Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(108)

Side by Side Diff: third_party/sqlite/sqlite-src-3100200/src/vdbe.c

Issue 1610543003: [sql] Import reference version of SQLite 3.10.2. (Closed) Base URL: https://chromium.googlesource.com/chromium/src.git@master
Patch Set: Created 4 years, 11 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
1 /* 1 /*
2 ** 2001 September 15 2 ** 2001 September 15
3 ** 3 **
4 ** The author disclaims copyright to this source code. In place of 4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing: 5 ** a legal notice, here is a blessing:
6 ** 6 **
7 ** May you do good and not evil. 7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others. 8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give. 9 ** May you share freely, never taking more than you give.
10 ** 10 **
(...skipping 147 matching lines...) Expand 10 before | Expand all | Expand 10 after
158 ** 158 **
159 ** This routine converts an ephemeral string into a dynamically allocated 159 ** This routine converts an ephemeral string into a dynamically allocated
160 ** string that the register itself controls. In other words, it 160 ** string that the register itself controls. In other words, it
161 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc. 161 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
162 */ 162 */
163 #define Deephemeralize(P) \ 163 #define Deephemeralize(P) \
164 if( ((P)->flags&MEM_Ephem)!=0 \ 164 if( ((P)->flags&MEM_Ephem)!=0 \
165 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;} 165 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
166 166
167 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */ 167 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */
168 #define isSorter(x) ((x)->pSorter!=0) 168 #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER)
169 169
170 /* 170 /*
171 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL 171 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL
172 ** if we run out of memory. 172 ** if we run out of memory.
173 */ 173 */
174 static VdbeCursor *allocateCursor( 174 static VdbeCursor *allocateCursor(
175 Vdbe *p, /* The virtual machine */ 175 Vdbe *p, /* The virtual machine */
176 int iCur, /* Index of the new VdbeCursor */ 176 int iCur, /* Index of the new VdbeCursor */
177 int nField, /* Number of fields in the table or index */ 177 int nField, /* Number of fields in the table or index */
178 int iDb, /* Database the cursor belongs to, or -1 */ 178 int iDb, /* Database the cursor belongs to, or -1 */
179 int isBtreeCursor /* True for B-Tree. False for pseudo-table or vtab */ 179 u8 eCurType /* Type of the new cursor */
180 ){ 180 ){
181 /* Find the memory cell that will be used to store the blob of memory 181 /* Find the memory cell that will be used to store the blob of memory
182 ** required for this VdbeCursor structure. It is convenient to use a 182 ** required for this VdbeCursor structure. It is convenient to use a
183 ** vdbe memory cell to manage the memory allocation required for a 183 ** vdbe memory cell to manage the memory allocation required for a
184 ** VdbeCursor structure for the following reasons: 184 ** VdbeCursor structure for the following reasons:
185 ** 185 **
186 ** * Sometimes cursor numbers are used for a couple of different 186 ** * Sometimes cursor numbers are used for a couple of different
187 ** purposes in a vdbe program. The different uses might require 187 ** purposes in a vdbe program. The different uses might require
188 ** different sized allocations. Memory cells provide growable 188 ** different sized allocations. Memory cells provide growable
189 ** allocations. 189 ** allocations.
190 ** 190 **
191 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can 191 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
192 ** be freed lazily via the sqlite3_release_memory() API. This 192 ** be freed lazily via the sqlite3_release_memory() API. This
193 ** minimizes the number of malloc calls made by the system. 193 ** minimizes the number of malloc calls made by the system.
194 ** 194 **
195 ** Memory cells for cursors are allocated at the top of the address 195 ** Memory cells for cursors are allocated at the top of the address
196 ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for 196 ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for
197 ** cursor 1 is managed by memory cell (p->nMem-1), etc. 197 ** cursor 1 is managed by memory cell (p->nMem-1), etc.
198 */ 198 */
199 Mem *pMem = &p->aMem[p->nMem-iCur]; 199 Mem *pMem = &p->aMem[p->nMem-iCur];
200 200
201 int nByte; 201 int nByte;
202 VdbeCursor *pCx = 0; 202 VdbeCursor *pCx = 0;
203 nByte = 203 nByte =
204 ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField + 204 ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField +
205 (isBtreeCursor?sqlite3BtreeCursorSize():0); 205 (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0);
206 206
207 assert( iCur<p->nCursor ); 207 assert( iCur<p->nCursor );
208 if( p->apCsr[iCur] ){ 208 if( p->apCsr[iCur] ){
209 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]); 209 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
210 p->apCsr[iCur] = 0; 210 p->apCsr[iCur] = 0;
211 } 211 }
212 if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){ 212 if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){
213 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z; 213 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
214 memset(pCx, 0, sizeof(VdbeCursor)); 214 memset(pCx, 0, sizeof(VdbeCursor));
215 pCx->eCurType = eCurType;
215 pCx->iDb = iDb; 216 pCx->iDb = iDb;
216 pCx->nField = nField; 217 pCx->nField = nField;
217 pCx->aOffset = &pCx->aType[nField]; 218 pCx->aOffset = &pCx->aType[nField];
218 if( isBtreeCursor ){ 219 if( eCurType==CURTYPE_BTREE ){
219 pCx->pCursor = (BtCursor*) 220 pCx->uc.pCursor = (BtCursor*)
220 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField]; 221 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
221 sqlite3BtreeCursorZero(pCx->pCursor); 222 sqlite3BtreeCursorZero(pCx->uc.pCursor);
222 } 223 }
223 } 224 }
224 return pCx; 225 return pCx;
225 } 226 }
226 227
227 /* 228 /*
228 ** Try to convert a value into a numeric representation if we can 229 ** Try to convert a value into a numeric representation if we can
229 ** do so without loss of information. In other words, if the string 230 ** do so without loss of information. In other words, if the string
230 ** looks like a number, convert it into a number. If it does not 231 ** looks like a number, convert it into a number. If it does not
231 ** look like a number, leave it alone. 232 ** look like a number, leave it alone.
(...skipping 31 matching lines...) Expand 10 before | Expand all | Expand 10 after
263 ** SQLITE_AFF_NUMERIC: 264 ** SQLITE_AFF_NUMERIC:
264 ** Try to convert pRec to an integer representation or a 265 ** Try to convert pRec to an integer representation or a
265 ** floating-point representation if an integer representation 266 ** floating-point representation if an integer representation
266 ** is not possible. Note that the integer representation is 267 ** is not possible. Note that the integer representation is
267 ** always preferred, even if the affinity is REAL, because 268 ** always preferred, even if the affinity is REAL, because
268 ** an integer representation is more space efficient on disk. 269 ** an integer representation is more space efficient on disk.
269 ** 270 **
270 ** SQLITE_AFF_TEXT: 271 ** SQLITE_AFF_TEXT:
271 ** Convert pRec to a text representation. 272 ** Convert pRec to a text representation.
272 ** 273 **
273 ** SQLITE_AFF_NONE: 274 ** SQLITE_AFF_BLOB:
274 ** No-op. pRec is unchanged. 275 ** No-op. pRec is unchanged.
275 */ 276 */
276 static void applyAffinity( 277 static void applyAffinity(
277 Mem *pRec, /* The value to apply affinity to */ 278 Mem *pRec, /* The value to apply affinity to */
278 char affinity, /* The affinity to be applied */ 279 char affinity, /* The affinity to be applied */
279 u8 enc /* Use this text encoding */ 280 u8 enc /* Use this text encoding */
280 ){ 281 ){
281 if( affinity>=SQLITE_AFF_NUMERIC ){ 282 if( affinity>=SQLITE_AFF_NUMERIC ){
282 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL 283 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
283 || affinity==SQLITE_AFF_NUMERIC ); 284 || affinity==SQLITE_AFF_NUMERIC );
284 if( (pRec->flags & MEM_Int)==0 ){ 285 if( (pRec->flags & MEM_Int)==0 ){
285 if( (pRec->flags & MEM_Real)==0 ){ 286 if( (pRec->flags & MEM_Real)==0 ){
286 if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1); 287 if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1);
287 }else{ 288 }else{
288 sqlite3VdbeIntegerAffinity(pRec); 289 sqlite3VdbeIntegerAffinity(pRec);
289 } 290 }
290 } 291 }
291 }else if( affinity==SQLITE_AFF_TEXT ){ 292 }else if( affinity==SQLITE_AFF_TEXT ){
292 /* Only attempt the conversion to TEXT if there is an integer or real 293 /* Only attempt the conversion to TEXT if there is an integer or real
293 ** representation (blob and NULL do not get converted) but no string 294 ** representation (blob and NULL do not get converted) but no string
294 ** representation. 295 ** representation.
295 */ 296 */
296 if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){ 297 if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
297 sqlite3VdbeMemStringify(pRec, enc, 1); 298 sqlite3VdbeMemStringify(pRec, enc, 1);
298 } 299 }
300 pRec->flags &= ~(MEM_Real|MEM_Int);
299 } 301 }
300 } 302 }
301 303
302 /* 304 /*
303 ** Try to convert the type of a function argument or a result column 305 ** Try to convert the type of a function argument or a result column
304 ** into a numeric representation. Use either INTEGER or REAL whichever 306 ** into a numeric representation. Use either INTEGER or REAL whichever
305 ** is appropriate. But only do the conversion if it is possible without 307 ** is appropriate. But only do the conversion if it is possible without
306 ** loss of information and return the revised type of the argument. 308 ** loss of information and return the revised type of the argument.
307 */ 309 */
308 int sqlite3_value_numeric_type(sqlite3_value *pVal){ 310 int sqlite3_value_numeric_type(sqlite3_value *pVal){
(...skipping 198 matching lines...) Expand 10 before | Expand all | Expand 10 after
507 */ 509 */
508 static int checkSavepointCount(sqlite3 *db){ 510 static int checkSavepointCount(sqlite3 *db){
509 int n = 0; 511 int n = 0;
510 Savepoint *p; 512 Savepoint *p;
511 for(p=db->pSavepoint; p; p=p->pNext) n++; 513 for(p=db->pSavepoint; p; p=p->pNext) n++;
512 assert( n==(db->nSavepoint + db->isTransactionSavepoint) ); 514 assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
513 return 1; 515 return 1;
514 } 516 }
515 #endif 517 #endif
516 518
519 /*
520 ** Return the register of pOp->p2 after first preparing it to be
521 ** overwritten with an integer value.
522 */
523 static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){
524 sqlite3VdbeMemSetNull(pOut);
525 pOut->flags = MEM_Int;
526 return pOut;
527 }
528 static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){
529 Mem *pOut;
530 assert( pOp->p2>0 );
531 assert( pOp->p2<=(p->nMem-p->nCursor) );
532 pOut = &p->aMem[pOp->p2];
533 memAboutToChange(p, pOut);
534 if( VdbeMemDynamic(pOut) ){
535 return out2PrereleaseWithClear(pOut);
536 }else{
537 pOut->flags = MEM_Int;
538 return pOut;
539 }
540 }
541
517 542
518 /* 543 /*
519 ** Execute as much of a VDBE program as we can. 544 ** Execute as much of a VDBE program as we can.
520 ** This is the core of sqlite3_step(). 545 ** This is the core of sqlite3_step().
521 */ 546 */
522 int sqlite3VdbeExec( 547 int sqlite3VdbeExec(
523 Vdbe *p /* The VDBE */ 548 Vdbe *p /* The VDBE */
524 ){ 549 ){
525 int pc=0; /* The program counter */
526 Op *aOp = p->aOp; /* Copy of p->aOp */ 550 Op *aOp = p->aOp; /* Copy of p->aOp */
527 Op *pOp; /* Current operation */ 551 Op *pOp = aOp; /* Current operation */
552 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
553 Op *pOrigOp; /* Value of pOp at the top of the loop */
554 #endif
528 int rc = SQLITE_OK; /* Value to return */ 555 int rc = SQLITE_OK; /* Value to return */
529 sqlite3 *db = p->db; /* The database */ 556 sqlite3 *db = p->db; /* The database */
530 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */ 557 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
531 u8 encoding = ENC(db); /* The database encoding */ 558 u8 encoding = ENC(db); /* The database encoding */
532 int iCompare = 0; /* Result of last OP_Compare operation */ 559 int iCompare = 0; /* Result of last OP_Compare operation */
533 unsigned nVmStep = 0; /* Number of virtual machine steps */ 560 unsigned nVmStep = 0; /* Number of virtual machine steps */
534 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 561 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
535 unsigned nProgressLimit = 0;/* Invoke xProgress() when nVmStep reaches this */ 562 unsigned nProgressLimit = 0;/* Invoke xProgress() when nVmStep reaches this */
536 #endif 563 #endif
537 Mem *aMem = p->aMem; /* Copy of p->aMem */ 564 Mem *aMem = p->aMem; /* Copy of p->aMem */
538 Mem *pIn1 = 0; /* 1st input operand */ 565 Mem *pIn1 = 0; /* 1st input operand */
539 Mem *pIn2 = 0; /* 2nd input operand */ 566 Mem *pIn2 = 0; /* 2nd input operand */
540 Mem *pIn3 = 0; /* 3rd input operand */ 567 Mem *pIn3 = 0; /* 3rd input operand */
541 Mem *pOut = 0; /* Output operand */ 568 Mem *pOut = 0; /* Output operand */
542 int *aPermute = 0; /* Permutation of columns for OP_Compare */ 569 int *aPermute = 0; /* Permutation of columns for OP_Compare */
543 i64 lastRowid = db->lastRowid; /* Saved value of the last insert ROWID */ 570 i64 lastRowid = db->lastRowid; /* Saved value of the last insert ROWID */
544 #ifdef VDBE_PROFILE 571 #ifdef VDBE_PROFILE
545 u64 start; /* CPU clock count at start of opcode */ 572 u64 start; /* CPU clock count at start of opcode */
546 #endif 573 #endif
547 /*** INSERT STACK UNION HERE ***/ 574 /*** INSERT STACK UNION HERE ***/
548 575
549 assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */ 576 assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */
550 sqlite3VdbeEnter(p); 577 sqlite3VdbeEnter(p);
551 if( p->rc==SQLITE_NOMEM ){ 578 if( p->rc==SQLITE_NOMEM ){
552 /* This happens if a malloc() inside a call to sqlite3_column_text() or 579 /* This happens if a malloc() inside a call to sqlite3_column_text() or
553 ** sqlite3_column_text16() failed. */ 580 ** sqlite3_column_text16() failed. */
554 goto no_mem; 581 goto no_mem;
555 } 582 }
556 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY ); 583 assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY );
557 assert( p->bIsReader || p->readOnly!=0 ); 584 assert( p->bIsReader || p->readOnly!=0 );
558 p->rc = SQLITE_OK; 585 p->rc = SQLITE_OK;
559 p->iCurrentTime = 0; 586 p->iCurrentTime = 0;
560 assert( p->explain==0 ); 587 assert( p->explain==0 );
561 p->pResultSet = 0; 588 p->pResultSet = 0;
562 db->busyHandler.nBusy = 0; 589 db->busyHandler.nBusy = 0;
563 if( db->u1.isInterrupted ) goto abort_due_to_interrupt; 590 if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
564 sqlite3VdbeIOTraceSql(p); 591 sqlite3VdbeIOTraceSql(p);
565 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 592 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
566 if( db->xProgress ){ 593 if( db->xProgress ){
594 u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP];
567 assert( 0 < db->nProgressOps ); 595 assert( 0 < db->nProgressOps );
568 nProgressLimit = (unsigned)p->aCounter[SQLITE_STMTSTATUS_VM_STEP]; 596 nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps);
569 if( nProgressLimit==0 ){
570 nProgressLimit = db->nProgressOps;
571 }else{
572 nProgressLimit %= (unsigned)db->nProgressOps;
573 }
574 } 597 }
575 #endif 598 #endif
576 #ifdef SQLITE_DEBUG 599 #ifdef SQLITE_DEBUG
577 sqlite3BeginBenignMalloc(); 600 sqlite3BeginBenignMalloc();
578 if( p->pc==0 601 if( p->pc==0
579 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0 602 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0
580 ){ 603 ){
581 int i; 604 int i;
582 int once = 1; 605 int once = 1;
583 sqlite3VdbePrintSql(p); 606 sqlite3VdbePrintSql(p);
584 if( p->db->flags & SQLITE_VdbeListing ){ 607 if( p->db->flags & SQLITE_VdbeListing ){
585 printf("VDBE Program Listing:\n"); 608 printf("VDBE Program Listing:\n");
586 for(i=0; i<p->nOp; i++){ 609 for(i=0; i<p->nOp; i++){
587 sqlite3VdbePrintOp(stdout, i, &aOp[i]); 610 sqlite3VdbePrintOp(stdout, i, &aOp[i]);
588 } 611 }
589 } 612 }
590 if( p->db->flags & SQLITE_VdbeEQP ){ 613 if( p->db->flags & SQLITE_VdbeEQP ){
591 for(i=0; i<p->nOp; i++){ 614 for(i=0; i<p->nOp; i++){
592 if( aOp[i].opcode==OP_Explain ){ 615 if( aOp[i].opcode==OP_Explain ){
593 if( once ) printf("VDBE Query Plan:\n"); 616 if( once ) printf("VDBE Query Plan:\n");
594 printf("%s\n", aOp[i].p4.z); 617 printf("%s\n", aOp[i].p4.z);
595 once = 0; 618 once = 0;
596 } 619 }
597 } 620 }
598 } 621 }
599 if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n"); 622 if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n");
600 } 623 }
601 sqlite3EndBenignMalloc(); 624 sqlite3EndBenignMalloc();
602 #endif 625 #endif
603 for(pc=p->pc; rc==SQLITE_OK; pc++){ 626 for(pOp=&aOp[p->pc]; rc==SQLITE_OK; pOp++){
604 assert( pc>=0 && pc<p->nOp ); 627 assert( pOp>=aOp && pOp<&aOp[p->nOp]);
605 if( db->mallocFailed ) goto no_mem; 628 if( db->mallocFailed ) goto no_mem;
606 #ifdef VDBE_PROFILE 629 #ifdef VDBE_PROFILE
607 start = sqlite3Hwtime(); 630 start = sqlite3Hwtime();
608 #endif 631 #endif
609 nVmStep++; 632 nVmStep++;
610 pOp = &aOp[pc]; 633 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
634 if( p->anExec ) p->anExec[(int)(pOp-aOp)]++;
635 #endif
611 636
612 /* Only allow tracing if SQLITE_DEBUG is defined. 637 /* Only allow tracing if SQLITE_DEBUG is defined.
613 */ 638 */
614 #ifdef SQLITE_DEBUG 639 #ifdef SQLITE_DEBUG
615 if( db->flags & SQLITE_VdbeTrace ){ 640 if( db->flags & SQLITE_VdbeTrace ){
616 sqlite3VdbePrintOp(stdout, pc, pOp); 641 sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp);
617 } 642 }
618 #endif 643 #endif
619 644
620 645
621 /* Check to see if we need to simulate an interrupt. This only happens 646 /* Check to see if we need to simulate an interrupt. This only happens
622 ** if we have a special test build. 647 ** if we have a special test build.
623 */ 648 */
624 #ifdef SQLITE_TEST 649 #ifdef SQLITE_TEST
625 if( sqlite3_interrupt_count>0 ){ 650 if( sqlite3_interrupt_count>0 ){
626 sqlite3_interrupt_count--; 651 sqlite3_interrupt_count--;
627 if( sqlite3_interrupt_count==0 ){ 652 if( sqlite3_interrupt_count==0 ){
628 sqlite3_interrupt(db); 653 sqlite3_interrupt(db);
629 } 654 }
630 } 655 }
631 #endif 656 #endif
632 657
633 /* On any opcode with the "out2-prerelease" tag, free any
634 ** external allocations out of mem[p2] and set mem[p2] to be
635 ** an undefined integer. Opcodes will either fill in the integer
636 ** value or convert mem[p2] to a different type.
637 */
638 assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] );
639 if( pOp->opflags & OPFLG_OUT2_PRERELEASE ){
640 assert( pOp->p2>0 );
641 assert( pOp->p2<=(p->nMem-p->nCursor) );
642 pOut = &aMem[pOp->p2];
643 memAboutToChange(p, pOut);
644 if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut);
645 pOut->flags = MEM_Int;
646 }
647
648 /* Sanity checking on other operands */ 658 /* Sanity checking on other operands */
649 #ifdef SQLITE_DEBUG 659 #ifdef SQLITE_DEBUG
660 assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] );
650 if( (pOp->opflags & OPFLG_IN1)!=0 ){ 661 if( (pOp->opflags & OPFLG_IN1)!=0 ){
651 assert( pOp->p1>0 ); 662 assert( pOp->p1>0 );
652 assert( pOp->p1<=(p->nMem-p->nCursor) ); 663 assert( pOp->p1<=(p->nMem-p->nCursor) );
653 assert( memIsValid(&aMem[pOp->p1]) ); 664 assert( memIsValid(&aMem[pOp->p1]) );
654 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) ); 665 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) );
655 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]); 666 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
656 } 667 }
657 if( (pOp->opflags & OPFLG_IN2)!=0 ){ 668 if( (pOp->opflags & OPFLG_IN2)!=0 ){
658 assert( pOp->p2>0 ); 669 assert( pOp->p2>0 );
659 assert( pOp->p2<=(p->nMem-p->nCursor) ); 670 assert( pOp->p2<=(p->nMem-p->nCursor) );
(...skipping 12 matching lines...) Expand all
672 assert( pOp->p2>0 ); 683 assert( pOp->p2>0 );
673 assert( pOp->p2<=(p->nMem-p->nCursor) ); 684 assert( pOp->p2<=(p->nMem-p->nCursor) );
674 memAboutToChange(p, &aMem[pOp->p2]); 685 memAboutToChange(p, &aMem[pOp->p2]);
675 } 686 }
676 if( (pOp->opflags & OPFLG_OUT3)!=0 ){ 687 if( (pOp->opflags & OPFLG_OUT3)!=0 ){
677 assert( pOp->p3>0 ); 688 assert( pOp->p3>0 );
678 assert( pOp->p3<=(p->nMem-p->nCursor) ); 689 assert( pOp->p3<=(p->nMem-p->nCursor) );
679 memAboutToChange(p, &aMem[pOp->p3]); 690 memAboutToChange(p, &aMem[pOp->p3]);
680 } 691 }
681 #endif 692 #endif
693 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
694 pOrigOp = pOp;
695 #endif
682 696
683 switch( pOp->opcode ){ 697 switch( pOp->opcode ){
684 698
685 /***************************************************************************** 699 /*****************************************************************************
686 ** What follows is a massive switch statement where each case implements a 700 ** What follows is a massive switch statement where each case implements a
687 ** separate instruction in the virtual machine. If we follow the usual 701 ** separate instruction in the virtual machine. If we follow the usual
688 ** indentation conventions, each case should be indented by 6 spaces. But 702 ** indentation conventions, each case should be indented by 6 spaces. But
689 ** that is a lot of wasted space on the left margin. So the code within 703 ** that is a lot of wasted space on the left margin. So the code within
690 ** the switch statement will break with convention and be flush-left. Another 704 ** the switch statement will break with convention and be flush-left. Another
691 ** big comment (similar to this one) will mark the point in the code where 705 ** big comment (similar to this one) will mark the point in the code where
692 ** we transition back to normal indentation. 706 ** we transition back to normal indentation.
693 ** 707 **
694 ** The formatting of each case is important. The makefile for SQLite 708 ** The formatting of each case is important. The makefile for SQLite
695 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this 709 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this
696 ** file looking for lines that begin with "case OP_". The opcodes.h files 710 ** file looking for lines that begin with "case OP_". The opcodes.h files
697 ** will be filled with #defines that give unique integer values to each 711 ** will be filled with #defines that give unique integer values to each
698 ** opcode and the opcodes.c file is filled with an array of strings where 712 ** opcode and the opcodes.c file is filled with an array of strings where
699 ** each string is the symbolic name for the corresponding opcode. If the 713 ** each string is the symbolic name for the corresponding opcode. If the
700 ** case statement is followed by a comment of the form "/# same as ... #/" 714 ** case statement is followed by a comment of the form "/# same as ... #/"
701 ** that comment is used to determine the particular value of the opcode. 715 ** that comment is used to determine the particular value of the opcode.
702 ** 716 **
703 ** Other keywords in the comment that follows each case are used to 717 ** Other keywords in the comment that follows each case are used to
704 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[]. 718 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
705 ** Keywords include: in1, in2, in3, out2_prerelease, out2, out3. See 719 ** Keywords include: in1, in2, in3, out2, out3. See
706 ** the mkopcodeh.awk script for additional information. 720 ** the mkopcodeh.awk script for additional information.
707 ** 721 **
708 ** Documentation about VDBE opcodes is generated by scanning this file 722 ** Documentation about VDBE opcodes is generated by scanning this file
709 ** for lines of that contain "Opcode:". That line and all subsequent 723 ** for lines of that contain "Opcode:". That line and all subsequent
710 ** comment lines are used in the generation of the opcode.html documentation 724 ** comment lines are used in the generation of the opcode.html documentation
711 ** file. 725 ** file.
712 ** 726 **
713 ** SUMMARY: 727 ** SUMMARY:
714 ** 728 **
715 ** Formatting is important to scripts that scan this file. 729 ** Formatting is important to scripts that scan this file.
716 ** Do not deviate from the formatting style currently in use. 730 ** Do not deviate from the formatting style currently in use.
717 ** 731 **
718 *****************************************************************************/ 732 *****************************************************************************/
719 733
720 /* Opcode: Goto * P2 * * * 734 /* Opcode: Goto * P2 * * *
721 ** 735 **
722 ** An unconditional jump to address P2. 736 ** An unconditional jump to address P2.
723 ** The next instruction executed will be 737 ** The next instruction executed will be
724 ** the one at index P2 from the beginning of 738 ** the one at index P2 from the beginning of
725 ** the program. 739 ** the program.
726 ** 740 **
727 ** The P1 parameter is not actually used by this opcode. However, it 741 ** The P1 parameter is not actually used by this opcode. However, it
728 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell 742 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell
729 ** that this Goto is the bottom of a loop and that the lines from P2 down 743 ** that this Goto is the bottom of a loop and that the lines from P2 down
730 ** to the current line should be indented for EXPLAIN output. 744 ** to the current line should be indented for EXPLAIN output.
731 */ 745 */
732 case OP_Goto: { /* jump */ 746 case OP_Goto: { /* jump */
733 pc = pOp->p2 - 1; 747 jump_to_p2_and_check_for_interrupt:
748 pOp = &aOp[pOp->p2 - 1];
734 749
735 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev, 750 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
736 ** OP_VNext, OP_RowSetNext, or OP_SorterNext) all jump here upon 751 ** OP_VNext, OP_RowSetNext, or OP_SorterNext) all jump here upon
737 ** completion. Check to see if sqlite3_interrupt() has been called 752 ** completion. Check to see if sqlite3_interrupt() has been called
738 ** or if the progress callback needs to be invoked. 753 ** or if the progress callback needs to be invoked.
739 ** 754 **
740 ** This code uses unstructured "goto" statements and does not look clean. 755 ** This code uses unstructured "goto" statements and does not look clean.
741 ** But that is not due to sloppy coding habits. The code is written this 756 ** But that is not due to sloppy coding habits. The code is written this
742 ** way for performance, to avoid having to run the interrupt and progress 757 ** way for performance, to avoid having to run the interrupt and progress
743 ** checks on every opcode. This helps sqlite3_step() to run about 1.5% 758 ** checks on every opcode. This helps sqlite3_step() to run about 1.5%
(...skipping 24 matching lines...) Expand all
768 ** 783 **
769 ** Write the current address onto register P1 784 ** Write the current address onto register P1
770 ** and then jump to address P2. 785 ** and then jump to address P2.
771 */ 786 */
772 case OP_Gosub: { /* jump */ 787 case OP_Gosub: { /* jump */
773 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) ); 788 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
774 pIn1 = &aMem[pOp->p1]; 789 pIn1 = &aMem[pOp->p1];
775 assert( VdbeMemDynamic(pIn1)==0 ); 790 assert( VdbeMemDynamic(pIn1)==0 );
776 memAboutToChange(p, pIn1); 791 memAboutToChange(p, pIn1);
777 pIn1->flags = MEM_Int; 792 pIn1->flags = MEM_Int;
778 pIn1->u.i = pc; 793 pIn1->u.i = (int)(pOp-aOp);
779 REGISTER_TRACE(pOp->p1, pIn1); 794 REGISTER_TRACE(pOp->p1, pIn1);
780 pc = pOp->p2 - 1; 795
796 /* Most jump operations do a goto to this spot in order to update
797 ** the pOp pointer. */
798 jump_to_p2:
799 pOp = &aOp[pOp->p2 - 1];
781 break; 800 break;
782 } 801 }
783 802
784 /* Opcode: Return P1 * * * * 803 /* Opcode: Return P1 * * * *
785 ** 804 **
786 ** Jump to the next instruction after the address in register P1. After 805 ** Jump to the next instruction after the address in register P1. After
787 ** the jump, register P1 becomes undefined. 806 ** the jump, register P1 becomes undefined.
788 */ 807 */
789 case OP_Return: { /* in1 */ 808 case OP_Return: { /* in1 */
790 pIn1 = &aMem[pOp->p1]; 809 pIn1 = &aMem[pOp->p1];
791 assert( pIn1->flags==MEM_Int ); 810 assert( pIn1->flags==MEM_Int );
792 pc = (int)pIn1->u.i; 811 pOp = &aOp[pIn1->u.i];
793 pIn1->flags = MEM_Undefined; 812 pIn1->flags = MEM_Undefined;
794 break; 813 break;
795 } 814 }
796 815
797 /* Opcode: InitCoroutine P1 P2 P3 * * 816 /* Opcode: InitCoroutine P1 P2 P3 * *
798 ** 817 **
799 ** Set up register P1 so that it will Yield to the coroutine 818 ** Set up register P1 so that it will Yield to the coroutine
800 ** located at address P3. 819 ** located at address P3.
801 ** 820 **
802 ** If P2!=0 then the coroutine implementation immediately follows 821 ** If P2!=0 then the coroutine implementation immediately follows
803 ** this opcode. So jump over the coroutine implementation to 822 ** this opcode. So jump over the coroutine implementation to
804 ** address P2. 823 ** address P2.
805 ** 824 **
806 ** See also: EndCoroutine 825 ** See also: EndCoroutine
807 */ 826 */
808 case OP_InitCoroutine: { /* jump */ 827 case OP_InitCoroutine: { /* jump */
809 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) ); 828 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
810 assert( pOp->p2>=0 && pOp->p2<p->nOp ); 829 assert( pOp->p2>=0 && pOp->p2<p->nOp );
811 assert( pOp->p3>=0 && pOp->p3<p->nOp ); 830 assert( pOp->p3>=0 && pOp->p3<p->nOp );
812 pOut = &aMem[pOp->p1]; 831 pOut = &aMem[pOp->p1];
813 assert( !VdbeMemDynamic(pOut) ); 832 assert( !VdbeMemDynamic(pOut) );
814 pOut->u.i = pOp->p3 - 1; 833 pOut->u.i = pOp->p3 - 1;
815 pOut->flags = MEM_Int; 834 pOut->flags = MEM_Int;
816 if( pOp->p2 ) pc = pOp->p2 - 1; 835 if( pOp->p2 ) goto jump_to_p2;
817 break; 836 break;
818 } 837 }
819 838
820 /* Opcode: EndCoroutine P1 * * * * 839 /* Opcode: EndCoroutine P1 * * * *
821 ** 840 **
822 ** The instruction at the address in register P1 is a Yield. 841 ** The instruction at the address in register P1 is a Yield.
823 ** Jump to the P2 parameter of that Yield. 842 ** Jump to the P2 parameter of that Yield.
824 ** After the jump, register P1 becomes undefined. 843 ** After the jump, register P1 becomes undefined.
825 ** 844 **
826 ** See also: InitCoroutine 845 ** See also: InitCoroutine
827 */ 846 */
828 case OP_EndCoroutine: { /* in1 */ 847 case OP_EndCoroutine: { /* in1 */
829 VdbeOp *pCaller; 848 VdbeOp *pCaller;
830 pIn1 = &aMem[pOp->p1]; 849 pIn1 = &aMem[pOp->p1];
831 assert( pIn1->flags==MEM_Int ); 850 assert( pIn1->flags==MEM_Int );
832 assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp ); 851 assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp );
833 pCaller = &aOp[pIn1->u.i]; 852 pCaller = &aOp[pIn1->u.i];
834 assert( pCaller->opcode==OP_Yield ); 853 assert( pCaller->opcode==OP_Yield );
835 assert( pCaller->p2>=0 && pCaller->p2<p->nOp ); 854 assert( pCaller->p2>=0 && pCaller->p2<p->nOp );
836 pc = pCaller->p2 - 1; 855 pOp = &aOp[pCaller->p2 - 1];
837 pIn1->flags = MEM_Undefined; 856 pIn1->flags = MEM_Undefined;
838 break; 857 break;
839 } 858 }
840 859
841 /* Opcode: Yield P1 P2 * * * 860 /* Opcode: Yield P1 P2 * * *
842 ** 861 **
843 ** Swap the program counter with the value in register P1. This 862 ** Swap the program counter with the value in register P1. This
844 ** has the effect of yielding to a coroutine. 863 ** has the effect of yielding to a coroutine.
845 ** 864 **
846 ** If the coroutine that is launched by this instruction ends with 865 ** If the coroutine that is launched by this instruction ends with
847 ** Yield or Return then continue to the next instruction. But if 866 ** Yield or Return then continue to the next instruction. But if
848 ** the coroutine launched by this instruction ends with 867 ** the coroutine launched by this instruction ends with
849 ** EndCoroutine, then jump to P2 rather than continuing with the 868 ** EndCoroutine, then jump to P2 rather than continuing with the
850 ** next instruction. 869 ** next instruction.
851 ** 870 **
852 ** See also: InitCoroutine 871 ** See also: InitCoroutine
853 */ 872 */
854 case OP_Yield: { /* in1, jump */ 873 case OP_Yield: { /* in1, jump */
855 int pcDest; 874 int pcDest;
856 pIn1 = &aMem[pOp->p1]; 875 pIn1 = &aMem[pOp->p1];
857 assert( VdbeMemDynamic(pIn1)==0 ); 876 assert( VdbeMemDynamic(pIn1)==0 );
858 pIn1->flags = MEM_Int; 877 pIn1->flags = MEM_Int;
859 pcDest = (int)pIn1->u.i; 878 pcDest = (int)pIn1->u.i;
860 pIn1->u.i = pc; 879 pIn1->u.i = (int)(pOp - aOp);
861 REGISTER_TRACE(pOp->p1, pIn1); 880 REGISTER_TRACE(pOp->p1, pIn1);
862 pc = pcDest; 881 pOp = &aOp[pcDest];
863 break; 882 break;
864 } 883 }
865 884
866 /* Opcode: HaltIfNull P1 P2 P3 P4 P5 885 /* Opcode: HaltIfNull P1 P2 P3 P4 P5
867 ** Synopsis: if r[P3]=null halt 886 ** Synopsis: if r[P3]=null halt
868 ** 887 **
869 ** Check the value in register P3. If it is NULL then Halt using 888 ** Check the value in register P3. If it is NULL then Halt using
870 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the 889 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the
871 ** value in register P3 is not NULL, then this routine is a no-op. 890 ** value in register P3 is not NULL, then this routine is a no-op.
872 ** The P5 parameter should be 1. 891 ** The P5 parameter should be 1.
(...skipping 30 matching lines...) Expand all
903 ** If P5 is not zero and P4 is NULL, then everything after the ":" is 922 ** If P5 is not zero and P4 is NULL, then everything after the ":" is
904 ** omitted. 923 ** omitted.
905 ** 924 **
906 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of 925 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of
907 ** every program. So a jump past the last instruction of the program 926 ** every program. So a jump past the last instruction of the program
908 ** is the same as executing Halt. 927 ** is the same as executing Halt.
909 */ 928 */
910 case OP_Halt: { 929 case OP_Halt: {
911 const char *zType; 930 const char *zType;
912 const char *zLogFmt; 931 const char *zLogFmt;
932 VdbeFrame *pFrame;
933 int pcx;
913 934
935 pcx = (int)(pOp - aOp);
914 if( pOp->p1==SQLITE_OK && p->pFrame ){ 936 if( pOp->p1==SQLITE_OK && p->pFrame ){
915 /* Halt the sub-program. Return control to the parent frame. */ 937 /* Halt the sub-program. Return control to the parent frame. */
916 VdbeFrame *pFrame = p->pFrame; 938 pFrame = p->pFrame;
917 p->pFrame = pFrame->pParent; 939 p->pFrame = pFrame->pParent;
918 p->nFrame--; 940 p->nFrame--;
919 sqlite3VdbeSetChanges(db, p->nChange); 941 sqlite3VdbeSetChanges(db, p->nChange);
920 pc = sqlite3VdbeFrameRestore(pFrame); 942 pcx = sqlite3VdbeFrameRestore(pFrame);
921 lastRowid = db->lastRowid; 943 lastRowid = db->lastRowid;
922 if( pOp->p2==OE_Ignore ){ 944 if( pOp->p2==OE_Ignore ){
923 /* Instruction pc is the OP_Program that invoked the sub-program 945 /* Instruction pcx is the OP_Program that invoked the sub-program
924 ** currently being halted. If the p2 instruction of this OP_Halt 946 ** currently being halted. If the p2 instruction of this OP_Halt
925 ** instruction is set to OE_Ignore, then the sub-program is throwing 947 ** instruction is set to OE_Ignore, then the sub-program is throwing
926 ** an IGNORE exception. In this case jump to the address specified 948 ** an IGNORE exception. In this case jump to the address specified
927 ** as the p2 of the calling OP_Program. */ 949 ** as the p2 of the calling OP_Program. */
928 pc = p->aOp[pc].p2-1; 950 pcx = p->aOp[pcx].p2-1;
929 } 951 }
930 aOp = p->aOp; 952 aOp = p->aOp;
931 aMem = p->aMem; 953 aMem = p->aMem;
954 pOp = &aOp[pcx];
932 break; 955 break;
933 } 956 }
934 p->rc = pOp->p1; 957 p->rc = pOp->p1;
935 p->errorAction = (u8)pOp->p2; 958 p->errorAction = (u8)pOp->p2;
936 p->pc = pc; 959 p->pc = pcx;
937 if( p->rc ){ 960 if( p->rc ){
938 if( pOp->p5 ){ 961 if( pOp->p5 ){
939 static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK", 962 static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK",
940 "FOREIGN KEY" }; 963 "FOREIGN KEY" };
941 assert( pOp->p5>=1 && pOp->p5<=4 ); 964 assert( pOp->p5>=1 && pOp->p5<=4 );
942 testcase( pOp->p5==1 ); 965 testcase( pOp->p5==1 );
943 testcase( pOp->p5==2 ); 966 testcase( pOp->p5==2 );
944 testcase( pOp->p5==3 ); 967 testcase( pOp->p5==3 );
945 testcase( pOp->p5==4 ); 968 testcase( pOp->p5==4 );
946 zType = azType[pOp->p5-1]; 969 zType = azType[pOp->p5-1];
947 }else{ 970 }else{
948 zType = 0; 971 zType = 0;
949 } 972 }
950 assert( zType!=0 || pOp->p4.z!=0 ); 973 assert( zType!=0 || pOp->p4.z!=0 );
951 zLogFmt = "abort at %d in [%s]: %s"; 974 zLogFmt = "abort at %d in [%s]: %s";
952 if( zType && pOp->p4.z ){ 975 if( zType && pOp->p4.z ){
953 sqlite3SetString(&p->zErrMsg, db, "%s constraint failed: %s", 976 sqlite3VdbeError(p, "%s constraint failed: %s", zType, pOp->p4.z);
954 zType, pOp->p4.z);
955 }else if( pOp->p4.z ){ 977 }else if( pOp->p4.z ){
956 sqlite3SetString(&p->zErrMsg, db, "%s", pOp->p4.z); 978 sqlite3VdbeError(p, "%s", pOp->p4.z);
957 }else{ 979 }else{
958 sqlite3SetString(&p->zErrMsg, db, "%s constraint failed", zType); 980 sqlite3VdbeError(p, "%s constraint failed", zType);
959 } 981 }
960 sqlite3_log(pOp->p1, zLogFmt, pc, p->zSql, p->zErrMsg); 982 sqlite3_log(pOp->p1, zLogFmt, pcx, p->zSql, p->zErrMsg);
961 } 983 }
962 rc = sqlite3VdbeHalt(p); 984 rc = sqlite3VdbeHalt(p);
963 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR ); 985 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
964 if( rc==SQLITE_BUSY ){ 986 if( rc==SQLITE_BUSY ){
965 p->rc = rc = SQLITE_BUSY; 987 p->rc = rc = SQLITE_BUSY;
966 }else{ 988 }else{
967 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ); 989 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
968 assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 ); 990 assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 );
969 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE; 991 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
970 } 992 }
971 goto vdbe_return; 993 goto vdbe_return;
972 } 994 }
973 995
974 /* Opcode: Integer P1 P2 * * * 996 /* Opcode: Integer P1 P2 * * *
975 ** Synopsis: r[P2]=P1 997 ** Synopsis: r[P2]=P1
976 ** 998 **
977 ** The 32-bit integer value P1 is written into register P2. 999 ** The 32-bit integer value P1 is written into register P2.
