| Index: third_party/sqlite/sqlite-src-3100200/src/whereexpr.c
|
| diff --git a/third_party/sqlite/sqlite-src-3100200/src/whereexpr.c b/third_party/sqlite/sqlite-src-3100200/src/whereexpr.c
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..99a97079be378d654311847305e2b4cd93460208
|
| --- /dev/null
|
| +++ b/third_party/sqlite/sqlite-src-3100200/src/whereexpr.c
|
| @@ -0,0 +1,1358 @@
|
| +/*
|
| +** 2015-06-08
|
| +**
|
| +** The author disclaims copyright to this source code. In place of
|
| +** a legal notice, here is a blessing:
|
| +**
|
| +** May you do good and not evil.
|
| +** May you find forgiveness for yourself and forgive others.
|
| +** May you share freely, never taking more than you give.
|
| +**
|
| +*************************************************************************
|
| +** This module contains C code that generates VDBE code used to process
|
| +** the WHERE clause of SQL statements.
|
| +**
|
| +** This file was originally part of where.c but was split out to improve
|
| +** readability and editabiliity. This file contains utility routines for
|
| +** analyzing Expr objects in the WHERE clause.
|
| +*/
|
| +#include "sqliteInt.h"
|
| +#include "whereInt.h"
|
| +
|
| +/* Forward declarations */
|
| +static void exprAnalyze(SrcList*, WhereClause*, int);
|
| +
|
| +/*
|
| +** Deallocate all memory associated with a WhereOrInfo object.
|
| +*/
|
| +static void whereOrInfoDelete(sqlite3 *db, WhereOrInfo *p){
|
| + sqlite3WhereClauseClear(&p->wc);
|
| + sqlite3DbFree(db, p);
|
| +}
|
| +
|
| +/*
|
| +** Deallocate all memory associated with a WhereAndInfo object.
|
| +*/
|
| +static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){
|
| + sqlite3WhereClauseClear(&p->wc);
|
| + sqlite3DbFree(db, p);
|
| +}
|
| +
|
| +/*
|
| +** Add a single new WhereTerm entry to the WhereClause object pWC.
|
| +** The new WhereTerm object is constructed from Expr p and with wtFlags.
|
| +** The index in pWC->a[] of the new WhereTerm is returned on success.
|
| +** 0 is returned if the new WhereTerm could not be added due to a memory
|
| +** allocation error. The memory allocation failure will be recorded in
|
| +** the db->mallocFailed flag so that higher-level functions can detect it.
|
| +**
|
| +** This routine will increase the size of the pWC->a[] array as necessary.
|
| +**
|
| +** If the wtFlags argument includes TERM_DYNAMIC, then responsibility
|
| +** for freeing the expression p is assumed by the WhereClause object pWC.
|
| +** This is true even if this routine fails to allocate a new WhereTerm.
|
| +**
|
| +** WARNING: This routine might reallocate the space used to store
|
| +** WhereTerms. All pointers to WhereTerms should be invalidated after
|
| +** calling this routine. Such pointers may be reinitialized by referencing
|
| +** the pWC->a[] array.
|
| +*/
|
| +static int whereClauseInsert(WhereClause *pWC, Expr *p, u16 wtFlags){
|
| + WhereTerm *pTerm;
|
| + int idx;
|
| + testcase( wtFlags & TERM_VIRTUAL );
|
| + if( pWC->nTerm>=pWC->nSlot ){
|
| + WhereTerm *pOld = pWC->a;
|
| + sqlite3 *db = pWC->pWInfo->pParse->db;
|
| + pWC->a = sqlite3DbMallocRaw(db, sizeof(pWC->a[0])*pWC->nSlot*2 );
|
| + if( pWC->a==0 ){
|
| + if( wtFlags & TERM_DYNAMIC ){
|
| + sqlite3ExprDelete(db, p);
|
| + }
|
| + pWC->a = pOld;
|
| + return 0;
|
| + }
|
| + memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm);
|
| + if( pOld!=pWC->aStatic ){
|
| + sqlite3DbFree(db, pOld);
|
| + }
|
| + pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]);
|
| + memset(&pWC->a[pWC->nTerm], 0, sizeof(pWC->a[0])*(pWC->nSlot-pWC->nTerm));
|
| + }
|
| + pTerm = &pWC->a[idx = pWC->nTerm++];
|
| + if( p && ExprHasProperty(p, EP_Unlikely) ){
|
| + pTerm->truthProb = sqlite3LogEst(p->iTable) - 270;
|
| + }else{
|
| + pTerm->truthProb = 1;
|
| + }
|
| + pTerm->pExpr = sqlite3ExprSkipCollate(p);
|
| + pTerm->wtFlags = wtFlags;
|
| + pTerm->pWC = pWC;
|
| + pTerm->iParent = -1;
|
| + return idx;
|
| +}
|
| +
|
| +/*
|
| +** Return TRUE if the given operator is one of the operators that is
|
| +** allowed for an indexable WHERE clause term. The allowed operators are
|
| +** "=", "<", ">", "<=", ">=", "IN", and "IS NULL"
|
| +*/
|
| +static int allowedOp(int op){
|
| + assert( TK_GT>TK_EQ && TK_GT<TK_GE );
|
| + assert( TK_LT>TK_EQ && TK_LT<TK_GE );
|
| + assert( TK_LE>TK_EQ && TK_LE<TK_GE );
|
| + assert( TK_GE==TK_EQ+4 );
|
| + return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL || op==TK_IS;
|
| +}
|
| +
|
| +/*
|
| +** Commute a comparison operator. Expressions of the form "X op Y"
|
| +** are converted into "Y op X".
|
| +**
|
| +** If left/right precedence rules come into play when determining the
|
| +** collating sequence, then COLLATE operators are adjusted to ensure
|
| +** that the collating sequence does not change. For example:
|
| +** "Y collate NOCASE op X" becomes "X op Y" because any collation sequence on
|
| +** the left hand side of a comparison overrides any collation sequence
|
| +** attached to the right. For the same reason the EP_Collate flag
|
| +** is not commuted.
|
| +*/
|
| +static void exprCommute(Parse *pParse, Expr *pExpr){
|
| + u16 expRight = (pExpr->pRight->flags & EP_Collate);
|
| + u16 expLeft = (pExpr->pLeft->flags & EP_Collate);
|
| + assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN );
|
| + if( expRight==expLeft ){
|
| + /* Either X and Y both have COLLATE operator or neither do */
|
| + if( expRight ){
|
| + /* Both X and Y have COLLATE operators. Make sure X is always
|
| + ** used by clearing the EP_Collate flag from Y. */
|
| + pExpr->pRight->flags &= ~EP_Collate;
|
| + }else if( sqlite3ExprCollSeq(pParse, pExpr->pLeft)!=0 ){
|
| + /* Neither X nor Y have COLLATE operators, but X has a non-default
|
| + ** collating sequence. So add the EP_Collate marker on X to cause
|
| + ** it to be searched first. */
|
| + pExpr->pLeft->flags |= EP_Collate;
|
| + }
|
| + }
|
| + SWAP(Expr*,pExpr->pRight,pExpr->pLeft);
|
| + if( pExpr->op>=TK_GT ){
|
| + assert( TK_LT==TK_GT+2 );
|
| + assert( TK_GE==TK_LE+2 );
|
| + assert( TK_GT>TK_EQ );
|
| + assert( TK_GT<TK_LE );
|
| + assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE );
|
| + pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT;
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Translate from TK_xx operator to WO_xx bitmask.
|
| +*/
|
| +static u16 operatorMask(int op){
|
| + u16 c;
|
| + assert( allowedOp(op) );
|
| + if( op==TK_IN ){
|
| + c = WO_IN;
|
| + }else if( op==TK_ISNULL ){
|
| + c = WO_ISNULL;
|
| + }else if( op==TK_IS ){
|
| + c = WO_IS;
|
| + }else{
|
| + assert( (WO_EQ<<(op-TK_EQ)) < 0x7fff );
|
| + c = (u16)(WO_EQ<<(op-TK_EQ));
|
| + }
|
| + assert( op!=TK_ISNULL || c==WO_ISNULL );
|
| + assert( op!=TK_IN || c==WO_IN );
|
| + assert( op!=TK_EQ || c==WO_EQ );
|
| + assert( op!=TK_LT || c==WO_LT );
|
| + assert( op!=TK_LE || c==WO_LE );
|
| + assert( op!=TK_GT || c==WO_GT );
|
| + assert( op!=TK_GE || c==WO_GE );
|
| + assert( op!=TK_IS || c==WO_IS );
|
| + return c;
|
| +}
|
| +
|
| +
|
| +#ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
|
| +/*
|
| +** Check to see if the given expression is a LIKE or GLOB operator that
|
| +** can be optimized using inequality constraints. Return TRUE if it is
|
| +** so and false if not.
