OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ** 2015-04-06 |
| 3 ** |
| 4 ** The author disclaims copyright to this source code. In place of |
| 5 ** a legal notice, here is a blessing: |
| 6 ** |
| 7 ** May you do good and not evil. |
| 8 ** May you find forgiveness for yourself and forgive others. |
| 9 ** May you share freely, never taking more than you give. |
| 10 ** |
| 11 ************************************************************************* |
| 12 ** |
| 13 ** This is a utility program that computes the differences in content |
| 14 ** between two SQLite databases. |
| 15 ** |
| 16 ** To compile, simply link against SQLite. |
| 17 ** |
| 18 ** See the showHelp() routine below for a brief description of how to |
| 19 ** run the utility. |
| 20 */ |
| 21 #include <stdio.h> |
| 22 #include <stdlib.h> |
| 23 #include <stdarg.h> |
| 24 #include <ctype.h> |
| 25 #include <string.h> |
| 26 #include <assert.h> |
| 27 #include "sqlite3.h" |
| 28 |
| 29 /* |
| 30 ** All global variables are gathered into the "g" singleton. |
| 31 */ |
| 32 struct GlobalVars { |
| 33 const char *zArgv0; /* Name of program */ |
| 34 int bSchemaOnly; /* Only show schema differences */ |
| 35 int bSchemaPK; /* Use the schema-defined PK, not the true PK */ |
| 36 unsigned fDebug; /* Debug flags */ |
| 37 sqlite3 *db; /* The database connection */ |
| 38 } g; |
| 39 |
| 40 /* |
| 41 ** Allowed values for g.fDebug |
| 42 */ |
| 43 #define DEBUG_COLUMN_NAMES 0x000001 |
| 44 #define DEBUG_DIFF_SQL 0x000002 |
| 45 |
| 46 /* |
| 47 ** Dynamic string object |
| 48 */ |
| 49 typedef struct Str Str; |
| 50 struct Str { |
| 51 char *z; /* Text of the string */ |
| 52 int nAlloc; /* Bytes allocated in z[] */ |
| 53 int nUsed; /* Bytes actually used in z[] */ |
| 54 }; |
| 55 |
| 56 /* |
| 57 ** Initialize a Str object |
| 58 */ |
| 59 static void strInit(Str *p){ |
| 60 p->z = 0; |
| 61 p->nAlloc = 0; |
| 62 p->nUsed = 0; |
| 63 } |
| 64 |
| 65 /* |
| 66 ** Print an error resulting from faulting command-line arguments and |
| 67 ** abort the program. |
| 68 */ |
| 69 static void cmdlineError(const char *zFormat, ...){ |
| 70 va_list ap; |
| 71 fprintf(stderr, "%s: ", g.zArgv0); |
| 72 va_start(ap, zFormat); |
| 73 vfprintf(stderr, zFormat, ap); |
| 74 va_end(ap); |
| 75 fprintf(stderr, "\n\"%s --help\" for more help\n", g.zArgv0); |
| 76 exit(1); |
| 77 } |
| 78 |
| 79 /* |
| 80 ** Print an error message for an error that occurs at runtime, then |
| 81 ** abort the program. |
| 82 */ |
| 83 static void runtimeError(const char *zFormat, ...){ |
| 84 va_list ap; |
| 85 fprintf(stderr, "%s: ", g.zArgv0); |
| 86 va_start(ap, zFormat); |
| 87 vfprintf(stderr, zFormat, ap); |
| 88 va_end(ap); |
| 89 fprintf(stderr, "\n"); |
| 90 exit(1); |
| 91 } |
| 92 |
| 93 /* |
| 94 ** Free all memory held by a Str object |
| 95 */ |
| 96 static void strFree(Str *p){ |
| 97 sqlite3_free(p->z); |
| 98 strInit(p); |
| 99 } |
| 100 |
| 101 /* |
| 102 ** Add formatted text to the end of a Str object |
| 103 */ |
| 104 static void strPrintf(Str *p, const char *zFormat, ...){ |
| 105 int nNew; |
| 106 for(;;){ |
| 107 if( p->z ){ |
| 108 va_list ap; |
| 109 va_start(ap, zFormat); |
| 110 sqlite3_vsnprintf(p->nAlloc-p->nUsed, p->z+p->nUsed, zFormat, ap); |
| 111 va_end(ap); |
| 112 nNew = (int)strlen(p->z + p->nUsed); |
| 113 }else{ |
| 114 nNew = p->nAlloc; |
| 115 } |
| 116 if( p->nUsed+nNew < p->nAlloc-1 ){ |
| 117 p->nUsed += nNew; |
| 118 break; |
| 119 } |
| 120 p->nAlloc = p->nAlloc*2 + 1000; |
| 121 p->z = sqlite3_realloc(p->z, p->nAlloc); |
| 122 if( p->z==0 ) runtimeError("out of memory"); |
| 123 } |
| 124 } |
| 125 |
| 126 |
| 127 |
| 128 /* Safely quote an SQL identifier. Use the minimum amount of transformation |
| 129 ** necessary to allow the string to be used with %s. |
| 130 ** |
| 131 ** Space to hold the returned string is obtained from sqlite3_malloc(). The |
| 132 ** caller is responsible for ensuring this space is freed when no longer |
| 133 ** needed. |
| 134 */ |
| 135 static char *safeId(const char *zId){ |
| 136 /* All SQLite keywords, in alphabetical order */ |
| 137 static const char *azKeywords[] = { |
| 138 "ABORT", "ACTION", "ADD", "AFTER", "ALL", "ALTER", "ANALYZE", "AND", "AS", |
| 139 "ASC", "ATTACH", "AUTOINCREMENT", "BEFORE", "BEGIN", "BETWEEN", "BY", |
| 140 "CASCADE", "CASE", "CAST", "CHECK", "COLLATE", "COLUMN", "COMMIT", |
| 141 "CONFLICT", "CONSTRAINT", "CREATE", "CROSS", "CURRENT_DATE", |
| 142 "CURRENT_TIME", "CURRENT_TIMESTAMP", "DATABASE", "DEFAULT", "DEFERRABLE", |
| 143 "DEFERRED", "DELETE", "DESC", "DETACH", "DISTINCT", "DROP", "EACH", |
| 144 "ELSE", "END", "ESCAPE", "EXCEPT", "EXCLUSIVE", "EXISTS", "EXPLAIN", |
| 145 "FAIL", "FOR", "FOREIGN", "FROM", "FULL", "GLOB", "GROUP", "HAVING", "IF", |
| 146 "IGNORE", "IMMEDIATE", "IN", "INDEX", "INDEXED", "INITIALLY", "INNER", |
| 147 "INSERT", "INSTEAD", "INTERSECT", "INTO", "IS", "ISNULL", "JOIN", "KEY", |
| 148 "LEFT", "LIKE", "LIMIT", "MATCH", "NATURAL", "NO", "NOT", "NOTNULL", |
| 149 "NULL", "OF", "OFFSET", "ON", "OR", "ORDER", "OUTER", "PLAN", "PRAGMA", |
| 150 "PRIMARY", "QUERY", "RAISE", "RECURSIVE", "REFERENCES", "REGEXP", |
| 151 "REINDEX", "RELEASE", "RENAME", "REPLACE", "RESTRICT", "RIGHT", |
| 152 "ROLLBACK", "ROW", "SAVEPOINT", "SELECT", "SET", "TABLE", "TEMP", |
| 153 "TEMPORARY", "THEN", "TO", "TRANSACTION", "TRIGGER", "UNION", "UNIQUE", |
| 154 "UPDATE", "USING", "VACUUM", "VALUES", "VIEW", "VIRTUAL", "WHEN", "WHERE", |
| 155 "WITH", "WITHOUT", |
| 156 }; |
| 157 int lwr, upr, mid, c, i, x; |
| 158 if( zId[0]==0 ) return sqlite3_mprintf("\"\""); |
| 159 for(i=x=0; (c = zId[i])!=0; i++){ |
| 160 if( !isalpha(c) && c!='_' ){ |
| 161 if( i>0 && isdigit(c) ){ |
| 162 x++; |
| 163 }else{ |
| 164 return sqlite3_mprintf("\"%w\"", zId); |
| 165 } |
| 166 } |
| 167 } |
| 168 if( x ) return sqlite3_mprintf("%s", zId); |
| 169 lwr = 0; |
| 170 upr = sizeof(azKeywords)/sizeof(azKeywords[0]) - 1; |
| 171 while( lwr<=upr ){ |
| 172 mid = (lwr+upr)/2; |
| 173 c = sqlite3_stricmp(azKeywords[mid], zId); |
| 174 if( c==0 ) return sqlite3_mprintf("\"%w\"", zId); |
| 175 if( c<0 ){ |
| 176 lwr = mid+1; |
| 177 }else{ |
| 178 upr = mid-1; |
| 179 } |
| 180 } |
| 181 return sqlite3_mprintf("%s", zId); |
| 182 } |
| 183 |
| 184 /* |
| 185 ** Prepare a new SQL statement. Print an error and abort if anything |
| 186 ** goes wrong. |
| 187 */ |
| 188 static sqlite3_stmt *db_vprepare(const char *zFormat, va_list ap){ |
| 189 char *zSql; |
| 190 int rc; |
| 191 sqlite3_stmt *pStmt; |
| 192 |
| 193 zSql = sqlite3_vmprintf(zFormat, ap); |
| 194 if( zSql==0 ) runtimeError("out of memory"); |
| 195 rc = sqlite3_prepare_v2(g.db, zSql, -1, &pStmt, 0); |
| 196 if( rc ){ |
| 197 runtimeError("SQL statement error: %s\n\"%s\"", sqlite3_errmsg(g.db), |
| 198 zSql); |
| 199 } |
| 200 sqlite3_free(zSql); |
| 201 return pStmt; |
| 202 } |
| 203 static sqlite3_stmt *db_prepare(const char *zFormat, ...){ |
| 204 va_list ap; |
| 205 sqlite3_stmt *pStmt; |
| 206 va_start(ap, zFormat); |
| 207 pStmt = db_vprepare(zFormat, ap); |
| 208 va_end(ap); |
| 209 return pStmt; |
| 210 } |
| 211 |
| 212 /* |
| 213 ** Free a list of strings |
| 214 */ |
| 215 static void namelistFree(char **az){ |
| 216 if( az ){ |
| 217 int i; |
| 218 for(i=0; az[i]; i++) sqlite3_free(az[i]); |
| 219 sqlite3_free(az); |
| 220 } |
| 221 } |
| 222 |
| 223 /* |
| 224 ** Return a list of column names for the table zDb.zTab. Space to |
| 225 ** hold the list is obtained from sqlite3_malloc() and should released |
| 226 ** using namelistFree() when no longer needed. |
| 227 ** |
| 228 ** Primary key columns are listed first, followed by data columns. |
| 229 ** The number of columns in the primary key is returned in *pnPkey. |
| 230 ** |
| 231 ** Normally, the "primary key" in the previous sentence is the true |
| 232 ** primary key - the rowid or INTEGER PRIMARY KEY for ordinary tables |
| 233 ** or the declared PRIMARY KEY for WITHOUT ROWID tables. However, if |
| 234 ** the g.bSchemaPK flag is set, then the schema-defined PRIMARY KEY is |
| 235 ** used in all cases. In that case, entries that have NULL values in |
| 236 ** any of their primary key fields will be excluded from the analysis. |
| 237 ** |
| 238 ** If the primary key for a table is the rowid but rowid is inaccessible, |