978 */ 1000 */
979 case OP_Integer: { /* out2-prerelease */ 1001 case OP_Integer: { /* out2 */
1002 pOut = out2Prerelease(p, pOp);
980 pOut->u.i = pOp->p1; 1003 pOut->u.i = pOp->p1;
981 break; 1004 break;
982 } 1005 }
983 1006
984 /* Opcode: Int64 * P2 * P4 * 1007 /* Opcode: Int64 * P2 * P4 *
985 ** Synopsis: r[P2]=P4 1008 ** Synopsis: r[P2]=P4
986 ** 1009 **
987 ** P4 is a pointer to a 64-bit integer value. 1010 ** P4 is a pointer to a 64-bit integer value.
988 ** Write that value into register P2. 1011 ** Write that value into register P2.
989 */ 1012 */
990 case OP_Int64: { /* out2-prerelease */ 1013 case OP_Int64: { /* out2 */
1014 pOut = out2Prerelease(p, pOp);
991 assert( pOp->p4.pI64!=0 ); 1015 assert( pOp->p4.pI64!=0 );
992 pOut->u.i = *pOp->p4.pI64; 1016 pOut->u.i = *pOp->p4.pI64;
993 break; 1017 break;
994 } 1018 }
995 1019
996 #ifndef SQLITE_OMIT_FLOATING_POINT 1020 #ifndef SQLITE_OMIT_FLOATING_POINT
997 /* Opcode: Real * P2 * P4 * 1021 /* Opcode: Real * P2 * P4 *
998 ** Synopsis: r[P2]=P4 1022 ** Synopsis: r[P2]=P4
999 ** 1023 **
1000 ** P4 is a pointer to a 64-bit floating point value. 1024 ** P4 is a pointer to a 64-bit floating point value.
1001 ** Write that value into register P2. 1025 ** Write that value into register P2.
1002 */ 1026 */
1003 case OP_Real: { /* same as TK_FLOAT, out2-prerelease */ 1027 case OP_Real: { /* same as TK_FLOAT, out2 */
1028 pOut = out2Prerelease(p, pOp);
1004 pOut->flags = MEM_Real; 1029 pOut->flags = MEM_Real;
1005 assert( !sqlite3IsNaN(*pOp->p4.pReal) ); 1030 assert( !sqlite3IsNaN(*pOp->p4.pReal) );
1006 pOut->u.r = *pOp->p4.pReal; 1031 pOut->u.r = *pOp->p4.pReal;
1007 break; 1032 break;
1008 } 1033 }
1009 #endif 1034 #endif
1010 1035
1011 /* Opcode: String8 * P2 * P4 * 1036 /* Opcode: String8 * P2 * P4 *
1012 ** Synopsis: r[P2]='P4' 1037 ** Synopsis: r[P2]='P4'
1013 ** 1038 **
1014 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed 1039 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed
1015 ** into a String before it is executed for the first time. During 1040 ** into a String opcode before it is executed for the first time. During
1016 ** this transformation, the length of string P4 is computed and stored 1041 ** this transformation, the length of string P4 is computed and stored
1017 ** as the P1 parameter. 1042 ** as the P1 parameter.
1018 */ 1043 */
1019 case OP_String8: { /* same as TK_STRING, out2-prerelease */ 1044 case OP_String8: { /* same as TK_STRING, out2 */
1020 assert( pOp->p4.z!=0 ); 1045 assert( pOp->p4.z!=0 );
1046 pOut = out2Prerelease(p, pOp);
1021 pOp->opcode = OP_String; 1047 pOp->opcode = OP_String;
1022 pOp->p1 = sqlite3Strlen30(pOp->p4.z); 1048 pOp->p1 = sqlite3Strlen30(pOp->p4.z);
1023 1049
1024 #ifndef SQLITE_OMIT_UTF16 1050 #ifndef SQLITE_OMIT_UTF16
1025 if( encoding!=SQLITE_UTF8 ){ 1051 if( encoding!=SQLITE_UTF8 ){
1026 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC); 1052 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
1027 if( rc==SQLITE_TOOBIG ) goto too_big; 1053 if( rc==SQLITE_TOOBIG ) goto too_big;
1028 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem; 1054 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
1029 assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z ); 1055 assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z );
1030 assert( VdbeMemDynamic(pOut)==0 ); 1056 assert( VdbeMemDynamic(pOut)==0 );
1031 pOut->szMalloc = 0; 1057 pOut->szMalloc = 0;
1032 pOut->flags |= MEM_Static; 1058 pOut->flags |= MEM_Static;
1033 if( pOp->p4type==P4_DYNAMIC ){ 1059 if( pOp->p4type==P4_DYNAMIC ){
1034 sqlite3DbFree(db, pOp->p4.z); 1060 sqlite3DbFree(db, pOp->p4.z);
1035 } 1061 }
1036 pOp->p4type = P4_DYNAMIC; 1062 pOp->p4type = P4_DYNAMIC;
1037 pOp->p4.z = pOut->z; 1063 pOp->p4.z = pOut->z;
1038 pOp->p1 = pOut->n; 1064 pOp->p1 = pOut->n;
1039 } 1065 }
1040 #endif 1066 #endif
1041 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1067 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1042 goto too_big; 1068 goto too_big;
1043 } 1069 }
1044 /* Fall through to the next case, OP_String */ 1070 /* Fall through to the next case, OP_String */
1045 } 1071 }
1046 1072
1047 /* Opcode: String P1 P2 * P4 * 1073 /* Opcode: String P1 P2 P3 P4 P5
1048 ** Synopsis: r[P2]='P4' (len=P1) 1074 ** Synopsis: r[P2]='P4' (len=P1)
1049 ** 1075 **
1050 ** The string value P4 of length P1 (bytes) is stored in register P2. 1076 ** The string value P4 of length P1 (bytes) is stored in register P2.
1077 **
1078 ** If P5!=0 and the content of register P3 is greater than zero, then
1079 ** the datatype of the register P2 is converted to BLOB. The content is
1080 ** the same sequence of bytes, it is merely interpreted as a BLOB instead
1081 ** of a string, as if it had been CAST.
1051 */ 1082 */
1052 case OP_String: { /* out2-prerelease */ 1083 case OP_String: { /* out2 */
1053 assert( pOp->p4.z!=0 ); 1084 assert( pOp->p4.z!=0 );
1085 pOut = out2Prerelease(p, pOp);
1054 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 1086 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
1055 pOut->z = pOp->p4.z; 1087 pOut->z = pOp->p4.z;
1056 pOut->n = pOp->p1; 1088 pOut->n = pOp->p1;
1057 pOut->enc = encoding; 1089 pOut->enc = encoding;
1058 UPDATE_MAX_BLOBSIZE(pOut); 1090 UPDATE_MAX_BLOBSIZE(pOut);
1091 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1092 if( pOp->p5 ){
1093 assert( pOp->p3>0 );
1094 assert( pOp->p3<=(p->nMem-p->nCursor) );
1095 pIn3 = &aMem[pOp->p3];
1096 assert( pIn3->flags & MEM_Int );
1097 if( pIn3->u.i ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term;
1098 }
1099 #endif
1059 break; 1100 break;
1060 } 1101 }
1061 1102
1062 /* Opcode: Null P1 P2 P3 * * 1103 /* Opcode: Null P1 P2 P3 * *
1063 ** Synopsis: r[P2..P3]=NULL 1104 ** Synopsis: r[P2..P3]=NULL
1064 ** 1105 **
1065 ** Write a NULL into registers P2. If P3 greater than P2, then also write 1106 ** Write a NULL into registers P2. If P3 greater than P2, then also write
1066 ** NULL into register P3 and every register in between P2 and P3. If P3 1107 ** NULL into register P3 and every register in between P2 and P3. If P3
1067 ** is less than P2 (typically P3 is zero) then only register P2 is 1108 ** is less than P2 (typically P3 is zero) then only register P2 is
1068 ** set to NULL. 1109 ** set to NULL.
1069 ** 1110 **
1070 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that 1111 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
1071 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on 1112 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on
1072 ** OP_Ne or OP_Eq. 1113 ** OP_Ne or OP_Eq.
1073 */ 1114 */
1074 case OP_Null: { /* out2-prerelease */ 1115 case OP_Null: { /* out2 */
1075 int cnt; 1116 int cnt;
1076 u16 nullFlag; 1117 u16 nullFlag;
1118 pOut = out2Prerelease(p, pOp);
1077 cnt = pOp->p3-pOp->p2; 1119 cnt = pOp->p3-pOp->p2;
1078 assert( pOp->p3<=(p->nMem-p->nCursor) ); 1120 assert( pOp->p3<=(p->nMem-p->nCursor) );
1079 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null; 1121 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
1080 while( cnt>0 ){ 1122 while( cnt>0 ){
1081 pOut++; 1123 pOut++;
1082 memAboutToChange(p, pOut); 1124 memAboutToChange(p, pOut);
1083 sqlite3VdbeMemSetNull(pOut); 1125 sqlite3VdbeMemSetNull(pOut);
1084 pOut->flags = nullFlag; 1126 pOut->flags = nullFlag;
1085 cnt--; 1127 cnt--;
1086 } 1128 }
(...skipping 14 matching lines...) Expand all
1101 pOut->flags = (pOut->flags|MEM_Null)&~MEM_Undefined; 1143 pOut->flags = (pOut->flags|MEM_Null)&~MEM_Undefined;
1102 break; 1144 break;
1103 } 1145 }
1104 1146
1105 /* Opcode: Blob P1 P2 * P4 * 1147 /* Opcode: Blob P1 P2 * P4 *
1106 ** Synopsis: r[P2]=P4 (len=P1) 1148 ** Synopsis: r[P2]=P4 (len=P1)
1107 ** 1149 **
1108 ** P4 points to a blob of data P1 bytes long. Store this 1150 ** P4 points to a blob of data P1 bytes long. Store this
1109 ** blob in register P2. 1151 ** blob in register P2.
1110 */ 1152 */
1111 case OP_Blob: { /* out2-prerelease */ 1153 case OP_Blob: { /* out2 */
1112 assert( pOp->p1 <= SQLITE_MAX_LENGTH ); 1154 assert( pOp->p1 <= SQLITE_MAX_LENGTH );
1155 pOut = out2Prerelease(p, pOp);
1113 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0); 1156 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
1114 pOut->enc = encoding; 1157 pOut->enc = encoding;
1115 UPDATE_MAX_BLOBSIZE(pOut); 1158 UPDATE_MAX_BLOBSIZE(pOut);
1116 break; 1159 break;
1117 } 1160 }
1118 1161
1119 /* Opcode: Variable P1 P2 * P4 * 1162 /* Opcode: Variable P1 P2 * P4 *
1120 ** Synopsis: r[P2]=parameter(P1,P4) 1163 ** Synopsis: r[P2]=parameter(P1,P4)
1121 ** 1164 **
1122 ** Transfer the values of bound parameter P1 into register P2 1165 ** Transfer the values of bound parameter P1 into register P2
1123 ** 1166 **
1124 ** If the parameter is named, then its name appears in P4. 1167 ** If the parameter is named, then its name appears in P4.
1125 ** The P4 value is used by sqlite3_bind_parameter_name(). 1168 ** The P4 value is used by sqlite3_bind_parameter_name().
1126 */ 1169 */
1127 case OP_Variable: { /* out2-prerelease */ 1170 case OP_Variable: { /* out2 */
1128 Mem *pVar; /* Value being transferred */ 1171 Mem *pVar; /* Value being transferred */
1129 1172
1130 assert( pOp->p1>0 && pOp->p1<=p->nVar ); 1173 assert( pOp->p1>0 && pOp->p1<=p->nVar );
1131 assert( pOp->p4.z==0 || pOp->p4.z==p->azVar[pOp->p1-1] ); 1174 assert( pOp->p4.z==0 || pOp->p4.z==p->azVar[pOp->p1-1] );
1132 pVar = &p->aVar[pOp->p1 - 1]; 1175 pVar = &p->aVar[pOp->p1 - 1];
1133 if( sqlite3VdbeMemTooBig(pVar) ){ 1176 if( sqlite3VdbeMemTooBig(pVar) ){
1134 goto too_big; 1177 goto too_big;
1135 } 1178 }
1179 pOut = out2Prerelease(p, pOp);
1136 sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static); 1180 sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
1137 UPDATE_MAX_BLOBSIZE(pOut); 1181 UPDATE_MAX_BLOBSIZE(pOut);
1138 break; 1182 break;
1139 } 1183 }
1140 1184
1141 /* Opcode: Move P1 P2 P3 * * 1185 /* Opcode: Move P1 P2 P3 * *
1142 ** Synopsis: r[P2@P3]=r[P1@P3] 1186 ** Synopsis: r[P2@P3]=r[P1@P3]
1143 ** 1187 **
1144 ** Move the P3 values in register P1..P1+P3-1 over into 1188 ** Move the P3 values in register P1..P1+P3-1 over into
1145 ** registers P2..P2+P3-1. Registers P1..P1+P3-1 are 1189 ** registers P2..P2+P3-1. Registers P1..P1+P3-1 are
(...skipping 14 matching lines...) Expand all
1160 1204
1161 pIn1 = &aMem[p1]; 1205 pIn1 = &aMem[p1];
1162 pOut = &aMem[p2]; 1206 pOut = &aMem[p2];
1163 do{ 1207 do{
1164 assert( pOut<=&aMem[(p->nMem-p->nCursor)] ); 1208 assert( pOut<=&aMem[(p->nMem-p->nCursor)] );
1165 assert( pIn1<=&aMem[(p->nMem-p->nCursor)] ); 1209 assert( pIn1<=&aMem[(p->nMem-p->nCursor)] );
1166 assert( memIsValid(pIn1) ); 1210 assert( memIsValid(pIn1) );
1167 memAboutToChange(p, pOut); 1211 memAboutToChange(p, pOut);
1168 sqlite3VdbeMemMove(pOut, pIn1); 1212 sqlite3VdbeMemMove(pOut, pIn1);
1169 #ifdef SQLITE_DEBUG 1213 #ifdef SQLITE_DEBUG
1170 if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<&aMem[p1+pOp->p3] ){ 1214 if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<pOut ){
1171 pOut->pScopyFrom += p1 - pOp->p2; 1215 pOut->pScopyFrom += pOp->p2 - p1;
1172 } 1216 }
1173 #endif 1217 #endif
1218 Deephemeralize(pOut);
1174 REGISTER_TRACE(p2++, pOut); 1219 REGISTER_TRACE(p2++, pOut);
1175 pIn1++; 1220 pIn1++;
1176 pOut++; 1221 pOut++;
1177 }while( --n ); 1222 }while( --n );
1178 break; 1223 break;
1179 } 1224 }
1180 1225
1181 /* Opcode: Copy P1 P2 P3 * * 1226 /* Opcode: Copy P1 P2 P3 * *
1182 ** Synopsis: r[P2@P3+1]=r[P1@P3+1] 1227 ** Synopsis: r[P2@P3+1]=r[P1@P3+1]
1183 ** 1228 **
(...skipping 40 matching lines...) Expand 10 before | Expand all | Expand 10 after
1224 pIn1 = &aMem[pOp->p1]; 1269 pIn1 = &aMem[pOp->p1];
1225 pOut = &aMem[pOp->p2]; 1270 pOut = &aMem[pOp->p2];
1226 assert( pOut!=pIn1 ); 1271 assert( pOut!=pIn1 );
1227 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1272 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1228 #ifdef SQLITE_DEBUG 1273 #ifdef SQLITE_DEBUG
1229 if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1; 1274 if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1;
1230 #endif 1275 #endif
1231 break; 1276 break;
1232 } 1277 }
1233 1278
1279 /* Opcode: IntCopy P1 P2 * * *
1280 ** Synopsis: r[P2]=r[P1]
1281 **
1282 ** Transfer the integer value held in register P1 into register P2.
1283 **
1284 ** This is an optimized version of SCopy that works only for integer
1285 ** values.
1286 */
1287 case OP_IntCopy: { /* out2 */
1288 pIn1 = &aMem[pOp->p1];
1289 assert( (pIn1->flags & MEM_Int)!=0 );
1290 pOut = &aMem[pOp->p2];
1291 sqlite3VdbeMemSetInt64(pOut, pIn1->u.i);
1292 break;
1293 }
1294
1234 /* Opcode: ResultRow P1 P2 * * * 1295 /* Opcode: ResultRow P1 P2 * * *
1235 ** Synopsis: output=r[P1@P2] 1296 ** Synopsis: output=r[P1@P2]
1236 ** 1297 **
1237 ** The registers P1 through P1+P2-1 contain a single row of 1298 ** The registers P1 through P1+P2-1 contain a single row of
1238 ** results. This opcode causes the sqlite3_step() call to terminate 1299 ** results. This opcode causes the sqlite3_step() call to terminate
1239 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt 1300 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
1240 ** structure to provide access to the r(P1)..r(P1+P2-1) values as 1301 ** structure to provide access to the r(P1)..r(P1+P2-1) values as
1241 ** the result row. 1302 ** the result row.
1242 */ 1303 */
1243 case OP_ResultRow: { 1304 case OP_ResultRow: {
(...skipping 58 matching lines...) Expand 10 before | Expand all | Expand 10 after
1302 Deephemeralize(&pMem[i]); 1363 Deephemeralize(&pMem[i]);
1303 assert( (pMem[i].flags & MEM_Ephem)==0 1364 assert( (pMem[i].flags & MEM_Ephem)==0
1304 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 ); 1365 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 );
1305 sqlite3VdbeMemNulTerminate(&pMem[i]); 1366 sqlite3VdbeMemNulTerminate(&pMem[i]);
1306 REGISTER_TRACE(pOp->p1+i, &pMem[i]); 1367 REGISTER_TRACE(pOp->p1+i, &pMem[i]);
1307 } 1368 }
1308 if( db->mallocFailed ) goto no_mem; 1369 if( db->mallocFailed ) goto no_mem;
1309 1370
1310 /* Return SQLITE_ROW 1371 /* Return SQLITE_ROW
1311 */ 1372 */
1312 p->pc = pc + 1; 1373 p->pc = (int)(pOp - aOp) + 1;
1313 rc = SQLITE_ROW; 1374 rc = SQLITE_ROW;
1314 goto vdbe_return; 1375 goto vdbe_return;
1315 } 1376 }
1316 1377
1317 /* Opcode: Concat P1 P2 P3 * * 1378 /* Opcode: Concat P1 P2 P3 * *
1318 ** Synopsis: r[P3]=r[P2]+r[P1] 1379 ** Synopsis: r[P3]=r[P2]+r[P1]
1319 ** 1380 **
1320 ** Add the text in register P1 onto the end of the text in 1381 ** Add the text in register P1 onto the end of the text in
1321 ** register P2 and store the result in register P3. 1382 ** register P2 and store the result in register P3.
1322 ** If either the P1 or P2 text are NULL then store NULL in P3. 1383 ** If either the P1 or P2 text are NULL then store NULL in P3.
(...skipping 172 matching lines...) Expand 10 before | Expand all | Expand 10 after
1495 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will 1556 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1496 ** be returned. This is used by the built-in min(), max() and nullif() 1557 ** be returned. This is used by the built-in min(), max() and nullif()
1497 ** functions. 1558 ** functions.
1498 ** 1559 **
1499 ** If P1 is not zero, then it is a register that a subsequent min() or 1560 ** If P1 is not zero, then it is a register that a subsequent min() or
1500 ** max() aggregate will set to 1 if the current row is not the minimum or 1561 ** max() aggregate will set to 1 if the current row is not the minimum or
1501 ** maximum. The P1 register is initialized to 0 by this instruction. 1562 ** maximum. The P1 register is initialized to 0 by this instruction.
1502 ** 1563 **
1503 ** The interface used by the implementation of the aforementioned functions 1564 ** The interface used by the implementation of the aforementioned functions
1504 ** to retrieve the collation sequence set by this opcode is not available 1565 ** to retrieve the collation sequence set by this opcode is not available
1505 ** publicly, only to user functions defined in func.c. 1566 ** publicly. Only built-in functions have access to this feature.
1506 */ 1567 */
1507 case OP_CollSeq: { 1568 case OP_CollSeq: {
1508 assert( pOp->p4type==P4_COLLSEQ ); 1569 assert( pOp->p4type==P4_COLLSEQ );
1509 if( pOp->p1 ){ 1570 if( pOp->p1 ){
1510 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0); 1571 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
1511 } 1572 }
1512 break; 1573 break;
1513 } 1574 }
1514 1575
1515 /* Opcode: Function P1 P2 P3 P4 P5 1576 /* Opcode: Function0 P1 P2 P3 P4 P5
1516 ** Synopsis: r[P3]=func(r[P2@P5]) 1577 ** Synopsis: r[P3]=func(r[P2@P5])
1517 ** 1578 **
1518 ** Invoke a user function (P4 is a pointer to a Function structure that 1579 ** Invoke a user function (P4 is a pointer to a FuncDef object that
1519 ** defines the function) with P5 arguments taken from register P2 and 1580 ** defines the function) with P5 arguments taken from register P2 and
1520 ** successors. The result of the function is stored in register P3. 1581 ** successors. The result of the function is stored in register P3.
1521 ** Register P3 must not be one of the function inputs. 1582 ** Register P3 must not be one of the function inputs.
1522 ** 1583 **
1523 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 1584 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
1524 ** function was determined to be constant at compile time. If the first 1585 ** function was determined to be constant at compile time. If the first
1525 ** argument was constant then bit 0 of P1 is set. This is used to determine 1586 ** argument was constant then bit 0 of P1 is set. This is used to determine
1526 ** whether meta data associated with a user function argument using the 1587 ** whether meta data associated with a user function argument using the
1527 ** sqlite3_set_auxdata() API may be safely retained until the next 1588 ** sqlite3_set_auxdata() API may be safely retained until the next
1528 ** invocation of this opcode. 1589 ** invocation of this opcode.
1529 ** 1590 **
1530 ** See also: AggStep and AggFinal 1591 ** See also: Function, AggStep, AggFinal
1531 */ 1592 */
1593 /* Opcode: Function P1 P2 P3 P4 P5
1594 ** Synopsis: r[P3]=func(r[P2@P5])
1595 **
1596 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that
1597 ** contains a pointer to the function to be run) with P5 arguments taken
1598 ** from register P2 and successors. The result of the function is stored
1599 ** in register P3. Register P3 must not be one of the function inputs.
1600 **
1601 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
1602 ** function was determined to be constant at compile time. If the first
1603 ** argument was constant then bit 0 of P1 is set. This is used to determine
1604 ** whether meta data associated with a user function argument using the
1605 ** sqlite3_set_auxdata() API may be safely retained until the next
1606 ** invocation of this opcode.
1607 **
1608 ** SQL functions are initially coded as OP_Function0 with P4 pointing
1609 ** to a FuncDef object. But on first evaluation, the P4 operand is
1610 ** automatically converted into an sqlite3_context object and the operation
1611 ** changed to this OP_Function opcode. In this way, the initialization of
1612 ** the sqlite3_context object occurs only once, rather than once for each
1613 ** evaluation of the function.
1614 **
1615 ** See also: Function0, AggStep, AggFinal
1616 */
1617 case OP_Function0: {
1618 int n;
1619 sqlite3_context *pCtx;
1620
1621 assert( pOp->p4type==P4_FUNCDEF );
1622 n = pOp->p5;
1623 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
1624 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem-p->nCursor)+1) );
1625 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
1626 pCtx = sqlite3DbMallocRaw(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*));
1627 if( pCtx==0 ) goto no_mem;
1628 pCtx->pOut = 0;
1629 pCtx->pFunc = pOp->p4.pFunc;
1630 pCtx->iOp = (int)(pOp - aOp);
1631 pCtx->pVdbe = p;
1632 pCtx->argc = n;
1633 pOp->p4type = P4_FUNCCTX;
1634 pOp->p4.pCtx = pCtx;
1635 pOp->opcode = OP_Function;
1636 /* Fall through into OP_Function */
1637 }
1532 case OP_Function: { 1638 case OP_Function: {
1533 int i; 1639 int i;
1534 Mem *pArg; 1640 sqlite3_context *pCtx;
1535 sqlite3_context ctx;
1536 sqlite3_value **apVal;
1537 int n;
1538 1641
1539 n = pOp->p5; 1642 assert( pOp->p4type==P4_FUNCCTX );
1540 apVal = p->apArg; 1643 pCtx = pOp->p4.pCtx;
1541 assert( apVal || n==0 );
1542 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
1543 ctx.pOut = &aMem[pOp->p3];
1544 memAboutToChange(p, ctx.pOut);
1545 1644
1546 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem-p->nCursor)+1) ); 1645 /* If this function is inside of a trigger, the register array in aMem[]
1547 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); 1646 ** might change from one evaluation to the next. The next block of code
1548 pArg = &aMem[pOp->p2]; 1647 ** checks to see if the register array has changed, and if so it
1549 for(i=0; i<n; i++, pArg++){ 1648 ** reinitializes the relavant parts of the sqlite3_context object */
1550 assert( memIsValid(pArg) ); 1649 pOut = &aMem[pOp->p3];
1551 apVal[i] = pArg; 1650 if( pCtx->pOut != pOut ){
1552 Deephemeralize(pArg); 1651 pCtx->pOut = pOut;
1553 REGISTER_TRACE(pOp->p2+i, pArg); 1652 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
1554 } 1653 }
1555 1654
1556 assert( pOp->p4type==P4_FUNCDEF ); 1655 memAboutToChange(p, pCtx->pOut);
1557 ctx.pFunc = pOp->p4.pFunc; 1656 #ifdef SQLITE_DEBUG
1558 ctx.iOp = pc; 1657 for(i=0; i<pCtx->argc; i++){
1559 ctx.pVdbe = p; 1658 assert( memIsValid(pCtx->argv[i]) );
1560 MemSetTypeFlag(ctx.pOut, MEM_Null); 1659 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
1561 ctx.fErrorOrAux = 0; 1660 }
1661 #endif
1662 MemSetTypeFlag(pCtx->pOut, MEM_Null);
1663 pCtx->fErrorOrAux = 0;
1562 db->lastRowid = lastRowid; 1664 db->lastRowid = lastRowid;
1563 (*ctx.pFunc->xFunc)(&ctx, n, apVal); /* IMP: R-24505-23230 */ 1665 (*pCtx->pFunc->xFunc)(pCtx, pCtx->argc, pCtx->argv); /* IMP: R-24505-23230 */
1564 lastRowid = db->lastRowid; /* Remember rowid changes made by xFunc */ 1666 lastRowid = db->lastRowid; /* Remember rowid changes made by xFunc */
1565 1667
1566 /* If the function returned an error, throw an exception */ 1668 /* If the function returned an error, throw an exception */
1567 if( ctx.fErrorOrAux ){ 1669 if( pCtx->fErrorOrAux ){
1568 if( ctx.isError ){ 1670 if( pCtx->isError ){
1569 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(ctx.pOut)); 1671 sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut));
1570 rc = ctx.isError; 1672 rc = pCtx->isError;
1571 } 1673 }
1572 sqlite3VdbeDeleteAuxData(p, pc, pOp->p1); 1674 sqlite3VdbeDeleteAuxData(p, pCtx->iOp, pOp->p1);
1573 } 1675 }
1574 1676
1575 /* Copy the result of the function into register P3 */ 1677 /* Copy the result of the function into register P3 */
1576 sqlite3VdbeChangeEncoding(ctx.pOut, encoding); 1678 if( pOut->flags & (MEM_Str|MEM_Blob) ){
1577 if( sqlite3VdbeMemTooBig(ctx.pOut) ){ 1679 sqlite3VdbeChangeEncoding(pCtx->pOut, encoding);
1578 goto too_big; 1680 if( sqlite3VdbeMemTooBig(pCtx->pOut) ) goto too_big;
1579 } 1681 }
1580 1682
1581 REGISTER_TRACE(pOp->p3, ctx.pOut); 1683 REGISTER_TRACE(pOp->p3, pCtx->pOut);
1582 UPDATE_MAX_BLOBSIZE(ctx.pOut); 1684 UPDATE_MAX_BLOBSIZE(pCtx->pOut);
1583 break; 1685 break;
1584 } 1686 }
1585 1687
1586 /* Opcode: BitAnd P1 P2 P3 * * 1688 /* Opcode: BitAnd P1 P2 P3 * *
1587 ** Synopsis: r[P3]=r[P1]&r[P2] 1689 ** Synopsis: r[P3]=r[P1]&r[P2]
1588 ** 1690 **
1589 ** Take the bit-wise AND of the values in register P1 and P2 and 1691 ** Take the bit-wise AND of the values in register P1 and P2 and
1590 ** store the result in register P3. 1692 ** store the result in register P3.
1591 ** If either input is NULL, the result is NULL. 1693 ** If either input is NULL, the result is NULL.
1592 */ 1694 */
(...skipping 98 matching lines...) Expand 10 before | Expand all | Expand 10 after
1691 case OP_MustBeInt: { /* jump, in1 */ 1793 case OP_MustBeInt: { /* jump, in1 */
1692 pIn1 = &aMem[pOp->p1]; 1794 pIn1 = &aMem[pOp->p1];
1693 if( (pIn1->flags & MEM_Int)==0 ){ 1795 if( (pIn1->flags & MEM_Int)==0 ){
1694 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding); 1796 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
1695 VdbeBranchTaken((pIn1->flags&MEM_Int)==0, 2); 1797 VdbeBranchTaken((pIn1->flags&MEM_Int)==0, 2);
1696 if( (pIn1->flags & MEM_Int)==0 ){ 1798 if( (pIn1->flags & MEM_Int)==0 ){
1697 if( pOp->p2==0 ){ 1799 if( pOp->p2==0 ){
1698 rc = SQLITE_MISMATCH; 1800 rc = SQLITE_MISMATCH;
1699 goto abort_due_to_error; 1801 goto abort_due_to_error;
1700 }else{ 1802 }else{
1701 pc = pOp->p2 - 1; 1803 goto jump_to_p2;
1702 break;
1703 } 1804 }
1704 } 1805 }
1705 } 1806 }
1706 MemSetTypeFlag(pIn1, MEM_Int); 1807 MemSetTypeFlag(pIn1, MEM_Int);
1707 break; 1808 break;
1708 } 1809 }
1709 1810
1710 #ifndef SQLITE_OMIT_FLOATING_POINT 1811 #ifndef SQLITE_OMIT_FLOATING_POINT
1711 /* Opcode: RealAffinity P1 * * * * 1812 /* Opcode: RealAffinity P1 * * * *
1712 ** 1813 **
(...skipping 23 matching lines...) Expand all
1736 ** <li value="97"> TEXT 1837 ** <li value="97"> TEXT
1737 ** <li value="98"> BLOB 1838 ** <li value="98"> BLOB
1738 ** <li value="99"> NUMERIC 1839 ** <li value="99"> NUMERIC
1739 ** <li value="100"> INTEGER 1840 ** <li value="100"> INTEGER
1740 ** <li value="101"> REAL 1841 ** <li value="101"> REAL
1741 ** </ul> 1842 ** </ul>
1742 ** 1843 **
1743 ** A NULL value is not changed by this routine. It remains NULL. 1844 ** A NULL value is not changed by this routine. It remains NULL.
1744 */ 1845 */
1745 case OP_Cast: { /* in1 */ 1846 case OP_Cast: { /* in1 */
1746 assert( pOp->p2>=SQLITE_AFF_NONE && pOp->p2<=SQLITE_AFF_REAL ); 1847 assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL );
1747 testcase( pOp->p2==SQLITE_AFF_TEXT ); 1848 testcase( pOp->p2==SQLITE_AFF_TEXT );
1748 testcase( pOp->p2==SQLITE_AFF_NONE ); 1849 testcase( pOp->p2==SQLITE_AFF_BLOB );
1749 testcase( pOp->p2==SQLITE_AFF_NUMERIC ); 1850 testcase( pOp->p2==SQLITE_AFF_NUMERIC );
1750 testcase( pOp->p2==SQLITE_AFF_INTEGER ); 1851 testcase( pOp->p2==SQLITE_AFF_INTEGER );
1751 testcase( pOp->p2==SQLITE_AFF_REAL ); 1852 testcase( pOp->p2==SQLITE_AFF_REAL );
1752 pIn1 = &aMem[pOp->p1]; 1853 pIn1 = &aMem[pOp->p1];
1753 memAboutToChange(p, pIn1); 1854 memAboutToChange(p, pIn1);
1754 rc = ExpandBlob(pIn1); 1855 rc = ExpandBlob(pIn1);
1755 sqlite3VdbeMemCast(pIn1, pOp->p2, encoding); 1856 sqlite3VdbeMemCast(pIn1, pOp->p2, encoding);
1756 UPDATE_MAX_BLOBSIZE(pIn1); 1857 UPDATE_MAX_BLOBSIZE(pIn1);
1757 break; 1858 break;
1758 } 1859 }
(...skipping 114 matching lines...) Expand 10 before | Expand all | Expand 10 after
1873 }else{ 1974 }else{
1874 res = 1; /* Results are not equal */ 1975 res = 1; /* Results are not equal */
1875 } 1976 }
1876 }else{ 1977 }else{
1877 /* SQLITE_NULLEQ is clear and at least one operand is NULL, 1978 /* SQLITE_NULLEQ is clear and at least one operand is NULL,
1878 ** then the result is always NULL. 1979 ** then the result is always NULL.
1879 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set. 1980 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
1880 */ 1981 */
1881 if( pOp->p5 & SQLITE_STOREP2 ){ 1982 if( pOp->p5 & SQLITE_STOREP2 ){
1882 pOut = &aMem[pOp->p2]; 1983 pOut = &aMem[pOp->p2];
1984 memAboutToChange(p, pOut);
1883 MemSetTypeFlag(pOut, MEM_Null); 1985 MemSetTypeFlag(pOut, MEM_Null);
1884 REGISTER_TRACE(pOp->p2, pOut); 1986 REGISTER_TRACE(pOp->p2, pOut);
1885 }else{ 1987 }else{
1886 VdbeBranchTaken(2,3); 1988 VdbeBranchTaken(2,3);
1887 if( pOp->p5 & SQLITE_JUMPIFNULL ){ 1989 if( pOp->p5 & SQLITE_JUMPIFNULL ){
1888 pc = pOp->p2-1; 1990 goto jump_to_p2;
1889 } 1991 }
1890 } 1992 }
1891 break; 1993 break;
1892 } 1994 }
1893 }else{ 1995 }else{
1894 /* Neither operand is NULL. Do a comparison. */ 1996 /* Neither operand is NULL. Do a comparison. */
1895 affinity = pOp->p5 & SQLITE_AFF_MASK; 1997 affinity = pOp->p5 & SQLITE_AFF_MASK;
1896 if( affinity>=SQLITE_AFF_NUMERIC ){ 1998 if( affinity>=SQLITE_AFF_NUMERIC ){
1897 if( (pIn1->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){ 1999 if( (flags1 & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
1898 applyNumericAffinity(pIn1,0); 2000 applyNumericAffinity(pIn1,0);
1899 } 2001 }
1900 if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){ 2002 if( (flags3 & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
1901 applyNumericAffinity(pIn3,0); 2003 applyNumericAffinity(pIn3,0);
1902 } 2004 }
1903 }else if( affinity==SQLITE_AFF_TEXT ){ 2005 }else if( affinity==SQLITE_AFF_TEXT ){
1904 if( (pIn1->flags & MEM_Str)==0 && (pIn1->flags & (MEM_Int|MEM_Real))!=0 ){ 2006 if( (flags1 & MEM_Str)==0 && (flags1 & (MEM_Int|MEM_Real))!=0 ){
1905 testcase( pIn1->flags & MEM_Int ); 2007 testcase( pIn1->flags & MEM_Int );
1906 testcase( pIn1->flags & MEM_Real ); 2008 testcase( pIn1->flags & MEM_Real );
1907 sqlite3VdbeMemStringify(pIn1, encoding, 1); 2009 sqlite3VdbeMemStringify(pIn1, encoding, 1);
2010 testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) );
2011 flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask);
1908 } 2012 }
1909 if( (pIn3->flags & MEM_Str)==0 && (pIn3->flags & (MEM_Int|MEM_Real))!=0 ){ 2013 if( (flags3 & MEM_Str)==0 && (flags3 & (MEM_Int|MEM_Real))!=0 ){
1910 testcase( pIn3->flags & MEM_Int ); 2014 testcase( pIn3->flags & MEM_Int );
1911 testcase( pIn3->flags & MEM_Real ); 2015 testcase( pIn3->flags & MEM_Real );
1912 sqlite3VdbeMemStringify(pIn3, encoding, 1); 2016 sqlite3VdbeMemStringify(pIn3, encoding, 1);
2017 testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) );
2018 flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask);
1913 } 2019 }
1914 } 2020 }
1915 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 ); 2021 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
1916 if( pIn1->flags & MEM_Zero ){ 2022 if( flags1 & MEM_Zero ){
1917 sqlite3VdbeMemExpandBlob(pIn1); 2023 sqlite3VdbeMemExpandBlob(pIn1);
1918 flags1 &= ~MEM_Zero; 2024 flags1 &= ~MEM_Zero;
1919 } 2025 }
1920 if( pIn3->flags & MEM_Zero ){ 2026 if( flags3 & MEM_Zero ){
1921 sqlite3VdbeMemExpandBlob(pIn3); 2027 sqlite3VdbeMemExpandBlob(pIn3);
1922 flags3 &= ~MEM_Zero; 2028 flags3 &= ~MEM_Zero;
1923 } 2029 }
1924 if( db->mallocFailed ) goto no_mem;
1925 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl); 2030 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
1926 } 2031 }
1927 switch( pOp->opcode ){ 2032 switch( pOp->opcode ){
1928 case OP_Eq: res = res==0; break; 2033 case OP_Eq: res = res==0; break;
1929 case OP_Ne: res = res!=0; break; 2034 case OP_Ne: res = res!=0; break;
1930 case OP_Lt: res = res<0; break; 2035 case OP_Lt: res = res<0; break;
1931 case OP_Le: res = res<=0; break; 2036 case OP_Le: res = res<=0; break;
1932 case OP_Gt: res = res>0; break; 2037 case OP_Gt: res = res>0; break;
1933 default: res = res>=0; break; 2038 default: res = res>=0; break;
1934 } 2039 }
1935 2040
2041 /* Undo any changes made by applyAffinity() to the input registers. */
2042 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
2043 pIn1->flags = flags1;
2044 assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) );
2045 pIn3->flags = flags3;
2046
1936 if( pOp->p5 & SQLITE_STOREP2 ){ 2047 if( pOp->p5 & SQLITE_STOREP2 ){
1937 pOut = &aMem[pOp->p2]; 2048 pOut = &aMem[pOp->p2];
1938 memAboutToChange(p, pOut); 2049 memAboutToChange(p, pOut);
1939 MemSetTypeFlag(pOut, MEM_Int); 2050 MemSetTypeFlag(pOut, MEM_Int);
1940 pOut->u.i = res; 2051 pOut->u.i = res;
1941 REGISTER_TRACE(pOp->p2, pOut); 2052 REGISTER_TRACE(pOp->p2, pOut);
1942 }else{ 2053 }else{
1943 VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3); 2054 VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
1944 if( res ){ 2055 if( res ){
1945 pc = pOp->p2-1; 2056 goto jump_to_p2;
1946 } 2057 }
1947 } 2058 }
1948 /* Undo any changes made by applyAffinity() to the input registers. */
1949 pIn1->flags = flags1;
1950 pIn3->flags = flags3;
1951 break; 2059 break;
1952 } 2060 }
1953 2061
1954 /* Opcode: Permutation * * * P4 * 2062 /* Opcode: Permutation * * * P4 *
1955 ** 2063 **
1956 ** Set the permutation used by the OP_Compare operator to be the array 2064 ** Set the permutation used by the OP_Compare operator to be the array
1957 ** of integers in P4. 2065 ** of integers in P4.