|
| +**
|
| +** In order for the operator to be optimizible, the RHS must be a string
|
| +** literal that does not begin with a wildcard. The LHS must be a column
|
| +** that may only be NULL, a string, or a BLOB, never a number. (This means
|
| +** that virtual tables cannot participate in the LIKE optimization.) The
|
| +** collating sequence for the column on the LHS must be appropriate for
|
| +** the operator.
|
| +*/
|
| +static int isLikeOrGlob(
|
| + Parse *pParse, /* Parsing and code generating context */
|
| + Expr *pExpr, /* Test this expression */
|
| + Expr **ppPrefix, /* Pointer to TK_STRING expression with pattern prefix */
|
| + int *pisComplete, /* True if the only wildcard is % in the last character */
|
| + int *pnoCase /* True if uppercase is equivalent to lowercase */
|
| +){
|
| + const char *z = 0; /* String on RHS of LIKE operator */
|
| + Expr *pRight, *pLeft; /* Right and left size of LIKE operator */
|
| + ExprList *pList; /* List of operands to the LIKE operator */
|
| + int c; /* One character in z[] */
|
| + int cnt; /* Number of non-wildcard prefix characters */
|
| + char wc[3]; /* Wildcard characters */
|
| + sqlite3 *db = pParse->db; /* Database connection */
|
| + sqlite3_value *pVal = 0;
|
| + int op; /* Opcode of pRight */
|
| +
|
| + if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){
|
| + return 0;
|
| + }
|
| +#ifdef SQLITE_EBCDIC
|
| + if( *pnoCase ) return 0;
|
| +#endif
|
| + pList = pExpr->x.pList;
|
| + pLeft = pList->a[1].pExpr;
|
| + if( pLeft->op!=TK_COLUMN
|
| + || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT
|
| + || IsVirtual(pLeft->pTab) /* Value might be numeric */
|
| + ){
|
| + /* IMP: R-02065-49465 The left-hand side of the LIKE or GLOB operator must
|
| + ** be the name of an indexed column with TEXT affinity. */
|
| + return 0;
|
| + }
|
| + assert( pLeft->iColumn!=(-1) ); /* Because IPK never has AFF_TEXT */
|
| +
|
| + pRight = sqlite3ExprSkipCollate(pList->a[0].pExpr);
|
| + op = pRight->op;
|
| + if( op==TK_VARIABLE ){
|
| + Vdbe *pReprepare = pParse->pReprepare;
|
| + int iCol = pRight->iColumn;
|
| + pVal = sqlite3VdbeGetBoundValue(pReprepare, iCol, SQLITE_AFF_BLOB);
|
| + if( pVal && sqlite3_value_type(pVal)==SQLITE_TEXT ){
|
| + z = (char *)sqlite3_value_text(pVal);
|
| + }
|
| + sqlite3VdbeSetVarmask(pParse->pVdbe, iCol);
|
| + assert( pRight->op==TK_VARIABLE || pRight->op==TK_REGISTER );
|
| + }else if( op==TK_STRING ){
|
| + z = pRight->u.zToken;
|
| + }
|
| + if( z ){
|
| + cnt = 0;
|
| + while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){
|
| + cnt++;
|
| + }
|
| + if( cnt!=0 && 255!=(u8)z[cnt-1] ){
|
| + Expr *pPrefix;
|
| + *pisComplete = c==wc[0] && z[cnt+1]==0;
|
| + pPrefix = sqlite3Expr(db, TK_STRING, z);
|
| + if( pPrefix ) pPrefix->u.zToken[cnt] = 0;
|
| + *ppPrefix = pPrefix;
|
| + if( op==TK_VARIABLE ){
|
| + Vdbe *v = pParse->pVdbe;
|
| + sqlite3VdbeSetVarmask(v, pRight->iColumn);
|
| + if( *pisComplete && pRight->u.zToken[1] ){
|
| + /* If the rhs of the LIKE expression is a variable, and the current
|
| + ** value of the variable means there is no need to invoke the LIKE
|
| + ** function, then no OP_Variable will be added to the program.
|
| + ** This causes problems for the sqlite3_bind_parameter_name()
|
| + ** API. To work around them, add a dummy OP_Variable here.
|
| + */
|
| + int r1 = sqlite3GetTempReg(pParse);
|
| + sqlite3ExprCodeTarget(pParse, pRight, r1);
|
| + sqlite3VdbeChangeP3(v, sqlite3VdbeCurrentAddr(v)-1, 0);
|
| + sqlite3ReleaseTempReg(pParse, r1);
|
| + }
|
| + }
|
| + }else{
|
| + z = 0;
|
| + }
|
| + }
|
| +
|
| + sqlite3ValueFree(pVal);
|
| + return (z!=0);
|
| +}
|
| +#endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
|
| +
|
| +
|
| +#ifndef SQLITE_OMIT_VIRTUALTABLE
|
| +/*
|
| +** Check to see if the given expression is of the form
|
| +**
|
| +** column OP expr
|
| +**
|
| +** where OP is one of MATCH, GLOB, LIKE or REGEXP and "column" is a
|
| +** column of a virtual table.
|
| +**
|
| +** If it is then return TRUE. If not, return FALSE.
|
| +*/
|
| +static int isMatchOfColumn(
|
| + Expr *pExpr, /* Test this expression */
|
| + unsigned char *peOp2 /* OUT: 0 for MATCH, or else an op2 value */
|
| +){
|
| + struct Op2 {
|
| + const char *zOp;
|
| + unsigned char eOp2;
|
| + } aOp[] = {
|
| + { "match", SQLITE_INDEX_CONSTRAINT_MATCH },
|
| + { "glob", SQLITE_INDEX_CONSTRAINT_GLOB },
|
| + { "like", SQLITE_INDEX_CONSTRAINT_LIKE },
|
| + { "regexp", SQLITE_INDEX_CONSTRAINT_REGEXP }
|
| + };
|
| + ExprList *pList;
|
| + Expr *pCol; /* Column reference */
|
| + int i;
|
| +
|
| + if( pExpr->op!=TK_FUNCTION ){
|
| + return 0;
|
| + }
|
| + pList = pExpr->x.pList;
|
| + if( pList==0 || pList->nExpr!=2 ){
|
| + return 0;
|
| + }
|
| + pCol = pList->a[1].pExpr;
|
| + if( pCol->op!=TK_COLUMN || !IsVirtual(pCol->pTab) ){
|
| + return 0;
|
| + }
|
| + for(i=0; i<ArraySize(aOp); i++){
|
| + if( sqlite3StrICmp(pExpr->u.zToken, aOp[i].zOp)==0 ){
|
| + *peOp2 = aOp[i].eOp2;
|
| + return 1;
|
| + }
|
| + }
|
| + return 0;
|
| +}
|
| +#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
| +
|
| +/*
|
| +** If the pBase expression originated in the ON or USING clause of
|
| +** a join, then transfer the appropriate markings over to derived.
|
| +*/
|
| +static void transferJoinMarkings(Expr *pDerived, Expr *pBase){
|
| + if( pDerived ){
|
| + pDerived->flags |= pBase->flags & EP_FromJoin;
|
| + pDerived->iRightJoinTable = pBase->iRightJoinTable;
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Mark term iChild as being a child of term iParent
|
| +*/
|
| +static void markTermAsChild(WhereClause *pWC, int iChild, int iParent){
|
| + pWC->a[iChild].iParent = iParent;
|
| + pWC->a[iChild].truthProb = pWC->a[iParent].truthProb;
|
| + pWC->a[iParent].nChild++;
|
| +}
|
| +
|
| +/*
|
| +** Return the N-th AND-connected subterm of pTerm. Or if pTerm is not
|
| +** a conjunction, then return just pTerm when N==0. If N is exceeds
|
| +** the number of available subterms, return NULL.
