = allocateIndexInfo(pParse, pWC, mUnusable, pSrc,pBuilder->pOrderBy); |
if( pIdxInfo==0 ) return SQLITE_NOMEM; |
pNew->prereq = 0; |
pNew->rSetup = 0; |
@@ -4896,7 +2835,7 @@ static int whereLoopAddVirtual( |
if( (pTerm->eOperator & WO_IN)!=0 ){ |
seenIn = 1; |
} |
- if( pTerm->prereqRight!=0 ){ |
+ if( (pTerm->prereqRight & ~mExtra)!=0 ){ |
seenVar = 1; |
}else if( (pTerm->eOperator & WO_IN)==0 ){ |
pIdxCons->usable = 1; |
@@ -4904,7 +2843,7 @@ static int whereLoopAddVirtual( |
break; |
case 1: /* Constants with IN operators */ |
assert( seenIn ); |
- pIdxCons->usable = (pTerm->prereqRight==0); |
+ pIdxCons->usable = (pTerm->prereqRight & ~mExtra)==0; |
break; |
case 2: /* Variables without IN */ |
assert( seenVar ); |
@@ -4924,6 +2863,8 @@ static int whereLoopAddVirtual( |
pIdxInfo->orderByConsumed = 0; |
pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2; |
pIdxInfo->estimatedRows = 25; |
+ pIdxInfo->idxFlags = 0; |
+ pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed; |
rc = vtabBestIndex(pParse, pTab, pIdxInfo); |
if( rc ) goto whereLoopAddVtab_exit; |
pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; |
@@ -4969,6 +2910,7 @@ static int whereLoopAddVirtual( |
** (2) Multiple outputs from a single IN value will not merge |
** together. */ |
pIdxInfo->orderByConsumed = 0; |
+ pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE; |
} |
} |
} |
@@ -4984,6 +2926,14 @@ static int whereLoopAddVirtual( |
pNew->rSetup = 0; |
pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost); |
pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows); |
+ |
+ /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated |
+ ** that the scan will visit at most one row. Clear it otherwise. */ |
+ if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){ |
+ pNew->wsFlags |= WHERE_ONEROW; |
+ }else{ |
+ pNew->wsFlags &= ~WHERE_ONEROW; |
+ } |
whereLoopInsert(pBuilder, pNew); |
if( pNew->u.vtab.needFree ){ |
sqlite3_free(pNew->u.vtab.idxStr); |
@@ -5003,7 +2953,11 @@ whereLoopAddVtab_exit: |
** Add WhereLoop entries to handle OR terms. This works for either |
** btrees or virtual tables. |
*/ |
-static int whereLoopAddOr(WhereLoopBuilder *pBuilder, Bitmask mExtra){ |
+static int whereLoopAddOr( |
+ WhereLoopBuilder *pBuilder, |
+ Bitmask mExtra, |
+ Bitmask mUnusable |
+){ |
WhereInfo *pWInfo = pBuilder->pWInfo; |
WhereClause *pWC; |
WhereLoop *pNew; |
@@ -5062,14 +3016,14 @@ static int whereLoopAddOr(WhereLoopBuilder *pBuilder, Bitmask mExtra){ |
#endif |
#ifndef SQLITE_OMIT_VIRTUALTABLE |
if( IsVirtual(pItem->pTab) ){ |
- rc = whereLoopAddVirtual(&sSubBuild, mExtra); |
+ rc = whereLoopAddVirtual(&sSubBuild, mExtra, mUnusable); |
}else |
#endif |
{ |
rc = whereLoopAddBtree(&sSubBuild, mExtra); |
} |
if( rc==SQLITE_OK ){ |
- rc = whereLoopAddOr(&sSubBuild, mExtra); |
+ rc = whereLoopAddOr(&sSubBuild, mExtra, mUnusable); |
} |
assert( rc==SQLITE_OK || sCur.n==0 ); |
if( sCur.n==0 ){ |
@@ -5131,33 +3085,43 @@ static int whereLoopAddAll(WhereLoopBuilder *pBuilder){ |
int iTab; |
SrcList *pTabList = pWInfo->pTabList; |
struct SrcList_item *pItem; |
+ struct SrcList_item *pEnd = &pTabList->a[pWInfo->nLevel]; |
sqlite3 *db = pWInfo->pParse->db; |
- int nTabList = pWInfo->nLevel; |
int rc = SQLITE_OK; |
- u8 priorJoinType = 0; |