1958 ** 2066 **
1959 ** The permutation is only valid until the next OP_Compare that has 2067 ** The permutation is only valid until the next OP_Compare that has
1960 ** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should 2068 ** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should
(...skipping 74 matching lines...) Expand 10 before | Expand all | Expand 10 after
2035 } 2143 }
2036 2144
2037 /* Opcode: Jump P1 P2 P3 * * 2145 /* Opcode: Jump P1 P2 P3 * *
2038 ** 2146 **
2039 ** Jump to the instruction at address P1, P2, or P3 depending on whether 2147 ** Jump to the instruction at address P1, P2, or P3 depending on whether
2040 ** in the most recent OP_Compare instruction the P1 vector was less than 2148 ** in the most recent OP_Compare instruction the P1 vector was less than
2041 ** equal to, or greater than the P2 vector, respectively. 2149 ** equal to, or greater than the P2 vector, respectively.
2042 */ 2150 */
2043 case OP_Jump: { /* jump */ 2151 case OP_Jump: { /* jump */
2044 if( iCompare<0 ){ 2152 if( iCompare<0 ){
2045 pc = pOp->p1 - 1; VdbeBranchTaken(0,3); 2153 VdbeBranchTaken(0,3); pOp = &aOp[pOp->p1 - 1];
2046 }else if( iCompare==0 ){ 2154 }else if( iCompare==0 ){
2047 pc = pOp->p2 - 1; VdbeBranchTaken(1,3); 2155 VdbeBranchTaken(1,3); pOp = &aOp[pOp->p2 - 1];
2048 }else{ 2156 }else{
2049 pc = pOp->p3 - 1; VdbeBranchTaken(2,3); 2157 VdbeBranchTaken(2,3); pOp = &aOp[pOp->p3 - 1];
2050 } 2158 }
2051 break; 2159 break;
2052 } 2160 }
2053 2161
2054 /* Opcode: And P1 P2 P3 * * 2162 /* Opcode: And P1 P2 P3 * *
2055 ** Synopsis: r[P3]=(r[P1] && r[P2]) 2163 ** Synopsis: r[P3]=(r[P1] && r[P2])
2056 ** 2164 **
2057 ** Take the logical AND of the values in registers P1 and P2 and 2165 ** Take the logical AND of the values in registers P1 and P2 and
2058 ** write the result into register P3. 2166 ** write the result into register P3.
2059 ** 2167 **
(...skipping 89 matching lines...) Expand 10 before | Expand all | Expand 10 after
2149 ** (but not including P2) to run just once and to be skipped on subsequent 2257 ** (but not including P2) to run just once and to be skipped on subsequent
2150 ** times through the loop. 2258 ** times through the loop.
2151 ** 2259 **
2152 ** All "once" flags are initially cleared whenever a prepared statement 2260 ** All "once" flags are initially cleared whenever a prepared statement
2153 ** first begins to run. 2261 ** first begins to run.
2154 */ 2262 */
2155 case OP_Once: { /* jump */ 2263 case OP_Once: { /* jump */
2156 assert( pOp->p1<p->nOnceFlag ); 2264 assert( pOp->p1<p->nOnceFlag );
2157 VdbeBranchTaken(p->aOnceFlag[pOp->p1]!=0, 2); 2265 VdbeBranchTaken(p->aOnceFlag[pOp->p1]!=0, 2);
2158 if( p->aOnceFlag[pOp->p1] ){ 2266 if( p->aOnceFlag[pOp->p1] ){
2159 pc = pOp->p2-1; 2267 goto jump_to_p2;
2160 }else{ 2268 }else{
2161 p->aOnceFlag[pOp->p1] = 1; 2269 p->aOnceFlag[pOp->p1] = 1;
2162 } 2270 }
2163 break; 2271 break;
2164 } 2272 }
2165 2273
2166 /* Opcode: If P1 P2 P3 * * 2274 /* Opcode: If P1 P2 P3 * *
2167 ** 2275 **
2168 ** Jump to P2 if the value in register P1 is true. The value 2276 ** Jump to P2 if the value in register P1 is true. The value
2169 ** is considered true if it is numeric and non-zero. If the value 2277 ** is considered true if it is numeric and non-zero. If the value
(...skipping 14 matching lines...) Expand all
2184 }else{ 2292 }else{
2185 #ifdef SQLITE_OMIT_FLOATING_POINT 2293 #ifdef SQLITE_OMIT_FLOATING_POINT
2186 c = sqlite3VdbeIntValue(pIn1)!=0; 2294 c = sqlite3VdbeIntValue(pIn1)!=0;
2187 #else 2295 #else
2188 c = sqlite3VdbeRealValue(pIn1)!=0.0; 2296 c = sqlite3VdbeRealValue(pIn1)!=0.0;
2189 #endif 2297 #endif
2190 if( pOp->opcode==OP_IfNot ) c = !c; 2298 if( pOp->opcode==OP_IfNot ) c = !c;
2191 } 2299 }
2192 VdbeBranchTaken(c!=0, 2); 2300 VdbeBranchTaken(c!=0, 2);
2193 if( c ){ 2301 if( c ){
2194 pc = pOp->p2-1; 2302 goto jump_to_p2;
2195 } 2303 }
2196 break; 2304 break;
2197 } 2305 }
2198 2306
2199 /* Opcode: IsNull P1 P2 * * * 2307 /* Opcode: IsNull P1 P2 * * *
2200 ** Synopsis: if r[P1]==NULL goto P2 2308 ** Synopsis: if r[P1]==NULL goto P2
2201 ** 2309 **
2202 ** Jump to P2 if the value in register P1 is NULL. 2310 ** Jump to P2 if the value in register P1 is NULL.
2203 */ 2311 */
2204 case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */ 2312 case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */
2205 pIn1 = &aMem[pOp->p1]; 2313 pIn1 = &aMem[pOp->p1];
2206 VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2); 2314 VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2);
2207 if( (pIn1->flags & MEM_Null)!=0 ){ 2315 if( (pIn1->flags & MEM_Null)!=0 ){
2208 pc = pOp->p2 - 1; 2316 goto jump_to_p2;
2209 } 2317 }
2210 break; 2318 break;
2211 } 2319 }
2212 2320
2213 /* Opcode: NotNull P1 P2 * * * 2321 /* Opcode: NotNull P1 P2 * * *
2214 ** Synopsis: if r[P1]!=NULL goto P2 2322 ** Synopsis: if r[P1]!=NULL goto P2
2215 ** 2323 **
2216 ** Jump to P2 if the value in register P1 is not NULL. 2324 ** Jump to P2 if the value in register P1 is not NULL.
2217 */ 2325 */
2218 case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */ 2326 case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */
2219 pIn1 = &aMem[pOp->p1]; 2327 pIn1 = &aMem[pOp->p1];
2220 VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2); 2328 VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2);
2221 if( (pIn1->flags & MEM_Null)==0 ){ 2329 if( (pIn1->flags & MEM_Null)==0 ){
2222 pc = pOp->p2 - 1; 2330 goto jump_to_p2;
2223 } 2331 }
2224 break; 2332 break;
2225 } 2333 }
2226 2334
2227 /* Opcode: Column P1 P2 P3 P4 P5 2335 /* Opcode: Column P1 P2 P3 P4 P5
2228 ** Synopsis: r[P3]=PX 2336 ** Synopsis: r[P3]=PX
2229 ** 2337 **
2230 ** Interpret the data that cursor P1 points to as a structure built using 2338 ** Interpret the data that cursor P1 points to as a structure built using
2231 ** the MakeRecord instruction. (See the MakeRecord opcode for additional 2339 ** the MakeRecord instruction. (See the MakeRecord opcode for additional
2232 ** information about the format of the data.) Extract the P2-th column 2340 ** information about the format of the data.) Extract the P2-th column
(...skipping 23 matching lines...) Expand all
2256 BtCursor *pCrsr; /* The BTree cursor */ 2364 BtCursor *pCrsr; /* The BTree cursor */
2257 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */ 2365 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */
2258 int len; /* The length of the serialized data for the column */ 2366 int len; /* The length of the serialized data for the column */
2259 int i; /* Loop counter */ 2367 int i; /* Loop counter */
2260 Mem *pDest; /* Where to write the extracted value */ 2368 Mem *pDest; /* Where to write the extracted value */
2261 Mem sMem; /* For storing the record being decoded */ 2369 Mem sMem; /* For storing the record being decoded */
2262 const u8 *zData; /* Part of the record being decoded */ 2370 const u8 *zData; /* Part of the record being decoded */
2263 const u8 *zHdr; /* Next unparsed byte of the header */ 2371 const u8 *zHdr; /* Next unparsed byte of the header */
2264 const u8 *zEndHdr; /* Pointer to first byte after the header */ 2372 const u8 *zEndHdr; /* Pointer to first byte after the header */
2265 u32 offset; /* Offset into the data */ 2373 u32 offset; /* Offset into the data */
2266 u32 szField; /* Number of bytes in the content of a field */ 2374 u64 offset64; /* 64-bit offset */
2267 u32 avail; /* Number of bytes of available data */ 2375 u32 avail; /* Number of bytes of available data */
2268 u32 t; /* A type code from the record header */ 2376 u32 t; /* A type code from the record header */
2269 u16 fx; /* pDest->flags value */ 2377 u16 fx; /* pDest->flags value */
2270 Mem *pReg; /* PseudoTable input register */ 2378 Mem *pReg; /* PseudoTable input register */
2271 2379
2272 p2 = pOp->p2; 2380 p2 = pOp->p2;
2273 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); 2381 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
2274 pDest = &aMem[pOp->p3]; 2382 pDest = &aMem[pOp->p3];
2275 memAboutToChange(p, pDest); 2383 memAboutToChange(p, pDest);
2276 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2384 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2277 pC = p->apCsr[pOp->p1]; 2385 pC = p->apCsr[pOp->p1];
2278 assert( pC!=0 ); 2386 assert( pC!=0 );
2279 assert( p2<pC->nField ); 2387 assert( p2<pC->nField );
2280 aOffset = pC->aOffset; 2388 aOffset = pC->aOffset;
2281 #ifndef SQLITE_OMIT_VIRTUALTABLE 2389 assert( pC->eCurType!=CURTYPE_VTAB );
2282 assert( pC->pVtabCursor==0 ); /* OP_Column never called on virtual table */ 2390 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
2283 #endif 2391 assert( pC->eCurType!=CURTYPE_SORTER );
2284 pCrsr = pC->pCursor; 2392 pCrsr = pC->uc.pCursor;
2285 assert( pCrsr!=0 || pC->pseudoTableReg>0 ); /* pCrsr NULL on PseudoTables */
2286 assert( pCrsr!=0 || pC->nullRow ); /* pC->nullRow on PseudoTables */
2287 2393
2288 /* If the cursor cache is stale, bring it up-to-date */ 2394 /* If the cursor cache is stale, bring it up-to-date */
2289 rc = sqlite3VdbeCursorMoveto(pC); 2395 rc = sqlite3VdbeCursorMoveto(pC);
2290 if( rc ) goto abort_due_to_error; 2396 if( rc ) goto abort_due_to_error;
2291 if( pC->cacheStatus!=p->cacheCtr ){ 2397 if( pC->cacheStatus!=p->cacheCtr ){
2292 if( pC->nullRow ){ 2398 if( pC->nullRow ){
2293 if( pCrsr==0 ){ 2399 if( pC->eCurType==CURTYPE_PSEUDO ){
2294 assert( pC->pseudoTableReg>0 ); 2400 assert( pC->uc.pseudoTableReg>0 );
2295 pReg = &aMem[pC->pseudoTableReg]; 2401 pReg = &aMem[pC->uc.pseudoTableReg];
2296 assert( pReg->flags & MEM_Blob ); 2402 assert( pReg->flags & MEM_Blob );
2297 assert( memIsValid(pReg) ); 2403 assert( memIsValid(pReg) );
2298 pC->payloadSize = pC->szRow = avail = pReg->n; 2404 pC->payloadSize = pC->szRow = avail = pReg->n;
2299 pC->aRow = (u8*)pReg->z; 2405 pC->aRow = (u8*)pReg->z;
2300 }else{ 2406 }else{
2301 sqlite3VdbeMemSetNull(pDest); 2407 sqlite3VdbeMemSetNull(pDest);
2302 goto op_column_out; 2408 goto op_column_out;
2303 } 2409 }
2304 }else{ 2410 }else{
2411 assert( pC->eCurType==CURTYPE_BTREE );
2305 assert( pCrsr ); 2412 assert( pCrsr );
2306 if( pC->isTable==0 ){ 2413 if( pC->isTable==0 ){
2307 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 2414 assert( sqlite3BtreeCursorIsValid(pCrsr) );
2308 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &payloadSize64); 2415 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &payloadSize64);
2309 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */ 2416 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
2310 /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the 2417 /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the
2311 ** payload size, so it is impossible for payloadSize64 to be 2418 ** payload size, so it is impossible for payloadSize64 to be
2312 ** larger than 32 bits. */ 2419 ** larger than 32 bits. */
2313 assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 ); 2420 assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 );
2314 pC->aRow = sqlite3BtreeKeyFetch(pCrsr, &avail); 2421 pC->aRow = sqlite3BtreeKeyFetch(pCrsr, &avail);
2315 pC->payloadSize = (u32)payloadSize64; 2422 pC->payloadSize = (u32)payloadSize64;
2316 }else{ 2423 }else{
2317 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 2424 assert( sqlite3BtreeCursorIsValid(pCrsr) );
2318 VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &pC->payloadSize); 2425 VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &pC->payloadSize);
2319 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */ 2426 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
2320 pC->aRow = sqlite3BtreeDataFetch(pCrsr, &avail); 2427 pC->aRow = sqlite3BtreeDataFetch(pCrsr, &avail);
2321 } 2428 }
2322 assert( avail<=65536 ); /* Maximum page size is 64KiB */ 2429 assert( avail<=65536 ); /* Maximum page size is 64KiB */
2323 if( pC->payloadSize <= (u32)avail ){ 2430 if( pC->payloadSize <= (u32)avail ){
2324 pC->szRow = pC->payloadSize; 2431 pC->szRow = pC->payloadSize;
2432 }else if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
2433 goto too_big;
2325 }else{ 2434 }else{
2326 pC->szRow = avail; 2435 pC->szRow = avail;
2327 } 2436 }
2328 if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
2329 goto too_big;
2330 }
2331 } 2437 }
2332 pC->cacheStatus = p->cacheCtr; 2438 pC->cacheStatus = p->cacheCtr;
2333 pC->iHdrOffset = getVarint32(pC->aRow, offset); 2439 pC->iHdrOffset = getVarint32(pC->aRow, offset);
2334 pC->nHdrParsed = 0; 2440 pC->nHdrParsed = 0;
2335 aOffset[0] = offset; 2441 aOffset[0] = offset;
2336 2442
2337 /* Make sure a corrupt database has not given us an oversize header.
2338 ** Do this now to avoid an oversize memory allocation.
2339 **
2340 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte
2341 ** types use so much data space that there can only be 4096 and 32 of
2342 ** them, respectively. So the maximum header length results from a
2343 ** 3-byte type for each of the maximum of 32768 columns plus three
2344 ** extra bytes for the header length itself. 32768*3 + 3 = 98307.
2345 */
2346 if( offset > 98307 || offset > pC->payloadSize ){
2347 rc = SQLITE_CORRUPT_BKPT;
2348 goto op_column_error;
2349 }
2350 2443
2351 if( avail<offset ){ 2444 if( avail<offset ){
2352 /* pC->aRow does not have to hold the entire row, but it does at least 2445 /* pC->aRow does not have to hold the entire row, but it does at least
2353 ** need to cover the header of the record. If pC->aRow does not contain 2446 ** need to cover the header of the record. If pC->aRow does not contain
2354 ** the complete header, then set it to zero, forcing the header to be 2447 ** the complete header, then set it to zero, forcing the header to be
2355 ** dynamically allocated. */ 2448 ** dynamically allocated. */
2356 pC->aRow = 0; 2449 pC->aRow = 0;
2357 pC->szRow = 0; 2450 pC->szRow = 0;
2451
2452 /* Make sure a corrupt database has not given us an oversize header.
2453 ** Do this now to avoid an oversize memory allocation.
2454 **
2455 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte
2456 ** types use so much data space that there can only be 4096 and 32 of
2457 ** them, respectively. So the maximum header length results from a
2458 ** 3-byte type for each of the maximum of 32768 columns plus three
2459 ** extra bytes for the header length itself. 32768*3 + 3 = 98307.
2460 */
2461 if( offset > 98307 || offset > pC->payloadSize ){
2462 rc = SQLITE_CORRUPT_BKPT;
2463 goto op_column_error;
2464 }
2358 } 2465 }
2359 2466
2360 /* The following goto is an optimization. It can be omitted and 2467 /* The following goto is an optimization. It can be omitted and
2361 ** everything will still work. But OP_Column is measurably faster 2468 ** everything will still work. But OP_Column is measurably faster
2362 ** by skipping the subsequent conditional, which is always true. 2469 ** by skipping the subsequent conditional, which is always true.
2363 */ 2470 */
2364 assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */ 2471 assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */
2365 goto op_column_read_header; 2472 goto op_column_read_header;
2366 } 2473 }
2367 2474
2368 /* Make sure at least the first p2+1 entries of the header have been 2475 /* Make sure at least the first p2+1 entries of the header have been
2369 ** parsed and valid information is in aOffset[] and pC->aType[]. 2476 ** parsed and valid information is in aOffset[] and pC->aType[].
2370 */ 2477 */
2371 if( pC->nHdrParsed<=p2 ){ 2478 if( pC->nHdrParsed<=p2 ){
2372 /* If there is more header available for parsing in the record, try 2479 /* If there is more header available for parsing in the record, try
2373 ** to extract additional fields up through the p2+1-th field 2480 ** to extract additional fields up through the p2+1-th field
2374 */ 2481 */
2375 op_column_read_header: 2482 op_column_read_header:
2376 if( pC->iHdrOffset<aOffset[0] ){ 2483 if( pC->iHdrOffset<aOffset[0] ){
2377 /* Make sure zData points to enough of the record to cover the header. */ 2484 /* Make sure zData points to enough of the record to cover the header. */
2378 if( pC->aRow==0 ){ 2485 if( pC->aRow==0 ){
2379 memset(&sMem, 0, sizeof(sMem)); 2486 memset(&sMem, 0, sizeof(sMem));
2380 rc = sqlite3VdbeMemFromBtree(pCrsr, 0, aOffset[0], 2487 rc = sqlite3VdbeMemFromBtree(pCrsr, 0, aOffset[0], !pC->isTable, &sMem);
2381 !pC->isTable, &sMem); 2488 if( rc!=SQLITE_OK ) goto op_column_error;
2382 if( rc!=SQLITE_OK ){
2383 goto op_column_error;
2384 }
2385 zData = (u8*)sMem.z; 2489 zData = (u8*)sMem.z;
2386 }else{ 2490 }else{
2387 zData = pC->aRow; 2491 zData = pC->aRow;
2388 } 2492 }
2389 2493
2390 /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */ 2494 /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
2391 i = pC->nHdrParsed; 2495 i = pC->nHdrParsed;
2392 offset = aOffset[i]; 2496 offset64 = aOffset[i];
2393 zHdr = zData + pC->iHdrOffset; 2497 zHdr = zData + pC->iHdrOffset;
2394 zEndHdr = zData + aOffset[0]; 2498 zEndHdr = zData + aOffset[0];
2395 assert( i<=p2 && zHdr<zEndHdr ); 2499 assert( i<=p2 && zHdr<zEndHdr );
2396 do{ 2500 do{
2397 if( zHdr[0]<0x80 ){ 2501 if( (t = zHdr[0])<0x80 ){
2398 t = zHdr[0];
2399 zHdr++; 2502 zHdr++;
2503 offset64 += sqlite3VdbeOneByteSerialTypeLen(t);
2400 }else{ 2504 }else{
2401 zHdr += sqlite3GetVarint32(zHdr, &t); 2505 zHdr += sqlite3GetVarint32(zHdr, &t);
2506 offset64 += sqlite3VdbeSerialTypeLen(t);
2402 } 2507 }
2403 pC->aType[i] = t; 2508 pC->aType[i++] = t;
2404 szField = sqlite3VdbeSerialTypeLen(t); 2509 aOffset[i] = (u32)(offset64 & 0xffffffff);
2405 offset += szField;
2406 if( offset<szField ){ /* True if offset overflows */
2407 zHdr = &zEndHdr[1]; /* Forces SQLITE_CORRUPT return below */
2408 break;
2409 }
2410 i++;
2411 aOffset[i] = offset;
2412 }while( i<=p2 && zHdr<zEndHdr ); 2510 }while( i<=p2 && zHdr<zEndHdr );
2413 pC->nHdrParsed = i; 2511 pC->nHdrParsed = i;
2414 pC->iHdrOffset = (u32)(zHdr - zData); 2512 pC->iHdrOffset = (u32)(zHdr - zData);
2415 if( pC->aRow==0 ){ 2513 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
2416 sqlite3VdbeMemRelease(&sMem);
2417 sMem.flags = MEM_Null;
2418 }
2419 2514
2420 /* The record is corrupt if any of the following are true: 2515 /* The record is corrupt if any of the following are true:
2421 ** (1) the bytes of the header extend past the declared header size 2516 ** (1) the bytes of the header extend past the declared header size
2422 ** (zHdr>zEndHdr)
2423 ** (2) the entire header was used but not all data was used 2517 ** (2) the entire header was used but not all data was used
2424 ** (zHdr==zEndHdr && offset!=pC->payloadSize)
2425 ** (3) the end of the data extends beyond the end of the record. 2518 ** (3) the end of the data extends beyond the end of the record.
2426 ** (offset > pC->payloadSize)
2427 */ 2519 */
2428 if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset!=pC->payloadSize)) 2520 if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize))
2429 || (offset > pC->payloadSize) 2521 || (offset64 > pC->payloadSize)
2430 ){ 2522 ){
2431 rc = SQLITE_CORRUPT_BKPT; 2523 rc = SQLITE_CORRUPT_BKPT;
2432 goto op_column_error; 2524 goto op_column_error;
2433 } 2525 }
2526 }else{
2527 t = 0;
2434 } 2528 }
2435 2529
2436 /* If after trying to extra new entries from the header, nHdrParsed is 2530 /* If after trying to extract new entries from the header, nHdrParsed is
2437 ** still not up to p2, that means that the record has fewer than p2 2531 ** still not up to p2, that means that the record has fewer than p2
2438 ** columns. So the result will be either the default value or a NULL. 2532 ** columns. So the result will be either the default value or a NULL.
2439 */ 2533 */
2440 if( pC->nHdrParsed<=p2 ){ 2534 if( pC->nHdrParsed<=p2 ){
2441 if( pOp->p4type==P4_MEM ){ 2535 if( pOp->p4type==P4_MEM ){
2442 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static); 2536 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
2443 }else{ 2537 }else{
2444 sqlite3VdbeMemSetNull(pDest); 2538 sqlite3VdbeMemSetNull(pDest);
2445 } 2539 }
2446 goto op_column_out; 2540 goto op_column_out;
2447 } 2541 }
2542 }else{
2543 t = pC->aType[p2];
2448 } 2544 }
2449 2545
2450 /* Extract the content for the p2+1-th column. Control can only 2546 /* Extract the content for the p2+1-th column. Control can only
2451 ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are 2547 ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
2452 ** all valid. 2548 ** all valid.
2453 */ 2549 */
2454 assert( p2<pC->nHdrParsed ); 2550 assert( p2<pC->nHdrParsed );
2455 assert( rc==SQLITE_OK ); 2551 assert( rc==SQLITE_OK );
2456 assert( sqlite3VdbeCheckMemInvariants(pDest) ); 2552 assert( sqlite3VdbeCheckMemInvariants(pDest) );
2457 if( VdbeMemDynamic(pDest) ) sqlite3VdbeMemSetNull(pDest); 2553 if( VdbeMemDynamic(pDest) ) sqlite3VdbeMemSetNull(pDest);
2458 t = pC->aType[p2]; 2554 assert( t==pC->aType[p2] );
2459 if( pC->szRow>=aOffset[p2+1] ){ 2555 if( pC->szRow>=aOffset[p2+1] ){
2460 /* This is the common case where the desired content fits on the original 2556 /* This is the common case where the desired content fits on the original
2461 ** page - where the content is not on an overflow page */ 2557 ** page - where the content is not on an overflow page */
2462 sqlite3VdbeSerialGet(pC->aRow+aOffset[p2], t, pDest); 2558 sqlite3VdbeSerialGet(pC->aRow+aOffset[p2], t, pDest);
2463 }else{ 2559 }else{
2464 /* This branch happens only when content is on overflow pages */ 2560 /* This branch happens only when content is on overflow pages */
2465 if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0 2561 if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
2466 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0)) 2562 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0))
2467 || (len = sqlite3VdbeSerialTypeLen(t))==0 2563 || (len = sqlite3VdbeSerialTypeLen(t))==0
2468 ){ 2564 ){
(...skipping 73 matching lines...) Expand 10 before | Expand all | Expand 10 after
2542 ** use as a data record in a database table or as a key 2638 ** use as a data record in a database table or as a key
2543 ** in an index. The OP_Column opcode can decode the record later. 2639 ** in an index. The OP_Column opcode can decode the record later.
2544 ** 2640 **
2545 ** P4 may be a string that is P2 characters long. The nth character of the 2641 ** P4 may be a string that is P2 characters long. The nth character of the
2546 ** string indicates the column affinity that should be used for the nth 2642 ** string indicates the column affinity that should be used for the nth
2547 ** field of the index key. 2643 ** field of the index key.
2548 ** 2644 **
2549 ** The mapping from character to affinity is given by the SQLITE_AFF_ 2645 ** The mapping from character to affinity is given by the SQLITE_AFF_
2550 ** macros defined in sqliteInt.h. 2646 ** macros defined in sqliteInt.h.
2551 ** 2647 **
2552 ** If P4 is NULL then all index fields have the affinity NONE. 2648 ** If P4 is NULL then all index fields have the affinity BLOB.
2553 */ 2649 */
2554 case OP_MakeRecord: { 2650 case OP_MakeRecord: {
2555 u8 *zNewRecord; /* A buffer to hold the data for the new record */ 2651 u8 *zNewRecord; /* A buffer to hold the data for the new record */
2556 Mem *pRec; /* The new record */ 2652 Mem *pRec; /* The new record */
2557 u64 nData; /* Number of bytes of data space */ 2653 u64 nData; /* Number of bytes of data space */
2558 int nHdr; /* Number of bytes of header space */ 2654 int nHdr; /* Number of bytes of header space */
2559 i64 nByte; /* Data space required for this record */ 2655 i64 nByte; /* Data space required for this record */
2560 int nZero; /* Number of zero bytes at the end of the record */ 2656 i64 nZero; /* Number of zero bytes at the end of the record */
2561 int nVarint; /* Number of bytes in a varint */ 2657 int nVarint; /* Number of bytes in a varint */
2562 u32 serial_type; /* Type field */ 2658 u32 serial_type; /* Type field */
2563 Mem *pData0; /* First field to be combined into the record */ 2659 Mem *pData0; /* First field to be combined into the record */
2564 Mem *pLast; /* Last field of the record */ 2660 Mem *pLast; /* Last field of the record */
2565 int nField; /* Number of fields in the record */ 2661 int nField; /* Number of fields in the record */
2566 char *zAffinity; /* The affinity string for the record */ 2662 char *zAffinity; /* The affinity string for the record */
2567 int file_format; /* File format to use for encoding */ 2663 int file_format; /* File format to use for encoding */
2568 int i; /* Space used in zNewRecord[] header */ 2664 int i; /* Space used in zNewRecord[] header */
2569 int j; /* Space used in zNewRecord[] content */ 2665 int j; /* Space used in zNewRecord[] content */
2570 int len; /* Length of a field */ 2666 u32 len; /* Length of a field */
2571 2667
2572 /* Assuming the record contains N fields, the record format looks 2668 /* Assuming the record contains N fields, the record format looks
2573 ** like this: 2669 ** like this:
2574 ** 2670 **
2575 ** ------------------------------------------------------------------------ 2671 ** ------------------------------------------------------------------------
2576 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | 2672 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
2577 ** ------------------------------------------------------------------------ 2673 ** ------------------------------------------------------------------------
2578 ** 2674 **
2579 ** Data(0) is taken from register P1. Data(1) comes from register P1+1 2675 ** Data(0) is taken from register P1. Data(1) comes from register P1+1
2580 ** and so forth. 2676 ** and so forth.
(...skipping 29 matching lines...) Expand all
2610 assert( zAffinity[0]==0 || pRec<=pLast ); 2706 assert( zAffinity[0]==0 || pRec<=pLast );
2611 }while( zAffinity[0] ); 2707 }while( zAffinity[0] );
2612 } 2708 }
2613 2709
2614 /* Loop through the elements that will make up the record to figure 2710 /* Loop through the elements that will make up the record to figure
2615 ** out how much space is required for the new record. 2711 ** out how much space is required for the new record.
2616 */ 2712 */
2617 pRec = pLast; 2713 pRec = pLast;
2618 do{ 2714 do{
2619 assert( memIsValid(pRec) ); 2715 assert( memIsValid(pRec) );
2620 pRec->uTemp = serial_type = sqlite3VdbeSerialType(pRec, file_format); 2716 pRec->uTemp = serial_type = sqlite3VdbeSerialType(pRec, file_format, &len);
2621 len = sqlite3VdbeSerialTypeLen(serial_type);
2622 if( pRec->flags & MEM_Zero ){ 2717 if( pRec->flags & MEM_Zero ){
2623 if( nData ){ 2718 if( nData ){
2624 sqlite3VdbeMemExpandBlob(pRec); 2719 if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem;
2625 }else{ 2720 }else{
2626 nZero += pRec->u.nZero; 2721 nZero += pRec->u.nZero;
2627 len -= pRec->u.nZero; 2722 len -= pRec->u.nZero;
2628 } 2723 }
2629 } 2724 }
2630 nData += len; 2725 nData += len;
2631 testcase( serial_type==127 ); 2726 testcase( serial_type==127 );
2632 testcase( serial_type==128 ); 2727 testcase( serial_type==128 );
2633 nHdr += serial_type<=127 ? 1 : sqlite3VarintLen(serial_type); 2728 nHdr += serial_type<=127 ? 1 : sqlite3VarintLen(serial_type);
2634 }while( (--pRec)>=pData0 ); 2729 }while( (--pRec)>=pData0 );
2635 2730
2636 /* Add the initial header varint and total the size */ 2731 /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint
2732 ** which determines the total number of bytes in the header. The varint
2733 ** value is the size of the header in bytes including the size varint
2734 ** itself. */
2637 testcase( nHdr==126 ); 2735 testcase( nHdr==126 );
2638 testcase( nHdr==127 ); 2736 testcase( nHdr==127 );
2639 if( nHdr<=126 ){ 2737 if( nHdr<=126 ){
2640 /* The common case */ 2738 /* The common case */
2641 nHdr += 1; 2739 nHdr += 1;
2642 }else{ 2740 }else{
2643 /* Rare case of a really large header */ 2741 /* Rare case of a really large header */
2644 nVarint = sqlite3VarintLen(nHdr); 2742 nVarint = sqlite3VarintLen(nHdr);
2645 nHdr += nVarint; 2743 nHdr += nVarint;
2646 if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++; 2744 if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++;
2647 } 2745 }
2648 nByte = nHdr+nData; 2746 nByte = nHdr+nData;
2649 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 2747 if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){
2650 goto too_big; 2748 goto too_big;
2651 } 2749 }
2652 2750
2653 /* Make sure the output register has a buffer large enough to store 2751 /* Make sure the output register has a buffer large enough to store
2654 ** the new record. The output register (pOp->p3) is not allowed to 2752 ** the new record. The output register (pOp->p3) is not allowed to
2655 ** be one of the input registers (because the following call to 2753 ** be one of the input registers (because the following call to
2656 ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used). 2754 ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
2657 */ 2755 */
2658 if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){ 2756 if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){
2659 goto no_mem; 2757 goto no_mem;
2660 } 2758 }
2661 zNewRecord = (u8 *)pOut->z; 2759 zNewRecord = (u8 *)pOut->z;
2662 2760
2663 /* Write the record */ 2761 /* Write the record */
2664 i = putVarint32(zNewRecord, nHdr); 2762 i = putVarint32(zNewRecord, nHdr);
2665 j = nHdr; 2763 j = nHdr;
2666 assert( pData0<=pLast ); 2764 assert( pData0<=pLast );
2667 pRec = pData0; 2765 pRec = pData0;
2668 do{ 2766 do{
2669 serial_type = pRec->uTemp; 2767 serial_type = pRec->uTemp;
2768 /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more
2769 ** additional varints, one per column. */
2670 i += putVarint32(&zNewRecord[i], serial_type); /* serial type */ 2770 i += putVarint32(&zNewRecord[i], serial_type); /* serial type */
2771 /* EVIDENCE-OF: R-64536-51728 The values for each column in the record
2772 ** immediately follow the header. */
2671 j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */ 2773 j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */
2672 }while( (++pRec)<=pLast ); 2774 }while( (++pRec)<=pLast );
2673 assert( i==nHdr ); 2775 assert( i==nHdr );
2674 assert( j==nByte ); 2776 assert( j==nByte );
2675 2777
2676 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); 2778 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
2677 pOut->n = (int)nByte; 2779 pOut->n = (int)nByte;
2678 pOut->flags = MEM_Blob; 2780 pOut->flags = MEM_Blob;
2679 if( nZero ){ 2781 if( nZero ){
2680 pOut->u.nZero = nZero; 2782 pOut->u.nZero = nZero;
2681 pOut->flags |= MEM_Zero; 2783 pOut->flags |= MEM_Zero;
2682 } 2784 }
2683 pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */ 2785 pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */
2684 REGISTER_TRACE(pOp->p3, pOut); 2786 REGISTER_TRACE(pOp->p3, pOut);
2685 UPDATE_MAX_BLOBSIZE(pOut); 2787 UPDATE_MAX_BLOBSIZE(pOut);
2686 break; 2788 break;
2687 } 2789 }
2688 2790
2689 /* Opcode: Count P1 P2 * * * 2791 /* Opcode: Count P1 P2 * * *
2690 ** Synopsis: r[P2]=count() 2792 ** Synopsis: r[P2]=count()
2691 ** 2793 **
2692 ** Store the number of entries (an integer value) in the table or index 2794 ** Store the number of entries (an integer value) in the table or index
2693 ** opened by cursor P1 in register P2 2795 ** opened by cursor P1 in register P2
2694 */ 2796 */
2695 #ifndef SQLITE_OMIT_BTREECOUNT 2797 #ifndef SQLITE_OMIT_BTREECOUNT
2696 case OP_Count: { /* out2-prerelease */ 2798 case OP_Count: { /* out2 */
2697 i64 nEntry; 2799 i64 nEntry;
2698 BtCursor *pCrsr; 2800 BtCursor *pCrsr;
2699 2801
2700 pCrsr = p->apCsr[pOp->p1]->pCursor; 2802 assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE );
2803 pCrsr = p->apCsr[pOp->p1]->uc.pCursor;
2701 assert( pCrsr ); 2804 assert( pCrsr );
2702 nEntry = 0; /* Not needed. Only used to silence a warning. */ 2805 nEntry = 0; /* Not needed. Only used to silence a warning. */
2703 rc = sqlite3BtreeCount(pCrsr, &nEntry); 2806 rc = sqlite3BtreeCount(pCrsr, &nEntry);
2807 pOut = out2Prerelease(p, pOp);
2704 pOut->u.i = nEntry; 2808 pOut->u.i = nEntry;
2705 break; 2809 break;
2706 } 2810 }
2707 #endif 2811 #endif
2708 2812
2709 /* Opcode: Savepoint P1 * * P4 * 2813 /* Opcode: Savepoint P1 * * P4 *
2710 ** 2814 **
2711 ** Open, release or rollback the savepoint named by parameter P4, depending 2815 ** Open, release or rollback the savepoint named by parameter P4, depending
2712 ** on the value of P1. To open a new savepoint, P1==0. To release (commit) an 2816 ** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
2713 ** existing savepoint, P1==1, or to rollback an existing savepoint P1==2. 2817 ** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
(...skipping 18 matching lines...) Expand all
2732 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK ); 2836 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
2733 assert( db->pSavepoint || db->isTransactionSavepoint==0 ); 2837 assert( db->pSavepoint || db->isTransactionSavepoint==0 );
2734 assert( checkSavepointCount(db) ); 2838 assert( checkSavepointCount(db) );
2735 assert( p->bIsReader ); 2839 assert( p->bIsReader );
2736 2840
2737 if( p1==SAVEPOINT_BEGIN ){ 2841 if( p1==SAVEPOINT_BEGIN ){
2738 if( db->nVdbeWrite>0 ){ 2842 if( db->nVdbeWrite>0 ){
2739 /* A new savepoint cannot be created if there are active write 2843 /* A new savepoint cannot be created if there are active write
2740 ** statements (i.e. open read/write incremental blob handles). 2844 ** statements (i.e. open read/write incremental blob handles).
2741 */ 2845 */
2742 sqlite3SetString(&p->zErrMsg, db, "cannot open savepoint - " 2846 sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress");
2743 "SQL statements in progress");
2744 rc = SQLITE_BUSY; 2847 rc = SQLITE_BUSY;
2745 }else{ 2848 }else{
2746 nName = sqlite3Strlen30(zName); 2849 nName = sqlite3Strlen30(zName);
2747 2850
2748 #ifndef SQLITE_OMIT_VIRTUALTABLE 2851 #ifndef SQLITE_OMIT_VIRTUALTABLE
2749 /* This call is Ok even if this savepoint is actually a transaction 2852 /* This call is Ok even if this savepoint is actually a transaction
2750 ** savepoint (and therefore should not prompt xSavepoint()) callbacks. 2853 ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
2751 ** If this is a transaction savepoint being opened, it is guaranteed 2854 ** If this is a transaction savepoint being opened, it is guaranteed
2752 ** that the db->aVTrans[] array is empty. */ 2855 ** that the db->aVTrans[] array is empty. */
2753 assert( db->autoCommit==0 || db->nVTrans==0 ); 2856 assert( db->autoCommit==0 || db->nVTrans==0 );
(...skipping 30 matching lines...) Expand all
2784 /* Find the named savepoint. If there is no such savepoint, then an 2887 /* Find the named savepoint. If there is no such savepoint, then an
2785 ** an error is returned to the user. */ 2888 ** an error is returned to the user. */
2786 for( 2889 for(
2787 pSavepoint = db->pSavepoint; 2890 pSavepoint = db->pSavepoint;
2788 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName); 2891 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
2789 pSavepoint = pSavepoint->pNext 2892 pSavepoint = pSavepoint->pNext
2790 ){ 2893 ){
2791 iSavepoint++; 2894 iSavepoint++;
2792 } 2895 }
2793 if( !pSavepoint ){ 2896 if( !pSavepoint ){
2794 sqlite3SetString(&p->zErrMsg, db, "no such savepoint: %s", zName); 2897 sqlite3VdbeError(p, "no such savepoint: %s", zName);
2795 rc = SQLITE_ERROR; 2898 rc = SQLITE_ERROR;
2796 }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){ 2899 }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){
2797 /* It is not possible to release (commit) a savepoint if there are 2900 /* It is not possible to release (commit) a savepoint if there are
2798 ** active write statements. 2901 ** active write statements.