|
| +*/
|
| +static WhereTerm *whereNthSubterm(WhereTerm *pTerm, int N){
|
| + if( pTerm->eOperator!=WO_AND ){
|
| + return N==0 ? pTerm : 0;
|
| + }
|
| + if( N<pTerm->u.pAndInfo->wc.nTerm ){
|
| + return &pTerm->u.pAndInfo->wc.a[N];
|
| + }
|
| + return 0;
|
| +}
|
| +
|
| +/*
|
| +** Subterms pOne and pTwo are contained within WHERE clause pWC. The
|
| +** two subterms are in disjunction - they are OR-ed together.
|
| +**
|
| +** If these two terms are both of the form: "A op B" with the same
|
| +** A and B values but different operators and if the operators are
|
| +** compatible (if one is = and the other is <, for example) then
|
| +** add a new virtual AND term to pWC that is the combination of the
|
| +** two.
|
| +**
|
| +** Some examples:
|
| +**
|
| +** x<y OR x=y --> x<=y
|
| +** x=y OR x=y --> x=y
|
| +** x<=y OR x<y --> x<=y
|
| +**
|
| +** The following is NOT generated:
|
| +**
|
| +** x<y OR x>y --> x!=y
|
| +*/
|
| +static void whereCombineDisjuncts(
|
| + SrcList *pSrc, /* the FROM clause */
|
| + WhereClause *pWC, /* The complete WHERE clause */
|
| + WhereTerm *pOne, /* First disjunct */
|
| + WhereTerm *pTwo /* Second disjunct */
|
| +){
|
| + u16 eOp = pOne->eOperator | pTwo->eOperator;
|
| + sqlite3 *db; /* Database connection (for malloc) */
|
| + Expr *pNew; /* New virtual expression */
|
| + int op; /* Operator for the combined expression */
|
| + int idxNew; /* Index in pWC of the next virtual term */
|
| +
|
| + if( (pOne->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE))==0 ) return;
|
| + if( (pTwo->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE))==0 ) return;
|
| + if( (eOp & (WO_EQ|WO_LT|WO_LE))!=eOp
|
| + && (eOp & (WO_EQ|WO_GT|WO_GE))!=eOp ) return;
|
| + assert( pOne->pExpr->pLeft!=0 && pOne->pExpr->pRight!=0 );
|
| + assert( pTwo->pExpr->pLeft!=0 && pTwo->pExpr->pRight!=0 );
|
| + if( sqlite3ExprCompare(pOne->pExpr->pLeft, pTwo->pExpr->pLeft, -1) ) return;
|
| + if( sqlite3ExprCompare(pOne->pExpr->pRight, pTwo->pExpr->pRight, -1) )return;
|
| + /* If we reach this point, it means the two subterms can be combined */
|
| + if( (eOp & (eOp-1))!=0 ){
|
| + if( eOp & (WO_LT|WO_LE) ){
|
| + eOp = WO_LE;
|
| + }else{
|
| + assert( eOp & (WO_GT|WO_GE) );
|
| + eOp = WO_GE;
|
| + }
|
| + }
|
| + db = pWC->pWInfo->pParse->db;
|
| + pNew = sqlite3ExprDup(db, pOne->pExpr, 0);
|
| + if( pNew==0 ) return;
|
| + for(op=TK_EQ; eOp!=(WO_EQ<<(op-TK_EQ)); op++){ assert( op<TK_GE ); }
|
| + pNew->op = op;
|
| + idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
|
| + exprAnalyze(pSrc, pWC, idxNew);
|
| +}
|
| +
|
| +#if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
|
| +/*
|
| +** Analyze a term that consists of two or more OR-connected
|
| +** subterms. So in:
|
| +**
|
| +** ... WHERE (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13)
|
| +** ^^^^^^^^^^^^^^^^^^^^
|
| +**
|
| +** This routine analyzes terms such as the middle term in the above example.
|
| +** A WhereOrTerm object is computed and attached to the term under
|
| +** analysis, regardless of the outcome of the analysis. Hence:
|
| +**
|
| +** WhereTerm.wtFlags |= TERM_ORINFO
|
| +** WhereTerm.u.pOrInfo = a dynamically allocated WhereOrTerm object
|
| +**
|
| +** The term being analyzed must have two or more of OR-connected subterms.
|
| +** A single subterm might be a set of AND-connected sub-subterms.
|
| +** Examples of terms under analysis:
|
| +**
|
| +** (A) t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5
|
| +** (B) x=expr1 OR expr2=x OR x=expr3
|
| +** (C) t1.x=t2.y OR (t1.x=t2.z AND t1.y=15)
|
| +** (D) x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*')
|
| +** (E) (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6)
|
| +** (F) x>A OR (x=A AND y>=B)
|
| +**
|
| +** CASE 1:
|
| +**
|
| +** If all subterms are of the form T.C=expr for some single column of C and
|
| +** a single table T (as shown in example B above) then create a new virtual
|
| +** term that is an equivalent IN expression. In other words, if the term
|
| +** being analyzed is:
|
| +**
|
| +** x = expr1 OR expr2 = x OR x = expr3
|
| +**
|
| +** then create a new virtual term like this:
|
| +**
|
| +** x IN (expr1,expr2,expr3)
|
| +**
|
| +** CASE 2:
|
| +**
|
| +** If there are exactly two disjuncts and one side has x>A and the other side
|
| +** has x=A (for the same x and A) then add a new virtual conjunct term to the
|
| +** WHERE clause of the form "x>=A". Example:
|
| +**
|
| +** x>A OR (x=A AND y>B) adds: x>=A
|
| +**
|
| +** The added conjunct can sometimes be helpful in query planning.
|
| +**
|
| +** CASE 3:
|
| +**
|
| +** If all subterms are indexable by a single table T, then set
|
| +**
|
| +** WhereTerm.eOperator = WO_OR
|
| +** WhereTerm.u.pOrInfo->indexable |= the cursor number for table T
|
| +**
|
| +** A subterm is "indexable" if it is of the form
|
| +** "T.C <op> <expr>" where C is any column of table T and
|
| +** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN".
|
| +** A subterm is also indexable if it is an AND of two or more
|
| +** subsubterms at least one of which is indexable. Indexable AND
|
| +** subterms have their eOperator set to WO_AND and they have
|
| +** u.pAndInfo set to a dynamically allocated WhereAndTerm object.
|
| +**
|
| +** From another point of view, "indexable" means that the subterm could
|
| +** potentially be used with an index if an appropriate index exists.
|
| +** This analysis does not consider whether or not the index exists; that
|
| +** is decided elsewhere. This analysis only looks at whether subterms
|
| +** appropriate for indexing exist.
|
| +**
|
| +** All examples A through E above satisfy case 3. But if a term
|
| +** also satisfies case 1 (such as B) we know that the optimizer will
|
| +** always prefer case 1, so in that case we pretend that case 3 is not
|
| +** satisfied.
|
| +**
|
| +** It might be the case that multiple tables are indexable. For example,
|
| +** (E) above is indexable on tables P, Q, and R.
|
| +**
|
| +** Terms that satisfy case 3 are candidates for lookup by using
|
| +** separate indices to find rowids for each subterm and composing
|
| +** the union of all rowids using a RowSet object. This is similar
|
| +** to "bitmap indices" in other database engines.
|
| +**
|
| +** OTHERWISE:
|
| +**
|
| +** If none of cases 1, 2, or 3 apply, then leave the eOperator set to
|
| +** zero. This term is not useful for search.
|
| +*/
|
| +static void exprAnalyzeOrTerm(
|
| + SrcList *pSrc, /* the FROM clause */
|
| + WhereClause *pWC, /* the complete WHERE clause */
|
| + int idxTerm /* Index of the OR-term to be analyzed */
|
| +){
|
| + WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */
|
| + Parse *pParse = pWInfo->pParse; /* Parser context */
|
| + sqlite3 *db = pParse->db; /* Database connection */
|
| + WhereTerm *pTerm = &pWC->a[idxTerm]; /* The term to be analyzed */
|
| + Expr *pExpr = pTerm->pExpr; /* The expression of the term */
|
| + int i; /* Loop counters */
|
| + WhereClause *pOrWc; /* Breakup of pTerm into subterms */
|
| + WhereTerm *pOrTerm; /* A Sub-term within the pOrWc */
|
| + WhereOrInfo *pOrInfo; /* Additional information associated with pTerm */
|
| + Bitmask chngToIN; /* Tables that might satisfy case 1 */
|
| + Bitmask indexable; /* Tables that are indexable, satisfying case 2 */
|
| +
|
| + /*
|
| + ** Break the OR clause into its separate subterms. The subterms are
|
| + ** stored in a WhereClause structure containing within the WhereOrInfo
|
| + ** object that is attached to the original OR clause term.