WhereLoop *pNew; |
+ u8 priorJointype = 0; |
/* Loop over the tables in the join, from left to right */ |
pNew = pBuilder->pNew; |
whereLoopInit(pNew); |
- for(iTab=0, pItem=pTabList->a; iTab<nTabList; iTab++, pItem++){ |
+ for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){ |
+ Bitmask mUnusable = 0; |
pNew->iTab = iTab; |
- pNew->maskSelf = getMask(&pWInfo->sMaskSet, pItem->iCursor); |
- if( ((pItem->jointype|priorJoinType) & (JT_LEFT|JT_CROSS))!=0 ){ |
+ pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor); |
+ if( ((pItem->fg.jointype|priorJointype) & (JT_LEFT|JT_CROSS))!=0 ){ |
+ /* This condition is true when pItem is the FROM clause term on the |
+ ** right-hand-side of a LEFT or CROSS JOIN. */ |
mExtra = mPrior; |
} |
- priorJoinType = pItem->jointype; |
+ priorJointype = pItem->fg.jointype; |
if( IsVirtual(pItem->pTab) ){ |
- rc = whereLoopAddVirtual(pBuilder, mExtra); |
+ struct SrcList_item *p; |
+ for(p=&pItem[1]; p<pEnd; p++){ |
+ if( mUnusable || (p->fg.jointype & (JT_LEFT|JT_CROSS)) ){ |
+ mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor); |
+ } |
+ } |
+ rc = whereLoopAddVirtual(pBuilder, mExtra, mUnusable); |
}else{ |
rc = whereLoopAddBtree(pBuilder, mExtra); |
} |
if( rc==SQLITE_OK ){ |
- rc = whereLoopAddOr(pBuilder, mExtra); |
+ rc = whereLoopAddOr(pBuilder, mExtra, mUnusable); |
} |
mPrior |= pNew->maskSelf; |
if( rc || db->mallocFailed ) break; |
} |
+ |
whereLoopClear(db, pNew); |
return rc; |
} |
@@ -5263,10 +3227,10 @@ static i8 wherePathSatisfiesOrderBy( |
pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr); |
if( pOBExpr->op!=TK_COLUMN ) continue; |
if( pOBExpr->iTable!=iCur ) continue; |
- pTerm = findTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn, |
- ~ready, WO_EQ|WO_ISNULL, 0); |
+ pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn, |
+ ~ready, WO_EQ|WO_ISNULL|WO_IS, 0); |
if( pTerm==0 ) continue; |
- if( (pTerm->eOperator&WO_EQ)!=0 && pOBExpr->iColumn>=0 ){ |
+ if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){ |
const char *z1, *z2; |
pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr); |
if( !pColl ) pColl = db->pDfltColl; |
@@ -5275,6 +3239,7 @@ static i8 wherePathSatisfiesOrderBy( |
if( !pColl ) pColl = db->pDfltColl; |
z2 = pColl->zName; |
if( sqlite3StrICmp(z1, z2)!=0 ) continue; |
+ testcase( pTerm->pExpr->op==TK_IS ); |
} |
obSat |= MASKBIT(i); |
} |
@@ -5290,7 +3255,8 @@ static i8 wherePathSatisfiesOrderBy( |
nKeyCol = pIndex->nKeyCol; |
nColumn = pIndex->nColumn; |
assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) ); |
- assert( pIndex->aiColumn[nColumn-1]==(-1) || !HasRowid(pIndex->pTable)); |
+ assert( pIndex->aiColumn[nColumn-1]==XN_ROWID |
+ || !HasRowid(pIndex->pTable)); |
isOrderDistinct = IsUniqueIndex(pIndex); |
} |
@@ -5304,8 +3270,8 @@ static i8 wherePathSatisfiesOrderBy( |
/* Skip over == and IS NULL terms */ |
if( j<pLoop->u.btree.nEq |
- && pLoop->u.btree.nSkip==0 |
- && ((i = pLoop->aLTerm[j]->eOperator) & (WO_EQ|WO_ISNULL))!=0 |
+ && pLoop->nSkip==0 |
+ && ((i = pLoop->aLTerm[j]->eOperator) & (WO_EQ|WO_ISNULL|WO_IS))!=0 |
){ |
if( i & WO_ISNULL ){ |
testcase( isOrderDistinct ); |
@@ -5322,7 +3288,7 @@ static i8 wherePathSatisfiesOrderBy( |
revIdx = pIndex->aSortOrder[j]; |