| 239 ** then this routine returns a NULL pointer. |
| 240 ** |
| 241 ** Examples: |
| 242 ** CREATE TABLE t1(a INT UNIQUE, b INTEGER, c TEXT, PRIMARY KEY(c)); |
| 243 ** *pnPKey = 1; |
| 244 ** az = { "rowid", "a", "b", "c", 0 } // Normal case |
| 245 ** az = { "c", "a", "b", 0 } // g.bSchemaPK==1 |
| 246 ** |
| 247 ** CREATE TABLE t2(a INT UNIQUE, b INTEGER, c TEXT, PRIMARY KEY(b)); |
| 248 ** *pnPKey = 1; |
| 249 ** az = { "b", "a", "c", 0 } |
| 250 ** |
| 251 ** CREATE TABLE t3(x,y,z,PRIMARY KEY(y,z)); |
| 252 ** *pnPKey = 1 // Normal case |
| 253 ** az = { "rowid", "x", "y", "z", 0 } // Normal case |
| 254 ** *pnPKey = 2 // g.bSchemaPK==1 |
| 255 ** az = { "y", "x", "z", 0 } // g.bSchemaPK==1 |
| 256 ** |
| 257 ** CREATE TABLE t4(x,y,z,PRIMARY KEY(y,z)) WITHOUT ROWID; |
| 258 ** *pnPKey = 2 |
| 259 ** az = { "y", "z", "x", 0 } |
| 260 ** |
| 261 ** CREATE TABLE t5(rowid,_rowid_,oid); |
| 262 ** az = 0 // The rowid is not accessible |
| 263 */ |
| 264 static char **columnNames( |
| 265 const char *zDb, /* Database ("main" or "aux") to query */ |
| 266 const char *zTab, /* Name of table to return details of */ |
| 267 int *pnPKey, /* OUT: Number of PK columns */ |
| 268 int *pbRowid /* OUT: True if PK is an implicit rowid */ |
| 269 ){ |
| 270 char **az = 0; /* List of column names to be returned */ |
| 271 int naz = 0; /* Number of entries in az[] */ |
| 272 sqlite3_stmt *pStmt; /* SQL statement being run */ |
| 273 char *zPkIdxName = 0; /* Name of the PRIMARY KEY index */ |
| 274 int truePk = 0; /* PRAGMA table_info indentifies the PK to use */ |
| 275 int nPK = 0; /* Number of PRIMARY KEY columns */ |
| 276 int i, j; /* Loop counters */ |
| 277 |
| 278 if( g.bSchemaPK==0 ){ |
| 279 /* Normal case: Figure out what the true primary key is for the table. |
| 280 ** * For WITHOUT ROWID tables, the true primary key is the same as |
| 281 ** the schema PRIMARY KEY, which is guaranteed to be present. |
| 282 ** * For rowid tables with an INTEGER PRIMARY KEY, the true primary |
| 283 ** key is the INTEGER PRIMARY KEY. |
| 284 ** * For all other rowid tables, the rowid is the true primary key. |
| 285 */ |
| 286 pStmt = db_prepare("PRAGMA %s.index_list=%Q", zDb, zTab); |
| 287 while( SQLITE_ROW==sqlite3_step(pStmt) ){ |
| 288 if( sqlite3_stricmp((const char*)sqlite3_column_text(pStmt,3),"pk")==0 ){ |
| 289 zPkIdxName = sqlite3_mprintf("%s", sqlite3_column_text(pStmt, 1)); |
| 290 break; |
| 291 } |
| 292 } |
| 293 sqlite3_finalize(pStmt); |
| 294 if( zPkIdxName ){ |
| 295 int nKey = 0; |
| 296 int nCol = 0; |
| 297 truePk = 0; |
| 298 pStmt = db_prepare("PRAGMA %s.index_xinfo=%Q", zDb, zPkIdxName); |
| 299 while( SQLITE_ROW==sqlite3_step(pStmt) ){ |
| 300 nCol++; |
| 301 if( sqlite3_column_int(pStmt,5) ){ nKey++; continue; } |
| 302 if( sqlite3_column_int(pStmt,1)>=0 ) truePk = 1; |
| 303 } |
| 304 if( nCol==nKey ) truePk = 1; |
| 305 if( truePk ){ |
| 306 nPK = nKey; |
| 307 }else{ |
| 308 nPK = 1; |
| 309 } |
| 310 sqlite3_finalize(pStmt); |
| 311 sqlite3_free(zPkIdxName); |
| 312 }else{ |
| 313 truePk = 1; |
| 314 nPK = 1; |
| 315 } |
| 316 pStmt = db_prepare("PRAGMA %s.table_info=%Q", zDb, zTab); |
| 317 }else{ |
| 318 /* The g.bSchemaPK==1 case: Use whatever primary key is declared |
| 319 ** in the schema. The "rowid" will still be used as the primary key |
| 320 ** if the table definition does not contain a PRIMARY KEY. |
| 321 */ |
| 322 nPK = 0; |
| 323 pStmt = db_prepare("PRAGMA %s.table_info=%Q", zDb, zTab); |
| 324 while( SQLITE_ROW==sqlite3_step(pStmt) ){ |
| 325 if( sqlite3_column_int(pStmt,5)>0 ) nPK++; |
| 326 } |
| 327 sqlite3_reset(pStmt); |
| 328 if( nPK==0 ) nPK = 1; |
| 329 truePk = 1; |
| 330 } |
| 331 *pnPKey = nPK; |
| 332 naz = nPK; |
| 333 az = sqlite3_malloc( sizeof(char*)*(nPK+1) ); |
| 334 if( az==0 ) runtimeError("out of memory"); |
| 335 memset(az, 0, sizeof(char*)*(nPK+1)); |
| 336 while( SQLITE_ROW==sqlite3_step(pStmt) ){ |
| 337 int iPKey; |
| 338 if( truePk && (iPKey = sqlite3_column_int(pStmt,5))>0 ){ |
| 339 az[iPKey-1] = safeId((char*)sqlite3_column_text(pStmt,1)); |
| 340 }else{ |
| 341 az = sqlite3_realloc(az, sizeof(char*)*(naz+2) ); |
| 342 if( az==0 ) runtimeError("out of memory"); |
| 343 az[naz++] = safeId((char*)sqlite3_column_text(pStmt,1)); |
| 344 } |
| 345 } |
| 346 sqlite3_finalize(pStmt); |
| 347 if( az ) az[naz] = 0; |
| 348 |
| 349 /* If it is non-NULL, set *pbRowid to indicate whether or not the PK of |
| 350 ** this table is an implicit rowid (*pbRowid==1) or not (*pbRowid==0). */ |
| 351 if( pbRowid ) *pbRowid = (az[0]==0); |
| 352 |
| 353 /* If this table has an implicit rowid for a PK, figure out how to refer |
| 354 ** to it. There are three options - "rowid", "_rowid_" and "oid". Any |
| 355 ** of these will work, unless the table has an explicit column of the |
| 356 ** same name. */ |
| 357 if( az[0]==0 ){ |
| 358 const char *azRowid[] = { "rowid", "_rowid_", "oid" }; |
| 359 for(i=0; i<sizeof(azRowid)/sizeof(azRowid[0]); i++){ |
| 360 for(j=1; j<naz; j++){ |
| 361 if( sqlite3_stricmp(az[j], azRowid[i])==0 ) break; |
| 362 } |
| 363 if( j>=naz ){ |
| 364 az[0] = sqlite3_mprintf("%s", azRowid[i]); |
| 365 break; |
| 366 } |
| 367 } |
| 368 if( az[0]==0 ){ |
| 369 for(i=1; i<naz; i++) sqlite3_free(az[i]); |
| 370 sqlite3_free(az); |
| 371 az = 0; |
| 372 } |
| 373 } |
| 374 return az; |
| 375 } |
| 376 |
| 377 /* |
| 378 ** Print the sqlite3_value X as an SQL literal. |
| 379 */ |
| 380 static void printQuoted(FILE *out, sqlite3_value *X){ |
| 381 switch( sqlite3_value_type(X) ){ |
| 382 case SQLITE_FLOAT: { |
| 383 double r1; |
| 384 char zBuf[50]; |
| 385 r1 = sqlite3_value_double(X); |
| 386 sqlite3_snprintf(sizeof(zBuf), zBuf, "%!.15g", r1); |
| 387 fprintf(out, "%s", zBuf); |
| 388 break; |
| 389 } |
| 390 case SQLITE_INTEGER: { |
| 391 fprintf(out, "%lld", sqlite3_value_int64(X)); |
| 392 break; |
| 393 } |
| 394 case SQLITE_BLOB: { |
| 395 const unsigned char *zBlob = sqlite3_value_blob(X); |
| 396 int nBlob = sqlite3_value_bytes(X); |
| 397 if( zBlob ){ |
| 398 int i; |
| 399 fprintf(out, "x'"); |
| 400 for(i=0; i<nBlob; i++){ |
| 401 fprintf(out, "%02x", zBlob[i]); |
| 402 } |
| 403 fprintf(out, "'"); |
| 404 }else{ |
| 405 fprintf(out, "NULL"); |
| 406 } |
| 407 break; |
| 408 } |
| 409 case SQLITE_TEXT: { |
| 410 const unsigned char *zArg = sqlite3_value_text(X); |
| 411 int i, j; |
| 412 |
| 413 if( zArg==0 ){ |
| 414 fprintf(out, "NULL"); |
| 415 }else{ |
| 416 fprintf(out, "'"); |
| 417 for(i=j=0; zArg[i]; i++){ |
| 418 if( zArg[i]=='\'' ){ |
| 419 fprintf(out, "%.*s'", i-j+1, &zArg[j]); |
| 420 j = i+1; |
| 421 } |
| 422 } |
| 423 fprintf(out, "%s'", &zArg[j]); |
| 424 } |
| 425 break; |
| 426 } |
| 427 case SQLITE_NULL: { |
| 428 fprintf(out, "NULL"); |
| 429 break; |
| 430 } |
| 431 } |
| 432 } |
| 433 |
| 434 /* |
| 435 ** Output SQL that will recreate the aux.zTab table. |
| 436 */ |
| 437 static void dump_table(const char *zTab, FILE *out){ |
| 438 char *zId = safeId(zTab); /* Name of the table */ |
| 439 char **az = 0; /* List of columns */ |
| 440 int nPk; /* Number of true primary key columns */ |
| 441 int nCol; /* Number of data columns */ |
| 442 int i; /* Loop counter */ |
| 443 sqlite3_stmt *pStmt; /* SQL statement */ |
| 444 const char *zSep; /* Separator string */ |
| 445 Str ins; /* Beginning of the INSERT statement */ |
| 446 |
| 447 pStmt = db_prepare("SELECT sql FROM aux.sqlite_master WHERE name=%Q", zTab); |
| 448 if( SQLITE_ROW==sqlite3_step(pStmt) ){ |
| 449 fprintf(out, "%s;\n", sqlite3_column_text(pStmt,0)); |
| 450 } |
| 451 sqlite3_finalize(pStmt); |
| 452 if( !g.bSchemaOnly ){ |
| 453 az = columnNames("aux", zTab, &nPk, 0); |
| 454 strInit(&ins); |
| 455 if( az==0 ){ |
| 456 pStmt = db_prepare("SELECT * FROM aux.%s", zId); |
| 457 strPrintf(&ins,"INSERT INTO %s VALUES", zId); |
| 458 }else{ |
| 459 Str sql; |
| 460 strInit(&sql); |
| 461 zSep = "SELECT"; |
| 462 for(i=0; az[i]; i++){ |
| 463 strPrintf(&sql, "%s %s", zSep, az[i]); |
| 464 zSep = ","; |
| 465 } |
| 466 strPrintf(&sql," FROM aux.%s", zId); |
| 467 zSep = " ORDER BY"; |
| 468 for(i=1; i<=nPk; i++){ |
| 469 strPrintf(&sql, "%s %d", zSep, i); |
| 470 zSep = ","; |
| 471 } |
| 472 pStmt = db_prepare("%s", sql.z); |
| 473 strFree(&sql); |
| 474 strPrintf(&ins, "INSERT INTO %s", zId); |
| 475 zSep = "("; |
| 476 for(i=0; az[i]; i++){ |