|
| + */
|
| + assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 );
|
| + assert( pExpr->op==TK_OR );
|
| + pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo));
|
| + if( pOrInfo==0 ) return;
|
| + pTerm->wtFlags |= TERM_ORINFO;
|
| + pOrWc = &pOrInfo->wc;
|
| + sqlite3WhereClauseInit(pOrWc, pWInfo);
|
| + sqlite3WhereSplit(pOrWc, pExpr, TK_OR);
|
| + sqlite3WhereExprAnalyze(pSrc, pOrWc);
|
| + if( db->mallocFailed ) return;
|
| + assert( pOrWc->nTerm>=2 );
|
| +
|
| + /*
|
| + ** Compute the set of tables that might satisfy cases 1 or 3.
|
| + */
|
| + indexable = ~(Bitmask)0;
|
| + chngToIN = ~(Bitmask)0;
|
| + for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){
|
| + if( (pOrTerm->eOperator & WO_SINGLE)==0 ){
|
| + WhereAndInfo *pAndInfo;
|
| + assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 );
|
| + chngToIN = 0;
|
| + pAndInfo = sqlite3DbMallocRaw(db, sizeof(*pAndInfo));
|
| + if( pAndInfo ){
|
| + WhereClause *pAndWC;
|
| + WhereTerm *pAndTerm;
|
| + int j;
|
| + Bitmask b = 0;
|
| + pOrTerm->u.pAndInfo = pAndInfo;
|
| + pOrTerm->wtFlags |= TERM_ANDINFO;
|
| + pOrTerm->eOperator = WO_AND;
|
| + pAndWC = &pAndInfo->wc;
|
| + sqlite3WhereClauseInit(pAndWC, pWC->pWInfo);
|
| + sqlite3WhereSplit(pAndWC, pOrTerm->pExpr, TK_AND);
|
| + sqlite3WhereExprAnalyze(pSrc, pAndWC);
|
| + pAndWC->pOuter = pWC;
|
| + testcase( db->mallocFailed );
|
| + if( !db->mallocFailed ){
|
| + for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){
|
| + assert( pAndTerm->pExpr );
|
| + if( allowedOp(pAndTerm->pExpr->op) ){
|
| + b |= sqlite3WhereGetMask(&pWInfo->sMaskSet, pAndTerm->leftCursor);
|
| + }
|
| + }
|
| + }
|
| + indexable &= b;
|
| + }
|
| + }else if( pOrTerm->wtFlags & TERM_COPIED ){
|
| + /* Skip this term for now. We revisit it when we process the
|
| + ** corresponding TERM_VIRTUAL term */
|
| + }else{
|
| + Bitmask b;
|
| + b = sqlite3WhereGetMask(&pWInfo->sMaskSet, pOrTerm->leftCursor);
|
| + if( pOrTerm->wtFlags & TERM_VIRTUAL ){
|
| + WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent];
|
| + b |= sqlite3WhereGetMask(&pWInfo->sMaskSet, pOther->leftCursor);
|
| + }
|
| + indexable &= b;
|
| + if( (pOrTerm->eOperator & WO_EQ)==0 ){
|
| + chngToIN = 0;
|
| + }else{
|
| + chngToIN &= b;
|
| + }
|
| + }
|
| + }
|
| +
|
| + /*
|
| + ** Record the set of tables that satisfy case 3. The set might be
|
| + ** empty.
|
| + */
|
| + pOrInfo->indexable = indexable;
|
| + pTerm->eOperator = indexable==0 ? 0 : WO_OR;
|
| +
|
| + /* For a two-way OR, attempt to implementation case 2.
|
| + */
|
| + if( indexable && pOrWc->nTerm==2 ){
|
| + int iOne = 0;
|
| + WhereTerm *pOne;
|
| + while( (pOne = whereNthSubterm(&pOrWc->a[0],iOne++))!=0 ){
|
| + int iTwo = 0;
|
| + WhereTerm *pTwo;
|
| + while( (pTwo = whereNthSubterm(&pOrWc->a[1],iTwo++))!=0 ){
|
| + whereCombineDisjuncts(pSrc, pWC, pOne, pTwo);
|
| + }
|
| + }
|
| + }
|
| +
|
| + /*
|
| + ** chngToIN holds a set of tables that *might* satisfy case 1. But
|
| + ** we have to do some additional checking to see if case 1 really
|
| + ** is satisfied.
|
| + **
|
| + ** chngToIN will hold either 0, 1, or 2 bits. The 0-bit case means
|
| + ** that there is no possibility of transforming the OR clause into an
|
| + ** IN operator because one or more terms in the OR clause contain
|
| + ** something other than == on a column in the single table. The 1-bit
|
| + ** case means that every term of the OR clause is of the form
|
| + ** "table.column=expr" for some single table. The one bit that is set
|
| + ** will correspond to the common table. We still need to check to make
|
| + ** sure the same column is used on all terms. The 2-bit case is when
|
| + ** the all terms are of the form "table1.column=table2.column". It
|
| + ** might be possible to form an IN operator with either table1.column
|
| + ** or table2.column as the LHS if either is common to every term of
|
| + ** the OR clause.
|
| + **
|
| + ** Note that terms of the form "table.column1=table.column2" (the
|
| + ** same table on both sizes of the ==) cannot be optimized.
|
| + */
|
| + if( chngToIN ){
|
| + int okToChngToIN = 0; /* True if the conversion to IN is valid */
|
| + int iColumn = -1; /* Column index on lhs of IN operator */
|
| + int iCursor = -1; /* Table cursor common to all terms */
|
| + int j = 0; /* Loop counter */
|
| +
|
| + /* Search for a table and column that appears on one side or the
|
| + ** other of the == operator in every subterm. That table and column
|
| + ** will be recorded in iCursor and iColumn. There might not be any
|
| + ** such table and column. Set okToChngToIN if an appropriate table
|
| + ** and column is found but leave okToChngToIN false if not found.
|
| + */
|
| + for(j=0; j<2 && !okToChngToIN; j++){
|
| + pOrTerm = pOrWc->a;
|
| + for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){
|
| + assert( pOrTerm->eOperator & WO_EQ );
|
| + pOrTerm->wtFlags &= ~TERM_OR_OK;
|
| + if( pOrTerm->leftCursor==iCursor ){
|
| + /* This is the 2-bit case and we are on the second iteration and
|
| + ** current term is from the first iteration. So skip this term. */
|
| + assert( j==1 );
|
| + continue;
|
| + }
|
| + if( (chngToIN & sqlite3WhereGetMask(&pWInfo->sMaskSet,
|
| + pOrTerm->leftCursor))==0 ){
|
| + /* This term must be of the form t1.a==t2.b where t2 is in the
|
| + ** chngToIN set but t1 is not. This term will be either preceded
|
| + ** or follwed by an inverted copy (t2.b==t1.a). Skip this term
|
| + ** and use its inversion. */
|
| + testcase( pOrTerm->wtFlags & TERM_COPIED );
|
| + testcase( pOrTerm->wtFlags & TERM_VIRTUAL );
|
| + assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) );
|
| + continue;
|
| + }
|
| + iColumn = pOrTerm->u.leftColumn;
|
| + iCursor = pOrTerm->leftCursor;
|
| + break;
|
| + }
|
| + if( i<0 ){
|
| + /* No candidate table+column was found. This can only occur
|
| + ** on the second iteration */
|
| + assert( j==1 );
|
| + assert( IsPowerOfTwo(chngToIN) );
|
| + assert( chngToIN==sqlite3WhereGetMask(&pWInfo->sMaskSet, iCursor) );
|
| + break;
|
| + }
|
| + testcase( j==1 );
|
| +
|
| + /* We have found a candidate table and column. Check to see if that
|
| + ** table and column is common to every term in the OR clause */
|
| + okToChngToIN = 1;
|
| + for(; i>=0 && okToChngToIN; i--, pOrTerm++){
|
| + assert( pOrTerm->eOperator & WO_EQ );
|
| + if( pOrTerm->leftCursor!=iCursor ){
|
| + pOrTerm->wtFlags &= ~TERM_OR_OK;
|
| + }else if( pOrTerm->u.leftColumn!=iColumn ){
|
| + okToChngToIN = 0;
|
| + }else{
|
| + int affLeft, affRight;
|
| + /* If the right-hand side is also a column, then the affinities
|
| + ** of both right and left sides must be such that no type
|
| + ** conversions are required on the right. (Ticket #2249)
|
| + */
|
| + affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight);
|
| + affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft);
|
| + if( affRight!=0 && affRight!=affLeft ){
|
| + okToChngToIN = 0;
|
| + }else{
|
| + pOrTerm->wtFlags |= TERM_OR_OK;
|
| + }
|
| + }
|
| + }
|
| + }
|
| +
|
| + /* At this point, okToChngToIN is true if original pTerm satisfies
|
| + ** case 1. In that case, construct a new virtual term that is
|
| + ** pTerm converted into an IN operator.