if( iColumn==pIndex->pTable->iPKey ) iColumn = -1; |
}else{ |
- iColumn = -1; |
+ iColumn = XN_ROWID; |
revIdx = 0; |
} |
@@ -5348,9 +3314,15 @@ static i8 wherePathSatisfiesOrderBy( |
testcase( wctrlFlags & WHERE_GROUPBY ); |
testcase( wctrlFlags & WHERE_DISTINCTBY ); |
if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0; |
- if( pOBExpr->op!=TK_COLUMN ) continue; |
- if( pOBExpr->iTable!=iCur ) continue; |
- if( pOBExpr->iColumn!=iColumn ) continue; |
+ if( iColumn>=(-1) ){ |
+ if( pOBExpr->op!=TK_COLUMN ) continue; |
+ if( pOBExpr->iTable!=iCur ) continue; |
+ if( pOBExpr->iColumn!=iColumn ) continue; |
+ }else{ |
+ if( sqlite3ExprCompare(pOBExpr,pIndex->aColExpr->a[j].pExpr,iCur) ){ |
+ continue; |
+ } |
+ } |
if( iColumn>=0 ){ |
pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr); |
if( !pColl ) pColl = db->pDfltColl; |
@@ -5399,7 +3371,7 @@ static i8 wherePathSatisfiesOrderBy( |
Bitmask mTerm; |
if( MASKBIT(i) & obSat ) continue; |
p = pOrderBy->a[i].pExpr; |
- mTerm = exprTableUsage(&pWInfo->sMaskSet,p); |
+ mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p); |
if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue; |
if( (mTerm&~orderDistinctMask)==0 ){ |
obSat |= MASKBIT(i); |
@@ -5581,10 +3553,10 @@ static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){ |
/* Seed the search with a single WherePath containing zero WhereLoops. |
** |
- ** TUNING: Do not let the number of iterations go above 25. If the cost |
- ** of computing an automatic index is not paid back within the first 25 |
+ ** TUNING: Do not let the number of iterations go above 28. If the cost |
+ ** of computing an automatic index is not paid back within the first 28 |
** rows, then do not use the automatic index. */ |
- aFrom[0].nRow = MIN(pParse->nQueryLoop, 46); assert( 46==sqlite3LogEst(25) ); |
+ aFrom[0].nRow = MIN(pParse->nQueryLoop, 48); assert( 48==sqlite3LogEst(28) ); |
nFrom = 1; |
assert( aFrom[0].isOrdered==0 ); |
if( nOrderBy ){ |
@@ -5758,7 +3730,7 @@ static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){ |
} |
#ifdef WHERETRACE_ENABLED /* >=2 */ |
- if( sqlite3WhereTrace>=2 ){ |
+ if( sqlite3WhereTrace & 0x02 ){ |
sqlite3DebugPrintf("---- after round %d ----\n", iLoop); |
for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){ |
sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c", |
@@ -5822,7 +3794,7 @@ static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){ |
pWInfo->revMask = pFrom->revLoop; |
} |
if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP) |
- && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr |
+ && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0 |
){ |
Bitmask revMask = 0; |
int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, |
@@ -5872,14 +3844,15 @@ static int whereShortCut(WhereLoopBuilder *pBuilder){ |
pItem = pWInfo->pTabList->a; |
pTab = pItem->pTab; |
if( IsVirtual(pTab) ) return 0; |
- if( pItem->zIndex ) return 0; |
+ if( pItem->fg.isIndexedBy ) return 0; |
iCur = pItem->iCursor; |
pWC = &pWInfo->sWC; |
pLoop = pBuilder->pNew; |
pLoop->wsFlags = 0; |
- pLoop->u.btree.nSkip = 0; |
- pTerm = findTerm(pWC, iCur, -1, 0, WO_EQ, 0); |
+ pLoop->nSkip = 0; |
+ pTerm = sqlite3WhereFindTerm(pWC, iCur, -1, 0, WO_EQ|WO_IS, 0); |
if( pTerm ){ |
+ testcase( pTerm->eOperator & WO_IS ); |
pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW; |
pLoop->aLTerm[0] = pTerm; |
pLoop->nLTerm = 1; |
@@ -5888,15 +3861,17 @@ static int whereShortCut(WhereLoopBuilder *pBuilder){ |
pLoop->rRun = 33; /* 33==sqlite3LogEst(10) */ |
}else{ |
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ |
+ int opMask; |
assert( pLoop->aLTermSpace==pLoop->aLTerm ); |
- assert( ArraySize(pLoop->aLTermSpace)==4 ); |
if( !IsUniqueIndex(pIdx) |
|| pIdx->pPartIdxWhere!=0 |
|| pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace) |
) continue; |
+ opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ; |
for(j=0; j<pIdx->nKeyCol; j++){ |
- pTerm = findTerm(pWC, iCur, pIdx->aiColumn[j], 0, WO_EQ, pIdx); |
+ pTerm = sqlite3WhereFindTerm(pWC, iCur, j, 0, opMask, pIdx); |
if( pTerm==0 ) break; |
+ testcase( pTerm->eOperator & WO_IS ); |
pLoop->aLTerm[j] = pTerm; |
} |
if( j!=pIdx->nKeyCol ) continue; |
@@ -5915,7 +3890,7 @@ static int whereShortCut(WhereLoopBuilder *pBuilder){ |
if( pLoop->wsFlags ){ |
pLoop->nOut = (LogEst)1; |
pWInfo->a[0].pWLoop = pLoop; |
- pLoop->maskSelf = getMask(&pWInfo->sMaskSet, iCur); |
+ pLoop->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); |
pWInfo->a[0].iTabCur = iCur; |
pWInfo->nRowOut = 1; |
if( pWInfo->pOrderBy ) pWInfo->nOBSat = pWInfo->pOrderBy->nExpr; |
@@ -6039,7 +4014,12 @@ WhereInfo *sqlite3WhereBegin( |
int ii; /* Loop counter */ |
sqlite3 *db; /* Database connection */ |
int rc; /* Return code */ |
+ u8 bFordelete = 0; |
+ assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || ( |
+ (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 |
+ && (wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0 |
+ )); |
/* Variable initialization */ |
db = pParse->db; |
@@ -6095,6 +4075,7 @@ WhereInfo *sqlite3WhereBegin( |
pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(v); |
pWInfo->wctrlFlags = wctrlFlags; |
pWInfo->savedNQueryLoop = pParse->nQueryLoop; |
+ assert( pWInfo->eOnePass==ONEPASS_OFF ); /* ONEPASS defaults to OFF */ |
pMaskSet = &pWInfo->sMaskSet; |
sWLB.pWInfo = pWInfo; |
sWLB.pWC = &pWInfo->sWC; |
@@ -6109,8 +4090,8 @@ WhereInfo *sqlite3WhereBegin( |
** subexpression is separated by an AND operator. |
*/ |
initMaskSet(pMaskSet); |
- whereClauseInit(&pWInfo->sWC, pWInfo); |
- whereSplit(&pWInfo->sWC, pWhere, TK_AND); |
+ sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo); |
+ sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND); |
/* Special case: a WHERE clause that is constant. Evaluate the |
** expression and either jump over all of the code or fall thru. |
@@ -6134,14 +4115,12 @@ WhereInfo *sqlite3WhereBegin( |
/* Assign a bit from the bitmask to every term in the FROM clause. |
** |
- ** When assigning bitmask values to FROM clause cursors, it must be |
- ** the case that if X is the bitmask for the N-th FROM clause term then |
- ** the bitmask for all FROM clause terms to the left of the N-th term |
- ** is (X-1). An expression from the ON clause of a LEFT JOIN can use |
- ** its Expr.iRightJoinTable value to find the bitmask of the right table |
- ** of the join. Subtracting one from the right table bitmask gives a |
- ** bitmask for all tables to the left of the join. Knowing the bitmask |
- ** for all tables to the left of a left join is important. Ticket #3015. |