| 477 strPrintf(&ins, "%s%s", zSep, az[i]); |
| 478 zSep = ","; |
| 479 } |
| 480 strPrintf(&ins,") VALUES"); |
| 481 namelistFree(az); |
| 482 } |
| 483 nCol = sqlite3_column_count(pStmt); |
| 484 while( SQLITE_ROW==sqlite3_step(pStmt) ){ |
| 485 fprintf(out, "%s",ins.z); |
| 486 zSep = "("; |
| 487 for(i=0; i<nCol; i++){ |
| 488 fprintf(out, "%s",zSep); |
| 489 printQuoted(out, sqlite3_column_value(pStmt,i)); |
| 490 zSep = ","; |
| 491 } |
| 492 fprintf(out, ");\n"); |
| 493 } |
| 494 sqlite3_finalize(pStmt); |
| 495 strFree(&ins); |
| 496 } /* endif !g.bSchemaOnly */ |
| 497 pStmt = db_prepare("SELECT sql FROM aux.sqlite_master" |
| 498 " WHERE type='index' AND tbl_name=%Q AND sql IS NOT NULL", |
| 499 zTab); |
| 500 while( SQLITE_ROW==sqlite3_step(pStmt) ){ |
| 501 fprintf(out, "%s;\n", sqlite3_column_text(pStmt,0)); |
| 502 } |
| 503 sqlite3_finalize(pStmt); |
| 504 } |
| 505 |
| 506 |
| 507 /* |
| 508 ** Compute all differences for a single table. |
| 509 */ |
| 510 static void diff_one_table(const char *zTab, FILE *out){ |
| 511 char *zId = safeId(zTab); /* Name of table (translated for us in SQL) */ |
| 512 char **az = 0; /* Columns in main */ |
| 513 char **az2 = 0; /* Columns in aux */ |
| 514 int nPk; /* Primary key columns in main */ |
| 515 int nPk2; /* Primary key columns in aux */ |
| 516 int n = 0; /* Number of columns in main */ |
| 517 int n2; /* Number of columns in aux */ |
| 518 int nQ; /* Number of output columns in the diff query */ |
| 519 int i; /* Loop counter */ |
| 520 const char *zSep; /* Separator string */ |
| 521 Str sql; /* Comparison query */ |
| 522 sqlite3_stmt *pStmt; /* Query statement to do the diff */ |
| 523 |
| 524 strInit(&sql); |
| 525 if( g.fDebug==DEBUG_COLUMN_NAMES ){ |
| 526 /* Simply run columnNames() on all tables of the origin |
| 527 ** database and show the results. This is used for testing |
| 528 ** and debugging of the columnNames() function. |
| 529 */ |
| 530 az = columnNames("aux",zTab, &nPk, 0); |
| 531 if( az==0 ){ |
| 532 printf("Rowid not accessible for %s\n", zId); |
| 533 }else{ |
| 534 printf("%s:", zId); |
| 535 for(i=0; az[i]; i++){ |
| 536 printf(" %s", az[i]); |
| 537 if( i+1==nPk ) printf(" *"); |
| 538 } |
| 539 printf("\n"); |
| 540 } |
| 541 goto end_diff_one_table; |
| 542 } |
| 543 |
| 544 |
| 545 if( sqlite3_table_column_metadata(g.db,"aux",zTab,0,0,0,0,0,0) ){ |
| 546 if( !sqlite3_table_column_metadata(g.db,"main",zTab,0,0,0,0,0,0) ){ |
| 547 /* Table missing from second database. */ |
| 548 fprintf(out, "DROP TABLE %s;\n", zId); |
| 549 } |
| 550 goto end_diff_one_table; |
| 551 } |
| 552 |
| 553 if( sqlite3_table_column_metadata(g.db,"main",zTab,0,0,0,0,0,0) ){ |
| 554 /* Table missing from source */ |
| 555 dump_table(zTab, out); |
| 556 goto end_diff_one_table; |
| 557 } |
| 558 |
| 559 az = columnNames("main", zTab, &nPk, 0); |
| 560 az2 = columnNames("aux", zTab, &nPk2, 0); |
| 561 if( az && az2 ){ |
| 562 for(n=0; az[n] && az2[n]; n++){ |
| 563 if( sqlite3_stricmp(az[n],az2[n])!=0 ) break; |
| 564 } |
| 565 } |
| 566 if( az==0 |
| 567 || az2==0 |
| 568 || nPk!=nPk2 |
| 569 || az[n] |
| 570 ){ |
| 571 /* Schema mismatch */ |
| 572 fprintf(out, "DROP TABLE %s; -- due to schema mismatch\n", zId); |
| 573 dump_table(zTab, out); |
| 574 goto end_diff_one_table; |
| 575 } |
| 576 |
| 577 /* Build the comparison query */ |
| 578 for(n2=n; az2[n2]; n2++){ |
| 579 fprintf(out, "ALTER TABLE %s ADD COLUMN %s;\n", zId, safeId(az2[n2])); |
| 580 } |
| 581 nQ = nPk2+1+2*(n2-nPk2); |
| 582 if( n2>nPk2 ){ |
| 583 zSep = "SELECT "; |
| 584 for(i=0; i<nPk; i++){ |
| 585 strPrintf(&sql, "%sB.%s", zSep, az[i]); |
| 586 zSep = ", "; |
| 587 } |
| 588 strPrintf(&sql, ", 1%s -- changed row\n", nPk==n ? "" : ","); |
| 589 while( az[i] ){ |
| 590 strPrintf(&sql, " A.%s IS NOT B.%s, B.%s%s\n", |
| 591 az[i], az2[i], az2[i], az2[i+1]==0 ? "" : ","); |
| 592 i++; |
| 593 } |
| 594 while( az2[i] ){ |
| 595 strPrintf(&sql, " B.%s IS NOT NULL, B.%s%s\n", |
| 596 az2[i], az2[i], az2[i+1]==0 ? "" : ","); |
| 597 i++; |
| 598 } |
| 599 strPrintf(&sql, " FROM main.%s A, aux.%s B\n", zId, zId); |
| 600 zSep = " WHERE"; |
| 601 for(i=0; i<nPk; i++){ |
| 602 strPrintf(&sql, "%s A.%s=B.%s", zSep, az[i], az[i]); |
| 603 zSep = " AND"; |
| 604 } |
| 605 zSep = "\n AND ("; |
| 606 while( az[i] ){ |
| 607 strPrintf(&sql, "%sA.%s IS NOT B.%s%s\n", |
| 608 zSep, az[i], az2[i], az2[i+1]==0 ? ")" : ""); |
| 609 zSep = " OR "; |
| 610 i++; |
| 611 } |
| 612 while( az2[i] ){ |
| 613 strPrintf(&sql, "%sB.%s IS NOT NULL%s\n", |
| 614 zSep, az2[i], az2[i+1]==0 ? ")" : ""); |
| 615 zSep = " OR "; |
| 616 i++; |
| 617 } |
| 618 strPrintf(&sql, " UNION ALL\n"); |
| 619 } |
| 620 zSep = "SELECT "; |
| 621 for(i=0; i<nPk; i++){ |
| 622 strPrintf(&sql, "%sA.%s", zSep, az[i]); |
| 623 zSep = ", "; |
| 624 } |
| 625 strPrintf(&sql, ", 2%s -- deleted row\n", nPk==n ? "" : ","); |
| 626 while( az2[i] ){ |
| 627 strPrintf(&sql, " NULL, NULL%s\n", i==n2-1 ? "" : ","); |
| 628 i++; |
| 629 } |
| 630 strPrintf(&sql, " FROM main.%s A\n", zId); |
| 631 strPrintf(&sql, " WHERE NOT EXISTS(SELECT 1 FROM aux.%s B\n", zId); |
| 632 zSep = " WHERE"; |
| 633 for(i=0; i<nPk; i++){ |
| 634 strPrintf(&sql, "%s A.%s=B.%s", zSep, az[i], az[i]); |
| 635 zSep = " AND"; |
| 636 } |
| 637 strPrintf(&sql, ")\n"); |
| 638 zSep = " UNION ALL\nSELECT "; |
| 639 for(i=0; i<nPk; i++){ |
| 640 strPrintf(&sql, "%sB.%s", zSep, az[i]); |
| 641 zSep = ", "; |
| 642 } |
| 643 strPrintf(&sql, ", 3%s -- inserted row\n", nPk==n ? "" : ","); |
| 644 while( az2[i] ){ |
| 645 strPrintf(&sql, " 1, B.%s%s\n", az2[i], az2[i+1]==0 ? "" : ","); |
| 646 i++; |
| 647 } |
| 648 strPrintf(&sql, " FROM aux.%s B\n", zId); |
| 649 strPrintf(&sql, " WHERE NOT EXISTS(SELECT 1 FROM main.%s A\n", zId); |
| 650 zSep = " WHERE"; |
| 651 for(i=0; i<nPk; i++){ |
| 652 strPrintf(&sql, "%s A.%s=B.%s", zSep, az[i], az[i]); |
| 653 zSep = " AND"; |
| 654 } |
| 655 strPrintf(&sql, ")\n ORDER BY"); |
| 656 zSep = " "; |
| 657 for(i=1; i<=nPk; i++){ |
| 658 strPrintf(&sql, "%s%d", zSep, i); |
| 659 zSep = ", "; |
| 660 } |
| 661 strPrintf(&sql, ";\n"); |
| 662 |
| 663 if( g.fDebug & DEBUG_DIFF_SQL ){ |
| 664 printf("SQL for %s:\n%s\n", zId, sql.z); |
| 665 goto end_diff_one_table; |
| 666 } |
| 667 |
| 668 /* Drop indexes that are missing in the destination */ |
| 669 pStmt = db_prepare( |
| 670 "SELECT name FROM main.sqlite_master" |
| 671 " WHERE type='index' AND tbl_name=%Q" |
| 672 " AND sql IS NOT NULL" |
| 673 " AND sql NOT IN (SELECT sql FROM aux.sqlite_master" |
| 674 " WHERE type='index' AND tbl_name=%Q" |
| 675 " AND sql IS NOT NULL)", |
| 676 zTab, zTab); |
| 677 while( SQLITE_ROW==sqlite3_step(pStmt) ){ |
| 678 char *z = safeId((const char*)sqlite3_column_text(pStmt,0)); |
| 679 fprintf(out, "DROP INDEX %s;\n", z); |
| 680 sqlite3_free(z); |
| 681 } |
| 682 sqlite3_finalize(pStmt); |
| 683 |
| 684 /* Run the query and output differences */ |
| 685 if( !g.bSchemaOnly ){ |
| 686 pStmt = db_prepare(sql.z); |
| 687 while( SQLITE_ROW==sqlite3_step(pStmt) ){ |
| 688 int iType = sqlite3_column_int(pStmt, nPk); |
| 689 if( iType==1 || iType==2 ){ |
| 690 if( iType==1 ){ /* Change the content of a row */ |
| 691 fprintf(out, "UPDATE %s", zId); |
| 692 zSep = " SET"; |
| 693 for(i=nPk+1; i<nQ; i+=2){ |
| 694 if( sqlite3_column_int(pStmt,i)==0 ) continue; |
| 695 fprintf(out, "%s %s=", zSep, az2[(i+nPk-1)/2]); |
| 696 zSep = ","; |
| 697 printQuoted(out, sqlite3_column_value(pStmt,i+1)); |
| 698 } |
| 699 }else{ /* Delete a row */ |
| 700 fprintf(out, "DELETE FROM %s", zId); |
| 701 } |
| 702 zSep = " WHERE"; |
| 703 for(i=0; i<nPk; i++){ |
| 704 fprintf(out, "%s %s=", zSep, az2[i]); |
| 705 printQuoted(out, sqlite3_column_value(pStmt,i)); |
| 706 zSep = " AND"; |
| 707 } |
| 708 fprintf(out, ";\n"); |
| 709 }else{ /* Insert a row */ |
| 710 fprintf(out, "INSERT INTO %s(%s", zId, az2[0]); |
| 711 for(i=1; az2[i]; i++) fprintf(out, ",%s", az2[i]); |
| 712 fprintf(out, ") VALUES"); |
| 713 zSep = "("; |
| 714 for(i=0; i<nPk2; i++){ |
| 715 fprintf(out, "%s", zSep); |
| 716 zSep = ","; |
| 717 printQuoted(out, sqlite3_column_value(pStmt,i)); |
| 718 } |
| 719 for(i=nPk2+2; i<nQ; i+=2){ |
| 720 fprintf(out, ","); |
| 721 printQuoted(out, sqlite3_column_value(pStmt,i)); |
| 722 } |
| 723 fprintf(out, ");\n"); |
| 724 } |
| 725 } |
| 726 sqlite3_finalize(pStmt); |