|
| + */
|
| + if( okToChngToIN ){
|
| + Expr *pDup; /* A transient duplicate expression */
|
| + ExprList *pList = 0; /* The RHS of the IN operator */
|
| + Expr *pLeft = 0; /* The LHS of the IN operator */
|
| + Expr *pNew; /* The complete IN operator */
|
| +
|
| + for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){
|
| + if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue;
|
| + assert( pOrTerm->eOperator & WO_EQ );
|
| + assert( pOrTerm->leftCursor==iCursor );
|
| + assert( pOrTerm->u.leftColumn==iColumn );
|
| + pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0);
|
| + pList = sqlite3ExprListAppend(pWInfo->pParse, pList, pDup);
|
| + pLeft = pOrTerm->pExpr->pLeft;
|
| + }
|
| + assert( pLeft!=0 );
|
| + pDup = sqlite3ExprDup(db, pLeft, 0);
|
| + pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0, 0);
|
| + if( pNew ){
|
| + int idxNew;
|
| + transferJoinMarkings(pNew, pExpr);
|
| + assert( !ExprHasProperty(pNew, EP_xIsSelect) );
|
| + pNew->x.pList = pList;
|
| + idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
|
| + testcase( idxNew==0 );
|
| + exprAnalyze(pSrc, pWC, idxNew);
|
| + pTerm = &pWC->a[idxTerm];
|
| + markTermAsChild(pWC, idxNew, idxTerm);
|
| + }else{
|
| + sqlite3ExprListDelete(db, pList);
|
| + }
|
| + pTerm->eOperator = WO_NOOP; /* case 1 trumps case 3 */
|
| + }
|
| + }
|
| +}
|
| +#endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */
|
| +
|
| +/*
|
| +** We already know that pExpr is a binary operator where both operands are
|
| +** column references. This routine checks to see if pExpr is an equivalence
|
| +** relation:
|
| +** 1. The SQLITE_Transitive optimization must be enabled
|
| +** 2. Must be either an == or an IS operator
|
| +** 3. Not originating in the ON clause of an OUTER JOIN
|
| +** 4. The affinities of A and B must be compatible
|
| +** 5a. Both operands use the same collating sequence OR
|
| +** 5b. The overall collating sequence is BINARY
|
| +** If this routine returns TRUE, that means that the RHS can be substituted
|
| +** for the LHS anyplace else in the WHERE clause where the LHS column occurs.
|
| +** This is an optimization. No harm comes from returning 0. But if 1 is
|
| +** returned when it should not be, then incorrect answers might result.
|
| +*/
|
| +static int termIsEquivalence(Parse *pParse, Expr *pExpr){
|
| + char aff1, aff2;
|
| + CollSeq *pColl;
|
| + const char *zColl1, *zColl2;
|
| + if( !OptimizationEnabled(pParse->db, SQLITE_Transitive) ) return 0;
|
| + if( pExpr->op!=TK_EQ && pExpr->op!=TK_IS ) return 0;
|
| + if( ExprHasProperty(pExpr, EP_FromJoin) ) return 0;
|
| + aff1 = sqlite3ExprAffinity(pExpr->pLeft);
|
| + aff2 = sqlite3ExprAffinity(pExpr->pRight);
|
| + if( aff1!=aff2
|
| + && (!sqlite3IsNumericAffinity(aff1) || !sqlite3IsNumericAffinity(aff2))
|
| + ){
|
| + return 0;
|
| + }
|
| + pColl = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, pExpr->pRight);
|
| + if( pColl==0 || sqlite3StrICmp(pColl->zName, "BINARY")==0 ) return 1;
|
| + pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
|
| + /* Since pLeft and pRight are both a column references, their collating
|
| + ** sequence should always be defined. */
|
| + zColl1 = ALWAYS(pColl) ? pColl->zName : 0;
|
| + pColl = sqlite3ExprCollSeq(pParse, pExpr->pRight);
|
| + zColl2 = ALWAYS(pColl) ? pColl->zName : 0;
|
| + return sqlite3StrICmp(zColl1, zColl2)==0;
|
| +}
|
| +
|
| +/*
|
| +** Recursively walk the expressions of a SELECT statement and generate
|
| +** a bitmask indicating which tables are used in that expression
|
| +** tree.
|
| +*/
|
| +static Bitmask exprSelectUsage(WhereMaskSet *pMaskSet, Select *pS){
|
| + Bitmask mask = 0;
|
| + while( pS ){
|
| + SrcList *pSrc = pS->pSrc;
|
| + mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pEList);
|
| + mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pGroupBy);
|
| + mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pOrderBy);
|
| + mask |= sqlite3WhereExprUsage(pMaskSet, pS->pWhere);
|
| + mask |= sqlite3WhereExprUsage(pMaskSet, pS->pHaving);
|
| + if( ALWAYS(pSrc!=0) ){
|
| + int i;
|
| + for(i=0; i<pSrc->nSrc; i++){
|
| + mask |= exprSelectUsage(pMaskSet, pSrc->a[i].pSelect);
|
| + mask |= sqlite3WhereExprUsage(pMaskSet, pSrc->a[i].pOn);
|
| + }
|
| + }
|
| + pS = pS->pPrior;
|
| + }
|
| + return mask;
|
| +}
|
| +
|
| +/*
|
| +** Expression pExpr is one operand of a comparison operator that might
|
| +** be useful for indexing. This routine checks to see if pExpr appears
|
| +** in any index. Return TRUE (1) if pExpr is an indexed term and return
|
| +** FALSE (0) if not. If TRUE is returned, also set *piCur to the cursor
|
| +** number of the table that is indexed and *piColumn to the column number
|
| +** of the column that is indexed, or -2 if an expression is being indexed.
|
| +**
|
| +** If pExpr is a TK_COLUMN column reference, then this routine always returns
|
| +** true even if that particular column is not indexed, because the column
|
| +** might be added to an automatic index later.
|
| +*/
|
| +static int exprMightBeIndexed(
|
| + SrcList *pFrom, /* The FROM clause */
|
| + Bitmask mPrereq, /* Bitmask of FROM clause terms referenced by pExpr */
|
| + Expr *pExpr, /* An operand of a comparison operator */
|
| + int *piCur, /* Write the referenced table cursor number here */
|
| + int *piColumn /* Write the referenced table column number here */
|
| +){
|
| + Index *pIdx;
|
| + int i;
|
| + int iCur;
|
| + if( pExpr->op==TK_COLUMN ){
|
| + *piCur = pExpr->iTable;
|
| + *piColumn = pExpr->iColumn;
|
| + return 1;
|
| + }
|
| + if( mPrereq==0 ) return 0; /* No table references */
|
| + if( (mPrereq&(mPrereq-1))!=0 ) return 0; /* Refs more than one table */
|
| + for(i=0; mPrereq>1; i++, mPrereq>>=1){}
|
| + iCur = pFrom->a[i].iCursor;
|
| + for(pIdx=pFrom->a[i].pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
| + if( pIdx->aColExpr==0 ) continue;
|
| + for(i=0; i<pIdx->nKeyCol; i++){
|
| + if( pIdx->aiColumn[i]!=(-2) ) continue;
|
| + if( sqlite3ExprCompare(pExpr, pIdx->aColExpr->a[i].pExpr, iCur)==0 ){
|
| + *piCur = iCur;
|
| + *piColumn = -2;
|
| + return 1;
|
| + }
|
| + }
|
| + }
|
| + return 0;
|
| +}
|
| +
|
| +/*
|
| +** The input to this routine is an WhereTerm structure with only the
|
| +** "pExpr" field filled in. The job of this routine is to analyze the
|
| +** subexpression and populate all the other fields of the WhereTerm
|
| +** structure.