+ ** The N-th term of the FROM clause is assigned a bitmask of 1<<N. |
+ ** |
+ ** The rule of the previous sentence ensures thta if X is the bitmask for |
+ ** a table T, then X-1 is the bitmask for all other tables to the left of T. |
+ ** Knowing the bitmask for all tables to the left of a left join is |
+ ** important. Ticket #3015. |
** |
** Note that bitmasks are created for all pTabList->nSrc tables in |
** pTabList, not just the first nTabList tables. nTabList is normally |
@@ -6150,27 +4129,18 @@ WhereInfo *sqlite3WhereBegin( |
*/ |
for(ii=0; ii<pTabList->nSrc; ii++){ |
createMask(pMaskSet, pTabList->a[ii].iCursor); |
+ sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC); |
} |
-#ifndef NDEBUG |
- { |
- Bitmask toTheLeft = 0; |
- for(ii=0; ii<pTabList->nSrc; ii++){ |
- Bitmask m = getMask(pMaskSet, pTabList->a[ii].iCursor); |
- assert( (m-1)==toTheLeft ); |
- toTheLeft |= m; |
- } |
+#ifdef SQLITE_DEBUG |
+ for(ii=0; ii<pTabList->nSrc; ii++){ |
+ Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor); |
+ assert( m==MASKBIT(ii) ); |
} |
#endif |
- /* Analyze all of the subexpressions. Note that exprAnalyze() might |
- ** add new virtual terms onto the end of the WHERE clause. We do not |
- ** want to analyze these virtual terms, so start analyzing at the end |
- ** and work forward so that the added virtual terms are never processed. |
- */ |
- exprAnalyzeAll(pTabList, &pWInfo->sWC); |
- if( db->mallocFailed ){ |
- goto whereBeginError; |
- } |
+ /* Analyze all of the subexpressions. */ |
+ sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC); |
+ if( db->mallocFailed ) goto whereBeginError; |
if( wctrlFlags & WHERE_WANT_DISTINCT ){ |
if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){ |
@@ -6184,10 +4154,10 @@ WhereInfo *sqlite3WhereBegin( |
} |
/* Construct the WhereLoop objects */ |
- WHERETRACE(0xffff,("*** Optimizer Start ***\n")); |
+ WHERETRACE(0xffff,("*** Optimizer Start *** (wctrlFlags: 0x%x)\n", |
+ wctrlFlags)); |
#if defined(WHERETRACE_ENABLED) |
- /* Display all terms of the WHERE clause */ |
- if( sqlite3WhereTrace & 0x100 ){ |
+ if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */ |
int i; |
for(i=0; i<sWLB.pWC->nTerm; i++){ |
whereTermPrint(&sWLB.pWC->a[i], i); |
@@ -6199,13 +4169,12 @@ WhereInfo *sqlite3WhereBegin( |
rc = whereLoopAddAll(&sWLB); |
if( rc ) goto whereBeginError; |
- /* Display all of the WhereLoop objects if wheretrace is enabled */ |
-#ifdef WHERETRACE_ENABLED /* !=0 */ |
- if( sqlite3WhereTrace ){ |
+#ifdef WHERETRACE_ENABLED |
+ if( sqlite3WhereTrace ){ /* Display all of the WhereLoop objects */ |
WhereLoop *p; |
int i; |
- static char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz" |
- "ABCDEFGHIJKLMNOPQRSTUVWYXZ"; |
+ static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz" |
+ "ABCDEFGHIJKLMNOPQRSTUVWYXZ"; |
for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){ |
p->cId = zLabel[i%sizeof(zLabel)]; |
whereLoopPrint(p, sWLB.pWC); |
@@ -6226,9 +4195,8 @@ WhereInfo *sqlite3WhereBegin( |
if( pParse->nErr || NEVER(db->mallocFailed) ){ |
goto whereBeginError; |
} |
-#ifdef WHERETRACE_ENABLED /* !=0 */ |
+#ifdef WHERETRACE_ENABLED |
if( sqlite3WhereTrace ){ |
- int ii; |
sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut); |