| 727 } /* endif !g.bSchemaOnly */ |
| 728 |
| 729 /* Create indexes that are missing in the source */ |
| 730 pStmt = db_prepare( |
| 731 "SELECT sql FROM aux.sqlite_master" |
| 732 " WHERE type='index' AND tbl_name=%Q" |
| 733 " AND sql IS NOT NULL" |
| 734 " AND sql NOT IN (SELECT sql FROM main.sqlite_master" |
| 735 " WHERE type='index' AND tbl_name=%Q" |
| 736 " AND sql IS NOT NULL)", |
| 737 zTab, zTab); |
| 738 while( SQLITE_ROW==sqlite3_step(pStmt) ){ |
| 739 fprintf(out, "%s;\n", sqlite3_column_text(pStmt,0)); |
| 740 } |
| 741 sqlite3_finalize(pStmt); |
| 742 |
| 743 end_diff_one_table: |
| 744 strFree(&sql); |
| 745 sqlite3_free(zId); |
| 746 namelistFree(az); |
| 747 namelistFree(az2); |
| 748 return; |
| 749 } |
| 750 |
| 751 /* |
| 752 ** Check that table zTab exists and has the same schema in both the "main" |
| 753 ** and "aux" databases currently opened by the global db handle. If they |
| 754 ** do not, output an error message on stderr and exit(1). Otherwise, if |
| 755 ** the schemas do match, return control to the caller. |
| 756 */ |
| 757 static void checkSchemasMatch(const char *zTab){ |
| 758 sqlite3_stmt *pStmt = db_prepare( |
| 759 "SELECT A.sql=B.sql FROM main.sqlite_master A, aux.sqlite_master B" |
| 760 " WHERE A.name=%Q AND B.name=%Q", zTab, zTab |
| 761 ); |
| 762 if( SQLITE_ROW==sqlite3_step(pStmt) ){ |
| 763 if( sqlite3_column_int(pStmt,0)==0 ){ |
| 764 runtimeError("schema changes for table %s", safeId(zTab)); |
| 765 } |
| 766 }else{ |
| 767 runtimeError("table %s missing from one or both databases", safeId(zTab)); |
| 768 } |
| 769 sqlite3_finalize(pStmt); |
| 770 } |
| 771 |
| 772 /************************************************************************** |
| 773 ** The following code is copied from fossil. It is used to generate the |
| 774 ** fossil delta blobs sometimes used in RBU update records. |
| 775 */ |
| 776 |
| 777 typedef unsigned short u16; |
| 778 typedef unsigned int u32; |
| 779 typedef unsigned char u8; |
| 780 |
| 781 /* |
| 782 ** The width of a hash window in bytes. The algorithm only works if this |
| 783 ** is a power of 2. |
| 784 */ |
| 785 #define NHASH 16 |
| 786 |
| 787 /* |
| 788 ** The current state of the rolling hash. |
| 789 ** |
| 790 ** z[] holds the values that have been hashed. z[] is a circular buffer. |
| 791 ** z[i] is the first entry and z[(i+NHASH-1)%NHASH] is the last entry of |
| 792 ** the window. |
| 793 ** |
| 794 ** Hash.a is the sum of all elements of hash.z[]. Hash.b is a weighted |
| 795 ** sum. Hash.b is z[i]*NHASH + z[i+1]*(NHASH-1) + ... + z[i+NHASH-1]*1. |
| 796 ** (Each index for z[] should be module NHASH, of course. The %NHASH operator |
| 797 ** is omitted in the prior expression for brevity.) |
| 798 */ |
| 799 typedef struct hash hash; |
| 800 struct hash { |
| 801 u16 a, b; /* Hash values */ |
| 802 u16 i; /* Start of the hash window */ |
| 803 char z[NHASH]; /* The values that have been hashed */ |
| 804 }; |
| 805 |
| 806 /* |
| 807 ** Initialize the rolling hash using the first NHASH characters of z[] |
| 808 */ |
| 809 static void hash_init(hash *pHash, const char *z){ |
| 810 u16 a, b, i; |
| 811 a = b = 0; |
| 812 for(i=0; i<NHASH; i++){ |
| 813 a += z[i]; |
| 814 b += (NHASH-i)*z[i]; |
| 815 pHash->z[i] = z[i]; |
| 816 } |
| 817 pHash->a = a & 0xffff; |
| 818 pHash->b = b & 0xffff; |
| 819 pHash->i = 0; |
| 820 } |
| 821 |
| 822 /* |
| 823 ** Advance the rolling hash by a single character "c" |
| 824 */ |
| 825 static void hash_next(hash *pHash, int c){ |
| 826 u16 old = pHash->z[pHash->i]; |
| 827 pHash->z[pHash->i] = (char)c; |
| 828 pHash->i = (pHash->i+1)&(NHASH-1); |
| 829 pHash->a = pHash->a - old + (char)c; |
| 830 pHash->b = pHash->b - NHASH*old + pHash->a; |
| 831 } |
| 832 |
| 833 /* |
| 834 ** Return a 32-bit hash value |
| 835 */ |
| 836 static u32 hash_32bit(hash *pHash){ |
| 837 return (pHash->a & 0xffff) | (((u32)(pHash->b & 0xffff))<<16); |
| 838 } |
| 839 |
| 840 /* |
| 841 ** Write an base-64 integer into the given buffer. |
| 842 */ |
| 843 static void putInt(unsigned int v, char **pz){ |
| 844 static const char zDigits[] = |
| 845 "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz~"; |
| 846 /* 123456789 123456789 123456789 123456789 123456789 123456789 123 */ |
| 847 int i, j; |
| 848 char zBuf[20]; |
| 849 if( v==0 ){ |
| 850 *(*pz)++ = '0'; |
| 851 return; |
| 852 } |
| 853 for(i=0; v>0; i++, v>>=6){ |
| 854 zBuf[i] = zDigits[v&0x3f]; |
| 855 } |
| 856 for(j=i-1; j>=0; j--){ |
| 857 *(*pz)++ = zBuf[j]; |
| 858 } |
| 859 } |
| 860 |
| 861 /* |
| 862 ** Return the number digits in the base-64 representation of a positive integer |
| 863 */ |
| 864 static int digit_count(int v){ |
| 865 unsigned int i, x; |
| 866 for(i=1, x=64; (unsigned int)v>=x; i++, x <<= 6){} |
| 867 return i; |
| 868 } |
| 869 |
| 870 /* |
| 871 ** Compute a 32-bit checksum on the N-byte buffer. Return the result. |
| 872 */ |
| 873 static unsigned int checksum(const char *zIn, size_t N){ |
| 874 const unsigned char *z = (const unsigned char *)zIn; |
| 875 unsigned sum0 = 0; |
| 876 unsigned sum1 = 0; |
| 877 unsigned sum2 = 0; |
| 878 unsigned sum3 = 0; |
| 879 while(N >= 16){ |
| 880 sum0 += ((unsigned)z[0] + z[4] + z[8] + z[12]); |
| 881 sum1 += ((unsigned)z[1] + z[5] + z[9] + z[13]); |
| 882 sum2 += ((unsigned)z[2] + z[6] + z[10]+ z[14]); |
| 883 sum3 += ((unsigned)z[3] + z[7] + z[11]+ z[15]); |
| 884 z += 16; |
| 885 N -= 16; |
| 886 } |
| 887 while(N >= 4){ |
| 888 sum0 += z[0]; |
| 889 sum1 += z[1]; |
| 890 sum2 += z[2]; |
| 891 sum3 += z[3]; |
| 892 z += 4; |
| 893 N -= 4; |
| 894 } |
| 895 sum3 += (sum2 << 8) + (sum1 << 16) + (sum0 << 24); |
| 896 switch(N){ |
| 897 case 3: sum3 += (z[2] << 8); |
| 898 case 2: sum3 += (z[1] << 16); |
| 899 case 1: sum3 += (z[0] << 24); |
| 900 default: ; |
| 901 } |
| 902 return sum3; |
| 903 } |
| 904 |
| 905 /* |
| 906 ** Create a new delta. |
| 907 ** |
| 908 ** The delta is written into a preallocated buffer, zDelta, which |
| 909 ** should be at least 60 bytes longer than the target file, zOut. |
| 910 ** The delta string will be NUL-terminated, but it might also contain |
| 911 ** embedded NUL characters if either the zSrc or zOut files are |
| 912 ** binary. This function returns the length of the delta string |
| 913 ** in bytes, excluding the final NUL terminator character. |
| 914 ** |
| 915 ** Output Format: |
| 916 ** |
| 917 ** The delta begins with a base64 number followed by a newline. This |
| 918 ** number is the number of bytes in the TARGET file. Thus, given a |
| 919 ** delta file z, a program can compute the size of the output file |
| 920 ** simply by reading the first line and decoding the base-64 number |
| 921 ** found there. The delta_output_size() routine does exactly this. |
| 922 ** |
| 923 ** After the initial size number, the delta consists of a series of |
| 924 ** literal text segments and commands to copy from the SOURCE file. |
| 925 ** A copy command looks like this: |
| 926 ** |
| 927 ** NNN@MMM, |
| 928 ** |
| 929 ** where NNN is the number of bytes to be copied and MMM is the offset |
| 930 ** into the source file of the first byte (both base-64). If NNN is 0 |
| 931 ** it means copy the rest of the input file. Literal text is like this: |
| 932 ** |
| 933 ** NNN:TTTTT |
| 934 ** |
| 935 ** where NNN is the number of bytes of text (base-64) and TTTTT is the text. |
| 936 ** |
| 937 ** The last term is of the form |
| 938 ** |
| 939 ** NNN; |
| 940 ** |
| 941 ** In this case, NNN is a 32-bit bigendian checksum of the output file |
| 942 ** that can be used to verify that the delta applied correctly. All |
| 943 ** numbers are in base-64. |
| 944 ** |
| 945 ** Pure text files generate a pure text delta. Binary files generate a |
| 946 ** delta that may contain some binary data. |
| 947 ** |
| 948 ** Algorithm: |
| 949 ** |
| 950 ** The encoder first builds a hash table to help it find matching |
| 951 ** patterns in the source file. 16-byte chunks of the source file |
| 952 ** sampled at evenly spaced intervals are used to populate the hash |
| 953 ** table. |
| 954 ** |
| 955 ** Next we begin scanning the target file using a sliding 16-byte |
| 956 ** window. The hash of the 16-byte window in the target is used to |
| 957 ** search for a matching section in the source file. When a match |
