OLD | NEW |
1 /* | 1 /* |
2 ** 2001 September 15 | 2 ** 2001 September 15 |
3 ** | 3 ** |
4 ** The author disclaims copyright to this source code. In place of | 4 ** The author disclaims copyright to this source code. In place of |
5 ** a legal notice, here is a blessing: | 5 ** a legal notice, here is a blessing: |
6 ** | 6 ** |
7 ** May you do good and not evil. | 7 ** May you do good and not evil. |
8 ** May you find forgiveness for yourself and forgive others. | 8 ** May you find forgiveness for yourself and forgive others. |
9 ** May you share freely, never taking more than you give. | 9 ** May you share freely, never taking more than you give. |
10 ** | 10 ** |
(...skipping 147 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
158 ** | 158 ** |
159 ** This routine converts an ephemeral string into a dynamically allocated | 159 ** This routine converts an ephemeral string into a dynamically allocated |
160 ** string that the register itself controls. In other words, it | 160 ** string that the register itself controls. In other words, it |
161 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc. | 161 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc. |
162 */ | 162 */ |
163 #define Deephemeralize(P) \ | 163 #define Deephemeralize(P) \ |
164 if( ((P)->flags&MEM_Ephem)!=0 \ | 164 if( ((P)->flags&MEM_Ephem)!=0 \ |
165 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;} | 165 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;} |
166 | 166 |
167 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */ | 167 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */ |
168 #define isSorter(x) ((x)->pSorter!=0) | 168 #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER) |
169 | 169 |
170 /* | 170 /* |
171 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL | 171 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL |
172 ** if we run out of memory. | 172 ** if we run out of memory. |
173 */ | 173 */ |
174 static VdbeCursor *allocateCursor( | 174 static VdbeCursor *allocateCursor( |
175 Vdbe *p, /* The virtual machine */ | 175 Vdbe *p, /* The virtual machine */ |
176 int iCur, /* Index of the new VdbeCursor */ | 176 int iCur, /* Index of the new VdbeCursor */ |
177 int nField, /* Number of fields in the table or index */ | 177 int nField, /* Number of fields in the table or index */ |
178 int iDb, /* Database the cursor belongs to, or -1 */ | 178 int iDb, /* Database the cursor belongs to, or -1 */ |
179 int isBtreeCursor /* True for B-Tree. False for pseudo-table or vtab */ | 179 u8 eCurType /* Type of the new cursor */ |
180 ){ | 180 ){ |
181 /* Find the memory cell that will be used to store the blob of memory | 181 /* Find the memory cell that will be used to store the blob of memory |
182 ** required for this VdbeCursor structure. It is convenient to use a | 182 ** required for this VdbeCursor structure. It is convenient to use a |
183 ** vdbe memory cell to manage the memory allocation required for a | 183 ** vdbe memory cell to manage the memory allocation required for a |
184 ** VdbeCursor structure for the following reasons: | 184 ** VdbeCursor structure for the following reasons: |
185 ** | 185 ** |
186 ** * Sometimes cursor numbers are used for a couple of different | 186 ** * Sometimes cursor numbers are used for a couple of different |
187 ** purposes in a vdbe program. The different uses might require | 187 ** purposes in a vdbe program. The different uses might require |
188 ** different sized allocations. Memory cells provide growable | 188 ** different sized allocations. Memory cells provide growable |
189 ** allocations. | 189 ** allocations. |
190 ** | 190 ** |
191 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can | 191 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can |
192 ** be freed lazily via the sqlite3_release_memory() API. This | 192 ** be freed lazily via the sqlite3_release_memory() API. This |
193 ** minimizes the number of malloc calls made by the system. | 193 ** minimizes the number of malloc calls made by the system. |
194 ** | 194 ** |
195 ** Memory cells for cursors are allocated at the top of the address | 195 ** Memory cells for cursors are allocated at the top of the address |
196 ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for | 196 ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for |
197 ** cursor 1 is managed by memory cell (p->nMem-1), etc. | 197 ** cursor 1 is managed by memory cell (p->nMem-1), etc. |
198 */ | 198 */ |
199 Mem *pMem = &p->aMem[p->nMem-iCur]; | 199 Mem *pMem = &p->aMem[p->nMem-iCur]; |
200 | 200 |
201 int nByte; | 201 int nByte; |
202 VdbeCursor *pCx = 0; | 202 VdbeCursor *pCx = 0; |
203 nByte = | 203 nByte = |
204 ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField + | 204 ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField + |
205 (isBtreeCursor?sqlite3BtreeCursorSize():0); | 205 (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0); |
206 | 206 |
207 assert( iCur<p->nCursor ); | 207 assert( iCur<p->nCursor ); |
208 if( p->apCsr[iCur] ){ | 208 if( p->apCsr[iCur] ){ |
209 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]); | 209 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]); |
210 p->apCsr[iCur] = 0; | 210 p->apCsr[iCur] = 0; |
211 } | 211 } |
212 if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){ | 212 if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){ |
213 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z; | 213 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z; |
214 memset(pCx, 0, sizeof(VdbeCursor)); | 214 memset(pCx, 0, sizeof(VdbeCursor)); |
| 215 pCx->eCurType = eCurType; |
215 pCx->iDb = iDb; | 216 pCx->iDb = iDb; |
216 pCx->nField = nField; | 217 pCx->nField = nField; |
217 pCx->aOffset = &pCx->aType[nField]; | 218 pCx->aOffset = &pCx->aType[nField]; |
218 if( isBtreeCursor ){ | 219 if( eCurType==CURTYPE_BTREE ){ |
219 pCx->pCursor = (BtCursor*) | 220 pCx->uc.pCursor = (BtCursor*) |
220 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField]; | 221 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField]; |