|
| +**
|
| +** If the expression is of the form "<expr> <op> X" it gets commuted
|
| +** to the standard form of "X <op> <expr>".
|
| +**
|
| +** If the expression is of the form "X <op> Y" where both X and Y are
|
| +** columns, then the original expression is unchanged and a new virtual
|
| +** term of the form "Y <op> X" is added to the WHERE clause and
|
| +** analyzed separately. The original term is marked with TERM_COPIED
|
| +** and the new term is marked with TERM_DYNAMIC (because it's pExpr
|
| +** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it
|
| +** is a commuted copy of a prior term.) The original term has nChild=1
|
| +** and the copy has idxParent set to the index of the original term.
|
| +*/
|
| +static void exprAnalyze(
|
| + SrcList *pSrc, /* the FROM clause */
|
| + WhereClause *pWC, /* the WHERE clause */
|
| + int idxTerm /* Index of the term to be analyzed */
|
| +){
|
| + WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */
|
| + WhereTerm *pTerm; /* The term to be analyzed */
|
| + WhereMaskSet *pMaskSet; /* Set of table index masks */
|
| + Expr *pExpr; /* The expression to be analyzed */
|
| + Bitmask prereqLeft; /* Prerequesites of the pExpr->pLeft */
|
| + Bitmask prereqAll; /* Prerequesites of pExpr */
|
| + Bitmask extraRight = 0; /* Extra dependencies on LEFT JOIN */
|
| + Expr *pStr1 = 0; /* RHS of LIKE/GLOB operator */
|
| + int isComplete = 0; /* RHS of LIKE/GLOB ends with wildcard */
|
| + int noCase = 0; /* uppercase equivalent to lowercase */
|
| + int op; /* Top-level operator. pExpr->op */
|
| + Parse *pParse = pWInfo->pParse; /* Parsing context */
|
| + sqlite3 *db = pParse->db; /* Database connection */
|
| + unsigned char eOp2; /* op2 value for LIKE/REGEXP/GLOB */
|
| +
|
| + if( db->mallocFailed ){
|
| + return;
|
| + }
|
| + pTerm = &pWC->a[idxTerm];
|
| + pMaskSet = &pWInfo->sMaskSet;
|
| + pExpr = pTerm->pExpr;
|
| + assert( pExpr->op!=TK_AS && pExpr->op!=TK_COLLATE );
|
| + prereqLeft = sqlite3WhereExprUsage(pMaskSet, pExpr->pLeft);
|
| + op = pExpr->op;
|
| + if( op==TK_IN ){
|
| + assert( pExpr->pRight==0 );
|
| + if( ExprHasProperty(pExpr, EP_xIsSelect) ){
|
| + pTerm->prereqRight = exprSelectUsage(pMaskSet, pExpr->x.pSelect);
|
| + }else{
|
| + pTerm->prereqRight = sqlite3WhereExprListUsage(pMaskSet, pExpr->x.pList);
|
| + }
|
| + }else if( op==TK_ISNULL ){
|
| + pTerm->prereqRight = 0;
|
| + }else{
|
| + pTerm->prereqRight = sqlite3WhereExprUsage(pMaskSet, pExpr->pRight);
|
| + }
|
| + prereqAll = sqlite3WhereExprUsage(pMaskSet, pExpr);
|
| + if( ExprHasProperty(pExpr, EP_FromJoin) ){
|
| + Bitmask x = sqlite3WhereGetMask(pMaskSet, pExpr->iRightJoinTable);
|
| + prereqAll |= x;
|
| + extraRight = x-1; /* ON clause terms may not be used with an index
|
| + ** on left table of a LEFT JOIN. Ticket #3015 */
|
| + }
|
| + pTerm->prereqAll = prereqAll;
|
| + pTerm->leftCursor = -1;
|
| + pTerm->iParent = -1;
|
| + pTerm->eOperator = 0;
|
| + if( allowedOp(op) ){
|
| + int iCur, iColumn;
|
| + Expr *pLeft = sqlite3ExprSkipCollate(pExpr->pLeft);
|
| + Expr *pRight = sqlite3ExprSkipCollate(pExpr->pRight);
|
| + u16 opMask = (pTerm->prereqRight & prereqLeft)==0 ? WO_ALL : WO_EQUIV;
|
| + if( exprMightBeIndexed(pSrc, prereqLeft, pLeft, &iCur, &iColumn) ){
|
| + pTerm->leftCursor = iCur;
|
| + pTerm->u.leftColumn = iColumn;
|
| + pTerm->eOperator = operatorMask(op) & opMask;
|
| + }
|
| + if( op==TK_IS ) pTerm->wtFlags |= TERM_IS;
|
| + if( pRight
|
| + && exprMightBeIndexed(pSrc, pTerm->prereqRight, pRight, &iCur, &iColumn)
|
| + ){
|
| + WhereTerm *pNew;
|
| + Expr *pDup;
|
| + u16 eExtraOp = 0; /* Extra bits for pNew->eOperator */
|
| + if( pTerm->leftCursor>=0 ){
|
| + int idxNew;
|
| + pDup = sqlite3ExprDup(db, pExpr, 0);
|
| + if( db->mallocFailed ){
|
| + sqlite3ExprDelete(db, pDup);
|
| + return;
|
| + }
|
| + idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC);
|
| + if( idxNew==0 ) return;
|
| + pNew = &pWC->a[idxNew];
|
| + markTermAsChild(pWC, idxNew, idxTerm);
|
| + if( op==TK_IS ) pNew->wtFlags |= TERM_IS;
|
| + pTerm = &pWC->a[idxTerm];
|
| + pTerm->wtFlags |= TERM_COPIED;
|
| +
|
| + if( termIsEquivalence(pParse, pDup) ){
|
| + pTerm->eOperator |= WO_EQUIV;
|
| + eExtraOp = WO_EQUIV;
|
| + }
|
| + }else{
|
| + pDup = pExpr;
|
| + pNew = pTerm;
|
| + }
|
| + exprCommute(pParse, pDup);
|
| + pNew->leftCursor = iCur;
|
| + pNew->u.leftColumn = iColumn;
|
| + testcase( (prereqLeft | extraRight) != prereqLeft );
|
| + pNew->prereqRight = prereqLeft | extraRight;
|
| + pNew->prereqAll = prereqAll;
|
| + pNew->eOperator = (operatorMask(pDup->op) + eExtraOp) & opMask;
|
| + }
|
| + }
|
| +
|
| +#ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION
|
| + /* If a term is the BETWEEN operator, create two new virtual terms
|
| + ** that define the range that the BETWEEN implements. For example:
|
| + **
|
| + ** a BETWEEN b AND c
|
| + **
|
| + ** is converted into:
|
| + **
|
| + ** (a BETWEEN b AND c) AND (a>=b) AND (a<=c)
|
| + **
|
| + ** The two new terms are added onto the end of the WhereClause object.
|
| + ** The new terms are "dynamic" and are children of the original BETWEEN
|
| + ** term. That means that if the BETWEEN term is coded, the children are
|
| + ** skipped. Or, if the children are satisfied by an index, the original
|
| + ** BETWEEN term is skipped.
|
| + */
|
| + else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){
|
| + ExprList *pList = pExpr->x.pList;
|
| + int i;
|
| + static const u8 ops[] = {TK_GE, TK_LE};
|
| + assert( pList!=0 );
|
| + assert( pList->nExpr==2 );
|
| + for(i=0; i<2; i++){
|
| + Expr *pNewExpr;
|
| + int idxNew;
|
| + pNewExpr = sqlite3PExpr(pParse, ops[i],
|
| + sqlite3ExprDup(db, pExpr->pLeft, 0),
|
| + sqlite3ExprDup(db, pList->a[i].pExpr, 0), 0);
|
| + transferJoinMarkings(pNewExpr, pExpr);
|
| + idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
|
| + testcase( idxNew==0 );
|
| + exprAnalyze(pSrc, pWC, idxNew);
|
| + pTerm = &pWC->a[idxTerm];
|
| + markTermAsChild(pWC, idxNew, idxTerm);
|
| + }
|
| + }
|
| +#endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */
|
| +
|
| +#if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
|
| + /* Analyze a term that is composed of two or more subterms connected by
|
| + ** an OR operator.