if( pWInfo->nOBSat>0 ){ |
sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask); |
@@ -6258,12 +4226,14 @@ WhereInfo *sqlite3WhereBegin( |
&& pResultSet!=0 |
&& OptimizationEnabled(db, SQLITE_OmitNoopJoin) |
){ |
- Bitmask tabUsed = exprListTableUsage(pMaskSet, pResultSet); |
- if( sWLB.pOrderBy ) tabUsed |= exprListTableUsage(pMaskSet, sWLB.pOrderBy); |
+ Bitmask tabUsed = sqlite3WhereExprListUsage(pMaskSet, pResultSet); |
+ if( sWLB.pOrderBy ){ |
+ tabUsed |= sqlite3WhereExprListUsage(pMaskSet, sWLB.pOrderBy); |
+ } |
while( pWInfo->nLevel>=2 ){ |
WhereTerm *pTerm, *pEnd; |
pLoop = pWInfo->a[pWInfo->nLevel-1].pWLoop; |
- if( (pWInfo->pTabList->a[pLoop->iTab].jointype & JT_LEFT)==0 ) break; |
+ if( (pWInfo->pTabList->a[pLoop->iTab].fg.jointype & JT_LEFT)==0 ) break; |
if( (wctrlFlags & WHERE_WANT_DISTINCT)==0 |
&& (pLoop->wsFlags & WHERE_ONEROW)==0 |
){ |
@@ -6290,21 +4260,28 @@ WhereInfo *sqlite3WhereBegin( |
/* If the caller is an UPDATE or DELETE statement that is requesting |
** to use a one-pass algorithm, determine if this is appropriate. |
** The one-pass algorithm only works if the WHERE clause constrains |
- ** the statement to update a single row. |
+ ** the statement to update or delete a single row. |
*/ |
assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 ); |
- if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 |
- && (pWInfo->a[0].pWLoop->wsFlags & WHERE_ONEROW)!=0 ){ |
- pWInfo->okOnePass = 1; |
- if( HasRowid(pTabList->a[0].pTab) ){ |
- pWInfo->a[0].pWLoop->wsFlags &= ~WHERE_IDX_ONLY; |
+ if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){ |
+ int wsFlags = pWInfo->a[0].pWLoop->wsFlags; |
+ int bOnerow = (wsFlags & WHERE_ONEROW)!=0; |
+ if( bOnerow || ( (wctrlFlags & WHERE_ONEPASS_MULTIROW) |
+ && 0==(wsFlags & WHERE_VIRTUALTABLE) |
+ )){ |
+ pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI; |
+ if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){ |
+ if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){ |
+ bFordelete = OPFLAG_FORDELETE; |
+ } |
+ pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY); |
+ } |
} |
} |
/* Open all tables in the pTabList and any indices selected for |
** searching those tables. |
*/ |
- notReady = ~(Bitmask)0; |
for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){ |
Table *pTab; /* Table to open */ |
int iDb; /* Index of database containing table/index */ |
@@ -6329,15 +4306,15 @@ WhereInfo *sqlite3WhereBegin( |
if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 |
&& (wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0 ){ |
int op = OP_OpenRead; |
- if( pWInfo->okOnePass ){ |
+ if( pWInfo->eOnePass!=ONEPASS_OFF ){ |
op = OP_OpenWrite; |
pWInfo->aiCurOnePass[0] = pTabItem->iCursor; |
}; |
sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op); |
assert( pTabItem->iCursor==pLevel->iTabCur ); |
- testcase( !pWInfo->okOnePass && pTab->nCol==BMS-1 ); |
- testcase( !pWInfo->okOnePass && pTab->nCol==BMS ); |
- if( !pWInfo->okOnePass && pTab->nCol<BMS && HasRowid(pTab) ){ |
+ testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 ); |
+ testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS ); |
+ if( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol<BMS && HasRowid(pTab) ){ |