2799 */ 2902 */
2800 sqlite3SetString(&p->zErrMsg, db, 2903 sqlite3VdbeError(p, "cannot release savepoint - "
2801 "cannot release savepoint - SQL statements in progress" 2904 "SQL statements in progress");
2802 );
2803 rc = SQLITE_BUSY; 2905 rc = SQLITE_BUSY;
2804 }else{ 2906 }else{
2805 2907
2806 /* Determine whether or not this is a transaction savepoint. If so, 2908 /* Determine whether or not this is a transaction savepoint. If so,
2807 ** and this is a RELEASE command, then the current transaction 2909 ** and this is a RELEASE command, then the current transaction
2808 ** is committed. 2910 ** is committed.
2809 */ 2911 */
2810 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint; 2912 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
2811 if( isTransaction && p1==SAVEPOINT_RELEASE ){ 2913 if( isTransaction && p1==SAVEPOINT_RELEASE ){
2812 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 2914 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
2813 goto vdbe_return; 2915 goto vdbe_return;
2814 } 2916 }
2815 db->autoCommit = 1; 2917 db->autoCommit = 1;
2816 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 2918 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
2817 p->pc = pc; 2919 p->pc = (int)(pOp - aOp);
2818 db->autoCommit = 0; 2920 db->autoCommit = 0;
2819 p->rc = rc = SQLITE_BUSY; 2921 p->rc = rc = SQLITE_BUSY;
2820 goto vdbe_return; 2922 goto vdbe_return;
2821 } 2923 }
2822 db->isTransactionSavepoint = 0; 2924 db->isTransactionSavepoint = 0;
2823 rc = p->rc; 2925 rc = p->rc;
2824 }else{ 2926 }else{
2825 int isSchemaChange; 2927 int isSchemaChange;
2826 iSavepoint = db->nSavepoint - iSavepoint - 1; 2928 iSavepoint = db->nSavepoint - iSavepoint - 1;
2827 if( p1==SAVEPOINT_ROLLBACK ){ 2929 if( p1==SAVEPOINT_ROLLBACK ){
(...skipping 38 matching lines...) Expand 10 before | Expand all | Expand 10 after
2866 db->pSavepoint = pSavepoint->pNext; 2968 db->pSavepoint = pSavepoint->pNext;
2867 sqlite3DbFree(db, pSavepoint); 2969 sqlite3DbFree(db, pSavepoint);
2868 if( !isTransaction ){ 2970 if( !isTransaction ){
2869 db->nSavepoint--; 2971 db->nSavepoint--;
2870 } 2972 }
2871 }else{ 2973 }else{
2872 db->nDeferredCons = pSavepoint->nDeferredCons; 2974 db->nDeferredCons = pSavepoint->nDeferredCons;
2873 db->nDeferredImmCons = pSavepoint->nDeferredImmCons; 2975 db->nDeferredImmCons = pSavepoint->nDeferredImmCons;
2874 } 2976 }
2875 2977
2876 if( !isTransaction ){ 2978 if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){
2877 rc = sqlite3VtabSavepoint(db, p1, iSavepoint); 2979 rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
2878 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2980 if( rc!=SQLITE_OK ) goto abort_due_to_error;
2879 } 2981 }
2880 } 2982 }
2881 } 2983 }
2882 2984
2883 break; 2985 break;
2884 } 2986 }
2885 2987
2886 /* Opcode: AutoCommit P1 P2 * * * 2988 /* Opcode: AutoCommit P1 P2 * * *
(...skipping 11 matching lines...) Expand all
2898 int turnOnAC; 3000 int turnOnAC;
2899 3001
2900 desiredAutoCommit = pOp->p1; 3002 desiredAutoCommit = pOp->p1;
2901 iRollback = pOp->p2; 3003 iRollback = pOp->p2;
2902 turnOnAC = desiredAutoCommit && !db->autoCommit; 3004 turnOnAC = desiredAutoCommit && !db->autoCommit;
2903 assert( desiredAutoCommit==1 || desiredAutoCommit==0 ); 3005 assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
2904 assert( desiredAutoCommit==1 || iRollback==0 ); 3006 assert( desiredAutoCommit==1 || iRollback==0 );
2905 assert( db->nVdbeActive>0 ); /* At least this one VM is active */ 3007 assert( db->nVdbeActive>0 ); /* At least this one VM is active */
2906 assert( p->bIsReader ); 3008 assert( p->bIsReader );
2907 3009
2908 #if 0
2909 if( turnOnAC && iRollback && db->nVdbeActive>1 ){
2910 /* If this instruction implements a ROLLBACK and other VMs are
2911 ** still running, and a transaction is active, return an error indicating
2912 ** that the other VMs must complete first.
2913 */
2914 sqlite3SetString(&p->zErrMsg, db, "cannot rollback transaction - "
2915 "SQL statements in progress");
2916 rc = SQLITE_BUSY;
2917 }else
2918 #endif
2919 if( turnOnAC && !iRollback && db->nVdbeWrite>0 ){ 3010 if( turnOnAC && !iRollback && db->nVdbeWrite>0 ){
2920 /* If this instruction implements a COMMIT and other VMs are writing 3011 /* If this instruction implements a COMMIT and other VMs are writing
2921 ** return an error indicating that the other VMs must complete first. 3012 ** return an error indicating that the other VMs must complete first.
2922 */ 3013 */
2923 sqlite3SetString(&p->zErrMsg, db, "cannot commit transaction - " 3014 sqlite3VdbeError(p, "cannot commit transaction - "
2924 "SQL statements in progress"); 3015 "SQL statements in progress");
2925 rc = SQLITE_BUSY; 3016 rc = SQLITE_BUSY;
2926 }else if( desiredAutoCommit!=db->autoCommit ){ 3017 }else if( desiredAutoCommit!=db->autoCommit ){
2927 if( iRollback ){ 3018 if( iRollback ){
2928 assert( desiredAutoCommit==1 ); 3019 assert( desiredAutoCommit==1 );
2929 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 3020 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
2930 db->autoCommit = 1; 3021 db->autoCommit = 1;
2931 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 3022 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
2932 goto vdbe_return; 3023 goto vdbe_return;
2933 }else{ 3024 }else{
2934 db->autoCommit = (u8)desiredAutoCommit; 3025 db->autoCommit = (u8)desiredAutoCommit;
2935 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 3026 }
2936 p->pc = pc; 3027 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
2937 db->autoCommit = (u8)(1-desiredAutoCommit); 3028 p->pc = (int)(pOp - aOp);
2938 p->rc = rc = SQLITE_BUSY; 3029 db->autoCommit = (u8)(1-desiredAutoCommit);
2939 goto vdbe_return; 3030 p->rc = rc = SQLITE_BUSY;
2940 } 3031 goto vdbe_return;
2941 } 3032 }
2942 assert( db->nStatement==0 ); 3033 assert( db->nStatement==0 );
2943 sqlite3CloseSavepoints(db); 3034 sqlite3CloseSavepoints(db);
2944 if( p->rc==SQLITE_OK ){ 3035 if( p->rc==SQLITE_OK ){
2945 rc = SQLITE_DONE; 3036 rc = SQLITE_DONE;
2946 }else{ 3037 }else{
2947 rc = SQLITE_ERROR; 3038 rc = SQLITE_ERROR;
2948 } 3039 }
2949 goto vdbe_return; 3040 goto vdbe_return;
2950 }else{ 3041 }else{
2951 sqlite3SetString(&p->zErrMsg, db, 3042 sqlite3VdbeError(p,
2952 (!desiredAutoCommit)?"cannot start a transaction within a transaction":( 3043 (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
2953 (iRollback)?"cannot rollback - no transaction is active": 3044 (iRollback)?"cannot rollback - no transaction is active":
2954 "cannot commit - no transaction is active")); 3045 "cannot commit - no transaction is active"));
2955 3046
2956 rc = SQLITE_ERROR; 3047 rc = SQLITE_ERROR;
2957 } 3048 }
2958 break; 3049 break;
2959 } 3050 }
2960 3051
2961 /* Opcode: Transaction P1 P2 P3 P4 P5 3052 /* Opcode: Transaction P1 P2 P3 P4 P5
(...skipping 40 matching lines...) Expand 10 before | Expand all | Expand 10 after
3002 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 3093 assert( pOp->p1>=0 && pOp->p1<db->nDb );
3003 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 3094 assert( DbMaskTest(p->btreeMask, pOp->p1) );
3004 if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){ 3095 if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){
3005 rc = SQLITE_READONLY; 3096 rc = SQLITE_READONLY;
3006 goto abort_due_to_error; 3097 goto abort_due_to_error;
3007 } 3098 }
3008 pBt = db->aDb[pOp->p1].pBt; 3099 pBt = db->aDb[pOp->p1].pBt;
3009 3100
3010 if( pBt ){ 3101 if( pBt ){
3011 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2); 3102 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
3012 if( rc==SQLITE_BUSY ){ 3103 testcase( rc==SQLITE_BUSY_SNAPSHOT );
3013 p->pc = pc; 3104 testcase( rc==SQLITE_BUSY_RECOVERY );
3014 p->rc = rc = SQLITE_BUSY; 3105 if( (rc&0xff)==SQLITE_BUSY ){
3106 p->pc = (int)(pOp - aOp);
3107 p->rc = rc;
3015 goto vdbe_return; 3108 goto vdbe_return;
3016 } 3109 }
3017 if( rc!=SQLITE_OK ){ 3110 if( rc!=SQLITE_OK ){
3018 goto abort_due_to_error; 3111 goto abort_due_to_error;
3019 } 3112 }
3020 3113
3021 if( pOp->p2 && p->usesStmtJournal 3114 if( pOp->p2 && p->usesStmtJournal
3022 && (db->autoCommit==0 || db->nVdbeRead>1) 3115 && (db->autoCommit==0 || db->nVdbeRead>1)
3023 ){ 3116 ){
3024 assert( sqlite3BtreeIsInTrans(pBt) ); 3117 assert( sqlite3BtreeIsInTrans(pBt) );
3025 if( p->iStatement==0 ){ 3118 if( p->iStatement==0 ){
3026 assert( db->nStatement>=0 && db->nSavepoint>=0 ); 3119 assert( db->nStatement>=0 && db->nSavepoint>=0 );
3027 db->nStatement++; 3120 db->nStatement++;
3028 p->iStatement = db->nSavepoint + db->nStatement; 3121 p->iStatement = db->nSavepoint + db->nStatement;
3029 } 3122 }
3030 3123
3031 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1); 3124 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
3032 if( rc==SQLITE_OK ){ 3125 if( rc==SQLITE_OK ){
3033 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement); 3126 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
3034 } 3127 }
3035 3128
3036 /* Store the current value of the database handles deferred constraint 3129 /* Store the current value of the database handles deferred constraint
3037 ** counter. If the statement transaction needs to be rolled back, 3130 ** counter. If the statement transaction needs to be rolled back,
3038 ** the value of this counter needs to be restored too. */ 3131 ** the value of this counter needs to be restored too. */
3039 p->nStmtDefCons = db->nDeferredCons; 3132 p->nStmtDefCons = db->nDeferredCons;
3040 p->nStmtDefImmCons = db->nDeferredImmCons; 3133 p->nStmtDefImmCons = db->nDeferredImmCons;
3041 } 3134 }
3042 3135
3043 /* Gather the schema version number for checking */ 3136 /* Gather the schema version number for checking:
3137 ** IMPLEMENTATION-OF: R-32195-19465 The schema version is used by SQLite
3138 ** each time a query is executed to ensure that the internal cache of the
3139 ** schema used when compiling the SQL query matches the schema of the
3140 ** database against which the compiled query is actually executed.
3141 */
3044 sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta); 3142 sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta);
3045 iGen = db->aDb[pOp->p1].pSchema->iGeneration; 3143 iGen = db->aDb[pOp->p1].pSchema->iGeneration;
3046 }else{ 3144 }else{
3047 iGen = iMeta = 0; 3145 iGen = iMeta = 0;
3048 } 3146 }
3049 assert( pOp->p5==0 || pOp->p4type==P4_INT32 ); 3147 assert( pOp->p5==0 || pOp->p4type==P4_INT32 );
3050 if( pOp->p5 && (iMeta!=pOp->p3 || iGen!=pOp->p4.i) ){ 3148 if( pOp->p5 && (iMeta!=pOp->p3 || iGen!=pOp->p4.i) ){
3051 sqlite3DbFree(db, p->zErrMsg); 3149 sqlite3DbFree(db, p->zErrMsg);
3052 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed"); 3150 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
3053 /* If the schema-cookie from the database file matches the cookie 3151 /* If the schema-cookie from the database file matches the cookie
(...skipping 23 matching lines...) Expand all
3077 ** Read cookie number P3 from database P1 and write it into register P2. 3175 ** Read cookie number P3 from database P1 and write it into register P2.
3078 ** P3==1 is the schema version. P3==2 is the database format. 3176 ** P3==1 is the schema version. P3==2 is the database format.
3079 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is 3177 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is
3080 ** the main database file and P1==1 is the database file used to store 3178 ** the main database file and P1==1 is the database file used to store
3081 ** temporary tables. 3179 ** temporary tables.
3082 ** 3180 **
3083 ** There must be a read-lock on the database (either a transaction 3181 ** There must be a read-lock on the database (either a transaction
3084 ** must be started or there must be an open cursor) before 3182 ** must be started or there must be an open cursor) before
3085 ** executing this instruction. 3183 ** executing this instruction.
3086 */ 3184 */
3087 case OP_ReadCookie: { /* out2-prerelease */ 3185 case OP_ReadCookie: { /* out2 */
3088 int iMeta; 3186 int iMeta;
3089 int iDb; 3187 int iDb;
3090 int iCookie; 3188 int iCookie;
3091 3189
3092 assert( p->bIsReader ); 3190 assert( p->bIsReader );
3093 iDb = pOp->p1; 3191 iDb = pOp->p1;
3094 iCookie = pOp->p3; 3192 iCookie = pOp->p3;
3095 assert( pOp->p3<SQLITE_N_BTREE_META ); 3193 assert( pOp->p3<SQLITE_N_BTREE_META );
3096 assert( iDb>=0 && iDb<db->nDb ); 3194 assert( iDb>=0 && iDb<db->nDb );
3097 assert( db->aDb[iDb].pBt!=0 ); 3195 assert( db->aDb[iDb].pBt!=0 );
3098 assert( DbMaskTest(p->btreeMask, iDb) ); 3196 assert( DbMaskTest(p->btreeMask, iDb) );
3099 3197
3100 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta); 3198 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
3199 pOut = out2Prerelease(p, pOp);
3101 pOut->u.i = iMeta; 3200 pOut->u.i = iMeta;
3102 break; 3201 break;
3103 } 3202 }
3104 3203
3105 /* Opcode: SetCookie P1 P2 P3 * * 3204 /* Opcode: SetCookie P1 P2 P3 * *
3106 ** 3205 **
3107 ** Write the content of register P3 (interpreted as an integer) 3206 ** Write the content of register P3 (interpreted as an integer)
3108 ** into cookie number P2 of database P1. P2==1 is the schema version. 3207 ** into cookie number P2 of database P1. P2==1 is the schema version.
3109 ** P2==2 is the database format. P2==3 is the recommended pager cache 3208 ** P2==2 is the database format. P2==3 is the recommended pager cache
3110 ** size, and so forth. P1==0 is the main database file and P1==1 is the 3209 ** size, and so forth. P1==0 is the main database file and P1==1 is the
(...skipping 90 matching lines...) Expand 10 before | Expand all | Expand 10 after
3201 ** value, it is set to the number of columns in the table, or to the 3300 ** value, it is set to the number of columns in the table, or to the
3202 ** largest index of any column of the table that is actually used. 3301 ** largest index of any column of the table that is actually used.
3203 ** 3302 **
3204 ** This instruction works just like OpenRead except that it opens the cursor 3303 ** This instruction works just like OpenRead except that it opens the cursor
3205 ** in read/write mode. For a given table, there can be one or more read-only 3304 ** in read/write mode. For a given table, there can be one or more read-only
3206 ** cursors or a single read/write cursor but not both. 3305 ** cursors or a single read/write cursor but not both.
3207 ** 3306 **
3208 ** See also OpenRead. 3307 ** See also OpenRead.
3209 */ 3308 */
3210 case OP_ReopenIdx: { 3309 case OP_ReopenIdx: {
3211 VdbeCursor *pCur;
3212
3213 assert( pOp->p5==0 );
3214 assert( pOp->p4type==P4_KEYINFO );
3215 pCur = p->apCsr[pOp->p1];
3216 if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){
3217 assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */
3218 break;
3219 }
3220 /* If the cursor is not currently open or is open on a different
3221 ** index, then fall through into OP_OpenRead to force a reopen */
3222 }
3223 case OP_OpenRead:
3224 case OP_OpenWrite: {
3225 int nField; 3310 int nField;
3226 KeyInfo *pKeyInfo; 3311 KeyInfo *pKeyInfo;
3227 int p2; 3312 int p2;
3228 int iDb; 3313 int iDb;
3229 int wrFlag; 3314 int wrFlag;
3230 Btree *pX; 3315 Btree *pX;
3231 VdbeCursor *pCur; 3316 VdbeCursor *pCur;
3232 Db *pDb; 3317 Db *pDb;
3233 3318
3234 assert( (pOp->p5&(OPFLAG_P2ISREG|OPFLAG_BULKCSR))==pOp->p5 ); 3319 assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
3235 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 ); 3320 assert( pOp->p4type==P4_KEYINFO );
3321 pCur = p->apCsr[pOp->p1];
3322 if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){
3323 assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */
3324 goto open_cursor_set_hints;
3325 }
3326 /* If the cursor is not currently open or is open on a different
3327 ** index, then fall through into OP_OpenRead to force a reopen */
3328 case OP_OpenRead:
3329 case OP_OpenWrite:
3330
3331 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
3236 assert( p->bIsReader ); 3332 assert( p->bIsReader );
3237 assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx 3333 assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx
3238 || p->readOnly==0 ); 3334 || p->readOnly==0 );
3239 3335
3240 if( p->expired ){ 3336 if( p->expired ){
3241 rc = SQLITE_ABORT_ROLLBACK; 3337 rc = SQLITE_ABORT_ROLLBACK;
3242 break; 3338 break;
3243 } 3339 }
3244 3340
3245 nField = 0; 3341 nField = 0;
3246 pKeyInfo = 0; 3342 pKeyInfo = 0;
3247 p2 = pOp->p2; 3343 p2 = pOp->p2;
3248 iDb = pOp->p3; 3344 iDb = pOp->p3;
3249 assert( iDb>=0 && iDb<db->nDb ); 3345 assert( iDb>=0 && iDb<db->nDb );
3250 assert( DbMaskTest(p->btreeMask, iDb) ); 3346 assert( DbMaskTest(p->btreeMask, iDb) );
3251 pDb = &db->aDb[iDb]; 3347 pDb = &db->aDb[iDb];
3252 pX = pDb->pBt; 3348 pX = pDb->pBt;
3253 assert( pX!=0 ); 3349 assert( pX!=0 );
3254 if( pOp->opcode==OP_OpenWrite ){ 3350 if( pOp->opcode==OP_OpenWrite ){
3255 wrFlag = 1; 3351 assert( OPFLAG_FORDELETE==BTREE_FORDELETE );
3352 wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE);
3256 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3353 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3257 if( pDb->pSchema->file_format < p->minWriteFileFormat ){ 3354 if( pDb->pSchema->file_format < p->minWriteFileFormat ){
3258 p->minWriteFileFormat = pDb->pSchema->file_format; 3355 p->minWriteFileFormat = pDb->pSchema->file_format;
3259 } 3356 }
3260 }else{ 3357 }else{
3261 wrFlag = 0; 3358 wrFlag = 0;
3262 } 3359 }
3263 if( pOp->p5 & OPFLAG_P2ISREG ){ 3360 if( pOp->p5 & OPFLAG_P2ISREG ){
3264 assert( p2>0 ); 3361 assert( p2>0 );
3265 assert( p2<=(p->nMem-p->nCursor) ); 3362 assert( p2<=(p->nMem-p->nCursor) );
(...skipping 15 matching lines...) Expand all
3281 pKeyInfo = pOp->p4.pKeyInfo; 3378 pKeyInfo = pOp->p4.pKeyInfo;
3282 assert( pKeyInfo->enc==ENC(db) ); 3379 assert( pKeyInfo->enc==ENC(db) );
3283 assert( pKeyInfo->db==db ); 3380 assert( pKeyInfo->db==db );
3284 nField = pKeyInfo->nField+pKeyInfo->nXField; 3381 nField = pKeyInfo->nField+pKeyInfo->nXField;
3285 }else if( pOp->p4type==P4_INT32 ){ 3382 }else if( pOp->p4type==P4_INT32 ){
3286 nField = pOp->p4.i; 3383 nField = pOp->p4.i;
3287 } 3384 }
3288 assert( pOp->p1>=0 ); 3385 assert( pOp->p1>=0 );
3289 assert( nField>=0 ); 3386 assert( nField>=0 );
3290 testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */ 3387 testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */
3291 pCur = allocateCursor(p, pOp->p1, nField, iDb, 1); 3388 pCur = allocateCursor(p, pOp->p1, nField, iDb, CURTYPE_BTREE);
3292 if( pCur==0 ) goto no_mem; 3389 if( pCur==0 ) goto no_mem;
3293 pCur->nullRow = 1; 3390 pCur->nullRow = 1;
3294 pCur->isOrdered = 1; 3391 pCur->isOrdered = 1;
3295 pCur->pgnoRoot = p2; 3392 pCur->pgnoRoot = p2;
3296 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor); 3393 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor);
3297 pCur->pKeyInfo = pKeyInfo; 3394 pCur->pKeyInfo = pKeyInfo;
3298 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
3299 sqlite3BtreeCursorHints(pCur->pCursor, (pOp->p5 & OPFLAG_BULKCSR));
3300
3301 /* Set the VdbeCursor.isTable variable. Previous versions of 3395 /* Set the VdbeCursor.isTable variable. Previous versions of
3302 ** SQLite used to check if the root-page flags were sane at this point 3396 ** SQLite used to check if the root-page flags were sane at this point
3303 ** and report database corruption if they were not, but this check has 3397 ** and report database corruption if they were not, but this check has
3304 ** since moved into the btree layer. */ 3398 ** since moved into the btree layer. */
3305 pCur->isTable = pOp->p4type!=P4_KEYINFO; 3399 pCur->isTable = pOp->p4type!=P4_KEYINFO;
3400
3401 open_cursor_set_hints:
3402 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
3403 assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ );
3404 testcase( pOp->p5 & OPFLAG_BULKCSR );
3405 #ifdef SQLITE_ENABLE_CURSOR_HINTS
3406 testcase( pOp->p2 & OPFLAG_SEEKEQ );
3407 #endif
3408 sqlite3BtreeCursorHintFlags(pCur->uc.pCursor,
3409 (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ)));
3306 break; 3410 break;
3307 } 3411 }
3308 3412
3309 /* Opcode: OpenEphemeral P1 P2 * P4 P5 3413 /* Opcode: OpenEphemeral P1 P2 * P4 P5
3310 ** Synopsis: nColumn=P2 3414 ** Synopsis: nColumn=P2
3311 ** 3415 **
3312 ** Open a new cursor P1 to a transient table. 3416 ** Open a new cursor P1 to a transient table.
3313 ** The cursor is always opened read/write even if 3417 ** The cursor is always opened read/write even if
3314 ** the main database is read-only. The ephemeral 3418 ** the main database is read-only. The ephemeral
3315 ** table is deleted automatically when the cursor is closed. 3419 ** table is deleted automatically when the cursor is closed.
(...skipping 22 matching lines...) Expand all
3338 KeyInfo *pKeyInfo; 3442 KeyInfo *pKeyInfo;
3339 3443
3340 static const int vfsFlags = 3444 static const int vfsFlags =
3341 SQLITE_OPEN_READWRITE | 3445 SQLITE_OPEN_READWRITE |
3342 SQLITE_OPEN_CREATE | 3446 SQLITE_OPEN_CREATE |
3343 SQLITE_OPEN_EXCLUSIVE | 3447 SQLITE_OPEN_EXCLUSIVE |
3344 SQLITE_OPEN_DELETEONCLOSE | 3448 SQLITE_OPEN_DELETEONCLOSE |
3345 SQLITE_OPEN_TRANSIENT_DB; 3449 SQLITE_OPEN_TRANSIENT_DB;
3346 assert( pOp->p1>=0 ); 3450 assert( pOp->p1>=0 );
3347 assert( pOp->p2>=0 ); 3451 assert( pOp->p2>=0 );
3348 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1); 3452 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_BTREE);
3349 if( pCx==0 ) goto no_mem; 3453 if( pCx==0 ) goto no_mem;
3350 pCx->nullRow = 1; 3454 pCx->nullRow = 1;
3351 pCx->isEphemeral = 1; 3455 pCx->isEphemeral = 1;
3352 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBt, 3456 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBt,
3353 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags); 3457 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags);
3354 if( rc==SQLITE_OK ){ 3458 if( rc==SQLITE_OK ){
3355 rc = sqlite3BtreeBeginTrans(pCx->pBt, 1); 3459 rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
3356 } 3460 }
3357 if( rc==SQLITE_OK ){ 3461 if( rc==SQLITE_OK ){
3358 /* If a transient index is required, create it by calling 3462 /* If a transient index is required, create it by calling
3359 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before 3463 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
3360 ** opening it. If a transient table is required, just use the 3464 ** opening it. If a transient table is required, just use the
3361 ** automatically created table with root-page 1 (an BLOB_INTKEY table). 3465 ** automatically created table with root-page 1 (an BLOB_INTKEY table).
3362 */ 3466 */
3363 if( (pKeyInfo = pOp->p4.pKeyInfo)!=0 ){ 3467 if( (pKeyInfo = pOp->p4.pKeyInfo)!=0 ){
3364 int pgno; 3468 int pgno;
3365 assert( pOp->p4type==P4_KEYINFO ); 3469 assert( pOp->p4type==P4_KEYINFO );
3366 rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY | pOp->p5); 3470 rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY | pOp->p5);
3367 if( rc==SQLITE_OK ){ 3471 if( rc==SQLITE_OK ){
3368 assert( pgno==MASTER_ROOT+1 ); 3472 assert( pgno==MASTER_ROOT+1 );
3369 assert( pKeyInfo->db==db ); 3473 assert( pKeyInfo->db==db );
3370 assert( pKeyInfo->enc==ENC(db) ); 3474 assert( pKeyInfo->enc==ENC(db) );
3371 pCx->pKeyInfo = pKeyInfo; 3475 pCx->pKeyInfo = pKeyInfo;
3372 rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1, pKeyInfo, pCx->pCursor); 3476 rc = sqlite3BtreeCursor(pCx->pBt, pgno, BTREE_WRCSR,
3477 pKeyInfo, pCx->uc.pCursor);
3373 } 3478 }
3374 pCx->isTable = 0; 3479 pCx->isTable = 0;
3375 }else{ 3480 }else{
3376 rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor); 3481 rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, BTREE_WRCSR,
3482 0, pCx->uc.pCursor);
3377 pCx->isTable = 1; 3483 pCx->isTable = 1;
3378 } 3484 }
3379 } 3485 }
3380 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED); 3486 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
3381 break; 3487 break;
3382 } 3488 }
3383 3489
3384 /* Opcode: SorterOpen P1 P2 P3 P4 * 3490 /* Opcode: SorterOpen P1 P2 P3 P4 *
3385 ** 3491 **
3386 ** This opcode works like OP_OpenEphemeral except that it opens 3492 ** This opcode works like OP_OpenEphemeral except that it opens
3387 ** a transient index that is specifically designed to sort large 3493 ** a transient index that is specifically designed to sort large
3388 ** tables using an external merge-sort algorithm. 3494 ** tables using an external merge-sort algorithm.
3389 ** 3495 **
3390 ** If argument P3 is non-zero, then it indicates that the sorter may 3496 ** If argument P3 is non-zero, then it indicates that the sorter may
3391 ** assume that a stable sort considering the first P3 fields of each 3497 ** assume that a stable sort considering the first P3 fields of each
3392 ** key is sufficient to produce the required results. 3498 ** key is sufficient to produce the required results.
3393 */ 3499 */
3394 case OP_SorterOpen: { 3500 case OP_SorterOpen: {
3395 VdbeCursor *pCx; 3501 VdbeCursor *pCx;
3396 3502
3397 assert( pOp->p1>=0 ); 3503 assert( pOp->p1>=0 );
3398 assert( pOp->p2>=0 ); 3504 assert( pOp->p2>=0 );
3399 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1); 3505 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_SORTER);
3400 if( pCx==0 ) goto no_mem; 3506 if( pCx==0 ) goto no_mem;
3401 pCx->pKeyInfo = pOp->p4.pKeyInfo; 3507 pCx->pKeyInfo = pOp->p4.pKeyInfo;
3402 assert( pCx->pKeyInfo->db==db ); 3508 assert( pCx->pKeyInfo->db==db );
3403 assert( pCx->pKeyInfo->enc==ENC(db) ); 3509 assert( pCx->pKeyInfo->enc==ENC(db) );
3404 rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx); 3510 rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx);
3405 break; 3511 break;
3406 } 3512 }
3407 3513
3408 /* Opcode: SequenceTest P1 P2 * * * 3514 /* Opcode: SequenceTest P1 P2 * * *
3409 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2 3515 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2
3410 ** 3516 **
3411 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump 3517 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump
3412 ** to P2. Regardless of whether or not the jump is taken, increment the 3518 ** to P2. Regardless of whether or not the jump is taken, increment the
3413 ** the sequence value. 3519 ** the sequence value.
3414 */ 3520 */
3415 case OP_SequenceTest: { 3521 case OP_SequenceTest: {
3416 VdbeCursor *pC; 3522 VdbeCursor *pC;
3417 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3523 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3418 pC = p->apCsr[pOp->p1]; 3524 pC = p->apCsr[pOp->p1];
3419 assert( pC->pSorter ); 3525 assert( isSorter(pC) );
3420 if( (pC->seqCount++)==0 ){ 3526 if( (pC->seqCount++)==0 ){
3421 pc = pOp->p2 - 1; 3527 goto jump_to_p2;
3422 } 3528 }
3423 break; 3529 break;
3424 } 3530 }
3425 3531
3426 /* Opcode: OpenPseudo P1 P2 P3 * * 3532 /* Opcode: OpenPseudo P1 P2 P3 * *
3427 ** Synopsis: P3 columns in r[P2] 3533 ** Synopsis: P3 columns in r[P2]
3428 ** 3534 **
3429 ** Open a new cursor that points to a fake table that contains a single 3535 ** Open a new cursor that points to a fake table that contains a single
3430 ** row of data. The content of that one row is the content of memory 3536 ** row of data. The content of that one row is the content of memory
3431 ** register P2. In other words, cursor P1 becomes an alias for the 3537 ** register P2. In other words, cursor P1 becomes an alias for the
3432 ** MEM_Blob content contained in register P2. 3538 ** MEM_Blob content contained in register P2.
3433 ** 3539 **
3434 ** A pseudo-table created by this opcode is used to hold a single 3540 ** A pseudo-table created by this opcode is used to hold a single
3435 ** row output from the sorter so that the row can be decomposed into 3541 ** row output from the sorter so that the row can be decomposed into
3436 ** individual columns using the OP_Column opcode. The OP_Column opcode 3542 ** individual columns using the OP_Column opcode. The OP_Column opcode
3437 ** is the only cursor opcode that works with a pseudo-table. 3543 ** is the only cursor opcode that works with a pseudo-table.
3438 ** 3544 **
3439 ** P3 is the number of fields in the records that will be stored by 3545 ** P3 is the number of fields in the records that will be stored by
3440 ** the pseudo-table. 3546 ** the pseudo-table.
3441 */ 3547 */
3442 case OP_OpenPseudo: { 3548 case OP_OpenPseudo: {
3443 VdbeCursor *pCx; 3549 VdbeCursor *pCx;
3444 3550
3445 assert( pOp->p1>=0 ); 3551 assert( pOp->p1>=0 );
3446 assert( pOp->p3>=0 ); 3552 assert( pOp->p3>=0 );
3447 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, 0); 3553 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, CURTYPE_PSEUDO);
3448 if( pCx==0 ) goto no_mem; 3554 if( pCx==0 ) goto no_mem;
3449 pCx->nullRow = 1; 3555 pCx->nullRow = 1;
3450 pCx->pseudoTableReg = pOp->p2; 3556 pCx->uc.pseudoTableReg = pOp->p2;
3451 pCx->isTable = 1; 3557 pCx->isTable = 1;
3452 assert( pOp->p5==0 ); 3558 assert( pOp->p5==0 );
3453 break; 3559 break;
3454 } 3560 }
3455 3561
3456 /* Opcode: Close P1 * * * * 3562 /* Opcode: Close P1 * * * *
3457 ** 3563 **
3458 ** Close a cursor previously opened as P1. If P1 is not 3564 ** Close a cursor previously opened as P1. If P1 is not
3459 ** currently open, this instruction is a no-op. 3565 ** currently open, this instruction is a no-op.
3460 */ 3566 */
3461 case OP_Close: { 3567 case OP_Close: {
3462 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3568 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3463 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]); 3569 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
3464 p->apCsr[pOp->p1] = 0; 3570 p->apCsr[pOp->p1] = 0;
3465 break; 3571 break;
3466 } 3572 }
3467 3573
3574 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
3575 /* Opcode: ColumnsUsed P1 * * P4 *
3576 **
3577 ** This opcode (which only exists if SQLite was compiled with
3578 ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the
3579 ** table or index for cursor P1 are used. P4 is a 64-bit integer
3580 ** (P4_INT64) in which the first 63 bits are one for each of the
3581 ** first 63 columns of the table or index that are actually used
3582 ** by the cursor. The high-order bit is set if any column after
3583 ** the 64th is used.
3584 */
3585 case OP_ColumnsUsed: {
3586 VdbeCursor *pC;
3587 pC = p->apCsr[pOp->p1];
3588 assert( pC->eCurType==CURTYPE_BTREE );
3589 pC->maskUsed = *(u64*)pOp->p4.pI64;
3590 break;
3591 }
3592 #endif
3593
3468 /* Opcode: SeekGE P1 P2 P3 P4 * 3594 /* Opcode: SeekGE P1 P2 P3 P4 *
3469 ** Synopsis: key=r[P3@P4] 3595 ** Synopsis: key=r[P3@P4]
3470 ** 3596 **
3471 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3597 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3472 ** use the value in register P3 as the key. If cursor P1 refers 3598 ** use the value in register P3 as the key. If cursor P1 refers
3473 ** to an SQL index, then P3 is the first in an array of P4 registers 3599 ** to an SQL index, then P3 is the first in an array of P4 registers
3474 ** that are used as an unpacked index key. 3600 ** that are used as an unpacked index key.
3475 ** 3601 **
3476 ** Reposition cursor P1 so that it points to the smallest entry that 3602 ** Reposition cursor P1 so that it points to the smallest entry that
3477 ** is greater than or equal to the key value. If there are no records 3603 ** is greater than or equal to the key value. If there are no records
3478 ** greater than or equal to the key and P2 is not zero, then jump to P2. 3604 ** greater than or equal to the key and P2 is not zero, then jump to P2.
3479 ** 3605 **
3606 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
3607 ** opcode will always land on a record that equally equals the key, or
3608 ** else jump immediately to P2. When the cursor is OPFLAG_SEEKEQ, this
3609 ** opcode must be followed by an IdxLE opcode with the same arguments.
3610 ** The IdxLE opcode will be skipped if this opcode succeeds, but the
3611 ** IdxLE opcode will be used on subsequent loop iterations.
3612 **
3480 ** This opcode leaves the cursor configured to move in forward order, 3613 ** This opcode leaves the cursor configured to move in forward order,
3481 ** from the beginning toward the end. In other words, the cursor is 3614 ** from the beginning toward the end. In other words, the cursor is
3482 ** configured to use Next, not Prev. 3615 ** configured to use Next, not Prev.
3483 ** 3616 **
3484 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe 3617 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
3485 */ 3618 */
3486 /* Opcode: SeekGT P1 P2 P3 P4 * 3619 /* Opcode: SeekGT P1 P2 P3 P4 *
3487 ** Synopsis: key=r[P3@P4] 3620 ** Synopsis: key=r[P3@P4]
3488 ** 3621 **
3489 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3622 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
(...skipping 38 matching lines...) Expand 10 before | Expand all | Expand 10 after
3528 ** that are used as an unpacked index key. 3661 ** that are used as an unpacked index key.
3529 ** 3662 **
3530 ** Reposition cursor P1 so that it points to the largest entry that 3663 ** Reposition cursor P1 so that it points to the largest entry that
3531 ** is less than or equal to the key value. If there are no records 3664 ** is less than or equal to the key value. If there are no records
3532 ** less than or equal to the key and P2 is not zero, then jump to P2. 3665 ** less than or equal to the key and P2 is not zero, then jump to P2.
3533 ** 3666 **
3534 ** This opcode leaves the cursor configured to move in reverse order, 3667 ** This opcode leaves the cursor configured to move in reverse order,
3535 ** from the end toward the beginning. In other words, the cursor is 3668 ** from the end toward the beginning. In other words, the cursor is
3536 ** configured to use Prev, not Next. 3669 ** configured to use Prev, not Next.
3537 ** 3670 **
3671 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
3672 ** opcode will always land on a record that equally equals the key, or
3673 ** else jump immediately to P2. When the cursor is OPFLAG_SEEKEQ, this
3674 ** opcode must be followed by an IdxGE opcode with the same arguments.
3675 ** The IdxGE opcode will be skipped if this opcode succeeds, but the
3676 ** IdxGE opcode will be used on subsequent loop iterations.