|
| + */
|
| + else if( pExpr->op==TK_OR ){
|
| + assert( pWC->op==TK_AND );
|
| + exprAnalyzeOrTerm(pSrc, pWC, idxTerm);
|
| + pTerm = &pWC->a[idxTerm];
|
| + }
|
| +#endif /* SQLITE_OMIT_OR_OPTIMIZATION */
|
| +
|
| +#ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
|
| + /* Add constraints to reduce the search space on a LIKE or GLOB
|
| + ** operator.
|
| + **
|
| + ** A like pattern of the form "x LIKE 'aBc%'" is changed into constraints
|
| + **
|
| + ** x>='ABC' AND x<'abd' AND x LIKE 'aBc%'
|
| + **
|
| + ** The last character of the prefix "abc" is incremented to form the
|
| + ** termination condition "abd". If case is not significant (the default
|
| + ** for LIKE) then the lower-bound is made all uppercase and the upper-
|
| + ** bound is made all lowercase so that the bounds also work when comparing
|
| + ** BLOBs.
|
| + */
|
| + if( pWC->op==TK_AND
|
| + && isLikeOrGlob(pParse, pExpr, &pStr1, &isComplete, &noCase)
|
| + ){
|
| + Expr *pLeft; /* LHS of LIKE/GLOB operator */
|
| + Expr *pStr2; /* Copy of pStr1 - RHS of LIKE/GLOB operator */
|
| + Expr *pNewExpr1;
|
| + Expr *pNewExpr2;
|
| + int idxNew1;
|
| + int idxNew2;
|
| + const char *zCollSeqName; /* Name of collating sequence */
|
| + const u16 wtFlags = TERM_LIKEOPT | TERM_VIRTUAL | TERM_DYNAMIC;
|
| +
|
| + pLeft = pExpr->x.pList->a[1].pExpr;
|
| + pStr2 = sqlite3ExprDup(db, pStr1, 0);
|
| +
|
| + /* Convert the lower bound to upper-case and the upper bound to
|
| + ** lower-case (upper-case is less than lower-case in ASCII) so that
|
| + ** the range constraints also work for BLOBs
|
| + */
|
| + if( noCase && !pParse->db->mallocFailed ){
|
| + int i;
|
| + char c;
|
| + pTerm->wtFlags |= TERM_LIKE;
|
| + for(i=0; (c = pStr1->u.zToken[i])!=0; i++){
|
| + pStr1->u.zToken[i] = sqlite3Toupper(c);
|
| + pStr2->u.zToken[i] = sqlite3Tolower(c);
|
| + }
|
| + }
|
| +
|
| + if( !db->mallocFailed ){
|
| + u8 c, *pC; /* Last character before the first wildcard */
|
| + pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1];
|
| + c = *pC;
|
| + if( noCase ){
|
| + /* The point is to increment the last character before the first
|
| + ** wildcard. But if we increment '@', that will push it into the
|
| + ** alphabetic range where case conversions will mess up the
|
| + ** inequality. To avoid this, make sure to also run the full
|
| + ** LIKE on all candidate expressions by clearing the isComplete flag
|
| + */
|
| + if( c=='A'-1 ) isComplete = 0;
|
| + c = sqlite3UpperToLower[c];
|
| + }
|
| + *pC = c + 1;
|
| + }
|
| + zCollSeqName = noCase ? "NOCASE" : "BINARY";
|
| + pNewExpr1 = sqlite3ExprDup(db, pLeft, 0);
|
| + pNewExpr1 = sqlite3PExpr(pParse, TK_GE,
|
| + sqlite3ExprAddCollateString(pParse,pNewExpr1,zCollSeqName),
|
| + pStr1, 0);
|
| + transferJoinMarkings(pNewExpr1, pExpr);
|
| + idxNew1 = whereClauseInsert(pWC, pNewExpr1, wtFlags);
|
| + testcase( idxNew1==0 );
|
| + exprAnalyze(pSrc, pWC, idxNew1);
|
| + pNewExpr2 = sqlite3ExprDup(db, pLeft, 0);
|
| + pNewExpr2 = sqlite3PExpr(pParse, TK_LT,
|
| + sqlite3ExprAddCollateString(pParse,pNewExpr2,zCollSeqName),
|
| + pStr2, 0);
|
| + transferJoinMarkings(pNewExpr2, pExpr);
|
| + idxNew2 = whereClauseInsert(pWC, pNewExpr2, wtFlags);
|
| + testcase( idxNew2==0 );
|
| + exprAnalyze(pSrc, pWC, idxNew2);
|
| + pTerm = &pWC->a[idxTerm];
|
| + if( isComplete ){
|
| + markTermAsChild(pWC, idxNew1, idxTerm);
|
| + markTermAsChild(pWC, idxNew2, idxTerm);
|
| + }
|
| + }
|
| +#endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
|
| +
|
| +#ifndef SQLITE_OMIT_VIRTUALTABLE
|
| + /* Add a WO_MATCH auxiliary term to the constraint set if the
|
| + ** current expression is of the form: column MATCH expr.
|
| + ** This information is used by the xBestIndex methods of
|
| + ** virtual tables. The native query optimizer does not attempt
|
| + ** to do anything with MATCH functions.
|
| + */
|
| + if( isMatchOfColumn(pExpr, &eOp2) ){
|
| + int idxNew;
|
| + Expr *pRight, *pLeft;
|
| + WhereTerm *pNewTerm;
|
| + Bitmask prereqColumn, prereqExpr;
|
| +
|
| + pRight = pExpr->x.pList->a[0].pExpr;
|
| + pLeft = pExpr->x.pList->a[1].pExpr;
|
| + prereqExpr = sqlite3WhereExprUsage(pMaskSet, pRight);
|
| + prereqColumn = sqlite3WhereExprUsage(pMaskSet, pLeft);
|
| + if( (prereqExpr & prereqColumn)==0 ){
|
| + Expr *pNewExpr;
|
| + pNewExpr = sqlite3PExpr(pParse, TK_MATCH,
|
| + 0, sqlite3ExprDup(db, pRight, 0), 0);
|
| + idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
|
| + testcase( idxNew==0 );
|
| + pNewTerm = &pWC->a[idxNew];
|
| + pNewTerm->prereqRight = prereqExpr;
|
| + pNewTerm->leftCursor = pLeft->iTable;
|
| + pNewTerm->u.leftColumn = pLeft->iColumn;
|
| + pNewTerm->eOperator = WO_MATCH;
|
| + pNewTerm->eMatchOp = eOp2;
|
| + markTermAsChild(pWC, idxNew, idxTerm);
|
| + pTerm = &pWC->a[idxTerm];
|
| + pTerm->wtFlags |= TERM_COPIED;
|
| + pNewTerm->prereqAll = pTerm->prereqAll;
|
| + }
|
| + }
|
| +#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
| +
|
| +#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
|
| + /* When sqlite_stat3 histogram data is available an operator of the
|
| + ** form "x IS NOT NULL" can sometimes be evaluated more efficiently
|
| + ** as "x>NULL" if x is not an INTEGER PRIMARY KEY. So construct a
|
| + ** virtual term of that form.
|
| + **
|
| + ** Note that the virtual term must be tagged with TERM_VNULL.