221 sqlite3BtreeCursorZero(pCx->pCursor); | 222 sqlite3BtreeCursorZero(pCx->uc.pCursor); |
222 } | 223 } |
223 } | 224 } |
224 return pCx; | 225 return pCx; |
225 } | 226 } |
226 | 227 |
227 /* | 228 /* |
228 ** Try to convert a value into a numeric representation if we can | 229 ** Try to convert a value into a numeric representation if we can |
229 ** do so without loss of information. In other words, if the string | 230 ** do so without loss of information. In other words, if the string |
230 ** looks like a number, convert it into a number. If it does not | 231 ** looks like a number, convert it into a number. If it does not |
231 ** look like a number, leave it alone. | 232 ** look like a number, leave it alone. |
(...skipping 31 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
263 ** SQLITE_AFF_NUMERIC: | 264 ** SQLITE_AFF_NUMERIC: |
264 ** Try to convert pRec to an integer representation or a | 265 ** Try to convert pRec to an integer representation or a |
265 ** floating-point representation if an integer representation | 266 ** floating-point representation if an integer representation |
266 ** is not possible. Note that the integer representation is | 267 ** is not possible. Note that the integer representation is |
267 ** always preferred, even if the affinity is REAL, because | 268 ** always preferred, even if the affinity is REAL, because |
268 ** an integer representation is more space efficient on disk. | 269 ** an integer representation is more space efficient on disk. |
269 ** | 270 ** |
270 ** SQLITE_AFF_TEXT: | 271 ** SQLITE_AFF_TEXT: |
271 ** Convert pRec to a text representation. | 272 ** Convert pRec to a text representation. |
272 ** | 273 ** |
273 ** SQLITE_AFF_NONE: | 274 ** SQLITE_AFF_BLOB: |
274 ** No-op. pRec is unchanged. | 275 ** No-op. pRec is unchanged. |
275 */ | 276 */ |
276 static void applyAffinity( | 277 static void applyAffinity( |
277 Mem *pRec, /* The value to apply affinity to */ | 278 Mem *pRec, /* The value to apply affinity to */ |
278 char affinity, /* The affinity to be applied */ | 279 char affinity, /* The affinity to be applied */ |
279 u8 enc /* Use this text encoding */ | 280 u8 enc /* Use this text encoding */ |
280 ){ | 281 ){ |
281 if( affinity>=SQLITE_AFF_NUMERIC ){ | 282 if( affinity>=SQLITE_AFF_NUMERIC ){ |
282 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL | 283 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL |
283 || affinity==SQLITE_AFF_NUMERIC ); | 284 || affinity==SQLITE_AFF_NUMERIC ); |
284 if( (pRec->flags & MEM_Int)==0 ){ | 285 if( (pRec->flags & MEM_Int)==0 ){ |
285 if( (pRec->flags & MEM_Real)==0 ){ | 286 if( (pRec->flags & MEM_Real)==0 ){ |
286 if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1); | 287 if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1); |
287 }else{ | 288 }else{ |
288 sqlite3VdbeIntegerAffinity(pRec); | 289 sqlite3VdbeIntegerAffinity(pRec); |
289 } | 290 } |
290 } | 291 } |
291 }else if( affinity==SQLITE_AFF_TEXT ){ | 292 }else if( affinity==SQLITE_AFF_TEXT ){ |
292 /* Only attempt the conversion to TEXT if there is an integer or real | 293 /* Only attempt the conversion to TEXT if there is an integer or real |
293 ** representation (blob and NULL do not get converted) but no string | 294 ** representation (blob and NULL do not get converted) but no string |
294 ** representation. | 295 ** representation. |
295 */ | 296 */ |
296 if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){ | 297 if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){ |
297 sqlite3VdbeMemStringify(pRec, enc, 1); | 298 sqlite3VdbeMemStringify(pRec, enc, 1); |
298 } | 299 } |
| 300 pRec->flags &= ~(MEM_Real|MEM_Int); |
299 } | 301 } |
300 } | 302 } |
301 | 303 |
302 /* | 304 /* |
303 ** Try to convert the type of a function argument or a result column | 305 ** Try to convert the type of a function argument or a result column |
304 ** into a numeric representation. Use either INTEGER or REAL whichever | 306 ** into a numeric representation. Use either INTEGER or REAL whichever |
305 ** is appropriate. But only do the conversion if it is possible without | 307 ** is appropriate. But only do the conversion if it is possible without |
306 ** loss of information and return the revised type of the argument. | 308 ** loss of information and return the revised type of the argument. |
307 */ | 309 */ |
308 int sqlite3_value_numeric_type(sqlite3_value *pVal){ | 310 int sqlite3_value_numeric_type(sqlite3_value *pVal){ |
(...skipping 198 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
507 */ | 509 */ |
508 static int checkSavepointCount(sqlite3 *db){ | 510 static int checkSavepointCount(sqlite3 *db){ |
509 int n = 0; | 511 int n = 0; |
510 Savepoint *p; | 512 Savepoint *p; |
511 for(p=db->pSavepoint; p; p=p->pNext) n++; | 513 for(p=db->pSavepoint; p; p=p->pNext) n++; |
512 assert( n==(db->nSavepoint + db->isTransactionSavepoint) ); | 514 assert( n==(db->nSavepoint + db->isTransactionSavepoint) ); |
513 return 1; | 515 return 1; |
514 } | 516 } |
515 #endif | 517 #endif |
516 | 518 |
| 519 /* |
| 520 ** Return the register of pOp->p2 after first preparing it to be |
| 521 ** overwritten with an integer value. |
| 522 */ |
| 523 static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){ |
| 524 sqlite3VdbeMemSetNull(pOut); |
| 525 pOut->flags = MEM_Int; |
| 526 return pOut; |
| 527 } |
| 528 static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){ |
| 529 Mem *pOut; |
| 530 assert( pOp->p2>0 ); |
| 531 assert( pOp->p2<=(p->nMem-p->nCursor) ); |
| 532 pOut = &p->aMem[pOp->p2]; |
| 533 memAboutToChange(p, pOut); |
| 534 if( VdbeMemDynamic(pOut) ){ |
| 535 return out2PrereleaseWithClear(pOut); |
| 536 }else{ |
| 537 pOut->flags = MEM_Int; |
| 538 return pOut; |
| 539 } |
| 540 } |
| 541 |
517 | 542 |
518 /* | 543 /* |
519 ** Execute as much of a VDBE program as we can. | 544 ** Execute as much of a VDBE program as we can. |
520 ** This is the core of sqlite3_step(). | 545 ** This is the core of sqlite3_step(). |
521 */ | 546 */ |
522 int sqlite3VdbeExec( | 547 int sqlite3VdbeExec( |