| 958 ** is found, a copy command is added to the delta. An effort is |
| 959 ** made to extend the matching section to regions that come before |
| 960 ** and after the 16-byte hash window. A copy command is only issued |
| 961 ** if the result would use less space that just quoting the text |
| 962 ** literally. Literal text is added to the delta for sections that |
| 963 ** do not match or which can not be encoded efficiently using copy |
| 964 ** commands. |
| 965 */ |
| 966 static int rbuDeltaCreate( |
| 967 const char *zSrc, /* The source or pattern file */ |
| 968 unsigned int lenSrc, /* Length of the source file */ |
| 969 const char *zOut, /* The target file */ |
| 970 unsigned int lenOut, /* Length of the target file */ |
| 971 char *zDelta /* Write the delta into this buffer */ |
| 972 ){ |
| 973 unsigned int i, base; |
| 974 char *zOrigDelta = zDelta; |
| 975 hash h; |
| 976 int nHash; /* Number of hash table entries */ |
| 977 int *landmark; /* Primary hash table */ |
| 978 int *collide; /* Collision chain */ |
| 979 int lastRead = -1; /* Last byte of zSrc read by a COPY command */ |
| 980 |
| 981 /* Add the target file size to the beginning of the delta |
| 982 */ |
| 983 putInt(lenOut, &zDelta); |
| 984 *(zDelta++) = '\n'; |
| 985 |
| 986 /* If the source file is very small, it means that we have no |
| 987 ** chance of ever doing a copy command. Just output a single |
| 988 ** literal segment for the entire target and exit. |
| 989 */ |
| 990 if( lenSrc<=NHASH ){ |
| 991 putInt(lenOut, &zDelta); |
| 992 *(zDelta++) = ':'; |
| 993 memcpy(zDelta, zOut, lenOut); |
| 994 zDelta += lenOut; |
| 995 putInt(checksum(zOut, lenOut), &zDelta); |
| 996 *(zDelta++) = ';'; |
| 997 return zDelta - zOrigDelta; |
| 998 } |
| 999 |
| 1000 /* Compute the hash table used to locate matching sections in the |
| 1001 ** source file. |
| 1002 */ |
| 1003 nHash = lenSrc/NHASH; |
| 1004 collide = sqlite3_malloc( nHash*2*sizeof(int) ); |
| 1005 landmark = &collide[nHash]; |
| 1006 memset(landmark, -1, nHash*sizeof(int)); |
| 1007 memset(collide, -1, nHash*sizeof(int)); |
| 1008 for(i=0; i<lenSrc-NHASH; i+=NHASH){ |
| 1009 int hv; |
| 1010 hash_init(&h, &zSrc[i]); |
| 1011 hv = hash_32bit(&h) % nHash; |
| 1012 collide[i/NHASH] = landmark[hv]; |
| 1013 landmark[hv] = i/NHASH; |
| 1014 } |
| 1015 |
| 1016 /* Begin scanning the target file and generating copy commands and |
| 1017 ** literal sections of the delta. |
| 1018 */ |
| 1019 base = 0; /* We have already generated everything before zOut[base] */ |
| 1020 while( base+NHASH<lenOut ){ |
| 1021 int iSrc, iBlock; |
| 1022 int bestCnt, bestOfst=0, bestLitsz=0; |
| 1023 hash_init(&h, &zOut[base]); |
| 1024 i = 0; /* Trying to match a landmark against zOut[base+i] */ |
| 1025 bestCnt = 0; |
| 1026 while( 1 ){ |
| 1027 int hv; |
| 1028 int limit = 250; |
| 1029 |
| 1030 hv = hash_32bit(&h) % nHash; |
| 1031 iBlock = landmark[hv]; |
| 1032 while( iBlock>=0 && (limit--)>0 ){ |
| 1033 /* |
| 1034 ** The hash window has identified a potential match against |
| 1035 ** landmark block iBlock. But we need to investigate further. |
| 1036 ** |
| 1037 ** Look for a region in zOut that matches zSrc. Anchor the search |
| 1038 ** at zSrc[iSrc] and zOut[base+i]. Do not include anything prior to |
| 1039 ** zOut[base] or after zOut[outLen] nor anything after zSrc[srcLen]. |
| 1040 ** |
| 1041 ** Set cnt equal to the length of the match and set ofst so that |
| 1042 ** zSrc[ofst] is the first element of the match. litsz is the number |
| 1043 ** of characters between zOut[base] and the beginning of the match. |
| 1044 ** sz will be the overhead (in bytes) needed to encode the copy |
| 1045 ** command. Only generate copy command if the overhead of the |
| 1046 ** copy command is less than the amount of literal text to be copied. |
| 1047 */ |
| 1048 int cnt, ofst, litsz; |
| 1049 int j, k, x, y; |
| 1050 int sz; |
| 1051 |
| 1052 /* Beginning at iSrc, match forwards as far as we can. j counts |
| 1053 ** the number of characters that match */ |
| 1054 iSrc = iBlock*NHASH; |
| 1055 for( |
| 1056 j=0, x=iSrc, y=base+i; |
| 1057 (unsigned int)x<lenSrc && (unsigned int)y<lenOut; |
| 1058 j++, x++, y++ |
| 1059 ){ |
| 1060 if( zSrc[x]!=zOut[y] ) break; |
| 1061 } |
| 1062 j--; |
| 1063 |
| 1064 /* Beginning at iSrc-1, match backwards as far as we can. k counts |
| 1065 ** the number of characters that match */ |
| 1066 for(k=1; k<iSrc && (unsigned int)k<=i; k++){ |
| 1067 if( zSrc[iSrc-k]!=zOut[base+i-k] ) break; |
| 1068 } |
| 1069 k--; |
| 1070 |
| 1071 /* Compute the offset and size of the matching region */ |
| 1072 ofst = iSrc-k; |
| 1073 cnt = j+k+1; |
| 1074 litsz = i-k; /* Number of bytes of literal text before the copy */ |
| 1075 /* sz will hold the number of bytes needed to encode the "insert" |
| 1076 ** command and the copy command, not counting the "insert" text */ |
| 1077 sz = digit_count(i-k)+digit_count(cnt)+digit_count(ofst)+3; |
| 1078 if( cnt>=sz && cnt>bestCnt ){ |
| 1079 /* Remember this match only if it is the best so far and it |
| 1080 ** does not increase the file size */ |
| 1081 bestCnt = cnt; |
| 1082 bestOfst = iSrc-k; |
| 1083 bestLitsz = litsz; |
| 1084 } |
| 1085 |
| 1086 /* Check the next matching block */ |
| 1087 iBlock = collide[iBlock]; |
| 1088 } |
| 1089 |
| 1090 /* We have a copy command that does not cause the delta to be larger |
| 1091 ** than a literal insert. So add the copy command to the delta. |
| 1092 */ |
| 1093 if( bestCnt>0 ){ |
| 1094 if( bestLitsz>0 ){ |
| 1095 /* Add an insert command before the copy */ |
| 1096 putInt(bestLitsz,&zDelta); |
| 1097 *(zDelta++) = ':'; |
| 1098 memcpy(zDelta, &zOut[base], bestLitsz); |
| 1099 zDelta += bestLitsz; |
| 1100 base += bestLitsz; |
| 1101 } |
| 1102 base += bestCnt; |
| 1103 putInt(bestCnt, &zDelta); |
| 1104 *(zDelta++) = '@'; |
| 1105 putInt(bestOfst, &zDelta); |
| 1106 *(zDelta++) = ','; |
| 1107 if( bestOfst + bestCnt -1 > lastRead ){ |
| 1108 lastRead = bestOfst + bestCnt - 1; |
| 1109 } |
| 1110 bestCnt = 0; |
| 1111 break; |
| 1112 } |
| 1113 |
| 1114 /* If we reach this point, it means no match is found so far */ |
| 1115 if( base+i+NHASH>=lenOut ){ |
| 1116 /* We have reached the end of the file and have not found any |
| 1117 ** matches. Do an "insert" for everything that does not match */ |
| 1118 putInt(lenOut-base, &zDelta); |
| 1119 *(zDelta++) = ':'; |
| 1120 memcpy(zDelta, &zOut[base], lenOut-base); |
| 1121 zDelta += lenOut-base; |
| 1122 base = lenOut; |
| 1123 break; |
| 1124 } |
| 1125 |
| 1126 /* Advance the hash by one character. Keep looking for a match */ |
| 1127 hash_next(&h, zOut[base+i+NHASH]); |
| 1128 i++; |
| 1129 } |
| 1130 } |
| 1131 /* Output a final "insert" record to get all the text at the end of |
| 1132 ** the file that does not match anything in the source file. |
| 1133 */ |
| 1134 if( base<lenOut ){ |
| 1135 putInt(lenOut-base, &zDelta); |
| 1136 *(zDelta++) = ':'; |
| 1137 memcpy(zDelta, &zOut[base], lenOut-base); |
| 1138 zDelta += lenOut-base; |
| 1139 } |
| 1140 /* Output the final checksum record. */ |
| 1141 putInt(checksum(zOut, lenOut), &zDelta); |
| 1142 *(zDelta++) = ';'; |
| 1143 sqlite3_free(collide); |
| 1144 return zDelta - zOrigDelta; |
| 1145 } |
| 1146 |
| 1147 /* |
| 1148 ** End of code copied from fossil. |
| 1149 **************************************************************************/ |
| 1150 |
| 1151 static void strPrintfArray( |
| 1152 Str *pStr, /* String object to append to */ |
| 1153 const char *zSep, /* Separator string */ |
| 1154 const char *zFmt, /* Format for each entry */ |
| 1155 char **az, int n /* Array of strings & its size (or -1) */ |
| 1156 ){ |
| 1157 int i; |
| 1158 for(i=0; az[i] && (i<n || n<0); i++){ |
| 1159 if( i!=0 ) strPrintf(pStr, "%s", zSep); |
| 1160 strPrintf(pStr, zFmt, az[i], az[i], az[i]); |
| 1161 } |
| 1162 } |
| 1163 |
| 1164 static void getRbudiffQuery( |
| 1165 const char *zTab, |
| 1166 char **azCol, |
| 1167 int nPK, |
| 1168 int bOtaRowid, |
| 1169 Str *pSql |
| 1170 ){ |
| 1171 int i; |
| 1172 |
| 1173 /* First the newly inserted rows: **/ |
| 1174 strPrintf(pSql, "SELECT "); |
| 1175 strPrintfArray(pSql, ", ", "%s", azCol, -1); |
| 1176 strPrintf(pSql, ", 0, "); /* Set ota_control to 0 for an insert */ |
| 1177 strPrintfArray(pSql, ", ", "NULL", azCol, -1); |