Bitmask b = pTabItem->colUsed; |
int n = 0; |
for(; b; b=b>>1, n++){} |
@@ -6345,6 +4322,18 @@ WhereInfo *sqlite3WhereBegin( |
SQLITE_INT_TO_PTR(n), P4_INT32); |
assert( n<=pTab->nCol ); |
} |
+#ifdef SQLITE_ENABLE_CURSOR_HINTS |
+ if( pLoop->u.btree.pIndex!=0 ){ |
+ sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete); |
+ }else |
+#endif |
+ { |
+ sqlite3VdbeChangeP5(v, bFordelete); |
+ } |
+#ifdef SQLITE_ENABLE_COLUMN_USED_MASK |
+ sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0, |
+ (const u8*)&pTabItem->colUsed, P4_INT64); |
+#endif |
}else{ |
sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); |
} |
@@ -6361,7 +4350,7 @@ WhereInfo *sqlite3WhereBegin( |
** WITHOUT ROWID table. No need for a separate index */ |
iIndexCur = pLevel->iTabCur; |
op = 0; |
- }else if( pWInfo->okOnePass ){ |
+ }else if( pWInfo->eOnePass!=ONEPASS_OFF ){ |
Index *pJ = pTabItem->pTab->pIndex; |
iIndexCur = iIdxCur; |
assert( wctrlFlags & WHERE_ONEPASS_DESIRED ); |
@@ -6383,11 +4372,31 @@ WhereInfo *sqlite3WhereBegin( |
if( op ){ |
sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb); |
sqlite3VdbeSetP4KeyInfo(pParse, pIx); |
+ if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0 |
+ && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0 |
+ && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 |
+ ){ |
+ sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ); /* Hint to COMDB2 */ |
+ } |
VdbeComment((v, "%s", pIx->zName)); |
+#ifdef SQLITE_ENABLE_COLUMN_USED_MASK |
+ { |
+ u64 colUsed = 0; |
+ int ii, jj; |
+ for(ii=0; ii<pIx->nColumn; ii++){ |
+ jj = pIx->aiColumn[ii]; |
+ if( jj<0 ) continue; |
+ if( jj>63 ) jj = 63; |
+ if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue; |
+ colUsed |= ((u64)1)<<(ii<63 ? ii : 63); |
+ } |
+ sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0, |
+ (u8*)&colUsed, P4_INT64); |
+ } |
+#endif /* SQLITE_ENABLE_COLUMN_USED_MASK */ |
} |
} |
if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb); |
- notReady &= ~getMask(&pWInfo->sMaskSet, pTabItem->iCursor); |
} |
pWInfo->iTop = sqlite3VdbeCurrentAddr(v); |
if( db->mallocFailed ) goto whereBeginError; |
@@ -6398,7 +4407,10 @@ WhereInfo *sqlite3WhereBegin( |
*/ |
notReady = ~(Bitmask)0; |
for(ii=0; ii<nTabList; ii++){ |
+ int addrExplain; |
+ int wsFlags; |
pLevel = &pWInfo->a[ii]; |
+ wsFlags = pLevel->pWLoop->wsFlags; |
#ifndef SQLITE_OMIT_AUTOMATIC_INDEX |
if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){ |
constructAutomaticIndex(pParse, &pWInfo->sWC, |
@@ -6406,10 +4418,15 @@ WhereInfo *sqlite3WhereBegin( |
if( db->mallocFailed ) goto whereBeginError; |
} |
#endif |
- explainOneScan(pParse, pTabList, pLevel, ii, pLevel->iFrom, wctrlFlags); |
+ addrExplain = sqlite3WhereExplainOneScan( |
+ pParse, pTabList, pLevel, ii, pLevel->iFrom, wctrlFlags |
+ ); |
pLevel->addrBody = sqlite3VdbeCurrentAddr(v); |
- notReady = codeOneLoopStart(pWInfo, ii, notReady); |
+ notReady = sqlite3WhereCodeOneLoopStart(pWInfo, ii, notReady); |
pWInfo->iContinue = pLevel->addrCont; |
+ if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_ONETABLE_ONLY)==0 ){ |
+ sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain); |
+ } |
} |
/* Done. */ |
@@ -6467,15 +4484,26 @@ void sqlite3WhereEnd(WhereInfo *pWInfo){ |