523 Vdbe *p /* The VDBE */ | 548 Vdbe *p /* The VDBE */ |
524 ){ | 549 ){ |
525 int pc=0; /* The program counter */ | |
526 Op *aOp = p->aOp; /* Copy of p->aOp */ | 550 Op *aOp = p->aOp; /* Copy of p->aOp */ |
527 Op *pOp; /* Current operation */ | 551 Op *pOp = aOp; /* Current operation */ |
| 552 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) |
| 553 Op *pOrigOp; /* Value of pOp at the top of the loop */ |
| 554 #endif |
528 int rc = SQLITE_OK; /* Value to return */ | 555 int rc = SQLITE_OK; /* Value to return */ |
529 sqlite3 *db = p->db; /* The database */ | 556 sqlite3 *db = p->db; /* The database */ |
530 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */ | 557 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */ |
531 u8 encoding = ENC(db); /* The database encoding */ | 558 u8 encoding = ENC(db); /* The database encoding */ |
532 int iCompare = 0; /* Result of last OP_Compare operation */ | 559 int iCompare = 0; /* Result of last OP_Compare operation */ |
533 unsigned nVmStep = 0; /* Number of virtual machine steps */ | 560 unsigned nVmStep = 0; /* Number of virtual machine steps */ |
534 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK | 561 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK |
535 unsigned nProgressLimit = 0;/* Invoke xProgress() when nVmStep reaches this */ | 562 unsigned nProgressLimit = 0;/* Invoke xProgress() when nVmStep reaches this */ |
536 #endif | 563 #endif |
537 Mem *aMem = p->aMem; /* Copy of p->aMem */ | 564 Mem *aMem = p->aMem; /* Copy of p->aMem */ |
538 Mem *pIn1 = 0; /* 1st input operand */ | 565 Mem *pIn1 = 0; /* 1st input operand */ |
539 Mem *pIn2 = 0; /* 2nd input operand */ | 566 Mem *pIn2 = 0; /* 2nd input operand */ |
540 Mem *pIn3 = 0; /* 3rd input operand */ | 567 Mem *pIn3 = 0; /* 3rd input operand */ |
541 Mem *pOut = 0; /* Output operand */ | 568 Mem *pOut = 0; /* Output operand */ |
542 int *aPermute = 0; /* Permutation of columns for OP_Compare */ | 569 int *aPermute = 0; /* Permutation of columns for OP_Compare */ |
543 i64 lastRowid = db->lastRowid; /* Saved value of the last insert ROWID */ | 570 i64 lastRowid = db->lastRowid; /* Saved value of the last insert ROWID */ |
544 #ifdef VDBE_PROFILE | 571 #ifdef VDBE_PROFILE |
545 u64 start; /* CPU clock count at start of opcode */ | 572 u64 start; /* CPU clock count at start of opcode */ |
546 #endif | 573 #endif |
547 /*** INSERT STACK UNION HERE ***/ | 574 /*** INSERT STACK UNION HERE ***/ |
548 | 575 |
549 assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */ | 576 assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */ |
550 sqlite3VdbeEnter(p); | 577 sqlite3VdbeEnter(p); |
551 if( p->rc==SQLITE_NOMEM ){ | 578 if( p->rc==SQLITE_NOMEM ){ |
552 /* This happens if a malloc() inside a call to sqlite3_column_text() or | 579 /* This happens if a malloc() inside a call to sqlite3_column_text() or |
553 ** sqlite3_column_text16() failed. */ | 580 ** sqlite3_column_text16() failed. */ |
554 goto no_mem; | 581 goto no_mem; |
555 } | 582 } |
556 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY ); | 583 assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY ); |
557 assert( p->bIsReader || p->readOnly!=0 ); | 584 assert( p->bIsReader || p->readOnly!=0 ); |
558 p->rc = SQLITE_OK; | 585 p->rc = SQLITE_OK; |
559 p->iCurrentTime = 0; | 586 p->iCurrentTime = 0; |
560 assert( p->explain==0 ); | 587 assert( p->explain==0 ); |
561 p->pResultSet = 0; | 588 p->pResultSet = 0; |
562 db->busyHandler.nBusy = 0; | 589 db->busyHandler.nBusy = 0; |
563 if( db->u1.isInterrupted ) goto abort_due_to_interrupt; | 590 if( db->u1.isInterrupted ) goto abort_due_to_interrupt; |
564 sqlite3VdbeIOTraceSql(p); | 591 sqlite3VdbeIOTraceSql(p); |
565 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK | 592 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK |
566 if( db->xProgress ){ | 593 if( db->xProgress ){ |
| 594 u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP]; |
567 assert( 0 < db->nProgressOps ); | 595 assert( 0 < db->nProgressOps ); |
568 nProgressLimit = (unsigned)p->aCounter[SQLITE_STMTSTATUS_VM_STEP]; | 596 nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps); |
569 if( nProgressLimit==0 ){ | |
570 nProgressLimit = db->nProgressOps; | |
571 }else{ | |
572 nProgressLimit %= (unsigned)db->nProgressOps; | |
573 } | |
574 } | 597 } |
575 #endif | 598 #endif |
576 #ifdef SQLITE_DEBUG | 599 #ifdef SQLITE_DEBUG |
577 sqlite3BeginBenignMalloc(); | 600 sqlite3BeginBenignMalloc(); |
578 if( p->pc==0 | 601 if( p->pc==0 |
579 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0 | 602 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0 |
580 ){ | 603 ){ |
581 int i; | 604 int i; |
582 int once = 1; | 605 int once = 1; |
583 sqlite3VdbePrintSql(p); | 606 sqlite3VdbePrintSql(p); |
584 if( p->db->flags & SQLITE_VdbeListing ){ | 607 if( p->db->flags & SQLITE_VdbeListing ){ |
585 printf("VDBE Program Listing:\n"); | 608 printf("VDBE Program Listing:\n"); |
586 for(i=0; i<p->nOp; i++){ | 609 for(i=0; i<p->nOp; i++){ |
587 sqlite3VdbePrintOp(stdout, i, &aOp[i]); | 610 sqlite3VdbePrintOp(stdout, i, &aOp[i]); |
588 } | 611 } |
589 } | 612 } |
590 if( p->db->flags & SQLITE_VdbeEQP ){ | 613 if( p->db->flags & SQLITE_VdbeEQP ){ |
591 for(i=0; i<p->nOp; i++){ | 614 for(i=0; i<p->nOp; i++){ |
592 if( aOp[i].opcode==OP_Explain ){ | 615 if( aOp[i].opcode==OP_Explain ){ |
593 if( once ) printf("VDBE Query Plan:\n"); | 616 if( once ) printf("VDBE Query Plan:\n"); |
594 printf("%s\n", aOp[i].p4.z); | 617 printf("%s\n", aOp[i].p4.z); |
595 once = 0; | 618 once = 0; |
596 } | 619 } |
597 } | 620 } |
598 } | 621 } |
599 if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n"); | 622 if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n"); |
600 } | 623 } |
601 sqlite3EndBenignMalloc(); | 624 sqlite3EndBenignMalloc(); |
602 #endif | 625 #endif |
603 for(pc=p->pc; rc==SQLITE_OK; pc++){ | 626 for(pOp=&aOp[p->pc]; rc==SQLITE_OK; pOp++){ |
604 assert( pc>=0 && pc<p->nOp ); | 627 assert( pOp>=aOp && pOp<&aOp[p->nOp]); |
605 if( db->mallocFailed ) goto no_mem; | 628 if( db->mallocFailed ) goto no_mem; |