| 1178 strPrintf(pSql, " FROM aux.%Q AS n WHERE NOT EXISTS (\n", zTab); |
| 1179 strPrintf(pSql, " SELECT 1 FROM ", zTab); |
| 1180 strPrintf(pSql, " main.%Q AS o WHERE ", zTab); |
| 1181 strPrintfArray(pSql, " AND ", "(n.%Q IS o.%Q)", azCol, nPK); |
| 1182 strPrintf(pSql, "\n)"); |
| 1183 |
| 1184 /* Deleted rows: */ |
| 1185 strPrintf(pSql, "\nUNION ALL\nSELECT "); |
| 1186 strPrintfArray(pSql, ", ", "%s", azCol, nPK); |
| 1187 if( azCol[nPK] ){ |
| 1188 strPrintf(pSql, ", "); |
| 1189 strPrintfArray(pSql, ", ", "NULL", &azCol[nPK], -1); |
| 1190 } |
| 1191 strPrintf(pSql, ", 1, "); /* Set ota_control to 1 for a delete */ |
| 1192 strPrintfArray(pSql, ", ", "NULL", azCol, -1); |
| 1193 strPrintf(pSql, " FROM main.%Q AS n WHERE NOT EXISTS (\n", zTab); |
| 1194 strPrintf(pSql, " SELECT 1 FROM ", zTab); |
| 1195 strPrintf(pSql, " aux.%Q AS o WHERE ", zTab); |
| 1196 strPrintfArray(pSql, " AND ", "(n.%Q IS o.%Q)", azCol, nPK); |
| 1197 strPrintf(pSql, "\n) "); |
| 1198 |
| 1199 /* Updated rows. If all table columns are part of the primary key, there |
| 1200 ** can be no updates. In this case this part of the compound SELECT can |
| 1201 ** be omitted altogether. */ |
| 1202 if( azCol[nPK] ){ |
| 1203 strPrintf(pSql, "\nUNION ALL\nSELECT "); |
| 1204 strPrintfArray(pSql, ", ", "n.%s", azCol, nPK); |
| 1205 strPrintf(pSql, ",\n"); |
| 1206 strPrintfArray(pSql, " ,\n", |
| 1207 " CASE WHEN n.%s IS o.%s THEN NULL ELSE n.%s END", &azCol[nPK], -1 |
| 1208 ); |
| 1209 |
| 1210 if( bOtaRowid==0 ){ |
| 1211 strPrintf(pSql, ", '"); |
| 1212 strPrintfArray(pSql, "", ".", azCol, nPK); |
| 1213 strPrintf(pSql, "' ||\n"); |
| 1214 }else{ |
| 1215 strPrintf(pSql, ",\n"); |
| 1216 } |
| 1217 strPrintfArray(pSql, " ||\n", |
| 1218 " CASE WHEN n.%s IS o.%s THEN '.' ELSE 'x' END", &azCol[nPK], -1 |
| 1219 ); |
| 1220 strPrintf(pSql, "\nAS ota_control, "); |
| 1221 strPrintfArray(pSql, ", ", "NULL", azCol, nPK); |
| 1222 strPrintf(pSql, ",\n"); |
| 1223 strPrintfArray(pSql, " ,\n", |
| 1224 " CASE WHEN n.%s IS o.%s THEN NULL ELSE o.%s END", &azCol[nPK], -1 |
| 1225 ); |
| 1226 |
| 1227 strPrintf(pSql, "\nFROM main.%Q AS o, aux.%Q AS n\nWHERE ", zTab, zTab); |
| 1228 strPrintfArray(pSql, " AND ", "(n.%Q IS o.%Q)", azCol, nPK); |
| 1229 strPrintf(pSql, " AND ota_control LIKE '%%x%%'"); |
| 1230 } |
| 1231 |
| 1232 /* Now add an ORDER BY clause to sort everything by PK. */ |
| 1233 strPrintf(pSql, "\nORDER BY "); |
| 1234 for(i=1; i<=nPK; i++) strPrintf(pSql, "%s%d", ((i>1)?", ":""), i); |
| 1235 } |
| 1236 |
| 1237 static void rbudiff_one_table(const char *zTab, FILE *out){ |
| 1238 int bOtaRowid; /* True to use an ota_rowid column */ |
| 1239 int nPK; /* Number of primary key columns in table */ |
| 1240 char **azCol; /* NULL terminated array of col names */ |
| 1241 int i; |
| 1242 int nCol; |
| 1243 Str ct = {0, 0, 0}; /* The "CREATE TABLE data_xxx" statement */ |
| 1244 Str sql = {0, 0, 0}; /* Query to find differences */ |
| 1245 Str insert = {0, 0, 0}; /* First part of output INSERT statement */ |
| 1246 sqlite3_stmt *pStmt = 0; |
| 1247 |
| 1248 /* --rbu mode must use real primary keys. */ |
| 1249 g.bSchemaPK = 1; |
| 1250 |
| 1251 /* Check that the schemas of the two tables match. Exit early otherwise. */ |
| 1252 checkSchemasMatch(zTab); |
| 1253 |
| 1254 /* Grab the column names and PK details for the table(s). If no usable PK |
| 1255 ** columns are found, bail out early. */ |
| 1256 azCol = columnNames("main", zTab, &nPK, &bOtaRowid); |
| 1257 if( azCol==0 ){ |
| 1258 runtimeError("table %s has no usable PK columns", zTab); |
| 1259 } |
| 1260 for(nCol=0; azCol[nCol]; nCol++); |
| 1261 |
| 1262 /* Build and output the CREATE TABLE statement for the data_xxx table */ |
| 1263 strPrintf(&ct, "CREATE TABLE IF NOT EXISTS 'data_%q'(", zTab); |
| 1264 if( bOtaRowid ) strPrintf(&ct, "rbu_rowid, "); |
| 1265 strPrintfArray(&ct, ", ", "%s", &azCol[bOtaRowid], -1); |
| 1266 strPrintf(&ct, ", rbu_control);"); |
| 1267 |
| 1268 /* Get the SQL for the query to retrieve data from the two databases */ |
| 1269 getRbudiffQuery(zTab, azCol, nPK, bOtaRowid, &sql); |
| 1270 |
| 1271 /* Build the first part of the INSERT statement output for each row |
| 1272 ** in the data_xxx table. */ |
| 1273 strPrintf(&insert, "INSERT INTO 'data_%q' (", zTab); |
| 1274 if( bOtaRowid ) strPrintf(&insert, "rbu_rowid, "); |
| 1275 strPrintfArray(&insert, ", ", "%s", &azCol[bOtaRowid], -1); |
| 1276 strPrintf(&insert, ", rbu_control) VALUES("); |
| 1277 |
| 1278 pStmt = db_prepare("%s", sql.z); |
| 1279 |
| 1280 while( sqlite3_step(pStmt)==SQLITE_ROW ){ |
| 1281 |
| 1282 /* If this is the first row output, print out the CREATE TABLE |
| 1283 ** statement first. And then set ct.z to NULL so that it is not |
| 1284 ** printed again. */ |
| 1285 if( ct.z ){ |
| 1286 fprintf(out, "%s\n", ct.z); |
| 1287 strFree(&ct); |
| 1288 } |
| 1289 |
| 1290 /* Output the first part of the INSERT statement */ |
| 1291 fprintf(out, "%s", insert.z); |
| 1292 |
| 1293 if( sqlite3_column_type(pStmt, nCol)==SQLITE_INTEGER ){ |
| 1294 for(i=0; i<=nCol; i++){ |
| 1295 if( i>0 ) fprintf(out, ", "); |
| 1296 printQuoted(out, sqlite3_column_value(pStmt, i)); |
| 1297 } |
| 1298 }else{ |
| 1299 char *zOtaControl; |
| 1300 int nOtaControl = sqlite3_column_bytes(pStmt, nCol); |
| 1301 |
| 1302 zOtaControl = (char*)sqlite3_malloc(nOtaControl); |
| 1303 memcpy(zOtaControl, sqlite3_column_text(pStmt, nCol), nOtaControl+1); |
| 1304 |
| 1305 for(i=0; i<nCol; i++){ |
| 1306 int bDone = 0; |
| 1307 if( i>=nPK |
| 1308 && sqlite3_column_type(pStmt, i)==SQLITE_BLOB |
| 1309 && sqlite3_column_type(pStmt, nCol+1+i)==SQLITE_BLOB |
| 1310 ){ |
| 1311 const char *aSrc = sqlite3_column_blob(pStmt, nCol+1+i); |
| 1312 int nSrc = sqlite3_column_bytes(pStmt, nCol+1+i); |
| 1313 const char *aFinal = sqlite3_column_blob(pStmt, i); |
| 1314 int nFinal = sqlite3_column_bytes(pStmt, i); |
| 1315 char *aDelta; |
| 1316 int nDelta; |
| 1317 |
| 1318 aDelta = sqlite3_malloc(nFinal + 60); |
| 1319 nDelta = rbuDeltaCreate(aSrc, nSrc, aFinal, nFinal, aDelta); |
| 1320 if( nDelta<nFinal ){ |
| 1321 int j; |
| 1322 fprintf(out, "x'"); |
| 1323 for(j=0; j<nDelta; j++) fprintf(out, "%02x", (u8)aDelta[j]); |
| 1324 fprintf(out, "'"); |
| 1325 zOtaControl[i-bOtaRowid] = 'f'; |
| 1326 bDone = 1; |
| 1327 } |
| 1328 sqlite3_free(aDelta); |
| 1329 } |
| 1330 |
| 1331 if( bDone==0 ){ |
| 1332 printQuoted(out, sqlite3_column_value(pStmt, i)); |
| 1333 } |
| 1334 fprintf(out, ", "); |
| 1335 } |
| 1336 fprintf(out, "'%s'", zOtaControl); |
| 1337 sqlite3_free(zOtaControl); |
| 1338 } |
| 1339 |
| 1340 /* And the closing bracket of the insert statement */ |
| 1341 fprintf(out, ");\n"); |
| 1342 } |
| 1343 |
| 1344 sqlite3_finalize(pStmt); |
| 1345 |
| 1346 strFree(&ct); |
| 1347 strFree(&sql); |
| 1348 strFree(&insert); |
| 1349 } |
| 1350 |
| 1351 /* |
| 1352 ** Display a summary of differences between two versions of the same |
| 1353 ** table table. |
| 1354 ** |
| 1355 ** * Number of rows changed |
| 1356 ** * Number of rows added |
| 1357 ** * Number of rows deleted |
| 1358 ** * Number of identical rows |
| 1359 */ |
| 1360 static void summarize_one_table(const char *zTab, FILE *out){ |
| 1361 char *zId = safeId(zTab); /* Name of table (translated for us in SQL) */ |
| 1362 char **az = 0; /* Columns in main */ |
| 1363 char **az2 = 0; /* Columns in aux */ |
| 1364 int nPk; /* Primary key columns in main */ |
| 1365 int nPk2; /* Primary key columns in aux */ |
| 1366 int n = 0; /* Number of columns in main */ |
| 1367 int n2; /* Number of columns in aux */ |
| 1368 int i; /* Loop counter */ |
| 1369 const char *zSep; /* Separator string */ |
| 1370 Str sql; /* Comparison query */ |
| 1371 sqlite3_stmt *pStmt; /* Query statement to do the diff */ |
| 1372 sqlite3_int64 nUpdate; /* Number of updated rows */ |
| 1373 sqlite3_int64 nUnchanged; /* Number of unmodified rows */ |
| 1374 sqlite3_int64 nDelete; /* Number of deleted rows */ |
| 1375 sqlite3_int64 nInsert; /* Number of inserted rows */ |
| 1376 |
| 1377 strInit(&sql); |
| 1378 if( sqlite3_table_column_metadata(g.db,"aux",zTab,0,0,0,0,0,0) ){ |
| 1379 if( !sqlite3_table_column_metadata(g.db,"main",zTab,0,0,0,0,0,0) ){ |
| 1380 /* Table missing from second database. */ |
| 1381 fprintf(out, "%s: missing from second database\n", zTab); |
| 1382 } |