3677 **
3538 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt 3678 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
3539 */ 3679 */
3540 case OP_SeekLT: /* jump, in3 */ 3680 case OP_SeekLT: /* jump, in3 */
3541 case OP_SeekLE: /* jump, in3 */ 3681 case OP_SeekLE: /* jump, in3 */
3542 case OP_SeekGE: /* jump, in3 */ 3682 case OP_SeekGE: /* jump, in3 */
3543 case OP_SeekGT: { /* jump, in3 */ 3683 case OP_SeekGT: { /* jump, in3 */
3544 int res; 3684 int res; /* Comparison result */
3545 int oc; 3685 int oc; /* Opcode */
3546 VdbeCursor *pC; 3686 VdbeCursor *pC; /* The cursor to seek */
3547 UnpackedRecord r; 3687 UnpackedRecord r; /* The key to seek for */
3548 int nField; 3688 int nField; /* Number of columns or fields in the key */
3549 i64 iKey; /* The rowid we are to seek to */ 3689 i64 iKey; /* The rowid we are to seek to */
3690 int eqOnly; /* Only interested in == results */
3550 3691
3551 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3692 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3552 assert( pOp->p2!=0 ); 3693 assert( pOp->p2!=0 );
3553 pC = p->apCsr[pOp->p1]; 3694 pC = p->apCsr[pOp->p1];
3554 assert( pC!=0 ); 3695 assert( pC!=0 );
3555 assert( pC->pseudoTableReg==0 ); 3696 assert( pC->eCurType==CURTYPE_BTREE );
3556 assert( OP_SeekLE == OP_SeekLT+1 ); 3697 assert( OP_SeekLE == OP_SeekLT+1 );
3557 assert( OP_SeekGE == OP_SeekLT+2 ); 3698 assert( OP_SeekGE == OP_SeekLT+2 );
3558 assert( OP_SeekGT == OP_SeekLT+3 ); 3699 assert( OP_SeekGT == OP_SeekLT+3 );
3559 assert( pC->isOrdered ); 3700 assert( pC->isOrdered );
3560 assert( pC->pCursor!=0 ); 3701 assert( pC->uc.pCursor!=0 );
3561 oc = pOp->opcode; 3702 oc = pOp->opcode;
3703 eqOnly = 0;
3562 pC->nullRow = 0; 3704 pC->nullRow = 0;
3563 #ifdef SQLITE_DEBUG 3705 #ifdef SQLITE_DEBUG
3564 pC->seekOp = pOp->opcode; 3706 pC->seekOp = pOp->opcode;
3565 #endif 3707 #endif
3708
3566 if( pC->isTable ){ 3709 if( pC->isTable ){
3710 /* The BTREE_SEEK_EQ flag is only set on index cursors */
3711 assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0 );
3712
3567 /* The input value in P3 might be of any type: integer, real, string, 3713 /* The input value in P3 might be of any type: integer, real, string,
3568 ** blob, or NULL. But it needs to be an integer before we can do 3714 ** blob, or NULL. But it needs to be an integer before we can do
3569 ** the seek, so convert it. */ 3715 ** the seek, so convert it. */
3570 pIn3 = &aMem[pOp->p3]; 3716 pIn3 = &aMem[pOp->p3];
3571 if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){ 3717 if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
3572 applyNumericAffinity(pIn3, 0); 3718 applyNumericAffinity(pIn3, 0);
3573 } 3719 }
3574 iKey = sqlite3VdbeIntValue(pIn3); 3720 iKey = sqlite3VdbeIntValue(pIn3);
3575 3721
3576 /* If the P3 value could not be converted into an integer without 3722 /* If the P3 value could not be converted into an integer without
3577 ** loss of information, then special processing is required... */ 3723 ** loss of information, then special processing is required... */
3578 if( (pIn3->flags & MEM_Int)==0 ){ 3724 if( (pIn3->flags & MEM_Int)==0 ){
3579 if( (pIn3->flags & MEM_Real)==0 ){ 3725 if( (pIn3->flags & MEM_Real)==0 ){
3580 /* If the P3 value cannot be converted into any kind of a number, 3726 /* If the P3 value cannot be converted into any kind of a number,
3581 ** then the seek is not possible, so jump to P2 */ 3727 ** then the seek is not possible, so jump to P2 */
3582 pc = pOp->p2 - 1; VdbeBranchTaken(1,2); 3728 VdbeBranchTaken(1,2); goto jump_to_p2;
3583 break; 3729 break;
3584 } 3730 }
3585 3731
3586 /* If the approximation iKey is larger than the actual real search 3732 /* If the approximation iKey is larger than the actual real search
3587 ** term, substitute >= for > and < for <=. e.g. if the search term 3733 ** term, substitute >= for > and < for <=. e.g. if the search term
3588 ** is 4.9 and the integer approximation 5: 3734 ** is 4.9 and the integer approximation 5:
3589 ** 3735 **
3590 ** (x > 4.9) -> (x >= 5) 3736 ** (x > 4.9) -> (x >= 5)
3591 ** (x <= 4.9) -> (x < 5) 3737 ** (x <= 4.9) -> (x < 5)
3592 */ 3738 */
3593 if( pIn3->u.r<(double)iKey ){ 3739 if( pIn3->u.r<(double)iKey ){
3594 assert( OP_SeekGE==(OP_SeekGT-1) ); 3740 assert( OP_SeekGE==(OP_SeekGT-1) );
3595 assert( OP_SeekLT==(OP_SeekLE-1) ); 3741 assert( OP_SeekLT==(OP_SeekLE-1) );
3596 assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) ); 3742 assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) );
3597 if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--; 3743 if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--;
3598 } 3744 }
3599 3745
3600 /* If the approximation iKey is smaller than the actual real search 3746 /* If the approximation iKey is smaller than the actual real search
3601 ** term, substitute <= for < and > for >=. */ 3747 ** term, substitute <= for < and > for >=. */
3602 else if( pIn3->u.r>(double)iKey ){ 3748 else if( pIn3->u.r>(double)iKey ){
3603 assert( OP_SeekLE==(OP_SeekLT+1) ); 3749 assert( OP_SeekLE==(OP_SeekLT+1) );
3604 assert( OP_SeekGT==(OP_SeekGE+1) ); 3750 assert( OP_SeekGT==(OP_SeekGE+1) );
3605 assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) ); 3751 assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
3606 if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++; 3752 if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
3607 } 3753 }
3608 } 3754 }
3609 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res); 3755 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)iKey, 0, &res);
3610 pC->movetoTarget = iKey; /* Used by OP_Delete */ 3756 pC->movetoTarget = iKey; /* Used by OP_Delete */
3611 if( rc!=SQLITE_OK ){ 3757 if( rc!=SQLITE_OK ){
3612 goto abort_due_to_error; 3758 goto abort_due_to_error;
3613 } 3759 }
3614 }else{ 3760 }else{
3761 /* For a cursor with the BTREE_SEEK_EQ hint, only the OP_SeekGE and
3762 ** OP_SeekLE opcodes are allowed, and these must be immediately followed
3763 ** by an OP_IdxGT or OP_IdxLT opcode, respectively, with the same key.
3764 */
3765 if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){
3766 eqOnly = 1;
3767 assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE );
3768 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
3769 assert( pOp[1].p1==pOp[0].p1 );
3770 assert( pOp[1].p2==pOp[0].p2 );
3771 assert( pOp[1].p3==pOp[0].p3 );
3772 assert( pOp[1].p4.i==pOp[0].p4.i );
3773 }
3774
3615 nField = pOp->p4.i; 3775 nField = pOp->p4.i;
3616 assert( pOp->p4type==P4_INT32 ); 3776 assert( pOp->p4type==P4_INT32 );
3617 assert( nField>0 ); 3777 assert( nField>0 );
3618 r.pKeyInfo = pC->pKeyInfo; 3778 r.pKeyInfo = pC->pKeyInfo;
3619 r.nField = (u16)nField; 3779 r.nField = (u16)nField;
3620 3780
3621 /* The next line of code computes as follows, only faster: 3781 /* The next line of code computes as follows, only faster:
3622 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){ 3782 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){
3623 ** r.default_rc = -1; 3783 ** r.default_rc = -1;
3624 ** }else{ 3784 ** }else{
3625 ** r.default_rc = +1; 3785 ** r.default_rc = +1;
3626 ** } 3786 ** }
3627 */ 3787 */
3628 r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1); 3788 r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1);
3629 assert( oc!=OP_SeekGT || r.default_rc==-1 ); 3789 assert( oc!=OP_SeekGT || r.default_rc==-1 );
3630 assert( oc!=OP_SeekLE || r.default_rc==-1 ); 3790 assert( oc!=OP_SeekLE || r.default_rc==-1 );
3631 assert( oc!=OP_SeekGE || r.default_rc==+1 ); 3791 assert( oc!=OP_SeekGE || r.default_rc==+1 );
3632 assert( oc!=OP_SeekLT || r.default_rc==+1 ); 3792 assert( oc!=OP_SeekLT || r.default_rc==+1 );
3633 3793
3634 r.aMem = &aMem[pOp->p3]; 3794 r.aMem = &aMem[pOp->p3];
3635 #ifdef SQLITE_DEBUG 3795 #ifdef SQLITE_DEBUG
3636 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } 3796 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3637 #endif 3797 #endif
3638 ExpandBlob(r.aMem); 3798 ExpandBlob(r.aMem);
3639 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res); 3799 r.eqSeen = 0;
3800 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, &r, 0, 0, &res);
3640 if( rc!=SQLITE_OK ){ 3801 if( rc!=SQLITE_OK ){
3641 goto abort_due_to_error; 3802 goto abort_due_to_error;
3642 } 3803 }
3804 if( eqOnly && r.eqSeen==0 ){
3805 assert( res!=0 );
3806 goto seek_not_found;
3807 }
3643 } 3808 }
3644 pC->deferredMoveto = 0; 3809 pC->deferredMoveto = 0;
3645 pC->cacheStatus = CACHE_STALE; 3810 pC->cacheStatus = CACHE_STALE;
3646 #ifdef SQLITE_TEST 3811 #ifdef SQLITE_TEST
3647 sqlite3_search_count++; 3812 sqlite3_search_count++;
3648 #endif 3813 #endif
3649 if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT ); 3814 if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT );
3650 if( res<0 || (res==0 && oc==OP_SeekGT) ){ 3815 if( res<0 || (res==0 && oc==OP_SeekGT) ){
3651 res = 0; 3816 res = 0;
3652 rc = sqlite3BtreeNext(pC->pCursor, &res); 3817 rc = sqlite3BtreeNext(pC->uc.pCursor, &res);
3653 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3818 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3654 }else{ 3819 }else{
3655 res = 0; 3820 res = 0;
3656 } 3821 }
3657 }else{ 3822 }else{
3658 assert( oc==OP_SeekLT || oc==OP_SeekLE ); 3823 assert( oc==OP_SeekLT || oc==OP_SeekLE );
3659 if( res>0 || (res==0 && oc==OP_SeekLT) ){ 3824 if( res>0 || (res==0 && oc==OP_SeekLT) ){
3660 res = 0; 3825 res = 0;
3661 rc = sqlite3BtreePrevious(pC->pCursor, &res); 3826 rc = sqlite3BtreePrevious(pC->uc.pCursor, &res);
3662 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3827 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3663 }else{ 3828 }else{
3664 /* res might be negative because the table is empty. Check to 3829 /* res might be negative because the table is empty. Check to
3665 ** see if this is the case. 3830 ** see if this is the case.
3666 */ 3831 */
3667 res = sqlite3BtreeEof(pC->pCursor); 3832 res = sqlite3BtreeEof(pC->uc.pCursor);
3668 } 3833 }
3669 } 3834 }
3835 seek_not_found:
3670 assert( pOp->p2>0 ); 3836 assert( pOp->p2>0 );
3671 VdbeBranchTaken(res!=0,2); 3837 VdbeBranchTaken(res!=0,2);
3672 if( res ){ 3838 if( res ){
3673 pc = pOp->p2 - 1; 3839 goto jump_to_p2;
3840 }else if( eqOnly ){
3841 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
3842 pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */
3674 } 3843 }
3675 break; 3844 break;
3676 } 3845 }
3677 3846
3678 /* Opcode: Seek P1 P2 * * * 3847 /* Opcode: Seek P1 P2 * * *
3679 ** Synopsis: intkey=r[P2] 3848 ** Synopsis: intkey=r[P2]
3680 ** 3849 **
3681 ** P1 is an open table cursor and P2 is a rowid integer. Arrange 3850 ** P1 is an open table cursor and P2 is a rowid integer. Arrange
3682 ** for P1 to move so that it points to the rowid given by P2. 3851 ** for P1 to move so that it points to the rowid given by P2.
3683 ** 3852 **
3684 ** This is actually a deferred seek. Nothing actually happens until 3853 ** This is actually a deferred seek. Nothing actually happens until
3685 ** the cursor is used to read a record. That way, if no reads 3854 ** the cursor is used to read a record. That way, if no reads
3686 ** occur, no unnecessary I/O happens. 3855 ** occur, no unnecessary I/O happens.
3687 */ 3856 */
3688 case OP_Seek: { /* in2 */ 3857 case OP_Seek: { /* in2 */
3689 VdbeCursor *pC; 3858 VdbeCursor *pC;
3690 3859
3691 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3860 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3692 pC = p->apCsr[pOp->p1]; 3861 pC = p->apCsr[pOp->p1];
3693 assert( pC!=0 ); 3862 assert( pC!=0 );
3694 assert( pC->pCursor!=0 ); 3863 assert( pC->eCurType==CURTYPE_BTREE );
3864 assert( pC->uc.pCursor!=0 );
3695 assert( pC->isTable ); 3865 assert( pC->isTable );
3696 pC->nullRow = 0; 3866 pC->nullRow = 0;
3697 pIn2 = &aMem[pOp->p2]; 3867 pIn2 = &aMem[pOp->p2];
3698 pC->movetoTarget = sqlite3VdbeIntValue(pIn2); 3868 pC->movetoTarget = sqlite3VdbeIntValue(pIn2);
3699 pC->deferredMoveto = 1; 3869 pC->deferredMoveto = 1;
3700 break; 3870 break;
3701 } 3871 }
3702 3872
3703 3873
3704 /* Opcode: Found P1 P2 P3 P4 * 3874 /* Opcode: Found P1 P2 P3 P4 *
(...skipping 52 matching lines...) Expand 10 before | Expand all | Expand 10 after
3757 ** This operation leaves the cursor in a state where it cannot be 3927 ** This operation leaves the cursor in a state where it cannot be
3758 ** advanced in either direction. In other words, the Next and Prev 3928 ** advanced in either direction. In other words, the Next and Prev
3759 ** opcodes do not work after this operation. 3929 ** opcodes do not work after this operation.
3760 ** 3930 **
3761 ** See also: NotFound, Found, NotExists 3931 ** See also: NotFound, Found, NotExists
3762 */ 3932 */
3763 case OP_NoConflict: /* jump, in3 */ 3933 case OP_NoConflict: /* jump, in3 */
3764 case OP_NotFound: /* jump, in3 */ 3934 case OP_NotFound: /* jump, in3 */
3765 case OP_Found: { /* jump, in3 */ 3935 case OP_Found: { /* jump, in3 */
3766 int alreadyExists; 3936 int alreadyExists;
3937 int takeJump;
3767 int ii; 3938 int ii;
3768 VdbeCursor *pC; 3939 VdbeCursor *pC;
3769 int res; 3940 int res;
3770 char *pFree; 3941 char *pFree;
3771 UnpackedRecord *pIdxKey; 3942 UnpackedRecord *pIdxKey;
3772 UnpackedRecord r; 3943 UnpackedRecord r;
3773 char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*4 + 7]; 3944 char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*4 + 7];
3774 3945
3775 #ifdef SQLITE_TEST 3946 #ifdef SQLITE_TEST
3776 if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++; 3947 if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++;
3777 #endif 3948 #endif
3778 3949
3779 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3950 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3780 assert( pOp->p4type==P4_INT32 ); 3951 assert( pOp->p4type==P4_INT32 );
3781 pC = p->apCsr[pOp->p1]; 3952 pC = p->apCsr[pOp->p1];
3782 assert( pC!=0 ); 3953 assert( pC!=0 );
3783 #ifdef SQLITE_DEBUG 3954 #ifdef SQLITE_DEBUG
3784 pC->seekOp = pOp->opcode; 3955 pC->seekOp = pOp->opcode;
3785 #endif 3956 #endif
3786 pIn3 = &aMem[pOp->p3]; 3957 pIn3 = &aMem[pOp->p3];
3787 assert( pC->pCursor!=0 ); 3958 assert( pC->eCurType==CURTYPE_BTREE );
3959 assert( pC->uc.pCursor!=0 );
3788 assert( pC->isTable==0 ); 3960 assert( pC->isTable==0 );
3789 pFree = 0; /* Not needed. Only used to suppress a compiler warning. */ 3961 pFree = 0;
3790 if( pOp->p4.i>0 ){ 3962 if( pOp->p4.i>0 ){
3791 r.pKeyInfo = pC->pKeyInfo; 3963 r.pKeyInfo = pC->pKeyInfo;
3792 r.nField = (u16)pOp->p4.i; 3964 r.nField = (u16)pOp->p4.i;
3793 r.aMem = pIn3; 3965 r.aMem = pIn3;
3794 for(ii=0; ii<r.nField; ii++){ 3966 for(ii=0; ii<r.nField; ii++){
3795 assert( memIsValid(&r.aMem[ii]) ); 3967 assert( memIsValid(&r.aMem[ii]) );
3796 ExpandBlob(&r.aMem[ii]); 3968 ExpandBlob(&r.aMem[ii]);
3797 #ifdef SQLITE_DEBUG 3969 #ifdef SQLITE_DEBUG
3798 if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]); 3970 if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
3799 #endif 3971 #endif
3800 } 3972 }
3801 pIdxKey = &r; 3973 pIdxKey = &r;
3802 }else{ 3974 }else{
3803 pIdxKey = sqlite3VdbeAllocUnpackedRecord( 3975 pIdxKey = sqlite3VdbeAllocUnpackedRecord(
3804 pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree 3976 pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree
3805 ); 3977 );
3806 if( pIdxKey==0 ) goto no_mem; 3978 if( pIdxKey==0 ) goto no_mem;
3807 assert( pIn3->flags & MEM_Blob ); 3979 assert( pIn3->flags & MEM_Blob );
3808 assert( (pIn3->flags & MEM_Zero)==0 ); /* zeroblobs already expanded */ 3980 ExpandBlob(pIn3);
3809 sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey); 3981 sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
3810 } 3982 }
3811 pIdxKey->default_rc = 0; 3983 pIdxKey->default_rc = 0;
3984 takeJump = 0;
3812 if( pOp->opcode==OP_NoConflict ){ 3985 if( pOp->opcode==OP_NoConflict ){
3813 /* For the OP_NoConflict opcode, take the jump if any of the 3986 /* For the OP_NoConflict opcode, take the jump if any of the
3814 ** input fields are NULL, since any key with a NULL will not 3987 ** input fields are NULL, since any key with a NULL will not
3815 ** conflict */ 3988 ** conflict */
3816 for(ii=0; ii<r.nField; ii++){ 3989 for(ii=0; ii<pIdxKey->nField; ii++){
3817 if( r.aMem[ii].flags & MEM_Null ){ 3990 if( pIdxKey->aMem[ii].flags & MEM_Null ){
3818 pc = pOp->p2 - 1; VdbeBranchTaken(1,2); 3991 takeJump = 1;
3819 break; 3992 break;
3820 } 3993 }
3821 } 3994 }
3822 } 3995 }
3823 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, pIdxKey, 0, 0, &res); 3996 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, pIdxKey, 0, 0, &res);
3824 if( pOp->p4.i==0 ){ 3997 sqlite3DbFree(db, pFree);
3825 sqlite3DbFree(db, pFree);
3826 }
3827 if( rc!=SQLITE_OK ){ 3998 if( rc!=SQLITE_OK ){
3828 break; 3999 break;
3829 } 4000 }
3830 pC->seekResult = res; 4001 pC->seekResult = res;
3831 alreadyExists = (res==0); 4002 alreadyExists = (res==0);
3832 pC->nullRow = 1-alreadyExists; 4003 pC->nullRow = 1-alreadyExists;
3833 pC->deferredMoveto = 0; 4004 pC->deferredMoveto = 0;
3834 pC->cacheStatus = CACHE_STALE; 4005 pC->cacheStatus = CACHE_STALE;
3835 if( pOp->opcode==OP_Found ){ 4006 if( pOp->opcode==OP_Found ){
3836 VdbeBranchTaken(alreadyExists!=0,2); 4007 VdbeBranchTaken(alreadyExists!=0,2);
3837 if( alreadyExists ) pc = pOp->p2 - 1; 4008 if( alreadyExists ) goto jump_to_p2;
3838 }else{ 4009 }else{
3839 VdbeBranchTaken(alreadyExists==0,2); 4010 VdbeBranchTaken(takeJump||alreadyExists==0,2);
3840 if( !alreadyExists ) pc = pOp->p2 - 1; 4011 if( takeJump || !alreadyExists ) goto jump_to_p2;
3841 } 4012 }
3842 break; 4013 break;
3843 } 4014 }
3844 4015
3845 /* Opcode: NotExists P1 P2 P3 * * 4016 /* Opcode: NotExists P1 P2 P3 * *
3846 ** Synopsis: intkey=r[P3] 4017 ** Synopsis: intkey=r[P3]
3847 ** 4018 **
3848 ** P1 is the index of a cursor open on an SQL table btree (with integer 4019 ** P1 is the index of a cursor open on an SQL table btree (with integer
3849 ** keys). P3 is an integer rowid. If P1 does not contain a record with 4020 ** keys). P3 is an integer rowid. If P1 does not contain a record with
3850 ** rowid P3 then jump immediately to P2. If P1 does contain a record 4021 ** rowid P3 then jump immediately to P2. Or, if P2 is 0, raise an
3851 ** with rowid P3 then leave the cursor pointing at that record and fall 4022 ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then
3852 ** through to the next instruction. 4023 ** leave the cursor pointing at that record and fall through to the next
4024 ** instruction.
3853 ** 4025 **
3854 ** The OP_NotFound opcode performs the same operation on index btrees 4026 ** The OP_NotFound opcode performs the same operation on index btrees
3855 ** (with arbitrary multi-value keys). 4027 ** (with arbitrary multi-value keys).
3856 ** 4028 **
3857 ** This opcode leaves the cursor in a state where it cannot be advanced 4029 ** This opcode leaves the cursor in a state where it cannot be advanced
3858 ** in either direction. In other words, the Next and Prev opcodes will 4030 ** in either direction. In other words, the Next and Prev opcodes will
3859 ** not work following this opcode. 4031 ** not work following this opcode.
3860 ** 4032 **
3861 ** See also: Found, NotFound, NoConflict 4033 ** See also: Found, NotFound, NoConflict
3862 */ 4034 */
3863 case OP_NotExists: { /* jump, in3 */ 4035 case OP_NotExists: { /* jump, in3 */
3864 VdbeCursor *pC; 4036 VdbeCursor *pC;
3865 BtCursor *pCrsr; 4037 BtCursor *pCrsr;
3866 int res; 4038 int res;
3867 u64 iKey; 4039 u64 iKey;
3868 4040
3869 pIn3 = &aMem[pOp->p3]; 4041 pIn3 = &aMem[pOp->p3];
3870 assert( pIn3->flags & MEM_Int ); 4042 assert( pIn3->flags & MEM_Int );
3871 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4043 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3872 pC = p->apCsr[pOp->p1]; 4044 pC = p->apCsr[pOp->p1];
3873 assert( pC!=0 ); 4045 assert( pC!=0 );
3874 #ifdef SQLITE_DEBUG 4046 #ifdef SQLITE_DEBUG
3875 pC->seekOp = 0; 4047 pC->seekOp = 0;
3876 #endif 4048 #endif
3877 assert( pC->isTable ); 4049 assert( pC->isTable );
3878 assert( pC->pseudoTableReg==0 ); 4050 assert( pC->eCurType==CURTYPE_BTREE );
3879 pCrsr = pC->pCursor; 4051 pCrsr = pC->uc.pCursor;
3880 assert( pCrsr!=0 ); 4052 assert( pCrsr!=0 );
3881 res = 0; 4053 res = 0;
3882 iKey = pIn3->u.i; 4054 iKey = pIn3->u.i;
3883 rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res); 4055 rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
4056 assert( rc==SQLITE_OK || res==0 );
3884 pC->movetoTarget = iKey; /* Used by OP_Delete */ 4057 pC->movetoTarget = iKey; /* Used by OP_Delete */
3885 pC->nullRow = 0; 4058 pC->nullRow = 0;
3886 pC->cacheStatus = CACHE_STALE; 4059 pC->cacheStatus = CACHE_STALE;
3887 pC->deferredMoveto = 0; 4060 pC->deferredMoveto = 0;
3888 VdbeBranchTaken(res!=0,2); 4061 VdbeBranchTaken(res!=0,2);
4062 pC->seekResult = res;
3889 if( res!=0 ){ 4063 if( res!=0 ){
3890 pc = pOp->p2 - 1; 4064 assert( rc==SQLITE_OK );
4065 if( pOp->p2==0 ){
4066 rc = SQLITE_CORRUPT_BKPT;
4067 }else{
4068 goto jump_to_p2;
4069 }
3891 } 4070 }
3892 pC->seekResult = res;
3893 break; 4071 break;
3894 } 4072 }
3895 4073
3896 /* Opcode: Sequence P1 P2 * * * 4074 /* Opcode: Sequence P1 P2 * * *
3897 ** Synopsis: r[P2]=cursor[P1].ctr++ 4075 ** Synopsis: r[P2]=cursor[P1].ctr++
3898 ** 4076 **
3899 ** Find the next available sequence number for cursor P1. 4077 ** Find the next available sequence number for cursor P1.
3900 ** Write the sequence number into register P2. 4078 ** Write the sequence number into register P2.
3901 ** The sequence number on the cursor is incremented after this 4079 ** The sequence number on the cursor is incremented after this
3902 ** instruction. 4080 ** instruction.
3903 */ 4081 */
3904 case OP_Sequence: { /* out2-prerelease */ 4082 case OP_Sequence: { /* out2 */
3905 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4083 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3906 assert( p->apCsr[pOp->p1]!=0 ); 4084 assert( p->apCsr[pOp->p1]!=0 );
4085 assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB );
4086 pOut = out2Prerelease(p, pOp);
3907 pOut->u.i = p->apCsr[pOp->p1]->seqCount++; 4087 pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
3908 break; 4088 break;
3909 } 4089 }
3910 4090
3911 4091
3912 /* Opcode: NewRowid P1 P2 P3 * * 4092 /* Opcode: NewRowid P1 P2 P3 * *
3913 ** Synopsis: r[P2]=rowid 4093 ** Synopsis: r[P2]=rowid
3914 ** 4094 **
3915 ** Get a new integer record number (a.k.a "rowid") used as the key to a table. 4095 ** Get a new integer record number (a.k.a "rowid") used as the key to a table.
3916 ** The record number is not previously used as a key in the database 4096 ** The record number is not previously used as a key in the database
3917 ** table that cursor P1 points to. The new record number is written 4097 ** table that cursor P1 points to. The new record number is written
3918 ** written to register P2. 4098 ** written to register P2.
3919 ** 4099 **
3920 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds 4100 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds
3921 ** the largest previously generated record number. No new record numbers are 4101 ** the largest previously generated record number. No new record numbers are
3922 ** allowed to be less than this value. When this value reaches its maximum, 4102 ** allowed to be less than this value. When this value reaches its maximum,
3923 ** an SQLITE_FULL error is generated. The P3 register is updated with the ' 4103 ** an SQLITE_FULL error is generated. The P3 register is updated with the '
3924 ** generated record number. This P3 mechanism is used to help implement the 4104 ** generated record number. This P3 mechanism is used to help implement the
3925 ** AUTOINCREMENT feature. 4105 ** AUTOINCREMENT feature.
3926 */ 4106 */
3927 case OP_NewRowid: { /* out2-prerelease */ 4107 case OP_NewRowid: { /* out2 */
3928 i64 v; /* The new rowid */ 4108 i64 v; /* The new rowid */
3929 VdbeCursor *pC; /* Cursor of table to get the new rowid */ 4109 VdbeCursor *pC; /* Cursor of table to get the new rowid */
3930 int res; /* Result of an sqlite3BtreeLast() */ 4110 int res; /* Result of an sqlite3BtreeLast() */
3931 int cnt; /* Counter to limit the number of searches */ 4111 int cnt; /* Counter to limit the number of searches */
3932 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */ 4112 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */
3933 VdbeFrame *pFrame; /* Root frame of VDBE */ 4113 VdbeFrame *pFrame; /* Root frame of VDBE */
3934 4114
3935 v = 0; 4115 v = 0;
3936 res = 0; 4116 res = 0;
4117 pOut = out2Prerelease(p, pOp);
3937 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4118 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3938 pC = p->apCsr[pOp->p1]; 4119 pC = p->apCsr[pOp->p1];
3939 assert( pC!=0 ); 4120 assert( pC!=0 );
3940 if( NEVER(pC->pCursor==0) ){ 4121 assert( pC->eCurType==CURTYPE_BTREE );
3941 /* The zero initialization above is all that is needed */ 4122 assert( pC->uc.pCursor!=0 );
3942 }else{ 4123 {
3943 /* The next rowid or record number (different terms for the same 4124 /* The next rowid or record number (different terms for the same
3944 ** thing) is obtained in a two-step algorithm. 4125 ** thing) is obtained in a two-step algorithm.
3945 ** 4126 **
3946 ** First we attempt to find the largest existing rowid and add one 4127 ** First we attempt to find the largest existing rowid and add one
3947 ** to that. But if the largest existing rowid is already the maximum 4128 ** to that. But if the largest existing rowid is already the maximum
3948 ** positive integer, we have to fall through to the second 4129 ** positive integer, we have to fall through to the second
3949 ** probabilistic algorithm 4130 ** probabilistic algorithm
3950 ** 4131 **
3951 ** The second algorithm is to select a rowid at random and see if 4132 ** The second algorithm is to select a rowid at random and see if
3952 ** it already exists in the table. If it does not exist, we have 4133 ** it already exists in the table. If it does not exist, we have
3953 ** succeeded. If the random rowid does exist, we select a new one 4134 ** succeeded. If the random rowid does exist, we select a new one
3954 ** and try again, up to 100 times. 4135 ** and try again, up to 100 times.
3955 */ 4136 */
3956 assert( pC->isTable ); 4137 assert( pC->isTable );
3957 4138
3958 #ifdef SQLITE_32BIT_ROWID 4139 #ifdef SQLITE_32BIT_ROWID
3959 # define MAX_ROWID 0x7fffffff 4140 # define MAX_ROWID 0x7fffffff
3960 #else 4141 #else
3961 /* Some compilers complain about constants of the form 0x7fffffffffffffff. 4142 /* Some compilers complain about constants of the form 0x7fffffffffffffff.
3962 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems 4143 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems
3963 ** to provide the constant while making all compilers happy. 4144 ** to provide the constant while making all compilers happy.
3964 */ 4145 */
3965 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff ) 4146 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
3966 #endif 4147 #endif
3967 4148
3968 if( !pC->useRandomRowid ){ 4149 if( !pC->useRandomRowid ){
3969 rc = sqlite3BtreeLast(pC->pCursor, &res); 4150 rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
3970 if( rc!=SQLITE_OK ){ 4151 if( rc!=SQLITE_OK ){
3971 goto abort_due_to_error; 4152 goto abort_due_to_error;
3972 } 4153 }
3973 if( res ){ 4154 if( res ){
3974 v = 1; /* IMP: R-61914-48074 */ 4155 v = 1; /* IMP: R-61914-48074 */
3975 }else{ 4156 }else{
3976 assert( sqlite3BtreeCursorIsValid(pC->pCursor) ); 4157 assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) );
3977 rc = sqlite3BtreeKeySize(pC->pCursor, &v); 4158 rc = sqlite3BtreeKeySize(pC->uc.pCursor, &v);
3978 assert( rc==SQLITE_OK ); /* Cannot fail following BtreeLast() */ 4159 assert( rc==SQLITE_OK ); /* Cannot fail following BtreeLast() */
3979 if( v>=MAX_ROWID ){ 4160 if( v>=MAX_ROWID ){
3980 pC->useRandomRowid = 1; 4161 pC->useRandomRowid = 1;
3981 }else{ 4162 }else{
3982 v++; /* IMP: R-29538-34987 */ 4163 v++; /* IMP: R-29538-34987 */
3983 } 4164 }
3984 } 4165 }
3985 } 4166 }
3986 4167
3987 #ifndef SQLITE_OMIT_AUTOINCREMENT 4168 #ifndef SQLITE_OMIT_AUTOINCREMENT
(...skipping 30 matching lines...) Expand all
4018 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the 4199 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
4019 ** largest possible integer (9223372036854775807) then the database 4200 ** largest possible integer (9223372036854775807) then the database
4020 ** engine starts picking positive candidate ROWIDs at random until 4201 ** engine starts picking positive candidate ROWIDs at random until
4021 ** it finds one that is not previously used. */ 4202 ** it finds one that is not previously used. */
4022 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is 4203 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is
4023 ** an AUTOINCREMENT table. */ 4204 ** an AUTOINCREMENT table. */
4024 cnt = 0; 4205 cnt = 0;
4025 do{ 4206 do{
4026 sqlite3_randomness(sizeof(v), &v); 4207 sqlite3_randomness(sizeof(v), &v);
4027 v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */ 4208 v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */
4028 }while( ((rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)v, 4209 }while( ((rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)v,
4029 0, &res))==SQLITE_OK) 4210 0, &res))==SQLITE_OK)
4030 && (res==0) 4211 && (res==0)
4031 && (++cnt<100)); 4212 && (++cnt<100));
4032 if( rc==SQLITE_OK && res==0 ){ 4213 if( rc==SQLITE_OK && res==0 ){
4033 rc = SQLITE_FULL; /* IMP: R-38219-53002 */ 4214 rc = SQLITE_FULL; /* IMP: R-38219-53002 */
4034 goto abort_due_to_error; 4215 goto abort_due_to_error;
4035 } 4216 }
4036 assert( v>0 ); /* EV: R-40812-03570 */ 4217 assert( v>0 ); /* EV: R-40812-03570 */
4037 } 4218 }
4038 pC->deferredMoveto = 0; 4219 pC->deferredMoveto = 0;
(...skipping 59 matching lines...) Expand 10 before | Expand all | Expand 10 after
4098 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */ 4279 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */
4099 const char *zDb; /* database name - used by the update hook */ 4280 const char *zDb; /* database name - used by the update hook */
4100 const char *zTbl; /* Table name - used by the opdate hook */ 4281 const char *zTbl; /* Table name - used by the opdate hook */
4101 int op; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */ 4282 int op; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */
4102 4283
4103 pData = &aMem[pOp->p2]; 4284 pData = &aMem[pOp->p2];
4104 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4285 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4105 assert( memIsValid(pData) ); 4286 assert( memIsValid(pData) );
4106 pC = p->apCsr[pOp->p1]; 4287 pC = p->apCsr[pOp->p1];
4107 assert( pC!=0 ); 4288 assert( pC!=0 );
4108 assert( pC->pCursor!=0 ); 4289 assert( pC->eCurType==CURTYPE_BTREE );
4109 assert( pC->pseudoTableReg==0 ); 4290 assert( pC->uc.pCursor!=0 );
4110 assert( pC->isTable ); 4291 assert( pC->isTable );
4111 REGISTER_TRACE(pOp->p2, pData); 4292 REGISTER_TRACE(pOp->p2, pData);
4112 4293
4113 if( pOp->opcode==OP_Insert ){ 4294 if( pOp->opcode==OP_Insert ){
4114 pKey = &aMem[pOp->p3]; 4295 pKey = &aMem[pOp->p3];
4115 assert( pKey->flags & MEM_Int ); 4296 assert( pKey->flags & MEM_Int );
4116 assert( memIsValid(pKey) ); 4297 assert( memIsValid(pKey) );
4117 REGISTER_TRACE(pOp->p3, pKey); 4298 REGISTER_TRACE(pOp->p3, pKey);
4118 iKey = pKey->u.i; 4299 iKey = pKey->u.i;
4119 }else{ 4300 }else{
4120 assert( pOp->opcode==OP_InsertInt ); 4301 assert( pOp->opcode==OP_InsertInt );
4121 iKey = pOp->p3; 4302 iKey = pOp->p3;
4122 } 4303 }
4123 4304
4124 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 4305 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
4125 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = lastRowid = iKey; 4306 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = lastRowid = iKey;
4126 if( pData->flags & MEM_Null ){ 4307 if( pData->flags & MEM_Null ){
4127 pData->z = 0; 4308 pData->z = 0;
4128 pData->n = 0; 4309 pData->n = 0;
4129 }else{ 4310 }else{
4130 assert( pData->flags & (MEM_Blob|MEM_Str) ); 4311 assert( pData->flags & (MEM_Blob|MEM_Str) );
4131 } 4312 }
4132 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0); 4313 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
4133 if( pData->flags & MEM_Zero ){ 4314 if( pData->flags & MEM_Zero ){
4134 nZero = pData->u.nZero; 4315 nZero = pData->u.nZero;
4135 }else{ 4316 }else{
4136 nZero = 0; 4317 nZero = 0;
4137 } 4318 }
4138 rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey, 4319 rc = sqlite3BtreeInsert(pC->uc.pCursor, 0, iKey,
4139 pData->z, pData->n, nZero, 4320 pData->z, pData->n, nZero,
4140 (pOp->p5 & OPFLAG_APPEND)!=0, seekResult 4321 (pOp->p5 & OPFLAG_APPEND)!=0, seekResult
4141 ); 4322 );
4142 pC->deferredMoveto = 0; 4323 pC->deferredMoveto = 0;
4143 pC->cacheStatus = CACHE_STALE; 4324 pC->cacheStatus = CACHE_STALE;
4144 4325
4145 /* Invoke the update-hook if required. */ 4326 /* Invoke the update-hook if required. */
4146 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){ 4327 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
4147 zDb = db->aDb[pC->iDb].zName; 4328 zDb = db->aDb[pC->iDb].zName;
4148 zTbl = pOp->p4.z; 4329 zTbl = pOp->p4.z;
4149 op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT); 4330 op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
4150 assert( pC->isTable ); 4331 assert( pC->isTable );
4151 db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey); 4332 db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey);
4152 assert( pC->iDb>=0 ); 4333 assert( pC->iDb>=0 );
4153 } 4334 }
4154 break; 4335 break;
4155 } 4336 }
4156 4337
4157 /* Opcode: Delete P1 P2 * P4 * 4338 /* Opcode: Delete P1 P2 * P4 P5
4158 ** 4339 **
4159 ** Delete the record at which the P1 cursor is currently pointing. 4340 ** Delete the record at which the P1 cursor is currently pointing.
4160 ** 4341 **
4161 ** The cursor will be left pointing at either the next or the previous 4342 ** If the P5 parameter is non-zero, the cursor will be left pointing at
4162 ** record in the table. If it is left pointing at the next record, then 4343 ** either the next or the previous record in the table. If it is left
4163 ** the next Next instruction will be a no-op. Hence it is OK to delete 4344 ** pointing at the next record, then the next Next instruction will be a
4164 ** a record from within a Next loop. 4345 ** no-op. As a result, in this case it is OK to delete a record from within a
4346 ** Next loop. If P5 is zero, then the cursor is left in an undefined state.
4165 ** 4347 **
4166 ** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is 4348 ** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
4167 ** incremented (otherwise not). 4349 ** incremented (otherwise not).
4168 ** 4350 **
4169 ** P1 must not be pseudo-table. It has to be a real table with 4351 ** P1 must not be pseudo-table. It has to be a real table with
4170 ** multiple rows. 4352 ** multiple rows.
4171 ** 4353 **
4172 ** If P4 is not NULL, then it is the name of the table that P1 is 4354 ** If P4 is not NULL, then it is the name of the table that P1 is
4173 ** pointing to. The update hook will be invoked, if it exists. 4355 ** pointing to. The update hook will be invoked, if it exists.
4174 ** If P4 is not NULL then the P1 cursor must have been positioned 4356 ** If P4 is not NULL then the P1 cursor must have been positioned
4175 ** using OP_NotFound prior to invoking this opcode. 4357 ** using OP_NotFound prior to invoking this opcode.