606 #ifdef VDBE_PROFILE | 629 #ifdef VDBE_PROFILE |
607 start = sqlite3Hwtime(); | 630 start = sqlite3Hwtime(); |
608 #endif | 631 #endif |
609 nVmStep++; | 632 nVmStep++; |
610 pOp = &aOp[pc]; | 633 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS |
| 634 if( p->anExec ) p->anExec[(int)(pOp-aOp)]++; |
| 635 #endif |
611 | 636 |
612 /* Only allow tracing if SQLITE_DEBUG is defined. | 637 /* Only allow tracing if SQLITE_DEBUG is defined. |
613 */ | 638 */ |
614 #ifdef SQLITE_DEBUG | 639 #ifdef SQLITE_DEBUG |
615 if( db->flags & SQLITE_VdbeTrace ){ | 640 if( db->flags & SQLITE_VdbeTrace ){ |
616 sqlite3VdbePrintOp(stdout, pc, pOp); | 641 sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp); |
617 } | 642 } |
618 #endif | 643 #endif |
619 | 644 |
620 | 645 |
621 /* Check to see if we need to simulate an interrupt. This only happens | 646 /* Check to see if we need to simulate an interrupt. This only happens |
622 ** if we have a special test build. | 647 ** if we have a special test build. |
623 */ | 648 */ |
624 #ifdef SQLITE_TEST | 649 #ifdef SQLITE_TEST |
625 if( sqlite3_interrupt_count>0 ){ | 650 if( sqlite3_interrupt_count>0 ){ |
626 sqlite3_interrupt_count--; | 651 sqlite3_interrupt_count--; |
627 if( sqlite3_interrupt_count==0 ){ | 652 if( sqlite3_interrupt_count==0 ){ |
628 sqlite3_interrupt(db); | 653 sqlite3_interrupt(db); |
629 } | 654 } |
630 } | 655 } |
631 #endif | 656 #endif |
632 | 657 |
633 /* On any opcode with the "out2-prerelease" tag, free any | |
634 ** external allocations out of mem[p2] and set mem[p2] to be | |
635 ** an undefined integer. Opcodes will either fill in the integer | |
636 ** value or convert mem[p2] to a different type. | |
637 */ | |
638 assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] ); | |
639 if( pOp->opflags & OPFLG_OUT2_PRERELEASE ){ | |
640 assert( pOp->p2>0 ); | |
641 assert( pOp->p2<=(p->nMem-p->nCursor) ); | |
642 pOut = &aMem[pOp->p2]; | |
643 memAboutToChange(p, pOut); | |
644 if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut); | |
645 pOut->flags = MEM_Int; | |
646 } | |
647 | |
648 /* Sanity checking on other operands */ | 658 /* Sanity checking on other operands */ |
649 #ifdef SQLITE_DEBUG | 659 #ifdef SQLITE_DEBUG |
| 660 assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] ); |
650 if( (pOp->opflags & OPFLG_IN1)!=0 ){ | 661 if( (pOp->opflags & OPFLG_IN1)!=0 ){ |
651 assert( pOp->p1>0 ); | 662 assert( pOp->p1>0 ); |
652 assert( pOp->p1<=(p->nMem-p->nCursor) ); | 663 assert( pOp->p1<=(p->nMem-p->nCursor) ); |
653 assert( memIsValid(&aMem[pOp->p1]) ); | 664 assert( memIsValid(&aMem[pOp->p1]) ); |
654 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) ); | 665 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) ); |
655 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]); | 666 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]); |
656 } | 667 } |
657 if( (pOp->opflags & OPFLG_IN2)!=0 ){ | 668 if( (pOp->opflags & OPFLG_IN2)!=0 ){ |
658 assert( pOp->p2>0 ); | 669 assert( pOp->p2>0 ); |
659 assert( pOp->p2<=(p->nMem-p->nCursor) ); | 670 assert( pOp->p2<=(p->nMem-p->nCursor) ); |
(...skipping 12 matching lines...) Expand all Loading... |
672 assert( pOp->p2>0 ); | 683 assert( pOp->p2>0 ); |
673 assert( pOp->p2<=(p->nMem-p->nCursor) ); | 684 assert( pOp->p2<=(p->nMem-p->nCursor) ); |
674 memAboutToChange(p, &aMem[pOp->p2]); | 685 memAboutToChange(p, &aMem[pOp->p2]); |
675 } | 686 } |
676 if( (pOp->opflags & OPFLG_OUT3)!=0 ){ | 687 if( (pOp->opflags & OPFLG_OUT3)!=0 ){ |
677 assert( pOp->p3>0 ); | 688 assert( pOp->p3>0 ); |
678 assert( pOp->p3<=(p->nMem-p->nCursor) ); | 689 assert( pOp->p3<=(p->nMem-p->nCursor) ); |
679 memAboutToChange(p, &aMem[pOp->p3]); | 690 memAboutToChange(p, &aMem[pOp->p3]); |
680 } | 691 } |
681 #endif | 692 #endif |
| 693 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) |
| 694 pOrigOp = pOp; |
| 695 #endif |
682 | 696 |
683 switch( pOp->opcode ){ | 697 switch( pOp->opcode ){ |
684 | 698 |
685 /***************************************************************************** | 699 /***************************************************************************** |
686 ** What follows is a massive switch statement where each case implements a | 700 ** What follows is a massive switch statement where each case implements a |
687 ** separate instruction in the virtual machine. If we follow the usual | 701 ** separate instruction in the virtual machine. If we follow the usual |
688 ** indentation conventions, each case should be indented by 6 spaces. But | 702 ** indentation conventions, each case should be indented by 6 spaces. But |
689 ** that is a lot of wasted space on the left margin. So the code within | 703 ** that is a lot of wasted space on the left margin. So the code within |
690 ** the switch statement will break with convention and be flush-left. Another | 704 ** the switch statement will break with convention and be flush-left. Another |
691 ** big comment (similar to this one) will mark the point in the code where | 705 ** big comment (similar to this one) will mark the point in the code where |
692 ** we transition back to normal indentation. | 706 ** we transition back to normal indentation. |
693 ** | 707 ** |
694 ** The formatting of each case is important. The makefile for SQLite | 708 ** The formatting of each case is important. The makefile for SQLite |
695 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this | 709 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this |
696 ** file looking for lines that begin with "case OP_". The opcodes.h files | 710 ** file looking for lines that begin with "case OP_". The opcodes.h files |
697 ** will be filled with #defines that give unique integer values to each | 711 ** will be filled with #defines that give unique integer values to each |
698 ** opcode and the opcodes.c file is filled with an array of strings where | 712 ** opcode and the opcodes.c file is filled with an array of strings where |
699 ** each string is the symbolic name for the corresponding opcode. If the | 713 ** each string is the symbolic name for the corresponding opcode. If the |