VdbeCoverageIf(v, pIn->eEndLoopOp==OP_NextIfOpen); |
sqlite3VdbeJumpHere(v, pIn->addrInTop-1); |
} |
- sqlite3DbFree(db, pLevel->u.in.aInLoop); |
} |
sqlite3VdbeResolveLabel(v, pLevel->addrBrk); |
if( pLevel->addrSkip ){ |
- sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrSkip); |
+ sqlite3VdbeGoto(v, pLevel->addrSkip); |
VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName)); |
sqlite3VdbeJumpHere(v, pLevel->addrSkip); |
sqlite3VdbeJumpHere(v, pLevel->addrSkip-2); |
} |
+#ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS |
+ if( pLevel->addrLikeRep ){ |
+ int op; |
+ if( sqlite3VdbeGetOp(v, pLevel->addrLikeRep-1)->p1 ){ |
+ op = OP_DecrJumpZero; |
+ }else{ |
+ op = OP_JumpZeroIncr; |
+ } |
+ sqlite3VdbeAddOp2(v, op, pLevel->iLikeRepCntr, pLevel->addrLikeRep); |
+ VdbeCoverage(v); |
+ } |
+#endif |
if( pLevel->iLeftJoin ){ |
addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v); |
assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 |
@@ -6489,7 +4517,7 @@ void sqlite3WhereEnd(WhereInfo *pWInfo){ |
if( pLevel->op==OP_Return ){ |
sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst); |
}else{ |
- sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrFirst); |
+ sqlite3VdbeGoto(v, pLevel->addrFirst); |
} |
sqlite3VdbeJumpHere(v, addr); |
} |
@@ -6513,26 +4541,12 @@ void sqlite3WhereEnd(WhereInfo *pWInfo){ |
pLoop = pLevel->pWLoop; |
/* For a co-routine, change all OP_Column references to the table of |
- ** the co-routine into OP_SCopy of result contained in a register. |
+ ** the co-routine into OP_Copy of result contained in a register. |
** OP_Rowid becomes OP_Null. |
*/ |
- if( pTabItem->viaCoroutine && !db->mallocFailed ){ |
- last = sqlite3VdbeCurrentAddr(v); |
- k = pLevel->addrBody; |
- pOp = sqlite3VdbeGetOp(v, k); |
- for(; k<last; k++, pOp++){ |
- if( pOp->p1!=pLevel->iTabCur ) continue; |
- if( pOp->opcode==OP_Column ){ |
- pOp->opcode = OP_Copy; |
- pOp->p1 = pOp->p2 + pTabItem->regResult; |
- pOp->p2 = pOp->p3; |
- pOp->p3 = 0; |
- }else if( pOp->opcode==OP_Rowid ){ |
- pOp->opcode = OP_Null; |
- pOp->p1 = 0; |
- pOp->p3 = 0; |
- } |
- } |
+ if( pTabItem->fg.viaCoroutine && !db->mallocFailed ){ |
+ translateColumnToCopy(v, pLevel->addrBody, pLevel->iTabCur, |
+ pTabItem->regResult, 0); |
continue; |
} |
@@ -6546,7 +4560,7 @@ void sqlite3WhereEnd(WhereInfo *pWInfo){ |
&& (pWInfo->wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0 |
){ |
int ws = pLoop->wsFlags; |
- if( !pWInfo->okOnePass && (ws & WHERE_IDX_ONLY)==0 ){ |
+ if( pWInfo->eOnePass==ONEPASS_OFF && (ws & WHERE_IDX_ONLY)==0 ){ |
sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor); |
} |
if( (ws & WHERE_INDEXED)!=0 |
@@ -6573,7 +4587,10 @@ void sqlite3WhereEnd(WhereInfo *pWInfo){ |
}else if( pLoop->wsFlags & WHERE_MULTI_OR ){ |
pIdx = pLevel->u.pCovidx; |
} |
- if( pIdx && !db->mallocFailed ){ |
+ if( pIdx |
+ && (pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable)) |
+ && !db->mallocFailed |
+ ){ |
last = sqlite3VdbeCurrentAddr(v); |
k = pLevel->addrBody; |
pOp = sqlite3VdbeGetOp(v, k); |
@@ -6585,6 +4602,7 @@ void sqlite3WhereEnd(WhereInfo *pWInfo){ |
if( !HasRowid(pTab) ){ |
Index *pPk = sqlite3PrimaryKeyIndex(pTab); |
x = pPk->aiColumn[x]; |
+ assert( x>=0 ); |
} |
x = sqlite3ColumnOfIndex(pIdx, x); |
if( x>=0 ){ |