4176 */ 4358 */
4177 case OP_Delete: { 4359 case OP_Delete: {
4178 VdbeCursor *pC; 4360 VdbeCursor *pC;
4361 u8 hasUpdateCallback;
4179 4362
4180 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4363 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4181 pC = p->apCsr[pOp->p1]; 4364 pC = p->apCsr[pOp->p1];
4182 assert( pC!=0 ); 4365 assert( pC!=0 );
4183 assert( pC->pCursor!=0 ); /* Only valid for real tables, no pseudotables */ 4366 assert( pC->eCurType==CURTYPE_BTREE );
4367 assert( pC->uc.pCursor!=0 );
4184 assert( pC->deferredMoveto==0 ); 4368 assert( pC->deferredMoveto==0 );
4185 4369
4370 hasUpdateCallback = db->xUpdateCallback && pOp->p4.z && pC->isTable;
4371 if( pOp->p5 && hasUpdateCallback ){
4372 sqlite3BtreeKeySize(pC->uc.pCursor, &pC->movetoTarget);
4373 }
4374
4186 #ifdef SQLITE_DEBUG 4375 #ifdef SQLITE_DEBUG
4187 /* The seek operation that positioned the cursor prior to OP_Delete will 4376 /* The seek operation that positioned the cursor prior to OP_Delete will
4188 ** have also set the pC->movetoTarget field to the rowid of the row that 4377 ** have also set the pC->movetoTarget field to the rowid of the row that
4189 ** is being deleted */ 4378 ** is being deleted */
4190 if( pOp->p4.z && pC->isTable ){ 4379 if( pOp->p4.z && pC->isTable && pOp->p5==0 ){
4191 i64 iKey = 0; 4380 i64 iKey = 0;
4192 sqlite3BtreeKeySize(pC->pCursor, &iKey); 4381 sqlite3BtreeKeySize(pC->uc.pCursor, &iKey);
4193 assert( pC->movetoTarget==iKey ); 4382 assert( pC->movetoTarget==iKey );
4194 } 4383 }
4195 #endif 4384 #endif
4196 4385
4197 rc = sqlite3BtreeDelete(pC->pCursor); 4386 rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5);
4198 pC->cacheStatus = CACHE_STALE; 4387 pC->cacheStatus = CACHE_STALE;
4199 4388
4200 /* Invoke the update-hook if required. */ 4389 /* Invoke the update-hook if required. */
4201 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z && pC->isTable ){ 4390 if( rc==SQLITE_OK && hasUpdateCallback ){
4202 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, 4391 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE,
4203 db->aDb[pC->iDb].zName, pOp->p4.z, pC->movetoTarget); 4392 db->aDb[pC->iDb].zName, pOp->p4.z, pC->movetoTarget);
4204 assert( pC->iDb>=0 ); 4393 assert( pC->iDb>=0 );
4205 } 4394 }
4206 if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++; 4395 if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
4207 break; 4396 break;
4208 } 4397 }
4209 /* Opcode: ResetCount * * * * * 4398 /* Opcode: ResetCount * * * * *
4210 ** 4399 **
4211 ** The value of the change counter is copied to the database handle 4400 ** The value of the change counter is copied to the database handle
(...skipping 28 matching lines...) Expand all
4240 int nKeyCol; 4429 int nKeyCol;
4241 4430
4242 pC = p->apCsr[pOp->p1]; 4431 pC = p->apCsr[pOp->p1];
4243 assert( isSorter(pC) ); 4432 assert( isSorter(pC) );
4244 assert( pOp->p4type==P4_INT32 ); 4433 assert( pOp->p4type==P4_INT32 );
4245 pIn3 = &aMem[pOp->p3]; 4434 pIn3 = &aMem[pOp->p3];
4246 nKeyCol = pOp->p4.i; 4435 nKeyCol = pOp->p4.i;
4247 res = 0; 4436 res = 0;
4248 rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res); 4437 rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res);
4249 VdbeBranchTaken(res!=0,2); 4438 VdbeBranchTaken(res!=0,2);
4250 if( res ){ 4439 if( res ) goto jump_to_p2;
4251 pc = pOp->p2-1;
4252 }
4253 break; 4440 break;
4254 }; 4441 };
4255 4442
4256 /* Opcode: SorterData P1 P2 P3 * * 4443 /* Opcode: SorterData P1 P2 P3 * *
4257 ** Synopsis: r[P2]=data 4444 ** Synopsis: r[P2]=data
4258 ** 4445 **
4259 ** Write into register P2 the current sorter data for sorter cursor P1. 4446 ** Write into register P2 the current sorter data for sorter cursor P1.
4260 ** Then clear the column header cache on cursor P3. 4447 ** Then clear the column header cache on cursor P3.
4261 ** 4448 **
4262 ** This opcode is normally use to move a record out of the sorter and into 4449 ** This opcode is normally use to move a record out of the sorter and into
(...skipping 43 matching lines...) Expand 10 before | Expand all | Expand 10 after
4306 BtCursor *pCrsr; 4493 BtCursor *pCrsr;
4307 u32 n; 4494 u32 n;
4308 i64 n64; 4495 i64 n64;
4309 4496
4310 pOut = &aMem[pOp->p2]; 4497 pOut = &aMem[pOp->p2];
4311 memAboutToChange(p, pOut); 4498 memAboutToChange(p, pOut);
4312 4499
4313 /* Note that RowKey and RowData are really exactly the same instruction */ 4500 /* Note that RowKey and RowData are really exactly the same instruction */
4314 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4501 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4315 pC = p->apCsr[pOp->p1]; 4502 pC = p->apCsr[pOp->p1];
4503 assert( pC!=0 );
4504 assert( pC->eCurType==CURTYPE_BTREE );
4316 assert( isSorter(pC)==0 ); 4505 assert( isSorter(pC)==0 );
4317 assert( pC->isTable || pOp->opcode!=OP_RowData ); 4506 assert( pC->isTable || pOp->opcode!=OP_RowData );
4318 assert( pC->isTable==0 || pOp->opcode==OP_RowData ); 4507 assert( pC->isTable==0 || pOp->opcode==OP_RowData );
4319 assert( pC!=0 );
4320 assert( pC->nullRow==0 ); 4508 assert( pC->nullRow==0 );
4321 assert( pC->pseudoTableReg==0 ); 4509 assert( pC->uc.pCursor!=0 );
4322 assert( pC->pCursor!=0 ); 4510 pCrsr = pC->uc.pCursor;
4323 pCrsr = pC->pCursor;
4324 4511
4325 /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or 4512 /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or
4326 ** OP_Rewind/Op_Next with no intervening instructions that might invalidate 4513 ** OP_Rewind/Op_Next with no intervening instructions that might invalidate
4327 ** the cursor. If this where not the case, on of the following assert()s 4514 ** the cursor. If this where not the case, on of the following assert()s
4328 ** would fail. Should this ever change (because of changes in the code 4515 ** would fail. Should this ever change (because of changes in the code
4329 ** generator) then the fix would be to insert a call to 4516 ** generator) then the fix would be to insert a call to
4330 ** sqlite3VdbeCursorMoveto(). 4517 ** sqlite3VdbeCursorMoveto().
4331 */ 4518 */
4332 assert( pC->deferredMoveto==0 ); 4519 assert( pC->deferredMoveto==0 );
4333 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 4520 assert( sqlite3BtreeCursorIsValid(pCrsr) );
(...skipping 37 matching lines...) Expand 10 before | Expand all | Expand 10 after
4371 /* Opcode: Rowid P1 P2 * * * 4558 /* Opcode: Rowid P1 P2 * * *
4372 ** Synopsis: r[P2]=rowid 4559 ** Synopsis: r[P2]=rowid
4373 ** 4560 **
4374 ** Store in register P2 an integer which is the key of the table entry that 4561 ** Store in register P2 an integer which is the key of the table entry that
4375 ** P1 is currently point to. 4562 ** P1 is currently point to.
4376 ** 4563 **
4377 ** P1 can be either an ordinary table or a virtual table. There used to 4564 ** P1 can be either an ordinary table or a virtual table. There used to
4378 ** be a separate OP_VRowid opcode for use with virtual tables, but this 4565 ** be a separate OP_VRowid opcode for use with virtual tables, but this
4379 ** one opcode now works for both table types. 4566 ** one opcode now works for both table types.
4380 */ 4567 */
4381 case OP_Rowid: { /* out2-prerelease */ 4568 case OP_Rowid: { /* out2 */
4382 VdbeCursor *pC; 4569 VdbeCursor *pC;
4383 i64 v; 4570 i64 v;
4384 sqlite3_vtab *pVtab; 4571 sqlite3_vtab *pVtab;
4385 const sqlite3_module *pModule; 4572 const sqlite3_module *pModule;
4386 4573
4574 pOut = out2Prerelease(p, pOp);
4387 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4575 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4388 pC = p->apCsr[pOp->p1]; 4576 pC = p->apCsr[pOp->p1];
4389 assert( pC!=0 ); 4577 assert( pC!=0 );
4390 assert( pC->pseudoTableReg==0 || pC->nullRow ); 4578 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
4391 if( pC->nullRow ){ 4579 if( pC->nullRow ){
4392 pOut->flags = MEM_Null; 4580 pOut->flags = MEM_Null;
4393 break; 4581 break;
4394 }else if( pC->deferredMoveto ){ 4582 }else if( pC->deferredMoveto ){
4395 v = pC->movetoTarget; 4583 v = pC->movetoTarget;
4396 #ifndef SQLITE_OMIT_VIRTUALTABLE 4584 #ifndef SQLITE_OMIT_VIRTUALTABLE
4397 }else if( pC->pVtabCursor ){ 4585 }else if( pC->eCurType==CURTYPE_VTAB ){
4398 pVtab = pC->pVtabCursor->pVtab; 4586 assert( pC->uc.pVCur!=0 );
4587 pVtab = pC->uc.pVCur->pVtab;
4399 pModule = pVtab->pModule; 4588 pModule = pVtab->pModule;
4400 assert( pModule->xRowid ); 4589 assert( pModule->xRowid );
4401 rc = pModule->xRowid(pC->pVtabCursor, &v); 4590 rc = pModule->xRowid(pC->uc.pVCur, &v);
4402 sqlite3VtabImportErrmsg(p, pVtab); 4591 sqlite3VtabImportErrmsg(p, pVtab);
4403 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 4592 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4404 }else{ 4593 }else{
4405 assert( pC->pCursor!=0 ); 4594 assert( pC->eCurType==CURTYPE_BTREE );
4595 assert( pC->uc.pCursor!=0 );
4406 rc = sqlite3VdbeCursorRestore(pC); 4596 rc = sqlite3VdbeCursorRestore(pC);
4407 if( rc ) goto abort_due_to_error; 4597 if( rc ) goto abort_due_to_error;
4408 if( pC->nullRow ){ 4598 if( pC->nullRow ){
4409 pOut->flags = MEM_Null; 4599 pOut->flags = MEM_Null;
4410 break; 4600 break;
4411 } 4601 }
4412 rc = sqlite3BtreeKeySize(pC->pCursor, &v); 4602 rc = sqlite3BtreeKeySize(pC->uc.pCursor, &v);
4413 assert( rc==SQLITE_OK ); /* Always so because of CursorRestore() above */ 4603 assert( rc==SQLITE_OK ); /* Always so because of CursorRestore() above */
4414 } 4604 }
4415 pOut->u.i = v; 4605 pOut->u.i = v;
4416 break; 4606 break;
4417 } 4607 }
4418 4608
4419 /* Opcode: NullRow P1 * * * * 4609 /* Opcode: NullRow P1 * * * *
4420 ** 4610 **
4421 ** Move the cursor P1 to a null row. Any OP_Column operations 4611 ** Move the cursor P1 to a null row. Any OP_Column operations
4422 ** that occur while the cursor is on the null row will always 4612 ** that occur while the cursor is on the null row will always
4423 ** write a NULL. 4613 ** write a NULL.
4424 */ 4614 */
4425 case OP_NullRow: { 4615 case OP_NullRow: {
4426 VdbeCursor *pC; 4616 VdbeCursor *pC;
4427 4617
4428 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4618 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4429 pC = p->apCsr[pOp->p1]; 4619 pC = p->apCsr[pOp->p1];
4430 assert( pC!=0 ); 4620 assert( pC!=0 );
4431 pC->nullRow = 1; 4621 pC->nullRow = 1;
4432 pC->cacheStatus = CACHE_STALE; 4622 pC->cacheStatus = CACHE_STALE;
4433 if( pC->pCursor ){ 4623 if( pC->eCurType==CURTYPE_BTREE ){
4434 sqlite3BtreeClearCursor(pC->pCursor); 4624 assert( pC->uc.pCursor!=0 );
4625 sqlite3BtreeClearCursor(pC->uc.pCursor);
4435 } 4626 }
4436 break; 4627 break;
4437 } 4628 }
4438 4629
4439 /* Opcode: Last P1 P2 * * * 4630 /* Opcode: Last P1 P2 P3 * *
4440 ** 4631 **
4441 ** The next use of the Rowid or Column or Prev instruction for P1 4632 ** The next use of the Rowid or Column or Prev instruction for P1
4442 ** will refer to the last entry in the database table or index. 4633 ** will refer to the last entry in the database table or index.
4443 ** If the table or index is empty and P2>0, then jump immediately to P2. 4634 ** If the table or index is empty and P2>0, then jump immediately to P2.
4444 ** If P2 is 0 or if the table or index is not empty, fall through 4635 ** If P2 is 0 or if the table or index is not empty, fall through
4445 ** to the following instruction. 4636 ** to the following instruction.
4446 ** 4637 **
4447 ** This opcode leaves the cursor configured to move in reverse order, 4638 ** This opcode leaves the cursor configured to move in reverse order,
4448 ** from the end toward the beginning. In other words, the cursor is 4639 ** from the end toward the beginning. In other words, the cursor is
4449 ** configured to use Prev, not Next. 4640 ** configured to use Prev, not Next.
4450 */ 4641 */
4451 case OP_Last: { /* jump */ 4642 case OP_Last: { /* jump */
4452 VdbeCursor *pC; 4643 VdbeCursor *pC;
4453 BtCursor *pCrsr; 4644 BtCursor *pCrsr;
4454 int res; 4645 int res;
4455 4646
4456 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4647 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4457 pC = p->apCsr[pOp->p1]; 4648 pC = p->apCsr[pOp->p1];
4458 assert( pC!=0 ); 4649 assert( pC!=0 );
4459 pCrsr = pC->pCursor; 4650 assert( pC->eCurType==CURTYPE_BTREE );
4651 pCrsr = pC->uc.pCursor;
4460 res = 0; 4652 res = 0;
4461 assert( pCrsr!=0 ); 4653 assert( pCrsr!=0 );
4462 rc = sqlite3BtreeLast(pCrsr, &res); 4654 rc = sqlite3BtreeLast(pCrsr, &res);
4463 pC->nullRow = (u8)res; 4655 pC->nullRow = (u8)res;
4464 pC->deferredMoveto = 0; 4656 pC->deferredMoveto = 0;
4465 pC->cacheStatus = CACHE_STALE; 4657 pC->cacheStatus = CACHE_STALE;
4658 pC->seekResult = pOp->p3;
4466 #ifdef SQLITE_DEBUG 4659 #ifdef SQLITE_DEBUG
4467 pC->seekOp = OP_Last; 4660 pC->seekOp = OP_Last;
4468 #endif 4661 #endif
4469 if( pOp->p2>0 ){ 4662 if( pOp->p2>0 ){
4470 VdbeBranchTaken(res!=0,2); 4663 VdbeBranchTaken(res!=0,2);
4471 if( res ) pc = pOp->p2 - 1; 4664 if( res ) goto jump_to_p2;
4472 } 4665 }
4473 break; 4666 break;
4474 } 4667 }
4475 4668
4476 4669
4477 /* Opcode: Sort P1 P2 * * * 4670 /* Opcode: Sort P1 P2 * * *
4478 ** 4671 **
4479 ** This opcode does exactly the same thing as OP_Rewind except that 4672 ** This opcode does exactly the same thing as OP_Rewind except that
4480 ** it increments an undocumented global variable used for testing. 4673 ** it increments an undocumented global variable used for testing.
4481 ** 4674 **
(...skipping 10 matching lines...) Expand all
4492 sqlite3_sort_count++; 4685 sqlite3_sort_count++;
4493 sqlite3_search_count--; 4686 sqlite3_search_count--;
4494 #endif 4687 #endif
4495 p->aCounter[SQLITE_STMTSTATUS_SORT]++; 4688 p->aCounter[SQLITE_STMTSTATUS_SORT]++;
4496 /* Fall through into OP_Rewind */ 4689 /* Fall through into OP_Rewind */
4497 } 4690 }
4498 /* Opcode: Rewind P1 P2 * * * 4691 /* Opcode: Rewind P1 P2 * * *
4499 ** 4692 **
4500 ** The next use of the Rowid or Column or Next instruction for P1 4693 ** The next use of the Rowid or Column or Next instruction for P1
4501 ** will refer to the first entry in the database table or index. 4694 ** will refer to the first entry in the database table or index.
4502 ** If the table or index is empty and P2>0, then jump immediately to P2. 4695 ** If the table or index is empty, jump immediately to P2.
4503 ** If P2 is 0 or if the table or index is not empty, fall through 4696 ** If the table or index is not empty, fall through to the following
4504 ** to the following instruction. 4697 ** instruction.
4505 ** 4698 **
4506 ** This opcode leaves the cursor configured to move in forward order, 4699 ** This opcode leaves the cursor configured to move in forward order,
4507 ** from the beginning toward the end. In other words, the cursor is 4700 ** from the beginning toward the end. In other words, the cursor is
4508 ** configured to use Next, not Prev. 4701 ** configured to use Next, not Prev.
4509 */ 4702 */
4510 case OP_Rewind: { /* jump */ 4703 case OP_Rewind: { /* jump */
4511 VdbeCursor *pC; 4704 VdbeCursor *pC;
4512 BtCursor *pCrsr; 4705 BtCursor *pCrsr;
4513 int res; 4706 int res;
4514 4707
4515 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4708 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4516 pC = p->apCsr[pOp->p1]; 4709 pC = p->apCsr[pOp->p1];
4517 assert( pC!=0 ); 4710 assert( pC!=0 );
4518 assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) ); 4711 assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) );
4519 res = 1; 4712 res = 1;
4520 #ifdef SQLITE_DEBUG 4713 #ifdef SQLITE_DEBUG
4521 pC->seekOp = OP_Rewind; 4714 pC->seekOp = OP_Rewind;
4522 #endif 4715 #endif
4523 if( isSorter(pC) ){ 4716 if( isSorter(pC) ){
4524 rc = sqlite3VdbeSorterRewind(pC, &res); 4717 rc = sqlite3VdbeSorterRewind(pC, &res);
4525 }else{ 4718 }else{
4526 pCrsr = pC->pCursor; 4719 assert( pC->eCurType==CURTYPE_BTREE );
4720 pCrsr = pC->uc.pCursor;
4527 assert( pCrsr ); 4721 assert( pCrsr );
4528 rc = sqlite3BtreeFirst(pCrsr, &res); 4722 rc = sqlite3BtreeFirst(pCrsr, &res);
4529 pC->deferredMoveto = 0; 4723 pC->deferredMoveto = 0;
4530 pC->cacheStatus = CACHE_STALE; 4724 pC->cacheStatus = CACHE_STALE;
4531 } 4725 }
4532 pC->nullRow = (u8)res; 4726 pC->nullRow = (u8)res;
4533 assert( pOp->p2>0 && pOp->p2<p->nOp ); 4727 assert( pOp->p2>0 && pOp->p2<p->nOp );
4534 VdbeBranchTaken(res!=0,2); 4728 VdbeBranchTaken(res!=0,2);
4535 if( res ){ 4729 if( res ) goto jump_to_p2;
4536 pc = pOp->p2 - 1;
4537 }
4538 break; 4730 break;
4539 } 4731 }
4540 4732
4541 /* Opcode: Next P1 P2 P3 P4 P5 4733 /* Opcode: Next P1 P2 P3 P4 P5
4542 ** 4734 **
4543 ** Advance cursor P1 so that it points to the next key/data pair in its 4735 ** Advance cursor P1 so that it points to the next key/data pair in its
4544 ** table or index. If there are no more key/value pairs then fall through 4736 ** table or index. If there are no more key/value pairs then fall through
4545 ** to the following instruction. But if the cursor advance was successful, 4737 ** to the following instruction. But if the cursor advance was successful,
4546 ** jump immediately to P2. 4738 ** jump immediately to P2.
4547 ** 4739 **
(...skipping 67 matching lines...) Expand 10 before | Expand all | Expand 10 after
4615 if( p->apCsr[pOp->p1]==0 ) break; 4807 if( p->apCsr[pOp->p1]==0 ) break;
4616 /* Fall through */ 4808 /* Fall through */
4617 case OP_Prev: /* jump */ 4809 case OP_Prev: /* jump */
4618 case OP_Next: /* jump */ 4810 case OP_Next: /* jump */
4619 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4811 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4620 assert( pOp->p5<ArraySize(p->aCounter) ); 4812 assert( pOp->p5<ArraySize(p->aCounter) );
4621 pC = p->apCsr[pOp->p1]; 4813 pC = p->apCsr[pOp->p1];
4622 res = pOp->p3; 4814 res = pOp->p3;
4623 assert( pC!=0 ); 4815 assert( pC!=0 );
4624 assert( pC->deferredMoveto==0 ); 4816 assert( pC->deferredMoveto==0 );
4625 assert( pC->pCursor ); 4817 assert( pC->eCurType==CURTYPE_BTREE );
4626 assert( res==0 || (res==1 && pC->isTable==0) ); 4818 assert( res==0 || (res==1 && pC->isTable==0) );
4627 testcase( res==1 ); 4819 testcase( res==1 );
4628 assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext ); 4820 assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
4629 assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious ); 4821 assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
4630 assert( pOp->opcode!=OP_NextIfOpen || pOp->p4.xAdvance==sqlite3BtreeNext ); 4822 assert( pOp->opcode!=OP_NextIfOpen || pOp->p4.xAdvance==sqlite3BtreeNext );
4631 assert( pOp->opcode!=OP_PrevIfOpen || pOp->p4.xAdvance==sqlite3BtreePrevious); 4823 assert( pOp->opcode!=OP_PrevIfOpen || pOp->p4.xAdvance==sqlite3BtreePrevious);
4632 4824
4633 /* The Next opcode is only used after SeekGT, SeekGE, and Rewind. 4825 /* The Next opcode is only used after SeekGT, SeekGE, and Rewind.
4634 ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */ 4826 ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */
4635 assert( pOp->opcode!=OP_Next || pOp->opcode!=OP_NextIfOpen 4827 assert( pOp->opcode!=OP_Next || pOp->opcode!=OP_NextIfOpen
4636 || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE 4828 || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE
4637 || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found); 4829 || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found);
4638 assert( pOp->opcode!=OP_Prev || pOp->opcode!=OP_PrevIfOpen 4830 assert( pOp->opcode!=OP_Prev || pOp->opcode!=OP_PrevIfOpen
4639 || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE 4831 || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE
4640 || pC->seekOp==OP_Last ); 4832 || pC->seekOp==OP_Last );
4641 4833
4642 rc = pOp->p4.xAdvance(pC->pCursor, &res); 4834 rc = pOp->p4.xAdvance(pC->uc.pCursor, &res);
4643 next_tail: 4835 next_tail:
4644 pC->cacheStatus = CACHE_STALE; 4836 pC->cacheStatus = CACHE_STALE;
4645 VdbeBranchTaken(res==0,2); 4837 VdbeBranchTaken(res==0,2);
4646 if( res==0 ){ 4838 if( res==0 ){
4647 pC->nullRow = 0; 4839 pC->nullRow = 0;
4648 pc = pOp->p2 - 1;
4649 p->aCounter[pOp->p5]++; 4840 p->aCounter[pOp->p5]++;
4650 #ifdef SQLITE_TEST 4841 #ifdef SQLITE_TEST
4651 sqlite3_search_count++; 4842 sqlite3_search_count++;
4652 #endif 4843 #endif
4844 goto jump_to_p2_and_check_for_interrupt;
4653 }else{ 4845 }else{
4654 pC->nullRow = 1; 4846 pC->nullRow = 1;
4655 } 4847 }
4656 goto check_for_interrupt; 4848 goto check_for_interrupt;
4657 } 4849 }
4658 4850
4659 /* Opcode: IdxInsert P1 P2 P3 * P5 4851 /* Opcode: IdxInsert P1 P2 P3 * P5
4660 ** Synopsis: key=r[P2] 4852 ** Synopsis: key=r[P2]
4661 ** 4853 **
4662 ** Register P2 holds an SQL index key made using the 4854 ** Register P2 holds an SQL index key made using the
(...skipping 10 matching lines...) Expand all
4673 ** If P5 has the OPFLAG_USESEEKRESULT bit set, then the cursor must have 4865 ** If P5 has the OPFLAG_USESEEKRESULT bit set, then the cursor must have
4674 ** just done a seek to the spot where the new entry is to be inserted. 4866 ** just done a seek to the spot where the new entry is to be inserted.
4675 ** This flag avoids doing an extra seek. 4867 ** This flag avoids doing an extra seek.
4676 ** 4868 **
4677 ** This instruction only works for indices. The equivalent instruction 4869 ** This instruction only works for indices. The equivalent instruction
4678 ** for tables is OP_Insert. 4870 ** for tables is OP_Insert.
4679 */ 4871 */
4680 case OP_SorterInsert: /* in2 */ 4872 case OP_SorterInsert: /* in2 */
4681 case OP_IdxInsert: { /* in2 */ 4873 case OP_IdxInsert: { /* in2 */
4682 VdbeCursor *pC; 4874 VdbeCursor *pC;
4683 BtCursor *pCrsr;
4684 int nKey; 4875 int nKey;
4685 const char *zKey; 4876 const char *zKey;
4686 4877
4687 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4878 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4688 pC = p->apCsr[pOp->p1]; 4879 pC = p->apCsr[pOp->p1];
4689 assert( pC!=0 ); 4880 assert( pC!=0 );
4690 assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) ); 4881 assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) );
4691 pIn2 = &aMem[pOp->p2]; 4882 pIn2 = &aMem[pOp->p2];
4692 assert( pIn2->flags & MEM_Blob ); 4883 assert( pIn2->flags & MEM_Blob );
4693 pCrsr = pC->pCursor;
4694 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 4884 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
4695 assert( pCrsr!=0 ); 4885 assert( pC->eCurType==CURTYPE_BTREE || pOp->opcode==OP_SorterInsert );
4696 assert( pC->isTable==0 ); 4886 assert( pC->isTable==0 );
4697 rc = ExpandBlob(pIn2); 4887 rc = ExpandBlob(pIn2);
4698 if( rc==SQLITE_OK ){ 4888 if( rc==SQLITE_OK ){
4699 if( isSorter(pC) ){ 4889 if( pOp->opcode==OP_SorterInsert ){
4700 rc = sqlite3VdbeSorterWrite(pC, pIn2); 4890 rc = sqlite3VdbeSorterWrite(pC, pIn2);
4701 }else{ 4891 }else{
4702 nKey = pIn2->n; 4892 nKey = pIn2->n;
4703 zKey = pIn2->z; 4893 zKey = pIn2->z;
4704 rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3, 4894 rc = sqlite3BtreeInsert(pC->uc.pCursor, zKey, nKey, "", 0, 0, pOp->p3,
4705 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0) 4895 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
4706 ); 4896 );
4707 assert( pC->deferredMoveto==0 ); 4897 assert( pC->deferredMoveto==0 );
4708 pC->cacheStatus = CACHE_STALE; 4898 pC->cacheStatus = CACHE_STALE;
4709 } 4899 }
4710 } 4900 }
4711 break; 4901 break;
4712 } 4902 }
4713 4903
4714 /* Opcode: IdxDelete P1 P2 P3 * * 4904 /* Opcode: IdxDelete P1 P2 P3 * *
4715 ** Synopsis: key=r[P2@P3] 4905 ** Synopsis: key=r[P2@P3]
4716 ** 4906 **
4717 ** The content of P3 registers starting at register P2 form 4907 ** The content of P3 registers starting at register P2 form
4718 ** an unpacked index key. This opcode removes that entry from the 4908 ** an unpacked index key. This opcode removes that entry from the
4719 ** index opened by cursor P1. 4909 ** index opened by cursor P1.
4720 */ 4910 */
4721 case OP_IdxDelete: { 4911 case OP_IdxDelete: {
4722 VdbeCursor *pC; 4912 VdbeCursor *pC;
4723 BtCursor *pCrsr; 4913 BtCursor *pCrsr;
4724 int res; 4914 int res;
4725 UnpackedRecord r; 4915 UnpackedRecord r;
4726 4916
4727 assert( pOp->p3>0 ); 4917 assert( pOp->p3>0 );
4728 assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem-p->nCursor)+1 ); 4918 assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem-p->nCursor)+1 );
4729 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4919 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4730 pC = p->apCsr[pOp->p1]; 4920 pC = p->apCsr[pOp->p1];
4731 assert( pC!=0 ); 4921 assert( pC!=0 );
4732 pCrsr = pC->pCursor; 4922 assert( pC->eCurType==CURTYPE_BTREE );
4923 pCrsr = pC->uc.pCursor;
4733 assert( pCrsr!=0 ); 4924 assert( pCrsr!=0 );
4734 assert( pOp->p5==0 ); 4925 assert( pOp->p5==0 );
4735 r.pKeyInfo = pC->pKeyInfo; 4926 r.pKeyInfo = pC->pKeyInfo;
4736 r.nField = (u16)pOp->p3; 4927 r.nField = (u16)pOp->p3;
4737 r.default_rc = 0; 4928 r.default_rc = 0;
4738 r.aMem = &aMem[pOp->p2]; 4929 r.aMem = &aMem[pOp->p2];
4739 #ifdef SQLITE_DEBUG 4930 #ifdef SQLITE_DEBUG
4740 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } 4931 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
4741 #endif 4932 #endif
4742 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res); 4933 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
4743 if( rc==SQLITE_OK && res==0 ){ 4934 if( rc==SQLITE_OK && res==0 ){
4744 rc = sqlite3BtreeDelete(pCrsr); 4935 rc = sqlite3BtreeDelete(pCrsr, 0);
4745 } 4936 }
4746 assert( pC->deferredMoveto==0 ); 4937 assert( pC->deferredMoveto==0 );
4747 pC->cacheStatus = CACHE_STALE; 4938 pC->cacheStatus = CACHE_STALE;
4748 break; 4939 break;
4749 } 4940 }
4750 4941
4751 /* Opcode: IdxRowid P1 P2 * * * 4942 /* Opcode: IdxRowid P1 P2 * * *
4752 ** Synopsis: r[P2]=rowid 4943 ** Synopsis: r[P2]=rowid
4753 ** 4944 **
4754 ** Write into register P2 an integer which is the last entry in the record at 4945 ** Write into register P2 an integer which is the last entry in the record at
4755 ** the end of the index key pointed to by cursor P1. This integer should be 4946 ** the end of the index key pointed to by cursor P1. This integer should be
4756 ** the rowid of the table entry to which this index entry points. 4947 ** the rowid of the table entry to which this index entry points.
4757 ** 4948 **
4758 ** See also: Rowid, MakeRecord. 4949 ** See also: Rowid, MakeRecord.
4759 */ 4950 */
4760 case OP_IdxRowid: { /* out2-prerelease */ 4951 case OP_IdxRowid: { /* out2 */
4761 BtCursor *pCrsr; 4952 BtCursor *pCrsr;
4762 VdbeCursor *pC; 4953 VdbeCursor *pC;
4763 i64 rowid; 4954 i64 rowid;
4764 4955
4956 pOut = out2Prerelease(p, pOp);
4765 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4957 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4766 pC = p->apCsr[pOp->p1]; 4958 pC = p->apCsr[pOp->p1];
4767 assert( pC!=0 ); 4959 assert( pC!=0 );
4768 pCrsr = pC->pCursor; 4960 assert( pC->eCurType==CURTYPE_BTREE );
4961 pCrsr = pC->uc.pCursor;
4769 assert( pCrsr!=0 ); 4962 assert( pCrsr!=0 );
4770 pOut->flags = MEM_Null; 4963 pOut->flags = MEM_Null;
4771 assert( pC->isTable==0 ); 4964 assert( pC->isTable==0 );
4772 assert( pC->deferredMoveto==0 ); 4965 assert( pC->deferredMoveto==0 );
4773 4966
4774 /* sqlite3VbeCursorRestore() can only fail if the record has been deleted 4967 /* sqlite3VbeCursorRestore() can only fail if the record has been deleted
4775 ** out from under the cursor. That will never happend for an IdxRowid 4968 ** out from under the cursor. That will never happend for an IdxRowid
4776 ** opcode, hence the NEVER() arround the check of the return value. 4969 ** opcode, hence the NEVER() arround the check of the return value.
4777 */ 4970 */
4778 rc = sqlite3VdbeCursorRestore(pC); 4971 rc = sqlite3VdbeCursorRestore(pC);
(...skipping 60 matching lines...) Expand 10 before | Expand all | Expand 10 after
4839 case OP_IdxLT: /* jump */ 5032 case OP_IdxLT: /* jump */
4840 case OP_IdxGE: { /* jump */ 5033 case OP_IdxGE: { /* jump */
4841 VdbeCursor *pC; 5034 VdbeCursor *pC;
4842 int res; 5035 int res;
4843 UnpackedRecord r; 5036 UnpackedRecord r;
4844 5037
4845 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5038 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4846 pC = p->apCsr[pOp->p1]; 5039 pC = p->apCsr[pOp->p1];
4847 assert( pC!=0 ); 5040 assert( pC!=0 );
4848 assert( pC->isOrdered ); 5041 assert( pC->isOrdered );
4849 assert( pC->pCursor!=0); 5042 assert( pC->eCurType==CURTYPE_BTREE );
5043 assert( pC->uc.pCursor!=0);
4850 assert( pC->deferredMoveto==0 ); 5044 assert( pC->deferredMoveto==0 );
4851 assert( pOp->p5==0 || pOp->p5==1 ); 5045 assert( pOp->p5==0 || pOp->p5==1 );
4852 assert( pOp->p4type==P4_INT32 ); 5046 assert( pOp->p4type==P4_INT32 );
4853 r.pKeyInfo = pC->pKeyInfo; 5047 r.pKeyInfo = pC->pKeyInfo;
4854 r.nField = (u16)pOp->p4.i; 5048 r.nField = (u16)pOp->p4.i;
4855 if( pOp->opcode<OP_IdxLT ){ 5049 if( pOp->opcode<OP_IdxLT ){
4856 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT ); 5050 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT );
4857 r.default_rc = -1; 5051 r.default_rc = -1;
4858 }else{ 5052 }else{
4859 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT ); 5053 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT );
4860 r.default_rc = 0; 5054 r.default_rc = 0;
4861 } 5055 }
4862 r.aMem = &aMem[pOp->p3]; 5056 r.aMem = &aMem[pOp->p3];
4863 #ifdef SQLITE_DEBUG 5057 #ifdef SQLITE_DEBUG
4864 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } 5058 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
4865 #endif 5059 #endif
4866 res = 0; /* Not needed. Only used to silence a warning. */ 5060 res = 0; /* Not needed. Only used to silence a warning. */
4867 rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res); 5061 rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res);
4868 assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) ); 5062 assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) );
4869 if( (pOp->opcode&1)==(OP_IdxLT&1) ){ 5063 if( (pOp->opcode&1)==(OP_IdxLT&1) ){
4870 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT ); 5064 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT );
4871 res = -res; 5065 res = -res;
4872 }else{ 5066 }else{
4873 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT ); 5067 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT );
4874 res++; 5068 res++;
4875 } 5069 }
4876 VdbeBranchTaken(res>0,2); 5070 VdbeBranchTaken(res>0,2);
4877 if( res>0 ){ 5071 if( res>0 ) goto jump_to_p2;
4878 pc = pOp->p2 - 1 ;
4879 }
4880 break; 5072 break;
4881 } 5073 }
4882 5074
4883 /* Opcode: Destroy P1 P2 P3 * * 5075 /* Opcode: Destroy P1 P2 P3 * *
4884 ** 5076 **
4885 ** Delete an entire database table or index whose root page in the database 5077 ** Delete an entire database table or index whose root page in the database
4886 ** file is given by P1. 5078 ** file is given by P1.
4887 ** 5079 **
4888 ** The table being destroyed is in the main database file if P3==0. If 5080 ** The table being destroyed is in the main database file if P3==0. If
4889 ** P3==1 then the table to be clear is in the auxiliary database file 5081 ** P3==1 then the table to be clear is in the auxiliary database file
4890 ** that is used to store tables create using CREATE TEMPORARY TABLE. 5082 ** that is used to store tables create using CREATE TEMPORARY TABLE.
4891 ** 5083 **
4892 ** If AUTOVACUUM is enabled then it is possible that another root page 5084 ** If AUTOVACUUM is enabled then it is possible that another root page
4893 ** might be moved into the newly deleted root page in order to keep all 5085 ** might be moved into the newly deleted root page in order to keep all
4894 ** root pages contiguous at the beginning of the database. The former 5086 ** root pages contiguous at the beginning of the database. The former
4895 ** value of the root page that moved - its value before the move occurred - 5087 ** value of the root page that moved - its value before the move occurred -
4896 ** is stored in register P2. If no page 5088 ** is stored in register P2. If no page
4897 ** movement was required (because the table being dropped was already 5089 ** movement was required (because the table being dropped was already
4898 ** the last one in the database) then a zero is stored in register P2. 5090 ** the last one in the database) then a zero is stored in register P2.
4899 ** If AUTOVACUUM is disabled then a zero is stored in register P2. 5091 ** If AUTOVACUUM is disabled then a zero is stored in register P2.
4900 ** 5092 **
4901 ** See also: Clear 5093 ** See also: Clear
4902 */ 5094 */
4903 case OP_Destroy: { /* out2-prerelease */ 5095 case OP_Destroy: { /* out2 */
4904 int iMoved; 5096 int iMoved;
4905 int iCnt;
4906 Vdbe *pVdbe;
4907 int iDb; 5097 int iDb;
4908 5098
4909 assert( p->readOnly==0 ); 5099 assert( p->readOnly==0 );
4910 #ifndef SQLITE_OMIT_VIRTUALTABLE 5100 pOut = out2Prerelease(p, pOp);
4911 iCnt = 0;
4912 for(pVdbe=db->pVdbe; pVdbe; pVdbe = pVdbe->pNext){
4913 if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->bIsReader
4914 && pVdbe->inVtabMethod<2 && pVdbe->pc>=0
4915 ){
4916 iCnt++;
4917 }
4918 }
4919 #else
4920 iCnt = db->nVdbeRead;
4921 #endif
4922 pOut->flags = MEM_Null; 5101 pOut->flags = MEM_Null;
4923 if( iCnt>1 ){ 5102 if( db->nVdbeRead > db->nVDestroy+1 ){
4924 rc = SQLITE_LOCKED; 5103 rc = SQLITE_LOCKED;
4925 p->errorAction = OE_Abort; 5104 p->errorAction = OE_Abort;
4926 }else{ 5105 }else{
4927 iDb = pOp->p3; 5106 iDb = pOp->p3;
4928 assert( iCnt==1 );
4929 assert( DbMaskTest(p->btreeMask, iDb) ); 5107 assert( DbMaskTest(p->btreeMask, iDb) );
4930 iMoved = 0; /* Not needed. Only to silence a warning. */ 5108 iMoved = 0; /* Not needed. Only to silence a warning. */
4931 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved); 5109 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
4932 pOut->flags = MEM_Int; 5110 pOut->flags = MEM_Int;
4933 pOut->u.i = iMoved; 5111 pOut->u.i = iMoved;
4934 #ifndef SQLITE_OMIT_AUTOVACUUM 5112 #ifndef SQLITE_OMIT_AUTOVACUUM
4935 if( rc==SQLITE_OK && iMoved!=0 ){ 5113 if( rc==SQLITE_OK && iMoved!=0 ){
4936 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1); 5114 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
4937 /* All OP_Destroy operations occur on the same btree */ 5115 /* All OP_Destroy operations occur on the same btree */
4938 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 ); 5116 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
(...skipping 49 matching lines...) Expand 10 before | Expand all | Expand 10 after
4988 ** 5166 **
4989 ** This opcode only works for cursors used for sorting and 5167 ** This opcode only works for cursors used for sorting and
4990 ** opened with OP_OpenEphemeral or OP_SorterOpen. 5168 ** opened with OP_OpenEphemeral or OP_SorterOpen.
4991 */ 5169 */
4992 case OP_ResetSorter: { 5170 case OP_ResetSorter: {
4993 VdbeCursor *pC; 5171 VdbeCursor *pC;
4994 5172
4995 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5173 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4996 pC = p->apCsr[pOp->p1]; 5174 pC = p->apCsr[pOp->p1];
4997 assert( pC!=0 ); 5175 assert( pC!=0 );
4998 if( pC->pSorter ){ 5176 if( isSorter(pC) ){
4999 sqlite3VdbeSorterReset(db, pC->pSorter); 5177 sqlite3VdbeSorterReset(db, pC->uc.pSorter);
5000 }else{ 5178 }else{
5179 assert( pC->eCurType==CURTYPE_BTREE );
5001 assert( pC->isEphemeral ); 5180 assert( pC->isEphemeral );
5002 rc = sqlite3BtreeClearTableOfCursor(pC->pCursor); 5181 rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor);
5003 } 5182 }
5004 break; 5183 break;
5005 } 5184 }
5006 5185
5007 /* Opcode: CreateTable P1 P2 * * * 5186 /* Opcode: CreateTable P1 P2 * * *
5008 ** Synopsis: r[P2]=root iDb=P1 5187 ** Synopsis: r[P2]=root iDb=P1
5009 ** 5188 **
5010 ** Allocate a new table in the main database file if P1==0 or in the 5189 ** Allocate a new table in the main database file if P1==0 or in the
5011 ** auxiliary database file if P1==1 or in an attached database if 5190 ** auxiliary database file if P1==1 or in an attached database if
5012 ** P1>1. Write the root page number of the new table into 5191 ** P1>1. Write the root page number of the new table into
5013 ** register P2 5192 ** register P2
5014 ** 5193 **
5015 ** The difference between a table and an index is this: A table must 5194 ** The difference between a table and an index is this: A table must
5016 ** have a 4-byte integer key and can have arbitrary data. An index 5195 ** have a 4-byte integer key and can have arbitrary data. An index
5017 ** has an arbitrary key but no data. 5196 ** has an arbitrary key but no data.