700 ** case statement is followed by a comment of the form "/# same as ... #/" | 714 ** case statement is followed by a comment of the form "/# same as ... #/" |
701 ** that comment is used to determine the particular value of the opcode. | 715 ** that comment is used to determine the particular value of the opcode. |
702 ** | 716 ** |
703 ** Other keywords in the comment that follows each case are used to | 717 ** Other keywords in the comment that follows each case are used to |
704 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[]. | 718 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[]. |
705 ** Keywords include: in1, in2, in3, out2_prerelease, out2, out3. See | 719 ** Keywords include: in1, in2, in3, out2, out3. See |
706 ** the mkopcodeh.awk script for additional information. | 720 ** the mkopcodeh.awk script for additional information. |
707 ** | 721 ** |
708 ** Documentation about VDBE opcodes is generated by scanning this file | 722 ** Documentation about VDBE opcodes is generated by scanning this file |
709 ** for lines of that contain "Opcode:". That line and all subsequent | 723 ** for lines of that contain "Opcode:". That line and all subsequent |
710 ** comment lines are used in the generation of the opcode.html documentation | 724 ** comment lines are used in the generation of the opcode.html documentation |
711 ** file. | 725 ** file. |
712 ** | 726 ** |
713 ** SUMMARY: | 727 ** SUMMARY: |
714 ** | 728 ** |
715 ** Formatting is important to scripts that scan this file. | 729 ** Formatting is important to scripts that scan this file. |
716 ** Do not deviate from the formatting style currently in use. | 730 ** Do not deviate from the formatting style currently in use. |
717 ** | 731 ** |
718 *****************************************************************************/ | 732 *****************************************************************************/ |
719 | 733 |
720 /* Opcode: Goto * P2 * * * | 734 /* Opcode: Goto * P2 * * * |
721 ** | 735 ** |
722 ** An unconditional jump to address P2. | 736 ** An unconditional jump to address P2. |
723 ** The next instruction executed will be | 737 ** The next instruction executed will be |
724 ** the one at index P2 from the beginning of | 738 ** the one at index P2 from the beginning of |
725 ** the program. | 739 ** the program. |
726 ** | 740 ** |
727 ** The P1 parameter is not actually used by this opcode. However, it | 741 ** The P1 parameter is not actually used by this opcode. However, it |
728 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell | 742 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell |
729 ** that this Goto is the bottom of a loop and that the lines from P2 down | 743 ** that this Goto is the bottom of a loop and that the lines from P2 down |
730 ** to the current line should be indented for EXPLAIN output. | 744 ** to the current line should be indented for EXPLAIN output. |
731 */ | 745 */ |
732 case OP_Goto: { /* jump */ | 746 case OP_Goto: { /* jump */ |
733 pc = pOp->p2 - 1; | 747 jump_to_p2_and_check_for_interrupt: |
| 748 pOp = &aOp[pOp->p2 - 1]; |
734 | 749 |
735 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev, | 750 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev, |
736 ** OP_VNext, OP_RowSetNext, or OP_SorterNext) all jump here upon | 751 ** OP_VNext, OP_RowSetNext, or OP_SorterNext) all jump here upon |
737 ** completion. Check to see if sqlite3_interrupt() has been called | 752 ** completion. Check to see if sqlite3_interrupt() has been called |
738 ** or if the progress callback needs to be invoked. | 753 ** or if the progress callback needs to be invoked. |
739 ** | 754 ** |
740 ** This code uses unstructured "goto" statements and does not look clean. | 755 ** This code uses unstructured "goto" statements and does not look clean. |
741 ** But that is not due to sloppy coding habits. The code is written this | 756 ** But that is not due to sloppy coding habits. The code is written this |
742 ** way for performance, to avoid having to run the interrupt and progress | 757 ** way for performance, to avoid having to run the interrupt and progress |
743 ** checks on every opcode. This helps sqlite3_step() to run about 1.5% | 758 ** checks on every opcode. This helps sqlite3_step() to run about 1.5% |
(...skipping 24 matching lines...) Expand all Loading... |
768 ** | 783 ** |
769 ** Write the current address onto register P1 | 784 ** Write the current address onto register P1 |
770 ** and then jump to address P2. | 785 ** and then jump to address P2. |
771 */ | 786 */ |
772 case OP_Gosub: { /* jump */ | 787 case OP_Gosub: { /* jump */ |
773 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) ); | 788 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) ); |
774 pIn1 = &aMem[pOp->p1]; | 789 pIn1 = &aMem[pOp->p1]; |
775 assert( VdbeMemDynamic(pIn1)==0 ); | 790 assert( VdbeMemDynamic(pIn1)==0 ); |
776 memAboutToChange(p, pIn1); | 791 memAboutToChange(p, pIn1); |
777 pIn1->flags = MEM_Int; | 792 pIn1->flags = MEM_Int; |
778 pIn1->u.i = pc; | 793 pIn1->u.i = (int)(pOp-aOp); |
779 REGISTER_TRACE(pOp->p1, pIn1); | 794 REGISTER_TRACE(pOp->p1, pIn1); |
780 pc = pOp->p2 - 1; | 795 |
| 796 /* Most jump operations do a goto to this spot in order to update |
| 797 ** the pOp pointer. */ |
| 798 jump_to_p2: |
| 799 pOp = &aOp[pOp->p2 - 1]; |
781 break; | 800 break; |
782 } | 801 } |
783 | 802 |
784 /* Opcode: Return P1 * * * * | 803 /* Opcode: Return P1 * * * * |
785 ** | 804 ** |
786 ** Jump to the next instruction after the address in register P1. After | 805 ** Jump to the next instruction after the address in register P1. After |
787 ** the jump, register P1 becomes undefined. | 806 ** the jump, register P1 becomes undefined. |
788 */ | 807 */ |
789 case OP_Return: { /* in1 */ | 808 case OP_Return: { /* in1 */ |
790 pIn1 = &aMem[pOp->p1]; | 809 pIn1 = &aMem[pOp->p1]; |
791 assert( pIn1->flags==MEM_Int ); | 810 assert( pIn1->flags==MEM_Int ); |
792 pc = (int)pIn1->u.i; | 811 pOp = &aOp[pIn1->u.i]; |