| 1383 goto end_summarize_one_table; |
| 1384 } |
| 1385 |
| 1386 if( sqlite3_table_column_metadata(g.db,"main",zTab,0,0,0,0,0,0) ){ |
| 1387 /* Table missing from source */ |
| 1388 fprintf(out, "%s: missing from first database\n", zTab); |
| 1389 goto end_summarize_one_table; |
| 1390 } |
| 1391 |
| 1392 az = columnNames("main", zTab, &nPk, 0); |
| 1393 az2 = columnNames("aux", zTab, &nPk2, 0); |
| 1394 if( az && az2 ){ |
| 1395 for(n=0; az[n]; n++){ |
| 1396 if( sqlite3_stricmp(az[n],az2[n])!=0 ) break; |
| 1397 } |
| 1398 } |
| 1399 if( az==0 |
| 1400 || az2==0 |
| 1401 || nPk!=nPk2 |
| 1402 || az[n] |
| 1403 ){ |
| 1404 /* Schema mismatch */ |
| 1405 fprintf(out, "%s: incompatible schema\n", zTab); |
| 1406 goto end_summarize_one_table; |
| 1407 } |
| 1408 |
| 1409 /* Build the comparison query */ |
| 1410 for(n2=n; az[n2]; n2++){} |
| 1411 strPrintf(&sql, "SELECT 1, count(*)"); |
| 1412 if( n2==nPk2 ){ |
| 1413 strPrintf(&sql, ", 0\n"); |
| 1414 }else{ |
| 1415 zSep = ", sum("; |
| 1416 for(i=nPk; az[i]; i++){ |
| 1417 strPrintf(&sql, "%sA.%s IS NOT B.%s", zSep, az[i], az[i]); |
| 1418 zSep = " OR "; |
| 1419 } |
| 1420 strPrintf(&sql, ")\n"); |
| 1421 } |
| 1422 strPrintf(&sql, " FROM main.%s A, aux.%s B\n", zId, zId); |
| 1423 zSep = " WHERE"; |
| 1424 for(i=0; i<nPk; i++){ |
| 1425 strPrintf(&sql, "%s A.%s=B.%s", zSep, az[i], az[i]); |
| 1426 zSep = " AND"; |
| 1427 } |
| 1428 strPrintf(&sql, " UNION ALL\n"); |
| 1429 strPrintf(&sql, "SELECT 2, count(*), 0\n"); |
| 1430 strPrintf(&sql, " FROM main.%s A\n", zId); |
| 1431 strPrintf(&sql, " WHERE NOT EXISTS(SELECT 1 FROM aux.%s B ", zId); |
| 1432 zSep = "WHERE"; |
| 1433 for(i=0; i<nPk; i++){ |
| 1434 strPrintf(&sql, "%s A.%s=B.%s", zSep, az[i], az[i]); |
| 1435 zSep = " AND"; |
| 1436 } |
| 1437 strPrintf(&sql, ")\n"); |
| 1438 strPrintf(&sql, " UNION ALL\n"); |
| 1439 strPrintf(&sql, "SELECT 3, count(*), 0\n"); |
| 1440 strPrintf(&sql, " FROM aux.%s B\n", zId); |
| 1441 strPrintf(&sql, " WHERE NOT EXISTS(SELECT 1 FROM main.%s A ", zId); |
| 1442 zSep = "WHERE"; |
| 1443 for(i=0; i<nPk; i++){ |
| 1444 strPrintf(&sql, "%s A.%s=B.%s", zSep, az[i], az[i]); |
| 1445 zSep = " AND"; |
| 1446 } |
| 1447 strPrintf(&sql, ")\n ORDER BY 1;\n"); |
| 1448 |
| 1449 if( (g.fDebug & DEBUG_DIFF_SQL)!=0 ){ |
| 1450 printf("SQL for %s:\n%s\n", zId, sql.z); |
| 1451 goto end_summarize_one_table; |
| 1452 } |
| 1453 |
| 1454 /* Run the query and output difference summary */ |
| 1455 pStmt = db_prepare(sql.z); |
| 1456 nUpdate = 0; |
| 1457 nInsert = 0; |
| 1458 nDelete = 0; |
| 1459 nUnchanged = 0; |
| 1460 while( SQLITE_ROW==sqlite3_step(pStmt) ){ |
| 1461 switch( sqlite3_column_int(pStmt,0) ){ |
| 1462 case 1: |
| 1463 nUpdate = sqlite3_column_int64(pStmt,2); |
| 1464 nUnchanged = sqlite3_column_int64(pStmt,1) - nUpdate; |
| 1465 break; |
| 1466 case 2: |
| 1467 nDelete = sqlite3_column_int64(pStmt,1); |
| 1468 break; |
| 1469 case 3: |
| 1470 nInsert = sqlite3_column_int64(pStmt,1); |
| 1471 break; |
| 1472 } |
| 1473 } |
| 1474 sqlite3_finalize(pStmt); |
| 1475 fprintf(out, "%s: %lld changes, %lld inserts, %lld deletes, %lld unchanged\n", |
| 1476 zTab, nUpdate, nInsert, nDelete, nUnchanged); |
| 1477 |
| 1478 end_summarize_one_table: |
| 1479 strFree(&sql); |
| 1480 sqlite3_free(zId); |
| 1481 namelistFree(az); |
| 1482 namelistFree(az2); |
| 1483 return; |
| 1484 } |
| 1485 |
| 1486 /* |
| 1487 ** Write a 64-bit signed integer as a varint onto out |
| 1488 */ |
| 1489 static void putsVarint(FILE *out, sqlite3_uint64 v){ |
| 1490 int i, n; |
| 1491 unsigned char p[12]; |
| 1492 if( v & (((sqlite3_uint64)0xff000000)<<32) ){ |
| 1493 p[8] = (unsigned char)v; |
| 1494 v >>= 8; |
| 1495 for(i=7; i>=0; i--){ |
| 1496 p[i] = (unsigned char)((v & 0x7f) | 0x80); |
| 1497 v >>= 7; |
| 1498 } |
| 1499 fwrite(p, 8, 1, out); |
| 1500 }else{ |
| 1501 n = 9; |
| 1502 do{ |
| 1503 p[n--] = (unsigned char)((v & 0x7f) | 0x80); |
| 1504 v >>= 7; |
| 1505 }while( v!=0 ); |
| 1506 p[9] &= 0x7f; |
| 1507 fwrite(p+n+1, 9-n, 1, out); |
| 1508 } |
| 1509 } |
| 1510 |
| 1511 /* |
| 1512 ** Write an SQLite value onto out. |
| 1513 */ |
| 1514 static void putValue(FILE *out, sqlite3_value *pVal){ |
| 1515 int iDType = sqlite3_value_type(pVal); |
| 1516 sqlite3_int64 iX; |
| 1517 double rX; |
| 1518 sqlite3_uint64 uX; |
| 1519 int j; |
| 1520 |
| 1521 putc(iDType, out); |
| 1522 switch( iDType ){ |
| 1523 case SQLITE_INTEGER: |
| 1524 iX = sqlite3_value_int64(pVal); |
| 1525 memcpy(&uX, &iX, 8); |
| 1526 for(j=56; j>=0; j-=8) putc((uX>>j)&0xff, out); |
| 1527 break; |
| 1528 case SQLITE_FLOAT: |
| 1529 rX = sqlite3_value_double(pVal); |
| 1530 memcpy(&uX, &rX, 8); |
| 1531 for(j=56; j>=0; j-=8) putc((uX>>j)&0xff, out); |
| 1532 break; |
| 1533 case SQLITE_TEXT: |
| 1534 iX = sqlite3_value_bytes(pVal); |
| 1535 putsVarint(out, (sqlite3_uint64)iX); |
| 1536 fwrite(sqlite3_value_text(pVal),1,(size_t)iX,out); |
| 1537 break; |
| 1538 case SQLITE_BLOB: |
| 1539 iX = sqlite3_value_bytes(pVal); |
| 1540 putsVarint(out, (sqlite3_uint64)iX); |
| 1541 fwrite(sqlite3_value_blob(pVal),1,(size_t)iX,out); |
| 1542 break; |
| 1543 case SQLITE_NULL: |
| 1544 break; |
| 1545 } |
| 1546 } |
| 1547 |
| 1548 /* |
| 1549 ** Generate a CHANGESET for all differences from main.zTab to aux.zTab. |
| 1550 */ |
| 1551 static void changeset_one_table(const char *zTab, FILE *out){ |
| 1552 sqlite3_stmt *pStmt; /* SQL statment */ |
| 1553 char *zId = safeId(zTab); /* Escaped name of the table */ |
| 1554 char **azCol = 0; /* List of escaped column names */ |
| 1555 int nCol = 0; /* Number of columns */ |
| 1556 int *aiFlg = 0; /* 0 if column is not part of PK */ |
| 1557 int *aiPk = 0; /* Column numbers for each PK column */ |
| 1558 int nPk = 0; /* Number of PRIMARY KEY columns */ |
| 1559 Str sql; /* SQL for the diff query */ |
| 1560 int i, k; /* Loop counters */ |
| 1561 const char *zSep; /* List separator */ |
| 1562 |
| 1563 /* Check that the schemas of the two tables match. Exit early otherwise. */ |
| 1564 checkSchemasMatch(zTab); |
| 1565 |
| 1566 pStmt = db_prepare("PRAGMA main.table_info=%Q", zTab); |
| 1567 while( SQLITE_ROW==sqlite3_step(pStmt) ){ |
| 1568 nCol++; |
| 1569 azCol = sqlite3_realloc(azCol, sizeof(char*)*nCol); |
| 1570 if( azCol==0 ) runtimeError("out of memory"); |
| 1571 aiFlg = sqlite3_realloc(aiFlg, sizeof(int)*nCol); |
| 1572 if( aiFlg==0 ) runtimeError("out of memory"); |
| 1573 azCol[nCol-1] = safeId((const char*)sqlite3_column_text(pStmt,1)); |
| 1574 aiFlg[nCol-1] = i = sqlite3_column_int(pStmt,5); |
| 1575 if( i>0 ){ |
| 1576 if( i>nPk ){ |
| 1577 nPk = i; |
| 1578 aiPk = sqlite3_realloc(aiPk, sizeof(int)*nPk); |
| 1579 if( aiPk==0 ) runtimeError("out of memory"); |
| 1580 } |
| 1581 aiPk[i-1] = nCol-1; |
| 1582 } |
| 1583 } |
| 1584 sqlite3_finalize(pStmt); |
| 1585 if( nPk==0 ) goto end_changeset_one_table; |
| 1586 strInit(&sql); |
| 1587 if( nCol>nPk ){ |
| 1588 strPrintf(&sql, "SELECT %d", SQLITE_UPDATE); |
| 1589 for(i=0; i<nCol; i++){ |
| 1590 if( aiFlg[i] ){ |
| 1591 strPrintf(&sql, ",\n A.%s", azCol[i]); |
| 1592 }else{ |
| 1593 strPrintf(&sql, ",\n A.%s IS NOT B.%s, A.%s, B.%s", |
| 1594 azCol[i], azCol[i], azCol[i], azCol[i]); |
| 1595 } |
| 1596 } |
| 1597 strPrintf(&sql,"\n FROM main.%s A, aux.%s B\n", zId, zId); |
| 1598 zSep = " WHERE"; |
| 1599 for(i=0; i<nPk; i++){ |
| 1600 strPrintf(&sql, "%s A.%s=B.%s", zSep, azCol[aiPk[i]], azCol[aiPk[i]]); |
| 1601 zSep = " AND"; |
| 1602 } |
| 1603 zSep = "\n AND ("; |
| 1604 for(i=0; i<nCol; i++){ |
| 1605 if( aiFlg[i] ) continue; |
| 1606 strPrintf(&sql, "%sA.%s IS NOT B.%s", zSep, azCol[i], azCol[i]); |
| 1607 zSep = " OR\n "; |
| 1608 } |
| 1609 strPrintf(&sql,")\n UNION ALL\n"); |
| 1610 } |
| 1611 strPrintf(&sql, "SELECT %d", SQLITE_DELETE); |
| 1612 for(i=0; i<nCol; i++){ |
| 1613 if( aiFlg[i] ){ |
| 1614 strPrintf(&sql, ",\n A.%s", azCol[i]); |
| 1615 }else{ |
| 1616 strPrintf(&sql, ",\n 1, A.%s, NULL", azCol[i]); |
| 1617 } |
| 1618 } |
| 1619 strPrintf(&sql, "\n FROM main.%s A\n", zId); |
| 1620 strPrintf(&sql, " WHERE NOT EXISTS(SELECT 1 FROM aux.%s B\n", zId); |
| 1621 zSep = " WHERE"; |
| 1622 for(i=0; i<nPk; i++){ |
| 1623 strPrintf(&sql, "%s A.%s=B.%s", zSep, azCol[aiPk[i]], azCol[aiPk[i]]); |
| 1624 zSep = " AND"; |
| 1625 } |
| 1626 strPrintf(&sql, ")\n UNION ALL\n"); |
| 1627 strPrintf(&sql, "SELECT %d", SQLITE_INSERT); |