|
| + */
|
| + if( pExpr->op==TK_NOTNULL
|
| + && pExpr->pLeft->op==TK_COLUMN
|
| + && pExpr->pLeft->iColumn>=0
|
| + && OptimizationEnabled(db, SQLITE_Stat34)
|
| + ){
|
| + Expr *pNewExpr;
|
| + Expr *pLeft = pExpr->pLeft;
|
| + int idxNew;
|
| + WhereTerm *pNewTerm;
|
| +
|
| + pNewExpr = sqlite3PExpr(pParse, TK_GT,
|
| + sqlite3ExprDup(db, pLeft, 0),
|
| + sqlite3PExpr(pParse, TK_NULL, 0, 0, 0), 0);
|
| +
|
| + idxNew = whereClauseInsert(pWC, pNewExpr,
|
| + TERM_VIRTUAL|TERM_DYNAMIC|TERM_VNULL);
|
| + if( idxNew ){
|
| + pNewTerm = &pWC->a[idxNew];
|
| + pNewTerm->prereqRight = 0;
|
| + pNewTerm->leftCursor = pLeft->iTable;
|
| + pNewTerm->u.leftColumn = pLeft->iColumn;
|
| + pNewTerm->eOperator = WO_GT;
|
| + markTermAsChild(pWC, idxNew, idxTerm);
|
| + pTerm = &pWC->a[idxTerm];
|
| + pTerm->wtFlags |= TERM_COPIED;
|
| + pNewTerm->prereqAll = pTerm->prereqAll;
|
| + }
|
| + }
|
| +#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
|
| +
|
| + /* Prevent ON clause terms of a LEFT JOIN from being used to drive
|
| + ** an index for tables to the left of the join.
|
| + */
|
| + pTerm->prereqRight |= extraRight;
|
| +}
|
| +
|
| +/***************************************************************************
|
| +** Routines with file scope above. Interface to the rest of the where.c
|
| +** subsystem follows.
|
| +***************************************************************************/
|
| +
|
| +/*
|
| +** This routine identifies subexpressions in the WHERE clause where
|
| +** each subexpression is separated by the AND operator or some other
|
| +** operator specified in the op parameter. The WhereClause structure
|
| +** is filled with pointers to subexpressions. For example:
|
| +**
|
| +** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22)
|
| +** \________/ \_______________/ \________________/
|
| +** slot[0] slot[1] slot[2]
|
| +**
|
| +** The original WHERE clause in pExpr is unaltered. All this routine
|
| +** does is make slot[] entries point to substructure within pExpr.
|
| +**
|
| +** In the previous sentence and in the diagram, "slot[]" refers to
|
| +** the WhereClause.a[] array. The slot[] array grows as needed to contain
|
| +** all terms of the WHERE clause.
|
| +*/
|
| +void sqlite3WhereSplit(WhereClause *pWC, Expr *pExpr, u8 op){
|
| + Expr *pE2 = sqlite3ExprSkipCollate(pExpr);
|
| + pWC->op = op;
|
| + if( pE2==0 ) return;
|
| + if( pE2->op!=op ){
|
| + whereClauseInsert(pWC, pExpr, 0);
|
| + }else{
|
| + sqlite3WhereSplit(pWC, pE2->pLeft, op);
|
| + sqlite3WhereSplit(pWC, pE2->pRight, op);
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Initialize a preallocated WhereClause structure.
|
| +*/
|
| +void sqlite3WhereClauseInit(
|
| + WhereClause *pWC, /* The WhereClause to be initialized */
|
| + WhereInfo *pWInfo /* The WHERE processing context */
|
| +){
|
| + pWC->pWInfo = pWInfo;
|
| + pWC->pOuter = 0;
|
| + pWC->nTerm = 0;
|
| + pWC->nSlot = ArraySize(pWC->aStatic);
|
| + pWC->a = pWC->aStatic;
|
| +}
|
| +
|
| +/*
|
| +** Deallocate a WhereClause structure. The WhereClause structure
|
| +** itself is not freed. This routine is the inverse of
|
| +** sqlite3WhereClauseInit().
|
| +*/
|
| +void sqlite3WhereClauseClear(WhereClause *pWC){
|
| + int i;
|
| + WhereTerm *a;
|
| + sqlite3 *db = pWC->pWInfo->pParse->db;
|
| + for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){
|
| + if( a->wtFlags & TERM_DYNAMIC ){
|
| + sqlite3ExprDelete(db, a->pExpr);
|
| + }
|
| + if( a->wtFlags & TERM_ORINFO ){
|
| + whereOrInfoDelete(db, a->u.pOrInfo);
|
| + }else if( a->wtFlags & TERM_ANDINFO ){
|
| + whereAndInfoDelete(db, a->u.pAndInfo);
|
| + }
|
| + }
|
| + if( pWC->a!=pWC->aStatic ){
|
| + sqlite3DbFree(db, pWC->a);
|
| + }
|
| +}
|
| +
|
| +
|
| +/*
|
| +** These routines walk (recursively) an expression tree and generate
|
| +** a bitmask indicating which tables are used in that expression
|
| +** tree.
|
| +*/
|
| +Bitmask sqlite3WhereExprUsage(WhereMaskSet *pMaskSet, Expr *p){
|
| + Bitmask mask = 0;
|
| + if( p==0 ) return 0;
|
| + if( p->op==TK_COLUMN ){
|
| + mask = sqlite3WhereGetMask(pMaskSet, p->iTable);
|
| + return mask;
|
| + }
|
| + mask = sqlite3WhereExprUsage(pMaskSet, p->pRight);
|
| + mask |= sqlite3WhereExprUsage(pMaskSet, p->pLeft);
|
| + if( ExprHasProperty(p, EP_xIsSelect) ){
|
| + mask |= exprSelectUsage(pMaskSet, p->x.pSelect);
|
| + }else{
|
| + mask |= sqlite3WhereExprListUsage(pMaskSet, p->x.pList);
|
| + }
|
| + return mask;
|
| +}
|
| +Bitmask sqlite3WhereExprListUsage(WhereMaskSet *pMaskSet, ExprList *pList){
|
| + int i;
|
| + Bitmask mask = 0;
|
| + if( pList ){
|
| + for(i=0; i<pList->nExpr; i++){
|
| + mask |= sqlite3WhereExprUsage(pMaskSet, pList->a[i].pExpr);
|
| + }
|
| + }
|
| + return mask;
|
| +}
|
| +
|
| +
|
| +/*
|
| +** Call exprAnalyze on all terms in a WHERE clause.
|
| +**
|
| +** Note that exprAnalyze() might add new virtual terms onto the
|
| +** end of the WHERE clause. We do not want to analyze these new
|
| +** virtual terms, so start analyzing at the end and work forward
|
| +** so that the added virtual terms are never processed.
|
| +*/
|
| +void sqlite3WhereExprAnalyze(
|
| + SrcList *pTabList, /* the FROM clause */
|
| + WhereClause *pWC /* the WHERE clause to be analyzed */
|
| +){
|
| + int i;
|
| + for(i=pWC->nTerm-1; i>=0; i--){
|
| + exprAnalyze(pTabList, pWC, i);
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** For table-valued-functions, transform the function arguments into
|
| +** new WHERE clause terms.
|
| +**
|
| +** Each function argument translates into an equality constraint against
|
| +** a HIDDEN column in the table.
|
| +*/
|
| +void sqlite3WhereTabFuncArgs(
|
| + Parse *pParse, /* Parsing context */
|
| + struct SrcList_item *pItem, /* The FROM clause term to process */
|
| + WhereClause *pWC /* Xfer function arguments to here */
|
| +){
|
| + Table *pTab;
|
| + int j, k;
|
| + ExprList *pArgs;
|
| + Expr *pColRef;
|
| + Expr *pTerm;
|
| + if( pItem->fg.isTabFunc==0 ) return;
|
| + pTab = pItem->pTab;
|
| + assert( pTab!=0 );
|
| + pArgs = pItem->u1.pFuncArg;
|
| + if( pArgs==0 ) return;
|
| + for(j=k=0; j<pArgs->nExpr; j++){
|
| + while( k<pTab->nCol && (pTab->aCol[k].colFlags & COLFLAG_HIDDEN)==0 ){k++;}
|
| + if( k>=pTab->nCol ){
|
| + sqlite3ErrorMsg(pParse, "too many arguments on %s() - max %d",
|
| + pTab->zName, j);
|
| + return;
|
| + }
|
| + pColRef = sqlite3PExpr(pParse, TK_COLUMN, 0, 0, 0);
|
| + if( pColRef==0 ) return;
|
| + pColRef->iTable = pItem->iCursor;
|
| + pColRef->iColumn = k++;
|
| + pColRef->pTab = pTab;
|
| + pTerm = sqlite3PExpr(pParse, TK_EQ, pColRef,
|
| + sqlite3ExprDup(pParse->db, pArgs->a[j].pExpr, 0), 0);
|
| + whereClauseInsert(pWC, pTerm, TERM_DYNAMIC);
|
| + }
|
| +}
|
|
|