793 pIn1->flags = MEM_Undefined; | 812 pIn1->flags = MEM_Undefined; |
794 break; | 813 break; |
795 } | 814 } |
796 | 815 |
797 /* Opcode: InitCoroutine P1 P2 P3 * * | 816 /* Opcode: InitCoroutine P1 P2 P3 * * |
798 ** | 817 ** |
799 ** Set up register P1 so that it will Yield to the coroutine | 818 ** Set up register P1 so that it will Yield to the coroutine |
800 ** located at address P3. | 819 ** located at address P3. |
801 ** | 820 ** |
802 ** If P2!=0 then the coroutine implementation immediately follows | 821 ** If P2!=0 then the coroutine implementation immediately follows |
803 ** this opcode. So jump over the coroutine implementation to | 822 ** this opcode. So jump over the coroutine implementation to |
804 ** address P2. | 823 ** address P2. |
805 ** | 824 ** |
806 ** See also: EndCoroutine | 825 ** See also: EndCoroutine |
807 */ | 826 */ |
808 case OP_InitCoroutine: { /* jump */ | 827 case OP_InitCoroutine: { /* jump */ |
809 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) ); | 828 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) ); |
810 assert( pOp->p2>=0 && pOp->p2<p->nOp ); | 829 assert( pOp->p2>=0 && pOp->p2<p->nOp ); |
811 assert( pOp->p3>=0 && pOp->p3<p->nOp ); | 830 assert( pOp->p3>=0 && pOp->p3<p->nOp ); |
812 pOut = &aMem[pOp->p1]; | 831 pOut = &aMem[pOp->p1]; |
813 assert( !VdbeMemDynamic(pOut) ); | 832 assert( !VdbeMemDynamic(pOut) ); |
814 pOut->u.i = pOp->p3 - 1; | 833 pOut->u.i = pOp->p3 - 1; |
815 pOut->flags = MEM_Int; | 834 pOut->flags = MEM_Int; |
816 if( pOp->p2 ) pc = pOp->p2 - 1; | 835 if( pOp->p2 ) goto jump_to_p2; |
817 break; | 836 break; |
818 } | 837 } |
819 | 838 |
820 /* Opcode: EndCoroutine P1 * * * * | 839 /* Opcode: EndCoroutine P1 * * * * |
821 ** | 840 ** |
822 ** The instruction at the address in register P1 is a Yield. | 841 ** The instruction at the address in register P1 is a Yield. |
823 ** Jump to the P2 parameter of that Yield. | 842 ** Jump to the P2 parameter of that Yield. |
824 ** After the jump, register P1 becomes undefined. | 843 ** After the jump, register P1 becomes undefined. |
825 ** | 844 ** |
826 ** See also: InitCoroutine | 845 ** See also: InitCoroutine |
827 */ | 846 */ |
828 case OP_EndCoroutine: { /* in1 */ | 847 case OP_EndCoroutine: { /* in1 */ |
829 VdbeOp *pCaller; | 848 VdbeOp *pCaller; |
830 pIn1 = &aMem[pOp->p1]; | 849 pIn1 = &aMem[pOp->p1]; |
831 assert( pIn1->flags==MEM_Int ); | 850 assert( pIn1->flags==MEM_Int ); |
832 assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp ); | 851 assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp ); |
833 pCaller = &aOp[pIn1->u.i]; | 852 pCaller = &aOp[pIn1->u.i]; |
834 assert( pCaller->opcode==OP_Yield ); | 853 assert( pCaller->opcode==OP_Yield ); |
835 assert( pCaller->p2>=0 && pCaller->p2<p->nOp ); | 854 assert( pCaller->p2>=0 && pCaller->p2<p->nOp ); |
836 pc = pCaller->p2 - 1; | 855 pOp = &aOp[pCaller->p2 - 1]; |
837 pIn1->flags = MEM_Undefined; | 856 pIn1->flags = MEM_Undefined; |
838 break; | 857 break; |
839 } | 858 } |
840 | 859 |
841 /* Opcode: Yield P1 P2 * * * | 860 /* Opcode: Yield P1 P2 * * * |
842 ** | 861 ** |
843 ** Swap the program counter with the value in register P1. This | 862 ** Swap the program counter with the value in register P1. This |
844 ** has the effect of yielding to a coroutine. | 863 ** has the effect of yielding to a coroutine. |
845 ** | 864 ** |
846 ** If the coroutine that is launched by this instruction ends with | 865 ** If the coroutine that is launched by this instruction ends with |
847 ** Yield or Return then continue to the next instruction. But if | 866 ** Yield or Return then continue to the next instruction. But if |
848 ** the coroutine launched by this instruction ends with | 867 ** the coroutine launched by this instruction ends with |
849 ** EndCoroutine, then jump to P2 rather than continuing with the | 868 ** EndCoroutine, then jump to P2 rather than continuing with the |
850 ** next instruction. | 869 ** next instruction. |
851 ** | 870 ** |
852 ** See also: InitCoroutine | 871 ** See also: InitCoroutine |
853 */ | 872 */ |
854 case OP_Yield: { /* in1, jump */ | 873 case OP_Yield: { /* in1, jump */ |
855 int pcDest; | 874 int pcDest; |
856 pIn1 = &aMem[pOp->p1]; | 875 pIn1 = &aMem[pOp->p1]; |
857 assert( VdbeMemDynamic(pIn1)==0 ); | 876 assert( VdbeMemDynamic(pIn1)==0 ); |
858 pIn1->flags = MEM_Int; | 877 pIn1->flags = MEM_Int; |
859 pcDest = (int)pIn1->u.i; | 878 pcDest = (int)pIn1->u.i; |
860 pIn1->u.i = pc; | 879 pIn1->u.i = (int)(pOp - aOp); |
861 REGISTER_TRACE(pOp->p1, pIn1); | 880 REGISTER_TRACE(pOp->p1, pIn1); |
862 pc = pcDest; | 881 pOp = &aOp[pcDest]; |
863 break; | 882 break; |
864 } | 883 } |
865 | 884 |
866 /* Opcode: HaltIfNull P1 P2 P3 P4 P5 | 885 /* Opcode: HaltIfNull P1 P2 P3 P4 P5 |
867 ** Synopsis: if r[P3]=null halt | 886 ** Synopsis: if r[P3]=null halt |
868 ** | 887 ** |
869 ** Check the value in register P3. If it is NULL then Halt using | 888 ** Check the value in register P3. If it is NULL then Halt using |
870 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the | 889 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the |
871 ** value in register P3 is not NULL, then this routine is a no-op. | 890 ** value in register P3 is not NULL, then this routine is a no-op. |
872 ** The P5 parameter should be 1. | 891 ** The P5 parameter should be 1. |
(...skipping 30 matching lines...) Expand all Loading... |
903 ** If P5 is not zero and P4 is NULL, then everything after the ":" is | 922 ** If P5 is not zero and P4 is NULL, then everything after the ":" is |
904 ** omitted. | 923 ** omitted. |
905 ** | 924 ** |
906 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of | 925 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of |
907 ** every program. So a jump past the last instruction of the program | 926 ** every program. So a jump past the last instruction of the program |
908 ** is the same as executing Halt. | 927 ** is the same as executing Halt. |
909 */ | 928 */ |
910 case OP_Halt: { | 929 case OP_Halt: { |
911 const char *zType; | 930 const char *zType; |
912 const char *zLogFmt; | 931 const char *zLogFmt; |