| 1628 for(i=0; i<nCol; i++){ |
| 1629 if( aiFlg[i] ){ |
| 1630 strPrintf(&sql, ",\n B.%s", azCol[i]); |
| 1631 }else{ |
| 1632 strPrintf(&sql, ",\n 1, NULL, B.%s", azCol[i]); |
| 1633 } |
| 1634 } |
| 1635 strPrintf(&sql, "\n FROM aux.%s B\n", zId); |
| 1636 strPrintf(&sql, " WHERE NOT EXISTS(SELECT 1 FROM main.%s A\n", zId); |
| 1637 zSep = " WHERE"; |
| 1638 for(i=0; i<nPk; i++){ |
| 1639 strPrintf(&sql, "%s A.%s=B.%s", zSep, azCol[aiPk[i]], azCol[aiPk[i]]); |
| 1640 zSep = " AND"; |
| 1641 } |
| 1642 strPrintf(&sql, ")\n"); |
| 1643 strPrintf(&sql, " ORDER BY"); |
| 1644 zSep = " "; |
| 1645 for(i=0; i<nPk; i++){ |
| 1646 strPrintf(&sql, "%s %d", zSep, aiPk[i]+2); |
| 1647 zSep = ","; |
| 1648 } |
| 1649 strPrintf(&sql, ";\n"); |
| 1650 |
| 1651 if( g.fDebug & DEBUG_DIFF_SQL ){ |
| 1652 printf("SQL for %s:\n%s\n", zId, sql.z); |
| 1653 goto end_changeset_one_table; |
| 1654 } |
| 1655 |
| 1656 putc('T', out); |
| 1657 putsVarint(out, (sqlite3_uint64)nCol); |
| 1658 for(i=0; i<nCol; i++) putc(aiFlg[i]!=0, out); |
| 1659 fwrite(zTab, 1, strlen(zTab), out); |
| 1660 putc(0, out); |
| 1661 |
| 1662 pStmt = db_prepare("%s", sql.z); |
| 1663 while( SQLITE_ROW==sqlite3_step(pStmt) ){ |
| 1664 int iType = sqlite3_column_int(pStmt,0); |
| 1665 putc(iType, out); |
| 1666 putc(0, out); |
| 1667 switch( sqlite3_column_int(pStmt,0) ){ |
| 1668 case SQLITE_UPDATE: { |
| 1669 for(k=1, i=0; i<nCol; i++){ |
| 1670 if( aiFlg[i] ){ |
| 1671 putValue(out, sqlite3_column_value(pStmt,k)); |
| 1672 k++; |
| 1673 }else if( sqlite3_column_int(pStmt,k) ){ |
| 1674 putValue(out, sqlite3_column_value(pStmt,k+1)); |
| 1675 k += 3; |
| 1676 }else{ |
| 1677 putc(0, out); |
| 1678 k += 3; |
| 1679 } |
| 1680 } |
| 1681 for(k=1, i=0; i<nCol; i++){ |
| 1682 if( aiFlg[i] ){ |
| 1683 putc(0, out); |
| 1684 k++; |
| 1685 }else if( sqlite3_column_int(pStmt,k) ){ |
| 1686 putValue(out, sqlite3_column_value(pStmt,k+2)); |
| 1687 k += 3; |
| 1688 }else{ |
| 1689 putc(0, out); |
| 1690 k += 3; |
| 1691 } |
| 1692 } |
| 1693 break; |
| 1694 } |
| 1695 case SQLITE_INSERT: { |
| 1696 for(k=1, i=0; i<nCol; i++){ |
| 1697 if( aiFlg[i] ){ |
| 1698 putValue(out, sqlite3_column_value(pStmt,k)); |
| 1699 k++; |
| 1700 }else{ |
| 1701 putValue(out, sqlite3_column_value(pStmt,k+2)); |
| 1702 k += 3; |
| 1703 } |
| 1704 } |
| 1705 break; |
| 1706 } |
| 1707 case SQLITE_DELETE: { |
| 1708 for(k=1, i=0; i<nCol; i++){ |
| 1709 if( aiFlg[i] ){ |
| 1710 putValue(out, sqlite3_column_value(pStmt,k)); |
| 1711 k++; |
| 1712 }else{ |
| 1713 putValue(out, sqlite3_column_value(pStmt,k+1)); |
| 1714 k += 3; |
| 1715 } |
| 1716 } |
| 1717 break; |
| 1718 } |
| 1719 } |
| 1720 } |
| 1721 sqlite3_finalize(pStmt); |
| 1722 |
| 1723 end_changeset_one_table: |
| 1724 while( nCol>0 ) sqlite3_free(azCol[--nCol]); |
| 1725 sqlite3_free(azCol); |
| 1726 sqlite3_free(aiPk); |
| 1727 sqlite3_free(zId); |
| 1728 } |
| 1729 |
| 1730 /* |
| 1731 ** Print sketchy documentation for this utility program |
| 1732 */ |
| 1733 static void showHelp(void){ |
| 1734 printf("Usage: %s [options] DB1 DB2\n", g.zArgv0); |
| 1735 printf( |
| 1736 "Output SQL text that would transform DB1 into DB2.\n" |
| 1737 "Options:\n" |
| 1738 " --changeset FILE Write a CHANGESET into FILE\n" |
| 1739 " -L|--lib LIBRARY Load an SQLite extension library\n" |
| 1740 " --primarykey Use schema-defined PRIMARY KEYs\n" |
| 1741 " --rbu Output SQL to create/populate RBU table(s)\n" |
| 1742 " --schema Show only differences in the schema\n" |
| 1743 " --summary Show only a summary of the differences\n" |
| 1744 " --table TAB Show only differences in table TAB\n" |
| 1745 " --transaction Show SQL output inside a transaction\n" |
| 1746 ); |
| 1747 } |
| 1748 |
| 1749 int main(int argc, char **argv){ |
| 1750 const char *zDb1 = 0; |
| 1751 const char *zDb2 = 0; |
| 1752 int i; |
| 1753 int rc; |
| 1754 char *zErrMsg = 0; |
| 1755 char *zSql; |
| 1756 sqlite3_stmt *pStmt; |
| 1757 char *zTab = 0; |
| 1758 FILE *out = stdout; |
| 1759 void (*xDiff)(const char*,FILE*) = diff_one_table; |
| 1760 int nExt = 0; |
| 1761 char **azExt = 0; |
| 1762 int useTransaction = 0; |
| 1763 int neverUseTransaction = 0; |
| 1764 |
| 1765 g.zArgv0 = argv[0]; |
| 1766 sqlite3_config(SQLITE_CONFIG_SINGLETHREAD); |
| 1767 for(i=1; i<argc; i++){ |
| 1768 const char *z = argv[i]; |
| 1769 if( z[0]=='-' ){ |
| 1770 z++; |
| 1771 if( z[0]=='-' ) z++; |
| 1772 if( strcmp(z,"changeset")==0 ){ |
| 1773 if( i==argc-1 ) cmdlineError("missing argument to %s", argv[i]); |
| 1774 out = fopen(argv[++i], "wb"); |
| 1775 if( out==0 ) cmdlineError("cannot open: %s", argv[i]); |
| 1776 xDiff = changeset_one_table; |
| 1777 neverUseTransaction = 1; |
| 1778 }else |
| 1779 if( strcmp(z,"debug")==0 ){ |
| 1780 if( i==argc-1 ) cmdlineError("missing argument to %s", argv[i]); |
| 1781 g.fDebug = strtol(argv[++i], 0, 0); |
| 1782 }else |
| 1783 if( strcmp(z,"help")==0 ){ |
| 1784 showHelp(); |
| 1785 return 0; |
| 1786 }else |
| 1787 #ifndef SQLITE_OMIT_LOAD_EXTENSION |
| 1788 if( strcmp(z,"lib")==0 || strcmp(z,"L")==0 ){ |
| 1789 if( i==argc-1 ) cmdlineError("missing argument to %s", argv[i]); |
| 1790 azExt = realloc(azExt, sizeof(azExt[0])*(nExt+1)); |
| 1791 if( azExt==0 ) cmdlineError("out of memory"); |
| 1792 azExt[nExt++] = argv[++i]; |
| 1793 }else |
| 1794 #endif |
| 1795 if( strcmp(z,"primarykey")==0 ){ |
| 1796 g.bSchemaPK = 1; |
| 1797 }else |
| 1798 if( strcmp(z,"rbu")==0 ){ |
| 1799 xDiff = rbudiff_one_table; |
| 1800 }else |
| 1801 if( strcmp(z,"schema")==0 ){ |
| 1802 g.bSchemaOnly = 1; |
| 1803 }else |
| 1804 if( strcmp(z,"summary")==0 ){ |
| 1805 xDiff = summarize_one_table; |
| 1806 }else |
| 1807 if( strcmp(z,"table")==0 ){ |
| 1808 if( i==argc-1 ) cmdlineError("missing argument to %s", argv[i]); |
| 1809 zTab = argv[++i]; |
| 1810 }else |
| 1811 if( strcmp(z,"transaction")==0 ){ |
| 1812 useTransaction = 1; |
| 1813 }else |
| 1814 { |
| 1815 cmdlineError("unknown option: %s", argv[i]); |
| 1816 } |
| 1817 }else if( zDb1==0 ){ |
| 1818 zDb1 = argv[i]; |
| 1819 }else if( zDb2==0 ){ |
| 1820 zDb2 = argv[i]; |
| 1821 }else{ |
| 1822 cmdlineError("unknown argument: %s", argv[i]); |
| 1823 } |
| 1824 } |
| 1825 if( zDb2==0 ){ |
| 1826 cmdlineError("two database arguments required"); |
| 1827 } |
| 1828 rc = sqlite3_open(zDb1, &g.db); |
| 1829 if( rc ){ |
| 1830 cmdlineError("cannot open database file \"%s\"", zDb1); |
| 1831 } |
| 1832 rc = sqlite3_exec(g.db, "SELECT * FROM sqlite_master", 0, 0, &zErrMsg); |
| 1833 if( rc || zErrMsg ){ |
| 1834 cmdlineError("\"%s\" does not appear to be a valid SQLite database", zDb1); |
| 1835 } |
| 1836 #ifndef SQLITE_OMIT_LOAD_EXTENSION |
| 1837 sqlite3_enable_load_extension(g.db, 1); |
| 1838 for(i=0; i<nExt; i++){ |
| 1839 rc = sqlite3_load_extension(g.db, azExt[i], 0, &zErrMsg); |
| 1840 if( rc || zErrMsg ){ |
| 1841 cmdlineError("error loading %s: %s", azExt[i], zErrMsg); |
| 1842 } |
| 1843 } |
| 1844 #endif |
| 1845 free(azExt); |
| 1846 zSql = sqlite3_mprintf("ATTACH %Q as aux;", zDb2); |
| 1847 rc = sqlite3_exec(g.db, zSql, 0, 0, &zErrMsg); |
| 1848 if( rc || zErrMsg ){ |
| 1849 cmdlineError("cannot attach database \"%s\"", zDb2); |
| 1850 } |
| 1851 rc = sqlite3_exec(g.db, "SELECT * FROM aux.sqlite_master", 0, 0, &zErrMsg); |
| 1852 if( rc || zErrMsg ){ |
| 1853 cmdlineError("\"%s\" does not appear to be a valid SQLite database", zDb2); |
| 1854 } |
| 1855 |
| 1856 if( neverUseTransaction ) useTransaction = 0; |
| 1857 if( useTransaction ) printf("BEGIN TRANSACTION;\n"); |
| 1858 if( zTab ){ |
| 1859 xDiff(zTab, out); |
| 1860 }else{ |
| 1861 /* Handle tables one by one */ |
| 1862 pStmt = db_prepare( |
| 1863 "SELECT name FROM main.sqlite_master\n" |
| 1864 " WHERE type='table' AND sql NOT LIKE 'CREATE VIRTUAL%%'\n" |
| 1865 " UNION\n" |
| 1866 "SELECT name FROM aux.sqlite_master\n" |
| 1867 " WHERE type='table' AND sql NOT LIKE 'CREATE VIRTUAL%%'\n" |
| 1868 " ORDER BY name" |
| 1869 ); |
| 1870 while( SQLITE_ROW==sqlite3_step(pStmt) ){ |
| 1871 xDiff((const char*)sqlite3_column_text(pStmt,0), out); |
| 1872 } |
| 1873 sqlite3_finalize(pStmt); |
| 1874 } |
| 1875 if( useTransaction ) printf("COMMIT;\n"); |
| 1876 |
| 1877 /* TBD: Handle trigger differences */ |
| 1878 /* TBD: Handle view differences */ |
| 1879 sqlite3_close(g.db); |
| 1880 return 0; |
| 1881 } |
OLD | NEW |