5018 ** 5197 **
5019 ** See also: CreateIndex 5198 ** See also: CreateIndex
5020 */ 5199 */
5021 /* Opcode: CreateIndex P1 P2 * * * 5200 /* Opcode: CreateIndex P1 P2 * * *
5022 ** Synopsis: r[P2]=root iDb=P1 5201 ** Synopsis: r[P2]=root iDb=P1
5023 ** 5202 **
5024 ** Allocate a new index in the main database file if P1==0 or in the 5203 ** Allocate a new index in the main database file if P1==0 or in the
5025 ** auxiliary database file if P1==1 or in an attached database if 5204 ** auxiliary database file if P1==1 or in an attached database if
5026 ** P1>1. Write the root page number of the new table into 5205 ** P1>1. Write the root page number of the new table into
5027 ** register P2. 5206 ** register P2.
5028 ** 5207 **
5029 ** See documentation on OP_CreateTable for additional information. 5208 ** See documentation on OP_CreateTable for additional information.
5030 */ 5209 */
5031 case OP_CreateIndex: /* out2-prerelease */ 5210 case OP_CreateIndex: /* out2 */
5032 case OP_CreateTable: { /* out2-prerelease */ 5211 case OP_CreateTable: { /* out2 */
5033 int pgno; 5212 int pgno;
5034 int flags; 5213 int flags;
5035 Db *pDb; 5214 Db *pDb;
5036 5215
5216 pOut = out2Prerelease(p, pOp);
5037 pgno = 0; 5217 pgno = 0;
5038 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 5218 assert( pOp->p1>=0 && pOp->p1<db->nDb );
5039 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 5219 assert( DbMaskTest(p->btreeMask, pOp->p1) );
5040 assert( p->readOnly==0 ); 5220 assert( p->readOnly==0 );
5041 pDb = &db->aDb[pOp->p1]; 5221 pDb = &db->aDb[pOp->p1];
5042 assert( pDb->pBt!=0 ); 5222 assert( pDb->pBt!=0 );
5043 if( pOp->opcode==OP_CreateTable ){ 5223 if( pOp->opcode==OP_CreateTable ){
5044 /* flags = BTREE_INTKEY; */ 5224 /* flags = BTREE_INTKEY; */
5045 flags = BTREE_INTKEY; 5225 flags = BTREE_INTKEY;
5046 }else{ 5226 }else{
(...skipping 205 matching lines...) Expand 10 before | Expand all | Expand 10 after
5252 */ 5432 */
5253 case OP_RowSetRead: { /* jump, in1, out3 */ 5433 case OP_RowSetRead: { /* jump, in1, out3 */
5254 i64 val; 5434 i64 val;
5255 5435
5256 pIn1 = &aMem[pOp->p1]; 5436 pIn1 = &aMem[pOp->p1];
5257 if( (pIn1->flags & MEM_RowSet)==0 5437 if( (pIn1->flags & MEM_RowSet)==0
5258 || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0 5438 || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0
5259 ){ 5439 ){
5260 /* The boolean index is empty */ 5440 /* The boolean index is empty */
5261 sqlite3VdbeMemSetNull(pIn1); 5441 sqlite3VdbeMemSetNull(pIn1);
5262 pc = pOp->p2 - 1;
5263 VdbeBranchTaken(1,2); 5442 VdbeBranchTaken(1,2);
5443 goto jump_to_p2_and_check_for_interrupt;
5264 }else{ 5444 }else{
5265 /* A value was pulled from the index */ 5445 /* A value was pulled from the index */
5446 VdbeBranchTaken(0,2);
5266 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val); 5447 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
5267 VdbeBranchTaken(0,2);
5268 } 5448 }
5269 goto check_for_interrupt; 5449 goto check_for_interrupt;
5270 } 5450 }
5271 5451
5272 /* Opcode: RowSetTest P1 P2 P3 P4 5452 /* Opcode: RowSetTest P1 P2 P3 P4
5273 ** Synopsis: if r[P3] in rowset(P1) goto P2 5453 ** Synopsis: if r[P3] in rowset(P1) goto P2
5274 ** 5454 **
5275 ** Register P3 is assumed to hold a 64-bit integer value. If register P1 5455 ** Register P3 is assumed to hold a 64-bit integer value. If register P1
5276 ** contains a RowSet object and that RowSet object contains 5456 ** contains a RowSet object and that RowSet object contains
5277 ** the value held in P3, jump to register P2. Otherwise, insert the 5457 ** the value held in P3, jump to register P2. Otherwise, insert the
(...skipping 30 matching lines...) Expand all
5308 if( (pIn1->flags & MEM_RowSet)==0 ){ 5488 if( (pIn1->flags & MEM_RowSet)==0 ){
5309 sqlite3VdbeMemSetRowSet(pIn1); 5489 sqlite3VdbeMemSetRowSet(pIn1);
5310 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem; 5490 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
5311 } 5491 }
5312 5492
5313 assert( pOp->p4type==P4_INT32 ); 5493 assert( pOp->p4type==P4_INT32 );
5314 assert( iSet==-1 || iSet>=0 ); 5494 assert( iSet==-1 || iSet>=0 );
5315 if( iSet ){ 5495 if( iSet ){
5316 exists = sqlite3RowSetTest(pIn1->u.pRowSet, iSet, pIn3->u.i); 5496 exists = sqlite3RowSetTest(pIn1->u.pRowSet, iSet, pIn3->u.i);
5317 VdbeBranchTaken(exists!=0,2); 5497 VdbeBranchTaken(exists!=0,2);
5318 if( exists ){ 5498 if( exists ) goto jump_to_p2;
5319 pc = pOp->p2 - 1;
5320 break;
5321 }
5322 } 5499 }
5323 if( iSet>=0 ){ 5500 if( iSet>=0 ){
5324 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i); 5501 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i);
5325 } 5502 }
5326 break; 5503 break;
5327 } 5504 }
5328 5505
5329 5506
5330 #ifndef SQLITE_OMIT_TRIGGER 5507 #ifndef SQLITE_OMIT_TRIGGER
5331 5508
(...skipping 38 matching lines...) Expand 10 before | Expand all | Expand 10 after
5370 ** single trigger all have the same value for the SubProgram.token 5547 ** single trigger all have the same value for the SubProgram.token
5371 ** variable. */ 5548 ** variable. */
5372 if( pOp->p5 ){ 5549 if( pOp->p5 ){
5373 t = pProgram->token; 5550 t = pProgram->token;
5374 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent); 5551 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
5375 if( pFrame ) break; 5552 if( pFrame ) break;
5376 } 5553 }
5377 5554
5378 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){ 5555 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
5379 rc = SQLITE_ERROR; 5556 rc = SQLITE_ERROR;
5380 sqlite3SetString(&p->zErrMsg, db, "too many levels of trigger recursion"); 5557 sqlite3VdbeError(p, "too many levels of trigger recursion");
5381 break; 5558 break;
5382 } 5559 }
5383 5560
5384 /* Register pRt is used to store the memory required to save the state 5561 /* Register pRt is used to store the memory required to save the state
5385 ** of the current program, and the memory required at runtime to execute 5562 ** of the current program, and the memory required at runtime to execute
5386 ** the trigger program. If this trigger has been fired before, then pRt 5563 ** the trigger program. If this trigger has been fired before, then pRt
5387 ** is already allocated. Otherwise, it must be initialized. */ 5564 ** is already allocated. Otherwise, it must be initialized. */
5388 if( (pRt->flags&MEM_Frame)==0 ){ 5565 if( (pRt->flags&MEM_Frame)==0 ){
5389 /* SubProgram.nMem is set to the number of memory cells used by the 5566 /* SubProgram.nMem is set to the number of memory cells used by the
5390 ** program stored in SubProgram.aOp. As well as these, one memory 5567 ** program stored in SubProgram.aOp. As well as these, one memory
5391 ** cell is required for each cursor used by the program. Set local 5568 ** cell is required for each cursor used by the program. Set local
5392 ** variable nMem (and later, VdbeFrame.nChildMem) to this value. 5569 ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
5393 */ 5570 */
5394 nMem = pProgram->nMem + pProgram->nCsr; 5571 nMem = pProgram->nMem + pProgram->nCsr;
5395 nByte = ROUND8(sizeof(VdbeFrame)) 5572 nByte = ROUND8(sizeof(VdbeFrame))
5396 + nMem * sizeof(Mem) 5573 + nMem * sizeof(Mem)
5397 + pProgram->nCsr * sizeof(VdbeCursor *) 5574 + pProgram->nCsr * sizeof(VdbeCursor *)
5398 + pProgram->nOnce * sizeof(u8); 5575 + pProgram->nOnce * sizeof(u8);
5399 pFrame = sqlite3DbMallocZero(db, nByte); 5576 pFrame = sqlite3DbMallocZero(db, nByte);
5400 if( !pFrame ){ 5577 if( !pFrame ){
5401 goto no_mem; 5578 goto no_mem;
5402 } 5579 }
5403 sqlite3VdbeMemRelease(pRt); 5580 sqlite3VdbeMemRelease(pRt);
5404 pRt->flags = MEM_Frame; 5581 pRt->flags = MEM_Frame;
5405 pRt->u.pFrame = pFrame; 5582 pRt->u.pFrame = pFrame;
5406 5583
5407 pFrame->v = p; 5584 pFrame->v = p;
5408 pFrame->nChildMem = nMem; 5585 pFrame->nChildMem = nMem;
5409 pFrame->nChildCsr = pProgram->nCsr; 5586 pFrame->nChildCsr = pProgram->nCsr;
5410 pFrame->pc = pc; 5587 pFrame->pc = (int)(pOp - aOp);
5411 pFrame->aMem = p->aMem; 5588 pFrame->aMem = p->aMem;
5412 pFrame->nMem = p->nMem; 5589 pFrame->nMem = p->nMem;
5413 pFrame->apCsr = p->apCsr; 5590 pFrame->apCsr = p->apCsr;
5414 pFrame->nCursor = p->nCursor; 5591 pFrame->nCursor = p->nCursor;
5415 pFrame->aOp = p->aOp; 5592 pFrame->aOp = p->aOp;
5416 pFrame->nOp = p->nOp; 5593 pFrame->nOp = p->nOp;
5417 pFrame->token = pProgram->token; 5594 pFrame->token = pProgram->token;
5418 pFrame->aOnceFlag = p->aOnceFlag; 5595 pFrame->aOnceFlag = p->aOnceFlag;
5419 pFrame->nOnceFlag = p->nOnceFlag; 5596 pFrame->nOnceFlag = p->nOnceFlag;
5597 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
5598 pFrame->anExec = p->anExec;
5599 #endif
5420 5600
5421 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem]; 5601 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
5422 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){ 5602 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
5423 pMem->flags = MEM_Undefined; 5603 pMem->flags = MEM_Undefined;
5424 pMem->db = db; 5604 pMem->db = db;
5425 } 5605 }
5426 }else{ 5606 }else{
5427 pFrame = pRt->u.pFrame; 5607 pFrame = pRt->u.pFrame;
5428 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem ); 5608 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem );
5429 assert( pProgram->nCsr==pFrame->nChildCsr ); 5609 assert( pProgram->nCsr==pFrame->nChildCsr );
5430 assert( pc==pFrame->pc ); 5610 assert( (int)(pOp - aOp)==pFrame->pc );
5431 } 5611 }
5432 5612
5433 p->nFrame++; 5613 p->nFrame++;
5434 pFrame->pParent = p->pFrame; 5614 pFrame->pParent = p->pFrame;
5435 pFrame->lastRowid = lastRowid; 5615 pFrame->lastRowid = lastRowid;
5436 pFrame->nChange = p->nChange; 5616 pFrame->nChange = p->nChange;
5617 pFrame->nDbChange = p->db->nChange;
5437 p->nChange = 0; 5618 p->nChange = 0;
5438 p->pFrame = pFrame; 5619 p->pFrame = pFrame;
5439 p->aMem = aMem = &VdbeFrameMem(pFrame)[-1]; 5620 p->aMem = aMem = &VdbeFrameMem(pFrame)[-1];
5440 p->nMem = pFrame->nChildMem; 5621 p->nMem = pFrame->nChildMem;
5441 p->nCursor = (u16)pFrame->nChildCsr; 5622 p->nCursor = (u16)pFrame->nChildCsr;
5442 p->apCsr = (VdbeCursor **)&aMem[p->nMem+1]; 5623 p->apCsr = (VdbeCursor **)&aMem[p->nMem+1];
5443 p->aOp = aOp = pProgram->aOp; 5624 p->aOp = aOp = pProgram->aOp;
5444 p->nOp = pProgram->nOp; 5625 p->nOp = pProgram->nOp;
5445 p->aOnceFlag = (u8 *)&p->apCsr[p->nCursor]; 5626 p->aOnceFlag = (u8 *)&p->apCsr[p->nCursor];
5446 p->nOnceFlag = pProgram->nOnce; 5627 p->nOnceFlag = pProgram->nOnce;
5447 pc = -1; 5628 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
5629 p->anExec = 0;
5630 #endif
5631 pOp = &aOp[-1];
5448 memset(p->aOnceFlag, 0, p->nOnceFlag); 5632 memset(p->aOnceFlag, 0, p->nOnceFlag);
5449 5633
5450 break; 5634 break;
5451 } 5635 }
5452 5636
5453 /* Opcode: Param P1 P2 * * * 5637 /* Opcode: Param P1 P2 * * *
5454 ** 5638 **
5455 ** This opcode is only ever present in sub-programs called via the 5639 ** This opcode is only ever present in sub-programs called via the
5456 ** OP_Program instruction. Copy a value currently stored in a memory 5640 ** OP_Program instruction. Copy a value currently stored in a memory
5457 ** cell of the calling (parent) frame to cell P2 in the current frames 5641 ** cell of the calling (parent) frame to cell P2 in the current frames
5458 ** address space. This is used by trigger programs to access the new.* 5642 ** address space. This is used by trigger programs to access the new.*
5459 ** and old.* values. 5643 ** and old.* values.
5460 ** 5644 **
5461 ** The address of the cell in the parent frame is determined by adding 5645 ** The address of the cell in the parent frame is determined by adding
5462 ** the value of the P1 argument to the value of the P1 argument to the 5646 ** the value of the P1 argument to the value of the P1 argument to the
5463 ** calling OP_Program instruction. 5647 ** calling OP_Program instruction.
5464 */ 5648 */
5465 case OP_Param: { /* out2-prerelease */ 5649 case OP_Param: { /* out2 */
5466 VdbeFrame *pFrame; 5650 VdbeFrame *pFrame;
5467 Mem *pIn; 5651 Mem *pIn;
5652 pOut = out2Prerelease(p, pOp);
5468 pFrame = p->pFrame; 5653 pFrame = p->pFrame;
5469 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1]; 5654 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
5470 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem); 5655 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
5471 break; 5656 break;
5472 } 5657 }
5473 5658
5474 #endif /* #ifndef SQLITE_OMIT_TRIGGER */ 5659 #endif /* #ifndef SQLITE_OMIT_TRIGGER */
5475 5660
5476 #ifndef SQLITE_OMIT_FOREIGN_KEY 5661 #ifndef SQLITE_OMIT_FOREIGN_KEY
5477 /* Opcode: FkCounter P1 P2 * * * 5662 /* Opcode: FkCounter P1 P2 * * *
(...skipping 23 matching lines...) Expand all
5501 ** instruction. 5686 ** instruction.
5502 ** 5687 **
5503 ** If P1 is non-zero, then the jump is taken if the database constraint-counter 5688 ** If P1 is non-zero, then the jump is taken if the database constraint-counter
5504 ** is zero (the one that counts deferred constraint violations). If P1 is 5689 ** is zero (the one that counts deferred constraint violations). If P1 is
5505 ** zero, the jump is taken if the statement constraint-counter is zero 5690 ** zero, the jump is taken if the statement constraint-counter is zero
5506 ** (immediate foreign key constraint violations). 5691 ** (immediate foreign key constraint violations).
5507 */ 5692 */
5508 case OP_FkIfZero: { /* jump */ 5693 case OP_FkIfZero: { /* jump */
5509 if( pOp->p1 ){ 5694 if( pOp->p1 ){
5510 VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2); 5695 VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2);
5511 if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) pc = pOp->p2-1; 5696 if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
5512 }else{ 5697 }else{
5513 VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2); 5698 VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2);
5514 if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) pc = pOp->p2-1; 5699 if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
5515 } 5700 }
5516 break; 5701 break;
5517 } 5702 }
5518 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */ 5703 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
5519 5704
5520 #ifndef SQLITE_OMIT_AUTOINCREMENT 5705 #ifndef SQLITE_OMIT_AUTOINCREMENT
5521 /* Opcode: MemMax P1 P2 * * * 5706 /* Opcode: MemMax P1 P2 * * *
5522 ** Synopsis: r[P1]=max(r[P1],r[P2]) 5707 ** Synopsis: r[P1]=max(r[P1],r[P2])
5523 ** 5708 **
5524 ** P1 is a register in the root frame of this VM (the root frame is 5709 ** P1 is a register in the root frame of this VM (the root frame is
(...skipping 16 matching lines...) Expand all
5541 sqlite3VdbeMemIntegerify(pIn1); 5726 sqlite3VdbeMemIntegerify(pIn1);
5542 pIn2 = &aMem[pOp->p2]; 5727 pIn2 = &aMem[pOp->p2];
5543 sqlite3VdbeMemIntegerify(pIn2); 5728 sqlite3VdbeMemIntegerify(pIn2);
5544 if( pIn1->u.i<pIn2->u.i){ 5729 if( pIn1->u.i<pIn2->u.i){
5545 pIn1->u.i = pIn2->u.i; 5730 pIn1->u.i = pIn2->u.i;
5546 } 5731 }
5547 break; 5732 break;
5548 } 5733 }
5549 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 5734 #endif /* SQLITE_OMIT_AUTOINCREMENT */
5550 5735
5551 /* Opcode: IfPos P1 P2 * * * 5736 /* Opcode: IfPos P1 P2 P3 * *
5552 ** Synopsis: if r[P1]>0 goto P2 5737 ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2
5553 ** 5738 **
5554 ** If the value of register P1 is 1 or greater, jump to P2. 5739 ** Register P1 must contain an integer.
5740 ** If the value of register P1 is 1 or greater, subtract P3 from the
5741 ** value in P1 and jump to P2.
5555 ** 5742 **
5556 ** It is illegal to use this instruction on a register that does 5743 ** If the initial value of register P1 is less than 1, then the
5557 ** not contain an integer. An assertion fault will result if you try. 5744 ** value is unchanged and control passes through to the next instruction.
5558 */ 5745 */
5559 case OP_IfPos: { /* jump, in1 */ 5746 case OP_IfPos: { /* jump, in1 */
5560 pIn1 = &aMem[pOp->p1]; 5747 pIn1 = &aMem[pOp->p1];
5561 assert( pIn1->flags&MEM_Int ); 5748 assert( pIn1->flags&MEM_Int );
5562 VdbeBranchTaken( pIn1->u.i>0, 2); 5749 VdbeBranchTaken( pIn1->u.i>0, 2);
5563 if( pIn1->u.i>0 ){ 5750 if( pIn1->u.i>0 ){
5564 pc = pOp->p2 - 1; 5751 pIn1->u.i -= pOp->p3;
5752 goto jump_to_p2;
5565 } 5753 }
5566 break; 5754 break;
5567 } 5755 }
5568 5756
5569 /* Opcode: IfNeg P1 P2 P3 * * 5757 /* Opcode: SetIfNotPos P1 P2 P3 * *
5570 ** Synopsis: r[P1]+=P3, if r[P1]<0 goto P2 5758 ** Synopsis: if r[P1]<=0 then r[P2]=P3
5571 ** 5759 **
5572 ** Register P1 must contain an integer. Add literal P3 to the value in 5760 ** Register P1 must contain an integer.
5573 ** register P1 then if the value of register P1 is less than zero, jump to P2. 5761 ** If the value of register P1 is not positive (if it is less than 1) then
5762 ** set the value of register P2 to be the integer P3.
5574 */ 5763 */
5575 case OP_IfNeg: { /* jump, in1 */ 5764 case OP_SetIfNotPos: { /* in1, in2 */
5576 pIn1 = &aMem[pOp->p1]; 5765 pIn1 = &aMem[pOp->p1];
5577 assert( pIn1->flags&MEM_Int ); 5766 assert( pIn1->flags&MEM_Int );
5578 pIn1->u.i += pOp->p3; 5767 if( pIn1->u.i<=0 ){
5579 VdbeBranchTaken(pIn1->u.i<0, 2); 5768 pOut = out2Prerelease(p, pOp);
5580 if( pIn1->u.i<0 ){ 5769 pOut->u.i = pOp->p3;
5581 pc = pOp->p2 - 1;
5582 } 5770 }
5583 break; 5771 break;
5584 } 5772 }
5585 5773
5586 /* Opcode: IfZero P1 P2 P3 * * 5774 /* Opcode: IfNotZero P1 P2 P3 * *
5587 ** Synopsis: r[P1]+=P3, if r[P1]==0 goto P2 5775 ** Synopsis: if r[P1]!=0 then r[P1]-=P3, goto P2
5588 ** 5776 **
5589 ** The register P1 must contain an integer. Add literal P3 to the 5777 ** Register P1 must contain an integer. If the content of register P1 is
5590 ** value in register P1. If the result is exactly 0, jump to P2. 5778 ** initially nonzero, then subtract P3 from the value in register P1 and
5779 ** jump to P2. If register P1 is initially zero, leave it unchanged
5780 ** and fall through.
5591 */ 5781 */
5592 case OP_IfZero: { /* jump, in1 */ 5782 case OP_IfNotZero: { /* jump, in1 */
5593 pIn1 = &aMem[pOp->p1]; 5783 pIn1 = &aMem[pOp->p1];
5594 assert( pIn1->flags&MEM_Int ); 5784 assert( pIn1->flags&MEM_Int );
5595 pIn1->u.i += pOp->p3; 5785 VdbeBranchTaken(pIn1->u.i<0, 2);
5596 VdbeBranchTaken(pIn1->u.i==0, 2); 5786 if( pIn1->u.i ){
5597 if( pIn1->u.i==0 ){ 5787 pIn1->u.i -= pOp->p3;
5598 pc = pOp->p2 - 1; 5788 goto jump_to_p2;
5599 } 5789 }
5600 break; 5790 break;
5601 } 5791 }
5602 5792
5793 /* Opcode: DecrJumpZero P1 P2 * * *
5794 ** Synopsis: if (--r[P1])==0 goto P2
5795 **
5796 ** Register P1 must hold an integer. Decrement the value in register P1
5797 ** then jump to P2 if the new value is exactly zero.
5798 */
5799 case OP_DecrJumpZero: { /* jump, in1 */
5800 pIn1 = &aMem[pOp->p1];
5801 assert( pIn1->flags&MEM_Int );
5802 pIn1->u.i--;
5803 VdbeBranchTaken(pIn1->u.i==0, 2);
5804 if( pIn1->u.i==0 ) goto jump_to_p2;
5805 break;
5806 }
5807
5808
5809 /* Opcode: JumpZeroIncr P1 P2 * * *
5810 ** Synopsis: if (r[P1]++)==0 ) goto P2
5811 **
5812 ** The register P1 must contain an integer. If register P1 is initially
5813 ** zero, then jump to P2. Increment register P1 regardless of whether or
5814 ** not the jump is taken.
5815 */
5816 case OP_JumpZeroIncr: { /* jump, in1 */
5817 pIn1 = &aMem[pOp->p1];
5818 assert( pIn1->flags&MEM_Int );
5819 VdbeBranchTaken(pIn1->u.i==0, 2);
5820 if( (pIn1->u.i++)==0 ) goto jump_to_p2;
5821 break;
5822 }
5823
5824 /* Opcode: AggStep0 * P2 P3 P4 P5
5825 ** Synopsis: accum=r[P3] step(r[P2@P5])
5826 **
5827 ** Execute the step function for an aggregate. The
5828 ** function has P5 arguments. P4 is a pointer to the FuncDef
5829 ** structure that specifies the function. Register P3 is the
5830 ** accumulator.
5831 **
5832 ** The P5 arguments are taken from register P2 and its
5833 ** successors.
5834 */
5603 /* Opcode: AggStep * P2 P3 P4 P5 5835 /* Opcode: AggStep * P2 P3 P4 P5
5604 ** Synopsis: accum=r[P3] step(r[P2@P5]) 5836 ** Synopsis: accum=r[P3] step(r[P2@P5])
5605 ** 5837 **
5606 ** Execute the step function for an aggregate. The 5838 ** Execute the step function for an aggregate. The
5607 ** function has P5 arguments. P4 is a pointer to the FuncDef 5839 ** function has P5 arguments. P4 is a pointer to an sqlite3_context
5608 ** structure that specifies the function. Use register 5840 ** object that is used to run the function. Register P3 is
5609 ** P3 as the accumulator. 5841 ** as the accumulator.
5610 ** 5842 **
5611 ** The P5 arguments are taken from register P2 and its 5843 ** The P5 arguments are taken from register P2 and its
5612 ** successors. 5844 ** successors.
5845 **
5846 ** This opcode is initially coded as OP_AggStep0. On first evaluation,
5847 ** the FuncDef stored in P4 is converted into an sqlite3_context and
5848 ** the opcode is changed. In this way, the initialization of the
5849 ** sqlite3_context only happens once, instead of on each call to the
5850 ** step function.
5613 */ 5851 */
5852 case OP_AggStep0: {
5853 int n;
5854 sqlite3_context *pCtx;
5855
5856 assert( pOp->p4type==P4_FUNCDEF );
5857 n = pOp->p5;
5858 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
5859 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem-p->nCursor)+1) );
5860 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
5861 pCtx = sqlite3DbMallocRaw(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*));
5862 if( pCtx==0 ) goto no_mem;
5863 pCtx->pMem = 0;
5864 pCtx->pFunc = pOp->p4.pFunc;
5865 pCtx->iOp = (int)(pOp - aOp);
5866 pCtx->pVdbe = p;
5867 pCtx->argc = n;
5868 pOp->p4type = P4_FUNCCTX;
5869 pOp->p4.pCtx = pCtx;
5870 pOp->opcode = OP_AggStep;
5871 /* Fall through into OP_AggStep */
5872 }
5614 case OP_AggStep: { 5873 case OP_AggStep: {
5615 int n;
5616 int i; 5874 int i;
5875 sqlite3_context *pCtx;
5617 Mem *pMem; 5876 Mem *pMem;
5618 Mem *pRec;
5619 Mem t; 5877 Mem t;
5620 sqlite3_context ctx;
5621 sqlite3_value **apVal;
5622 5878
5623 n = pOp->p5; 5879 assert( pOp->p4type==P4_FUNCCTX );
5624 assert( n>=0 ); 5880 pCtx = pOp->p4.pCtx;
5625 pRec = &aMem[pOp->p2]; 5881 pMem = &aMem[pOp->p3];
5626 apVal = p->apArg; 5882
5627 assert( apVal || n==0 ); 5883 /* If this function is inside of a trigger, the register array in aMem[]
5628 for(i=0; i<n; i++, pRec++){ 5884 ** might change from one evaluation to the next. The next block of code
5629 assert( memIsValid(pRec) ); 5885 ** checks to see if the register array has changed, and if so it
5630 apVal[i] = pRec; 5886 ** reinitializes the relavant parts of the sqlite3_context object */
5631 memAboutToChange(p, pRec); 5887 if( pCtx->pMem != pMem ){
5888 pCtx->pMem = pMem;
5889 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
5632 } 5890 }
5633 ctx.pFunc = pOp->p4.pFunc; 5891
5634 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); 5892 #ifdef SQLITE_DEBUG
5635 ctx.pMem = pMem = &aMem[pOp->p3]; 5893 for(i=0; i<pCtx->argc; i++){
5894 assert( memIsValid(pCtx->argv[i]) );
5895 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
5896 }
5897 #endif
5898
5636 pMem->n++; 5899 pMem->n++;
5637 sqlite3VdbeMemInit(&t, db, MEM_Null); 5900 sqlite3VdbeMemInit(&t, db, MEM_Null);
5638 ctx.pOut = &t; 5901 pCtx->pOut = &t;
5639 ctx.isError = 0; 5902 pCtx->fErrorOrAux = 0;
5640 ctx.pVdbe = p; 5903 pCtx->skipFlag = 0;
5641 ctx.iOp = pc; 5904 (pCtx->pFunc->xStep)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */
5642 ctx.skipFlag = 0; 5905 if( pCtx->fErrorOrAux ){
5643 (ctx.pFunc->xStep)(&ctx, n, apVal); /* IMP: R-24505-23230 */ 5906 if( pCtx->isError ){
5644 if( ctx.isError ){ 5907 sqlite3VdbeError(p, "%s", sqlite3_value_text(&t));
5645 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&t)); 5908 rc = pCtx->isError;
5646 rc = ctx.isError; 5909 }
5910 sqlite3VdbeMemRelease(&t);
5911 }else{
5912 assert( t.flags==MEM_Null );
5647 } 5913 }
5648 if( ctx.skipFlag ){ 5914 if( pCtx->skipFlag ){
5649 assert( pOp[-1].opcode==OP_CollSeq ); 5915 assert( pOp[-1].opcode==OP_CollSeq );
5650 i = pOp[-1].p1; 5916 i = pOp[-1].p1;
5651 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1); 5917 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
5652 } 5918 }
5653 sqlite3VdbeMemRelease(&t);
5654 break; 5919 break;
5655 } 5920 }
5656 5921
5657 /* Opcode: AggFinal P1 P2 * P4 * 5922 /* Opcode: AggFinal P1 P2 * P4 *
5658 ** Synopsis: accum=r[P1] N=P2 5923 ** Synopsis: accum=r[P1] N=P2
5659 ** 5924 **
5660 ** Execute the finalizer function for an aggregate. P1 is 5925 ** Execute the finalizer function for an aggregate. P1 is
5661 ** the memory location that is the accumulator for the aggregate. 5926 ** the memory location that is the accumulator for the aggregate.
5662 ** 5927 **
5663 ** P2 is the number of arguments that the step function takes and 5928 ** P2 is the number of arguments that the step function takes and
5664 ** P4 is a pointer to the FuncDef for this function. The P2 5929 ** P4 is a pointer to the FuncDef for this function. The P2
5665 ** argument is not used by this opcode. It is only there to disambiguate 5930 ** argument is not used by this opcode. It is only there to disambiguate
5666 ** functions that can take varying numbers of arguments. The 5931 ** functions that can take varying numbers of arguments. The
5667 ** P4 argument is only needed for the degenerate case where 5932 ** P4 argument is only needed for the degenerate case where
5668 ** the step function was not previously called. 5933 ** the step function was not previously called.
5669 */ 5934 */
5670 case OP_AggFinal: { 5935 case OP_AggFinal: {
5671 Mem *pMem; 5936 Mem *pMem;
5672 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) ); 5937 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
5673 pMem = &aMem[pOp->p1]; 5938 pMem = &aMem[pOp->p1];
5674 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 ); 5939 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
5675 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc); 5940 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
5676 if( rc ){ 5941 if( rc ){
5677 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(pMem)); 5942 sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem));
5678 } 5943 }
5679 sqlite3VdbeChangeEncoding(pMem, encoding); 5944 sqlite3VdbeChangeEncoding(pMem, encoding);
5680 UPDATE_MAX_BLOBSIZE(pMem); 5945 UPDATE_MAX_BLOBSIZE(pMem);
5681 if( sqlite3VdbeMemTooBig(pMem) ){ 5946 if( sqlite3VdbeMemTooBig(pMem) ){
5682 goto too_big; 5947 goto too_big;
5683 } 5948 }
5684 break; 5949 break;
5685 } 5950 }
5686 5951
5687 #ifndef SQLITE_OMIT_WAL 5952 #ifndef SQLITE_OMIT_WAL
5688 /* Opcode: Checkpoint P1 P2 P3 * * 5953 /* Opcode: Checkpoint P1 P2 P3 * *
5689 ** 5954 **
5690 ** Checkpoint database P1. This is a no-op if P1 is not currently in 5955 ** Checkpoint database P1. This is a no-op if P1 is not currently in
5691 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL 5956 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL,
5692 ** or RESTART. Write 1 or 0 into mem[P3] if the checkpoint returns 5957 ** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns
5693 ** SQLITE_BUSY or not, respectively. Write the number of pages in the 5958 ** SQLITE_BUSY or not, respectively. Write the number of pages in the
5694 ** WAL after the checkpoint into mem[P3+1] and the number of pages 5959 ** WAL after the checkpoint into mem[P3+1] and the number of pages
5695 ** in the WAL that have been checkpointed after the checkpoint 5960 ** in the WAL that have been checkpointed after the checkpoint
5696 ** completes into mem[P3+2]. However on an error, mem[P3+1] and 5961 ** completes into mem[P3+2]. However on an error, mem[P3+1] and
5697 ** mem[P3+2] are initialized to -1. 5962 ** mem[P3+2] are initialized to -1.
5698 */ 5963 */
5699 case OP_Checkpoint: { 5964 case OP_Checkpoint: {
5700 int i; /* Loop counter */ 5965 int i; /* Loop counter */
5701 int aRes[3]; /* Results */ 5966 int aRes[3]; /* Results */
5702 Mem *pMem; /* Write results here */ 5967 Mem *pMem; /* Write results here */
5703 5968
5704 assert( p->readOnly==0 ); 5969 assert( p->readOnly==0 );
5705 aRes[0] = 0; 5970 aRes[0] = 0;
5706 aRes[1] = aRes[2] = -1; 5971 aRes[1] = aRes[2] = -1;
5707 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE 5972 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
5708 || pOp->p2==SQLITE_CHECKPOINT_FULL 5973 || pOp->p2==SQLITE_CHECKPOINT_FULL
5709 || pOp->p2==SQLITE_CHECKPOINT_RESTART 5974 || pOp->p2==SQLITE_CHECKPOINT_RESTART
5975 || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE
5710 ); 5976 );
5711 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]); 5977 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
5712 if( rc==SQLITE_BUSY ){ 5978 if( rc==SQLITE_BUSY ){
5713 rc = SQLITE_OK; 5979 rc = SQLITE_OK;
5714 aRes[0] = 1; 5980 aRes[0] = 1;
5715 } 5981 }
5716 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){ 5982 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
5717 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]); 5983 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
5718 } 5984 }
5719 break; 5985 break;
5720 }; 5986 };
5721 #endif 5987 #endif
5722 5988
5723 #ifndef SQLITE_OMIT_PRAGMA 5989 #ifndef SQLITE_OMIT_PRAGMA
5724 /* Opcode: JournalMode P1 P2 P3 * * 5990 /* Opcode: JournalMode P1 P2 P3 * *
5725 ** 5991 **
5726 ** Change the journal mode of database P1 to P3. P3 must be one of the 5992 ** Change the journal mode of database P1 to P3. P3 must be one of the
5727 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback 5993 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
5728 ** modes (delete, truncate, persist, off and memory), this is a simple 5994 ** modes (delete, truncate, persist, off and memory), this is a simple
5729 ** operation. No IO is required. 5995 ** operation. No IO is required.
5730 ** 5996 **
5731 ** If changing into or out of WAL mode the procedure is more complicated. 5997 ** If changing into or out of WAL mode the procedure is more complicated.
5732 ** 5998 **
5733 ** Write a string containing the final journal-mode to register P2. 5999 ** Write a string containing the final journal-mode to register P2.