| 932 VdbeFrame *pFrame; |
| 933 int pcx; |
913 | 934 |
| 935 pcx = (int)(pOp - aOp); |
914 if( pOp->p1==SQLITE_OK && p->pFrame ){ | 936 if( pOp->p1==SQLITE_OK && p->pFrame ){ |
915 /* Halt the sub-program. Return control to the parent frame. */ | 937 /* Halt the sub-program. Return control to the parent frame. */ |
916 VdbeFrame *pFrame = p->pFrame; | 938 pFrame = p->pFrame; |
917 p->pFrame = pFrame->pParent; | 939 p->pFrame = pFrame->pParent; |
918 p->nFrame--; | 940 p->nFrame--; |
919 sqlite3VdbeSetChanges(db, p->nChange); | 941 sqlite3VdbeSetChanges(db, p->nChange); |
920 pc = sqlite3VdbeFrameRestore(pFrame); | 942 pcx = sqlite3VdbeFrameRestore(pFrame); |
921 lastRowid = db->lastRowid; | 943 lastRowid = db->lastRowid; |
922 if( pOp->p2==OE_Ignore ){ | 944 if( pOp->p2==OE_Ignore ){ |
923 /* Instruction pc is the OP_Program that invoked the sub-program | 945 /* Instruction pcx is the OP_Program that invoked the sub-program |
924 ** currently being halted. If the p2 instruction of this OP_Halt | 946 ** currently being halted. If the p2 instruction of this OP_Halt |
925 ** instruction is set to OE_Ignore, then the sub-program is throwing | 947 ** instruction is set to OE_Ignore, then the sub-program is throwing |
926 ** an IGNORE exception. In this case jump to the address specified | 948 ** an IGNORE exception. In this case jump to the address specified |
927 ** as the p2 of the calling OP_Program. */ | 949 ** as the p2 of the calling OP_Program. */ |
928 pc = p->aOp[pc].p2-1; | 950 pcx = p->aOp[pcx].p2-1; |
929 } | 951 } |
930 aOp = p->aOp; | 952 aOp = p->aOp; |
931 aMem = p->aMem; | 953 aMem = p->aMem; |
| 954 pOp = &aOp[pcx]; |
932 break; | 955 break; |
933 } | 956 } |
934 p->rc = pOp->p1; | 957 p->rc = pOp->p1; |
935 p->errorAction = (u8)pOp->p2; | 958 p->errorAction = (u8)pOp->p2; |
936 p->pc = pc; | 959 p->pc = pcx; |
937 if( p->rc ){ | 960 if( p->rc ){ |
938 if( pOp->p5 ){ | 961 if( pOp->p5 ){ |
939 static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK", | 962 static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK", |
940 "FOREIGN KEY" }; | 963 "FOREIGN KEY" }; |
941 assert( pOp->p5>=1 && pOp->p5<=4 ); | 964 assert( pOp->p5>=1 && pOp->p5<=4 ); |
942 testcase( pOp->p5==1 ); | 965 testcase( pOp->p5==1 ); |
943 testcase( pOp->p5==2 ); | 966 testcase( pOp->p5==2 ); |
944 testcase( pOp->p5==3 ); | 967 testcase( pOp->p5==3 ); |
945 testcase( pOp->p5==4 ); | 968 testcase( pOp->p5==4 ); |
946 zType = azType[pOp->p5-1]; | 969 zType = azType[pOp->p5-1]; |
947 }else{ | 970 }else{ |
948 zType = 0; | 971 zType = 0; |
949 } | 972 } |
950 assert( zType!=0 || pOp->p4.z!=0 ); | 973 assert( zType!=0 || pOp->p4.z!=0 ); |
951 zLogFmt = "abort at %d in [%s]: %s"; | 974 zLogFmt = "abort at %d in [%s]: %s"; |
952 if( zType && pOp->p4.z ){ | 975 if( zType && pOp->p4.z ){ |
953 sqlite3SetString(&p->zErrMsg, db, "%s constraint failed: %s", | 976 sqlite3VdbeError(p, "%s constraint failed: %s", zType, pOp->p4.z); |
954 zType, pOp->p4.z); | |
955 }else if( pOp->p4.z ){ | 977 }else if( pOp->p4.z ){ |
956 sqlite3SetString(&p->zErrMsg, db, "%s", pOp->p4.z); | 978 sqlite3VdbeError(p, "%s", pOp->p4.z); |
957 }else{ | 979 }else{ |
958 sqlite3SetString(&p->zErrMsg, db, "%s constraint failed", zType); | 980 sqlite3VdbeError(p, "%s constraint failed", zType); |
959 } | 981 } |
960 sqlite3_log(pOp->p1, zLogFmt, pc, p->zSql, p->zErrMsg); | 982 sqlite3_log(pOp->p1, zLogFmt, pcx, p->zSql, p->zErrMsg); |
961 } | 983 } |
962 rc = sqlite3VdbeHalt(p); | 984 rc = sqlite3VdbeHalt(p); |
963 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR ); | 985 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR ); |
964 if( rc==SQLITE_BUSY ){ | 986 if( rc==SQLITE_BUSY ){ |
965 p->rc = rc = SQLITE_BUSY; | 987 p->rc = rc = SQLITE_BUSY; |
966 }else{ | 988 }else{ |
967 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ); | 989 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ); |
968 assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 ); | 990 assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 ); |
969 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE; | 991 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE; |
970 } | 992 } |
971 goto vdbe_return; | 993 goto vdbe_return; |
972 } | 994 } |
973 | 995 |
974 /* Opcode: Integer P1 P2 * * * | 996 /* Opcode: Integer P1 P2 * * * |
975 ** Synopsis: r[P2]=P1 | 997 ** Synopsis: r[P2]=P1 |
976 ** | 998 ** |
977 ** The 32-bit integer value P1 is written into register P2. | 999 ** The 32-bit integer value P1 is written into register P2. |
978 */ | 1000 */ |
979 case OP_Integer: { /* out2-prerelease */ | 1001 case OP_Integer: { /* out2 */ |
| 1002 pOut = out2Prerelease(p, pOp); |
980 pOut->u.i = pOp->p1; | 1003 pOut->u.i = pOp->p1; |
981 break; | 1004 break; |
982 } | 1005 } |
983 | 1006 |
984 /* Opcode: Int64 * P2 * P4 * | 1007 /* Opcode: Int64 * P2 * P4 * |
985 ** Synopsis: r[P2]=P4 | 1008 ** Synopsis: r[P2]=P4 |
986 ** | 1009 ** |
987 ** P4 is a pointer to a 64-bit integer value. | 1010 ** P4 is a pointer to a 64-bit integer value. |
988 ** Write that value into register P2. | 1011 ** Write that value into register P2. |
989 */ | 1012 */ |
990 case OP_Int64: { /* out2-prerelease */ | 1013 case OP_Int64: { /* out2 */ |
| 1014 pOut = out2Prerelease(p, pOp); |
991 assert( pOp->p4.pI64!=0 ); | 1015 assert( pOp->p4.pI64!=0 ); |
992 pOut->u.i = *pOp->p4.pI64; | 1016 pOut->u.i = *pOp->p4.pI64; |
993 break; | 1017 break; |
994 } | 1018 } |
995 | 1019 |
996 #ifndef SQLITE_OMIT_FLOATING_POINT | 1020 #ifndef SQLITE_OMIT_FLOATING_POINT |
997 /* Opcode: Real * P2 * P4 * | 1021 /* Opcode: Real * P2 * P4 * |
998 ** Synopsis: r[P2]=P4 | 1022 ** Synopsis: r[P2]=P4 |
999 ** | 1023 ** |
1000 ** P4 is a pointer to a 64-bit floating point value. | 1024 ** P4 is a pointer to a 64-bit floating point value. |
1001 ** Write that value into register P2. | 1025 ** Write that value into register P2. |
1002 */ | 1026 */ |
1003 case OP_Real: { /* same as TK_FLOAT, out2-prerelease */ | 1027 case OP_Real: { /* same as TK_FLOAT, out2 */ |
| 1028 pOut = out2Prerelease(p, pOp); |