5734 */ 6000 */
5735 case OP_JournalMode: { /* out2-prerelease */ 6001 case OP_JournalMode: { /* out2 */
5736 Btree *pBt; /* Btree to change journal mode of */ 6002 Btree *pBt; /* Btree to change journal mode of */
5737 Pager *pPager; /* Pager associated with pBt */ 6003 Pager *pPager; /* Pager associated with pBt */
5738 int eNew; /* New journal mode */ 6004 int eNew; /* New journal mode */
5739 int eOld; /* The old journal mode */ 6005 int eOld; /* The old journal mode */
5740 #ifndef SQLITE_OMIT_WAL 6006 #ifndef SQLITE_OMIT_WAL
5741 const char *zFilename; /* Name of database file for pPager */ 6007 const char *zFilename; /* Name of database file for pPager */
5742 #endif 6008 #endif
5743 6009
6010 pOut = out2Prerelease(p, pOp);
5744 eNew = pOp->p3; 6011 eNew = pOp->p3;
5745 assert( eNew==PAGER_JOURNALMODE_DELETE 6012 assert( eNew==PAGER_JOURNALMODE_DELETE
5746 || eNew==PAGER_JOURNALMODE_TRUNCATE 6013 || eNew==PAGER_JOURNALMODE_TRUNCATE
5747 || eNew==PAGER_JOURNALMODE_PERSIST 6014 || eNew==PAGER_JOURNALMODE_PERSIST
5748 || eNew==PAGER_JOURNALMODE_OFF 6015 || eNew==PAGER_JOURNALMODE_OFF
5749 || eNew==PAGER_JOURNALMODE_MEMORY 6016 || eNew==PAGER_JOURNALMODE_MEMORY
5750 || eNew==PAGER_JOURNALMODE_WAL 6017 || eNew==PAGER_JOURNALMODE_WAL
5751 || eNew==PAGER_JOURNALMODE_QUERY 6018 || eNew==PAGER_JOURNALMODE_QUERY
5752 ); 6019 );
5753 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 6020 assert( pOp->p1>=0 && pOp->p1<db->nDb );
(...skipping 16 matching lines...) Expand all
5770 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */ 6037 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */
5771 ){ 6038 ){
5772 eNew = eOld; 6039 eNew = eOld;
5773 } 6040 }
5774 6041
5775 if( (eNew!=eOld) 6042 if( (eNew!=eOld)
5776 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL) 6043 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
5777 ){ 6044 ){
5778 if( !db->autoCommit || db->nVdbeRead>1 ){ 6045 if( !db->autoCommit || db->nVdbeRead>1 ){
5779 rc = SQLITE_ERROR; 6046 rc = SQLITE_ERROR;
5780 sqlite3SetString(&p->zErrMsg, db, 6047 sqlite3VdbeError(p,
5781 "cannot change %s wal mode from within a transaction", 6048 "cannot change %s wal mode from within a transaction",
5782 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of") 6049 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
5783 ); 6050 );
5784 break; 6051 break;
5785 }else{ 6052 }else{
5786 6053
5787 if( eOld==PAGER_JOURNALMODE_WAL ){ 6054 if( eOld==PAGER_JOURNALMODE_WAL ){
5788 /* If leaving WAL mode, close the log file. If successful, the call 6055 /* If leaving WAL mode, close the log file. If successful, the call
5789 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log 6056 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
5790 ** file. An EXCLUSIVE lock may still be held on the database file 6057 ** file. An EXCLUSIVE lock may still be held on the database file
(...skipping 18 matching lines...) Expand all
5809 } 6076 }
5810 } 6077 }
5811 } 6078 }
5812 #endif /* ifndef SQLITE_OMIT_WAL */ 6079 #endif /* ifndef SQLITE_OMIT_WAL */
5813 6080
5814 if( rc ){ 6081 if( rc ){
5815 eNew = eOld; 6082 eNew = eOld;
5816 } 6083 }
5817 eNew = sqlite3PagerSetJournalMode(pPager, eNew); 6084 eNew = sqlite3PagerSetJournalMode(pPager, eNew);
5818 6085
5819 pOut = &aMem[pOp->p2];
5820 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 6086 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
5821 pOut->z = (char *)sqlite3JournalModename(eNew); 6087 pOut->z = (char *)sqlite3JournalModename(eNew);
5822 pOut->n = sqlite3Strlen30(pOut->z); 6088 pOut->n = sqlite3Strlen30(pOut->z);
5823 pOut->enc = SQLITE_UTF8; 6089 pOut->enc = SQLITE_UTF8;
5824 sqlite3VdbeChangeEncoding(pOut, encoding); 6090 sqlite3VdbeChangeEncoding(pOut, encoding);
5825 break; 6091 break;
5826 }; 6092 };
5827 #endif /* SQLITE_OMIT_PRAGMA */ 6093 #endif /* SQLITE_OMIT_PRAGMA */
5828 6094
5829 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH) 6095 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
(...skipping 20 matching lines...) Expand all
5850 case OP_IncrVacuum: { /* jump */ 6116 case OP_IncrVacuum: { /* jump */
5851 Btree *pBt; 6117 Btree *pBt;
5852 6118
5853 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 6119 assert( pOp->p1>=0 && pOp->p1<db->nDb );
5854 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 6120 assert( DbMaskTest(p->btreeMask, pOp->p1) );
5855 assert( p->readOnly==0 ); 6121 assert( p->readOnly==0 );
5856 pBt = db->aDb[pOp->p1].pBt; 6122 pBt = db->aDb[pOp->p1].pBt;
5857 rc = sqlite3BtreeIncrVacuum(pBt); 6123 rc = sqlite3BtreeIncrVacuum(pBt);
5858 VdbeBranchTaken(rc==SQLITE_DONE,2); 6124 VdbeBranchTaken(rc==SQLITE_DONE,2);
5859 if( rc==SQLITE_DONE ){ 6125 if( rc==SQLITE_DONE ){
5860 pc = pOp->p2 - 1;
5861 rc = SQLITE_OK; 6126 rc = SQLITE_OK;
6127 goto jump_to_p2;
5862 } 6128 }
5863 break; 6129 break;
5864 } 6130 }
5865 #endif 6131 #endif
5866 6132
5867 /* Opcode: Expire P1 * * * * 6133 /* Opcode: Expire P1 * * * *
5868 ** 6134 **
5869 ** Cause precompiled statements to expire. When an expired statement 6135 ** Cause precompiled statements to expire. When an expired statement
5870 ** is executed using sqlite3_step() it will either automatically 6136 ** is executed using sqlite3_step() it will either automatically
5871 ** reprepare itself (if it was originally created using sqlite3_prepare_v2()) 6137 ** reprepare itself (if it was originally created using sqlite3_prepare_v2())
(...skipping 30 matching lines...) Expand all
5902 case OP_TableLock: { 6168 case OP_TableLock: {
5903 u8 isWriteLock = (u8)pOp->p3; 6169 u8 isWriteLock = (u8)pOp->p3;
5904 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){ 6170 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){
5905 int p1 = pOp->p1; 6171 int p1 = pOp->p1;
5906 assert( p1>=0 && p1<db->nDb ); 6172 assert( p1>=0 && p1<db->nDb );
5907 assert( DbMaskTest(p->btreeMask, p1) ); 6173 assert( DbMaskTest(p->btreeMask, p1) );
5908 assert( isWriteLock==0 || isWriteLock==1 ); 6174 assert( isWriteLock==0 || isWriteLock==1 );
5909 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock); 6175 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
5910 if( (rc&0xFF)==SQLITE_LOCKED ){ 6176 if( (rc&0xFF)==SQLITE_LOCKED ){
5911 const char *z = pOp->p4.z; 6177 const char *z = pOp->p4.z;
5912 sqlite3SetString(&p->zErrMsg, db, "database table is locked: %s", z); 6178 sqlite3VdbeError(p, "database table is locked: %s", z);
5913 } 6179 }
5914 } 6180 }
5915 break; 6181 break;
5916 } 6182 }
5917 #endif /* SQLITE_OMIT_SHARED_CACHE */ 6183 #endif /* SQLITE_OMIT_SHARED_CACHE */
5918 6184
5919 #ifndef SQLITE_OMIT_VIRTUALTABLE 6185 #ifndef SQLITE_OMIT_VIRTUALTABLE
5920 /* Opcode: VBegin * * * P4 * 6186 /* Opcode: VBegin * * * P4 *
5921 ** 6187 **
5922 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the 6188 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
5923 ** xBegin method for that table. 6189 ** xBegin method for that table.
5924 ** 6190 **
5925 ** Also, whether or not P4 is set, check that this is not being called from 6191 ** Also, whether or not P4 is set, check that this is not being called from
5926 ** within a callback to a virtual table xSync() method. If it is, the error 6192 ** within a callback to a virtual table xSync() method. If it is, the error
5927 ** code will be set to SQLITE_LOCKED. 6193 ** code will be set to SQLITE_LOCKED.
5928 */ 6194 */
5929 case OP_VBegin: { 6195 case OP_VBegin: {
5930 VTable *pVTab; 6196 VTable *pVTab;
5931 pVTab = pOp->p4.pVtab; 6197 pVTab = pOp->p4.pVtab;
5932 rc = sqlite3VtabBegin(db, pVTab); 6198 rc = sqlite3VtabBegin(db, pVTab);
5933 if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab); 6199 if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
5934 break; 6200 break;
5935 } 6201 }
5936 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6202 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5937 6203
5938 #ifndef SQLITE_OMIT_VIRTUALTABLE 6204 #ifndef SQLITE_OMIT_VIRTUALTABLE
5939 /* Opcode: VCreate P1 * * P4 * 6205 /* Opcode: VCreate P1 P2 * * *
5940 ** 6206 **
5941 ** P4 is the name of a virtual table in database P1. Call the xCreate method 6207 ** P2 is a register that holds the name of a virtual table in database
5942 ** for that table. 6208 ** P1. Call the xCreate method for that table.
5943 */ 6209 */
5944 case OP_VCreate: { 6210 case OP_VCreate: {
5945 rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p4.z, &p->zErrMsg); 6211 Mem sMem; /* For storing the record being decoded */
6212 const char *zTab; /* Name of the virtual table */
6213
6214 memset(&sMem, 0, sizeof(sMem));
6215 sMem.db = db;
6216 /* Because P2 is always a static string, it is impossible for the
6217 ** sqlite3VdbeMemCopy() to fail */
6218 assert( (aMem[pOp->p2].flags & MEM_Str)!=0 );
6219 assert( (aMem[pOp->p2].flags & MEM_Static)!=0 );
6220 rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]);
6221 assert( rc==SQLITE_OK );
6222 zTab = (const char*)sqlite3_value_text(&sMem);
6223 assert( zTab || db->mallocFailed );
6224 if( zTab ){
6225 rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg);
6226 }
6227 sqlite3VdbeMemRelease(&sMem);
5946 break; 6228 break;
5947 } 6229 }
5948 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6230 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5949 6231
5950 #ifndef SQLITE_OMIT_VIRTUALTABLE 6232 #ifndef SQLITE_OMIT_VIRTUALTABLE
5951 /* Opcode: VDestroy P1 * * P4 * 6233 /* Opcode: VDestroy P1 * * P4 *
5952 ** 6234 **
5953 ** P4 is the name of a virtual table in database P1. Call the xDestroy method 6235 ** P4 is the name of a virtual table in database P1. Call the xDestroy method
5954 ** of that table. 6236 ** of that table.
5955 */ 6237 */
5956 case OP_VDestroy: { 6238 case OP_VDestroy: {
5957 p->inVtabMethod = 2; 6239 db->nVDestroy++;
5958 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z); 6240 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
5959 p->inVtabMethod = 0; 6241 db->nVDestroy--;
5960 break; 6242 break;
5961 } 6243 }
5962 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6244 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5963 6245
5964 #ifndef SQLITE_OMIT_VIRTUALTABLE 6246 #ifndef SQLITE_OMIT_VIRTUALTABLE
5965 /* Opcode: VOpen P1 * * P4 * 6247 /* Opcode: VOpen P1 * * P4 *
5966 ** 6248 **
5967 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 6249 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
5968 ** P1 is a cursor number. This opcode opens a cursor to the virtual 6250 ** P1 is a cursor number. This opcode opens a cursor to the virtual
5969 ** table and stores that cursor in P1. 6251 ** table and stores that cursor in P1.
5970 */ 6252 */
5971 case OP_VOpen: { 6253 case OP_VOpen: {
5972 VdbeCursor *pCur; 6254 VdbeCursor *pCur;
5973 sqlite3_vtab_cursor *pVtabCursor; 6255 sqlite3_vtab_cursor *pVCur;
5974 sqlite3_vtab *pVtab; 6256 sqlite3_vtab *pVtab;
5975 sqlite3_module *pModule; 6257 const sqlite3_module *pModule;
5976 6258
5977 assert( p->bIsReader ); 6259 assert( p->bIsReader );
5978 pCur = 0; 6260 pCur = 0;
5979 pVtabCursor = 0; 6261 pVCur = 0;
5980 pVtab = pOp->p4.pVtab->pVtab; 6262 pVtab = pOp->p4.pVtab->pVtab;
5981 pModule = (sqlite3_module *)pVtab->pModule; 6263 if( pVtab==0 || NEVER(pVtab->pModule==0) ){
5982 assert(pVtab && pModule); 6264 rc = SQLITE_LOCKED;
5983 rc = pModule->xOpen(pVtab, &pVtabCursor); 6265 break;
6266 }
6267 pModule = pVtab->pModule;
6268 rc = pModule->xOpen(pVtab, &pVCur);
5984 sqlite3VtabImportErrmsg(p, pVtab); 6269 sqlite3VtabImportErrmsg(p, pVtab);
5985 if( SQLITE_OK==rc ){ 6270 if( SQLITE_OK==rc ){
5986 /* Initialize sqlite3_vtab_cursor base class */ 6271 /* Initialize sqlite3_vtab_cursor base class */
5987 pVtabCursor->pVtab = pVtab; 6272 pVCur->pVtab = pVtab;
5988 6273
5989 /* Initialize vdbe cursor object */ 6274 /* Initialize vdbe cursor object */
5990 pCur = allocateCursor(p, pOp->p1, 0, -1, 0); 6275 pCur = allocateCursor(p, pOp->p1, 0, -1, CURTYPE_VTAB);
5991 if( pCur ){ 6276 if( pCur ){
5992 pCur->pVtabCursor = pVtabCursor; 6277 pCur->uc.pVCur = pVCur;
6278 pVtab->nRef++;
5993 }else{ 6279 }else{
5994 db->mallocFailed = 1; 6280 assert( db->mallocFailed );
5995 pModule->xClose(pVtabCursor); 6281 pModule->xClose(pVCur);
6282 goto no_mem;
5996 } 6283 }
5997 } 6284 }
5998 break; 6285 break;
5999 } 6286 }
6000 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6287 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6001 6288
6002 #ifndef SQLITE_OMIT_VIRTUALTABLE 6289 #ifndef SQLITE_OMIT_VIRTUALTABLE
6003 /* Opcode: VFilter P1 P2 P3 P4 * 6290 /* Opcode: VFilter P1 P2 P3 P4 *
6004 ** Synopsis: iplan=r[P3] zplan='P4' 6291 ** Synopsis: iplan=r[P3] zplan='P4'
6005 ** 6292 **
(...skipping 12 matching lines...) Expand all
6018 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter. 6305 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
6019 ** 6306 **
6020 ** A jump is made to P2 if the result set after filtering would be empty. 6307 ** A jump is made to P2 if the result set after filtering would be empty.
6021 */ 6308 */
6022 case OP_VFilter: { /* jump */ 6309 case OP_VFilter: { /* jump */
6023 int nArg; 6310 int nArg;
6024 int iQuery; 6311 int iQuery;
6025 const sqlite3_module *pModule; 6312 const sqlite3_module *pModule;
6026 Mem *pQuery; 6313 Mem *pQuery;
6027 Mem *pArgc; 6314 Mem *pArgc;
6028 sqlite3_vtab_cursor *pVtabCursor; 6315 sqlite3_vtab_cursor *pVCur;
6029 sqlite3_vtab *pVtab; 6316 sqlite3_vtab *pVtab;
6030 VdbeCursor *pCur; 6317 VdbeCursor *pCur;
6031 int res; 6318 int res;
6032 int i; 6319 int i;
6033 Mem **apArg; 6320 Mem **apArg;
6034 6321
6035 pQuery = &aMem[pOp->p3]; 6322 pQuery = &aMem[pOp->p3];
6036 pArgc = &pQuery[1]; 6323 pArgc = &pQuery[1];
6037 pCur = p->apCsr[pOp->p1]; 6324 pCur = p->apCsr[pOp->p1];
6038 assert( memIsValid(pQuery) ); 6325 assert( memIsValid(pQuery) );
6039 REGISTER_TRACE(pOp->p3, pQuery); 6326 REGISTER_TRACE(pOp->p3, pQuery);
6040 assert( pCur->pVtabCursor ); 6327 assert( pCur->eCurType==CURTYPE_VTAB );
6041 pVtabCursor = pCur->pVtabCursor; 6328 pVCur = pCur->uc.pVCur;
6042 pVtab = pVtabCursor->pVtab; 6329 pVtab = pVCur->pVtab;
6043 pModule = pVtab->pModule; 6330 pModule = pVtab->pModule;
6044 6331
6045 /* Grab the index number and argc parameters */ 6332 /* Grab the index number and argc parameters */
6046 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int ); 6333 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
6047 nArg = (int)pArgc->u.i; 6334 nArg = (int)pArgc->u.i;
6048 iQuery = (int)pQuery->u.i; 6335 iQuery = (int)pQuery->u.i;
6049 6336
6050 /* Invoke the xFilter method */ 6337 /* Invoke the xFilter method */
6051 { 6338 res = 0;
6052 res = 0; 6339 apArg = p->apArg;
6053 apArg = p->apArg; 6340 for(i = 0; i<nArg; i++){
6054 for(i = 0; i<nArg; i++){ 6341 apArg[i] = &pArgc[i+1];
6055 apArg[i] = &pArgc[i+1]; 6342 }
6056 } 6343 rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg);
6057 6344 sqlite3VtabImportErrmsg(p, pVtab);
6058 p->inVtabMethod = 1; 6345 if( rc==SQLITE_OK ){
6059 rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg); 6346 res = pModule->xEof(pVCur);
6060 p->inVtabMethod = 0;
6061 sqlite3VtabImportErrmsg(p, pVtab);
6062 if( rc==SQLITE_OK ){
6063 res = pModule->xEof(pVtabCursor);
6064 }
6065 VdbeBranchTaken(res!=0,2);
6066 if( res ){
6067 pc = pOp->p2 - 1;
6068 }
6069 } 6347 }
6070 pCur->nullRow = 0; 6348 pCur->nullRow = 0;
6071 6349 VdbeBranchTaken(res!=0,2);
6350 if( res ) goto jump_to_p2;
6072 break; 6351 break;
6073 } 6352 }
6074 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6353 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6075 6354
6076 #ifndef SQLITE_OMIT_VIRTUALTABLE 6355 #ifndef SQLITE_OMIT_VIRTUALTABLE
6077 /* Opcode: VColumn P1 P2 P3 * * 6356 /* Opcode: VColumn P1 P2 P3 * *
6078 ** Synopsis: r[P3]=vcolumn(P2) 6357 ** Synopsis: r[P3]=vcolumn(P2)
6079 ** 6358 **
6080 ** Store the value of the P2-th column of 6359 ** Store the value of the P2-th column of
6081 ** the row of the virtual-table that the 6360 ** the row of the virtual-table that the
6082 ** P1 cursor is pointing to into register P3. 6361 ** P1 cursor is pointing to into register P3.
6083 */ 6362 */
6084 case OP_VColumn: { 6363 case OP_VColumn: {
6085 sqlite3_vtab *pVtab; 6364 sqlite3_vtab *pVtab;
6086 const sqlite3_module *pModule; 6365 const sqlite3_module *pModule;
6087 Mem *pDest; 6366 Mem *pDest;
6088 sqlite3_context sContext; 6367 sqlite3_context sContext;
6089 6368
6090 VdbeCursor *pCur = p->apCsr[pOp->p1]; 6369 VdbeCursor *pCur = p->apCsr[pOp->p1];
6091 assert( pCur->pVtabCursor ); 6370 assert( pCur->eCurType==CURTYPE_VTAB );
6092 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); 6371 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
6093 pDest = &aMem[pOp->p3]; 6372 pDest = &aMem[pOp->p3];
6094 memAboutToChange(p, pDest); 6373 memAboutToChange(p, pDest);
6095 if( pCur->nullRow ){ 6374 if( pCur->nullRow ){
6096 sqlite3VdbeMemSetNull(pDest); 6375 sqlite3VdbeMemSetNull(pDest);
6097 break; 6376 break;
6098 } 6377 }
6099 pVtab = pCur->pVtabCursor->pVtab; 6378 pVtab = pCur->uc.pVCur->pVtab;
6100 pModule = pVtab->pModule; 6379 pModule = pVtab->pModule;
6101 assert( pModule->xColumn ); 6380 assert( pModule->xColumn );
6102 memset(&sContext, 0, sizeof(sContext)); 6381 memset(&sContext, 0, sizeof(sContext));
6103 sContext.pOut = pDest; 6382 sContext.pOut = pDest;
6104 MemSetTypeFlag(pDest, MEM_Null); 6383 MemSetTypeFlag(pDest, MEM_Null);
6105 rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2); 6384 rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2);
6106 sqlite3VtabImportErrmsg(p, pVtab); 6385 sqlite3VtabImportErrmsg(p, pVtab);
6107 if( sContext.isError ){ 6386 if( sContext.isError ){
6108 rc = sContext.isError; 6387 rc = sContext.isError;
6109 } 6388 }
6110 sqlite3VdbeChangeEncoding(pDest, encoding); 6389 sqlite3VdbeChangeEncoding(pDest, encoding);
6111 REGISTER_TRACE(pOp->p3, pDest); 6390 REGISTER_TRACE(pOp->p3, pDest);
6112 UPDATE_MAX_BLOBSIZE(pDest); 6391 UPDATE_MAX_BLOBSIZE(pDest);
6113 6392
6114 if( sqlite3VdbeMemTooBig(pDest) ){ 6393 if( sqlite3VdbeMemTooBig(pDest) ){
6115 goto too_big; 6394 goto too_big;
(...skipping 10 matching lines...) Expand all
6126 ** the end of its result set, then fall through to the next instruction. 6405 ** the end of its result set, then fall through to the next instruction.
6127 */ 6406 */
6128 case OP_VNext: { /* jump */ 6407 case OP_VNext: { /* jump */
6129 sqlite3_vtab *pVtab; 6408 sqlite3_vtab *pVtab;
6130 const sqlite3_module *pModule; 6409 const sqlite3_module *pModule;
6131 int res; 6410 int res;
6132 VdbeCursor *pCur; 6411 VdbeCursor *pCur;
6133 6412
6134 res = 0; 6413 res = 0;
6135 pCur = p->apCsr[pOp->p1]; 6414 pCur = p->apCsr[pOp->p1];
6136 assert( pCur->pVtabCursor ); 6415 assert( pCur->eCurType==CURTYPE_VTAB );
6137 if( pCur->nullRow ){ 6416 if( pCur->nullRow ){
6138 break; 6417 break;
6139 } 6418 }
6140 pVtab = pCur->pVtabCursor->pVtab; 6419 pVtab = pCur->uc.pVCur->pVtab;
6141 pModule = pVtab->pModule; 6420 pModule = pVtab->pModule;
6142 assert( pModule->xNext ); 6421 assert( pModule->xNext );
6143 6422
6144 /* Invoke the xNext() method of the module. There is no way for the 6423 /* Invoke the xNext() method of the module. There is no way for the
6145 ** underlying implementation to return an error if one occurs during 6424 ** underlying implementation to return an error if one occurs during
6146 ** xNext(). Instead, if an error occurs, true is returned (indicating that 6425 ** xNext(). Instead, if an error occurs, true is returned (indicating that
6147 ** data is available) and the error code returned when xColumn or 6426 ** data is available) and the error code returned when xColumn or
6148 ** some other method is next invoked on the save virtual table cursor. 6427 ** some other method is next invoked on the save virtual table cursor.
6149 */ 6428 */
6150 p->inVtabMethod = 1; 6429 rc = pModule->xNext(pCur->uc.pVCur);
6151 rc = pModule->xNext(pCur->pVtabCursor);
6152 p->inVtabMethod = 0;
6153 sqlite3VtabImportErrmsg(p, pVtab); 6430 sqlite3VtabImportErrmsg(p, pVtab);
6154 if( rc==SQLITE_OK ){ 6431 if( rc==SQLITE_OK ){
6155 res = pModule->xEof(pCur->pVtabCursor); 6432 res = pModule->xEof(pCur->uc.pVCur);
6156 } 6433 }
6157 VdbeBranchTaken(!res,2); 6434 VdbeBranchTaken(!res,2);
6158 if( !res ){ 6435 if( !res ){
6159 /* If there is data, jump to P2 */ 6436 /* If there is data, jump to P2 */
6160 pc = pOp->p2 - 1; 6437 goto jump_to_p2_and_check_for_interrupt;
6161 } 6438 }
6162 goto check_for_interrupt; 6439 goto check_for_interrupt;
6163 } 6440 }
6164 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6441 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6165 6442
6166 #ifndef SQLITE_OMIT_VIRTUALTABLE 6443 #ifndef SQLITE_OMIT_VIRTUALTABLE
6167 /* Opcode: VRename P1 * * P4 * 6444 /* Opcode: VRename P1 * * P4 *
6168 ** 6445 **
6169 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 6446 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
6170 ** This opcode invokes the corresponding xRename method. The value 6447 ** This opcode invokes the corresponding xRename method. The value
(...skipping 46 matching lines...) Expand 10 before | Expand all | Expand 10 after
6217 ** 6494 **
6218 ** P1 is a boolean flag. If it is set to true and the xUpdate call 6495 ** P1 is a boolean flag. If it is set to true and the xUpdate call
6219 ** is successful, then the value returned by sqlite3_last_insert_rowid() 6496 ** is successful, then the value returned by sqlite3_last_insert_rowid()
6220 ** is set to the value of the rowid for the row just inserted. 6497 ** is set to the value of the rowid for the row just inserted.
6221 ** 6498 **
6222 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to 6499 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
6223 ** apply in the case of a constraint failure on an insert or update. 6500 ** apply in the case of a constraint failure on an insert or update.
6224 */ 6501 */
6225 case OP_VUpdate: { 6502 case OP_VUpdate: {
6226 sqlite3_vtab *pVtab; 6503 sqlite3_vtab *pVtab;
6227 sqlite3_module *pModule; 6504 const sqlite3_module *pModule;
6228 int nArg; 6505 int nArg;
6229 int i; 6506 int i;
6230 sqlite_int64 rowid; 6507 sqlite_int64 rowid;
6231 Mem **apArg; 6508 Mem **apArg;
6232 Mem *pX; 6509 Mem *pX;
6233 6510
6234 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback 6511 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback
6235 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace 6512 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
6236 ); 6513 );
6237 assert( p->readOnly==0 ); 6514 assert( p->readOnly==0 );
6238 pVtab = pOp->p4.pVtab->pVtab; 6515 pVtab = pOp->p4.pVtab->pVtab;
6239 pModule = (sqlite3_module *)pVtab->pModule; 6516 if( pVtab==0 || NEVER(pVtab->pModule==0) ){
6517 rc = SQLITE_LOCKED;
6518 break;
6519 }
6520 pModule = pVtab->pModule;
6240 nArg = pOp->p2; 6521 nArg = pOp->p2;
6241 assert( pOp->p4type==P4_VTAB ); 6522 assert( pOp->p4type==P4_VTAB );
6242 if( ALWAYS(pModule->xUpdate) ){ 6523 if( ALWAYS(pModule->xUpdate) ){
6243 u8 vtabOnConflict = db->vtabOnConflict; 6524 u8 vtabOnConflict = db->vtabOnConflict;
6244 apArg = p->apArg; 6525 apArg = p->apArg;
6245 pX = &aMem[pOp->p3]; 6526 pX = &aMem[pOp->p3];
6246 for(i=0; i<nArg; i++){ 6527 for(i=0; i<nArg; i++){
6247 assert( memIsValid(pX) ); 6528 assert( memIsValid(pX) );
6248 memAboutToChange(p, pX); 6529 memAboutToChange(p, pX);
6249 apArg[i] = pX; 6530 apArg[i] = pX;
(...skipping 19 matching lines...) Expand all
6269 } 6550 }
6270 break; 6551 break;
6271 } 6552 }
6272 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6553 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6273 6554
6274 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 6555 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
6275 /* Opcode: Pagecount P1 P2 * * * 6556 /* Opcode: Pagecount P1 P2 * * *
6276 ** 6557 **
6277 ** Write the current number of pages in database P1 to memory cell P2. 6558 ** Write the current number of pages in database P1 to memory cell P2.
6278 */ 6559 */
6279 case OP_Pagecount: { /* out2-prerelease */ 6560 case OP_Pagecount: { /* out2 */
6561 pOut = out2Prerelease(p, pOp);
6280 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt); 6562 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
6281 break; 6563 break;
6282 } 6564 }
6283 #endif 6565 #endif
6284 6566
6285 6567
6286 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 6568 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
6287 /* Opcode: MaxPgcnt P1 P2 P3 * * 6569 /* Opcode: MaxPgcnt P1 P2 P3 * *
6288 ** 6570 **
6289 ** Try to set the maximum page count for database P1 to the value in P3. 6571 ** Try to set the maximum page count for database P1 to the value in P3.
6290 ** Do not let the maximum page count fall below the current page count and 6572 ** Do not let the maximum page count fall below the current page count and
6291 ** do not change the maximum page count value if P3==0. 6573 ** do not change the maximum page count value if P3==0.
6292 ** 6574 **
6293 ** Store the maximum page count after the change in register P2. 6575 ** Store the maximum page count after the change in register P2.
6294 */ 6576 */
6295 case OP_MaxPgcnt: { /* out2-prerelease */ 6577 case OP_MaxPgcnt: { /* out2 */
6296 unsigned int newMax; 6578 unsigned int newMax;
6297 Btree *pBt; 6579 Btree *pBt;
6298 6580
6581 pOut = out2Prerelease(p, pOp);
6299 pBt = db->aDb[pOp->p1].pBt; 6582 pBt = db->aDb[pOp->p1].pBt;
6300 newMax = 0; 6583 newMax = 0;
6301 if( pOp->p3 ){ 6584 if( pOp->p3 ){
6302 newMax = sqlite3BtreeLastPage(pBt); 6585 newMax = sqlite3BtreeLastPage(pBt);
6303 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3; 6586 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
6304 } 6587 }
6305 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax); 6588 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
6306 break; 6589 break;
6307 } 6590 }
6308 #endif 6591 #endif
6309 6592
6310 6593
6311 /* Opcode: Init * P2 * P4 * 6594 /* Opcode: Init * P2 * P4 *
6312 ** Synopsis: Start at P2 6595 ** Synopsis: Start at P2
6313 ** 6596 **
6314 ** Programs contain a single instance of this opcode as the very first 6597 ** Programs contain a single instance of this opcode as the very first
6315 ** opcode. 6598 ** opcode.
6316 ** 6599 **
6317 ** If tracing is enabled (by the sqlite3_trace()) interface, then 6600 ** If tracing is enabled (by the sqlite3_trace()) interface, then
6318 ** the UTF-8 string contained in P4 is emitted on the trace callback. 6601 ** the UTF-8 string contained in P4 is emitted on the trace callback.
6319 ** Or if P4 is blank, use the string returned by sqlite3_sql(). 6602 ** Or if P4 is blank, use the string returned by sqlite3_sql().
6320 ** 6603 **
6321 ** If P2 is not zero, jump to instruction P2. 6604 ** If P2 is not zero, jump to instruction P2.
6322 */ 6605 */
6323 case OP_Init: { /* jump */ 6606 case OP_Init: { /* jump */
6324 char *zTrace; 6607 char *zTrace;
6325 char *z; 6608 char *z;
6326 6609
6327 if( pOp->p2 ){
6328 pc = pOp->p2 - 1;
6329 }
6330 #ifndef SQLITE_OMIT_TRACE 6610 #ifndef SQLITE_OMIT_TRACE
6331 if( db->xTrace 6611 if( db->xTrace
6332 && !p->doingRerun 6612 && !p->doingRerun
6333 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 6613 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
6334 ){ 6614 ){
6335 z = sqlite3VdbeExpandSql(p, zTrace); 6615 z = sqlite3VdbeExpandSql(p, zTrace);
6336 db->xTrace(db->pTraceArg, z); 6616 db->xTrace(db->pTraceArg, z);
6337 sqlite3DbFree(db, z); 6617 sqlite3DbFree(db, z);
6338 } 6618 }
6339 #ifdef SQLITE_USE_FCNTL_TRACE 6619 #ifdef SQLITE_USE_FCNTL_TRACE
6340 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql); 6620 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
6341 if( zTrace ){ 6621 if( zTrace ){
6342 int i; 6622 int i;
6343 for(i=0; i<db->nDb; i++){ 6623 for(i=0; i<db->nDb; i++){
6344 if( DbMaskTest(p->btreeMask, i)==0 ) continue; 6624 if( DbMaskTest(p->btreeMask, i)==0 ) continue;
6345 sqlite3_file_control(db, db->aDb[i].zName, SQLITE_FCNTL_TRACE, zTrace); 6625 sqlite3_file_control(db, db->aDb[i].zName, SQLITE_FCNTL_TRACE, zTrace);
6346 } 6626 }
6347 } 6627 }
6348 #endif /* SQLITE_USE_FCNTL_TRACE */ 6628 #endif /* SQLITE_USE_FCNTL_TRACE */
6349 #ifdef SQLITE_DEBUG 6629 #ifdef SQLITE_DEBUG
6350 if( (db->flags & SQLITE_SqlTrace)!=0 6630 if( (db->flags & SQLITE_SqlTrace)!=0
6351 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 6631 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
6352 ){ 6632 ){
6353 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace); 6633 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
6354 } 6634 }
6355 #endif /* SQLITE_DEBUG */ 6635 #endif /* SQLITE_DEBUG */
6356 #endif /* SQLITE_OMIT_TRACE */ 6636 #endif /* SQLITE_OMIT_TRACE */
6637 if( pOp->p2 ) goto jump_to_p2;
6357 break; 6638 break;
6358 } 6639 }
6359 6640
6641 #ifdef SQLITE_ENABLE_CURSOR_HINTS
6642 /* Opcode: CursorHint P1 * * P4 *
6643 **
6644 ** Provide a hint to cursor P1 that it only needs to return rows that
6645 ** satisfy the Expr in P4. TK_REGISTER terms in the P4 expression refer
6646 ** to values currently held in registers. TK_COLUMN terms in the P4
6647 ** expression refer to columns in the b-tree to which cursor P1 is pointing.
6648 */
6649 case OP_CursorHint: {
6650 VdbeCursor *pC;
6651
6652 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6653 assert( pOp->p4type==P4_EXPR );
6654 pC = p->apCsr[pOp->p1];
6655 if( pC ){
6656 assert( pC->eCurType==CURTYPE_BTREE );
6657 sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE,
6658 pOp->p4.pExpr, aMem);
6659 }
6660 break;
6661 }
6662 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
6360 6663
6361 /* Opcode: Noop * * * * * 6664 /* Opcode: Noop * * * * *
6362 ** 6665 **
6363 ** Do nothing. This instruction is often useful as a jump 6666 ** Do nothing. This instruction is often useful as a jump
6364 ** destination. 6667 ** destination.
6365 */ 6668 */
6366 /* 6669 /*
6367 ** The magic Explain opcode are only inserted when explain==2 (which 6670 ** The magic Explain opcode are only inserted when explain==2 (which
6368 ** is to say when the EXPLAIN QUERY PLAN syntax is used.) 6671 ** is to say when the EXPLAIN QUERY PLAN syntax is used.)
6369 ** This opcode records information from the optimizer. It is the 6672 ** This opcode records information from the optimizer. It is the
6370 ** the same as a no-op. This opcodesnever appears in a real VM program. 6673 ** the same as a no-op. This opcodesnever appears in a real VM program.
6371 */ 6674 */
6372 default: { /* This is really OP_Noop and OP_Explain */ 6675 default: { /* This is really OP_Noop and OP_Explain */
6373 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain ); 6676 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
6374 break; 6677 break;
6375 } 6678 }
6376 6679
6377 /***************************************************************************** 6680 /*****************************************************************************
6378 ** The cases of the switch statement above this line should all be indented 6681 ** The cases of the switch statement above this line should all be indented
6379 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the 6682 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the
6380 ** readability. From this point on down, the normal indentation rules are 6683 ** readability. From this point on down, the normal indentation rules are
6381 ** restored. 6684 ** restored.
6382 *****************************************************************************/ 6685 *****************************************************************************/
6383 } 6686 }
6384 6687
6385 #ifdef VDBE_PROFILE 6688 #ifdef VDBE_PROFILE
6386 { 6689 {
6387 u64 endTime = sqlite3Hwtime(); 6690 u64 endTime = sqlite3Hwtime();
6388 if( endTime>start ) pOp->cycles += endTime - start; 6691 if( endTime>start ) pOrigOp->cycles += endTime - start;
6389 pOp->cnt++; 6692 pOrigOp->cnt++;
6390 } 6693 }
6391 #endif 6694 #endif
6392 6695
6393 /* The following code adds nothing to the actual functionality 6696 /* The following code adds nothing to the actual functionality
6394 ** of the program. It is only here for testing and debugging. 6697 ** of the program. It is only here for testing and debugging.
6395 ** On the other hand, it does burn CPU cycles every time through 6698 ** On the other hand, it does burn CPU cycles every time through
6396 ** the evaluator loop. So we can leave it out when NDEBUG is defined. 6699 ** the evaluator loop. So we can leave it out when NDEBUG is defined.
6397 */ 6700 */
6398 #ifndef NDEBUG 6701 #ifndef NDEBUG
6399 assert( pc>=-1 && pc<p->nOp ); 6702 assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] );
6400 6703
6401 #ifdef SQLITE_DEBUG 6704 #ifdef SQLITE_DEBUG
6402 if( db->flags & SQLITE_VdbeTrace ){ 6705 if( db->flags & SQLITE_VdbeTrace ){
6403 if( rc!=0 ) printf("rc=%d\n",rc); 6706 if( rc!=0 ) printf("rc=%d\n",rc);
6404 if( pOp->opflags & (OPFLG_OUT2_PRERELEASE|OPFLG_OUT2) ){ 6707 if( pOrigOp->opflags & (OPFLG_OUT2) ){
6405 registerTrace(pOp->p2, &aMem[pOp->p2]); 6708 registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]);
6406 } 6709 }
6407 if( pOp->opflags & OPFLG_OUT3 ){ 6710 if( pOrigOp->opflags & OPFLG_OUT3 ){
6408 registerTrace(pOp->p3, &aMem[pOp->p3]); 6711 registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]);
6409 } 6712 }
6410 } 6713 }
6411 #endif /* SQLITE_DEBUG */ 6714 #endif /* SQLITE_DEBUG */
6412 #endif /* NDEBUG */ 6715 #endif /* NDEBUG */
6413 } /* The end of the for(;;) loop the loops through opcodes */ 6716 } /* The end of the for(;;) loop the loops through opcodes */
6414 6717
6415 /* If we reach this point, it means that execution is finished with 6718 /* If we reach this point, it means that execution is finished with
6416 ** an error of some kind. 6719 ** an error of some kind.
6417 */ 6720 */
6418 vdbe_error_halt: 6721 vdbe_error_halt:
6419 assert( rc ); 6722 assert( rc );
6420 p->rc = rc; 6723 p->rc = rc;
6421 testcase( sqlite3GlobalConfig.xLog!=0 ); 6724 testcase( sqlite3GlobalConfig.xLog!=0 );
6422 sqlite3_log(rc, "statement aborts at %d: [%s] %s", 6725 sqlite3_log(rc, "statement aborts at %d: [%s] %s",
6423 pc, p->zSql, p->zErrMsg); 6726 (int)(pOp - aOp), p->zSql, p->zErrMsg);
6424 sqlite3VdbeHalt(p); 6727 sqlite3VdbeHalt(p);
6425 if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1; 6728 if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1;
6426 rc = SQLITE_ERROR; 6729 rc = SQLITE_ERROR;
6427 if( resetSchemaOnFault>0 ){ 6730 if( resetSchemaOnFault>0 ){
6428 sqlite3ResetOneSchema(db, resetSchemaOnFault-1); 6731 sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
6429 } 6732 }
6430 6733
6431 /* This is the only way out of this procedure. We have to 6734 /* This is the only way out of this procedure. We have to
6432 ** release the mutexes on btrees that were acquired at the 6735 ** release the mutexes on btrees that were acquired at the
6433 ** top. */ 6736 ** top. */
6434 vdbe_return: 6737 vdbe_return:
6435 db->lastRowid = lastRowid; 6738 db->lastRowid = lastRowid;
6436 testcase( nVmStep>0 ); 6739 testcase( nVmStep>0 );
6437 p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep; 6740 p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
6438 sqlite3VdbeLeave(p); 6741 sqlite3VdbeLeave(p);
6439 return rc; 6742 return rc;
6440 6743
6441 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH 6744 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
6442 ** is encountered. 6745 ** is encountered.
6443 */ 6746 */
6444 too_big: 6747 too_big:
6445 sqlite3SetString(&p->zErrMsg, db, "string or blob too big"); 6748 sqlite3VdbeError(p, "string or blob too big");
6446 rc = SQLITE_TOOBIG; 6749 rc = SQLITE_TOOBIG;
6447 goto vdbe_error_halt; 6750 goto vdbe_error_halt;
6448 6751
6449 /* Jump to here if a malloc() fails. 6752 /* Jump to here if a malloc() fails.
6450 */ 6753 */
6451 no_mem: 6754 no_mem:
6452 db->mallocFailed = 1; 6755 db->mallocFailed = 1;
6453 sqlite3SetString(&p->zErrMsg, db, "out of memory"); 6756 sqlite3VdbeError(p, "out of memory");
6454 rc = SQLITE_NOMEM; 6757 rc = SQLITE_NOMEM;
6455 goto vdbe_error_halt; 6758 goto vdbe_error_halt;
6456 6759
6457 /* Jump to here for any other kind of fatal error. The "rc" variable 6760 /* Jump to here for any other kind of fatal error. The "rc" variable
6458 ** should hold the error number. 6761 ** should hold the error number.
6459 */ 6762 */
6460 abort_due_to_error: 6763 abort_due_to_error:
6461 assert( p->zErrMsg==0 ); 6764 assert( p->zErrMsg==0 );
6462 if( db->mallocFailed ) rc = SQLITE_NOMEM; 6765 if( db->mallocFailed ) rc = SQLITE_NOMEM;
6463 if( rc!=SQLITE_IOERR_NOMEM ){ 6766 if( rc!=SQLITE_IOERR_NOMEM ){
6464 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc)); 6767 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
6465 } 6768 }
6466 goto vdbe_error_halt; 6769 goto vdbe_error_halt;
6467 6770
6468 /* Jump to here if the sqlite3_interrupt() API sets the interrupt 6771 /* Jump to here if the sqlite3_interrupt() API sets the interrupt
6469 ** flag. 6772 ** flag.
6470 */ 6773 */
6471 abort_due_to_interrupt: 6774 abort_due_to_interrupt:
6472 assert( db->u1.isInterrupted ); 6775 assert( db->u1.isInterrupted );
6473 rc = SQLITE_INTERRUPT; 6776 rc = SQLITE_INTERRUPT;
6474 p->rc = rc; 6777 p->rc = rc;
6475 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc)); 6778 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
6476 goto vdbe_error_halt; 6779 goto vdbe_error_halt;
6477 } 6780 }
OLDNEW
« no previous file with comments | « third_party/sqlite/sqlite-src-3100200/src/vdbe.h ('k') | third_party/sqlite/sqlite-src-3100200/src/vdbeInt.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698