1004 pOut->flags = MEM_Real; | 1029 pOut->flags = MEM_Real; |
1005 assert( !sqlite3IsNaN(*pOp->p4.pReal) ); | 1030 assert( !sqlite3IsNaN(*pOp->p4.pReal) ); |
1006 pOut->u.r = *pOp->p4.pReal; | 1031 pOut->u.r = *pOp->p4.pReal; |
1007 break; | 1032 break; |
1008 } | 1033 } |
1009 #endif | 1034 #endif |
1010 | 1035 |
1011 /* Opcode: String8 * P2 * P4 * | 1036 /* Opcode: String8 * P2 * P4 * |
1012 ** Synopsis: r[P2]='P4' | 1037 ** Synopsis: r[P2]='P4' |
1013 ** | 1038 ** |
1014 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed | 1039 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed |
1015 ** into a String before it is executed for the first time. During | 1040 ** into a String opcode before it is executed for the first time. During |
1016 ** this transformation, the length of string P4 is computed and stored | 1041 ** this transformation, the length of string P4 is computed and stored |
1017 ** as the P1 parameter. | 1042 ** as the P1 parameter. |
1018 */ | 1043 */ |
1019 case OP_String8: { /* same as TK_STRING, out2-prerelease */ | 1044 case OP_String8: { /* same as TK_STRING, out2 */ |
1020 assert( pOp->p4.z!=0 ); | 1045 assert( pOp->p4.z!=0 ); |
| 1046 pOut = out2Prerelease(p, pOp); |
1021 pOp->opcode = OP_String; | 1047 pOp->opcode = OP_String; |
1022 pOp->p1 = sqlite3Strlen30(pOp->p4.z); | 1048 pOp->p1 = sqlite3Strlen30(pOp->p4.z); |
1023 | 1049 |
1024 #ifndef SQLITE_OMIT_UTF16 | 1050 #ifndef SQLITE_OMIT_UTF16 |
1025 if( encoding!=SQLITE_UTF8 ){ | 1051 if( encoding!=SQLITE_UTF8 ){ |
1026 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC); | 1052 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC); |
1027 if( rc==SQLITE_TOOBIG ) goto too_big; | 1053 if( rc==SQLITE_TOOBIG ) goto too_big; |
1028 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem; | 1054 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem; |
1029 assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z ); | 1055 assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z ); |
1030 assert( VdbeMemDynamic(pOut)==0 ); | 1056 assert( VdbeMemDynamic(pOut)==0 ); |
1031 pOut->szMalloc = 0; | 1057 pOut->szMalloc = 0; |
1032 pOut->flags |= MEM_Static; | 1058 pOut->flags |= MEM_Static; |
1033 if( pOp->p4type==P4_DYNAMIC ){ | 1059 if( pOp->p4type==P4_DYNAMIC ){ |
1034 sqlite3DbFree(db, pOp->p4.z); | 1060 sqlite3DbFree(db, pOp->p4.z); |
1035 } | 1061 } |
1036 pOp->p4type = P4_DYNAMIC; | 1062 pOp->p4type = P4_DYNAMIC; |
1037 pOp->p4.z = pOut->z; | 1063 pOp->p4.z = pOut->z; |
1038 pOp->p1 = pOut->n; | 1064 pOp->p1 = pOut->n; |
1039 } | 1065 } |
1040 #endif | 1066 #endif |
1041 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ | 1067 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ |
1042 goto too_big; | 1068 goto too_big; |
1043 } | 1069 } |
1044 /* Fall through to the next case, OP_String */ | 1070 /* Fall through to the next case, OP_String */ |
1045 } | 1071 } |
1046 | 1072 |
1047 /* Opcode: String P1 P2 * P4 * | 1073 /* Opcode: String P1 P2 P3 P4 P5 |
1048 ** Synopsis: r[P2]='P4' (len=P1) | 1074 ** Synopsis: r[P2]='P4' (len=P1) |
1049 ** | 1075 ** |
1050 ** The string value P4 of length P1 (bytes) is stored in register P2. | 1076 ** The string value P4 of length P1 (bytes) is stored in register P2. |
| 1077 ** |
| 1078 ** If P5!=0 and the content of register P3 is greater than zero, then |
| 1079 ** the datatype of the register P2 is converted to BLOB. The content is |
| 1080 ** the same sequence of bytes, it is merely interpreted as a BLOB instead |
| 1081 ** of a string, as if it had been CAST. |
1051 */ | 1082 */ |
1052 case OP_String: { /* out2-prerelease */ | 1083 case OP_String: { /* out2 */ |
1053 assert( pOp->p4.z!=0 ); | 1084 assert( pOp->p4.z!=0 ); |
| 1085 pOut = out2Prerelease(p, pOp); |
1054 pOut->flags = MEM_Str|MEM_Static|MEM_Term; | 1086 pOut->flags = MEM_Str|MEM_Static|MEM_Term; |
1055 pOut->z = pOp->p4.z; | 1087 pOut->z = pOp->p4.z; |
1056 pOut->n = pOp->p1; | 1088 pOut->n = pOp->p1; |
1057 pOut->enc = encoding; | 1089 pOut->enc = encoding; |
1058 UPDATE_MAX_BLOBSIZE(pOut); | 1090 UPDATE_MAX_BLOBSIZE(pOut); |
| 1091 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS |
| 1092 if( pOp->p5 ){ |
| 1093 assert( pOp->p3>0 ); |
| 1094 assert( pOp->p3<=(p->nMem-p->nCursor) ); |
| 1095 pIn3 = &aMem[pOp->p3]; |
| 1096 assert( pIn3->flags & MEM_Int ); |
| 1097 if( pIn3->u.i ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term; |
| 1098 } |
| 1099 #endif |
1059 break; | 1100 break; |
1060 } | 1101 } |
1061 | 1102 |
1062 /* Opcode: Null P1 P2 P3 * * | 1103 /* Opcode: Null P1 P2 P3 * * |
1063 ** Synopsis: r[P2..P3]=NULL | 1104 ** Synopsis: r[P2..P3]=NULL |
1064 ** | 1105 ** |
1065 ** Write a NULL into registers P2. If P3 greater than P2, then also write | 1106 ** Write a NULL into registers P2. If P3 greater than P2, then also write |
1066 ** NULL into register P3 and every register in between P2 and P3. If P3 | 1107 ** NULL into register P3 and every register in between P2 and P3. If P3 |
1067 ** is less than P2 (typically P3 is zero) then only register P2 is | 1108 ** is less than P2 (typically P3 is zero) then only register P2 is |
1068 ** set to NULL. | 1109 ** set to NULL. |
1069 ** | 1110 ** |
1070 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that | 1111 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that |
1071 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on | 1112 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on |
1072 ** OP_Ne or OP_Eq. | 1113 ** OP_Ne or OP_Eq. |
1073 */ | 1114 */ |
1074 case OP_Null: { /* out2-prerelease */ | 1115 case OP_Null: { /* out2 */ |
1075 int cnt; | 1116 int cnt; |
1076 u16 nullFlag; | 1117 u16 nullFlag; |
| 1118 pOut = out2Prerelease(p, pOp); |
1077 cnt = pOp->p3-pOp->p2; | 1119 cnt = pOp->p3-pOp->p2; |
1078 assert( pOp->p3<=(p->nMem-p->nCursor) ); | 1120 assert( pOp->p3<=(p->nMem-p->nCursor) ); |
1079 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null; | 1121 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null; |
1080 while( cnt>0 ){ | 1122 while( cnt>0 ){ |
1081 pOut++; | 1123 pOut++; |
1082 memAboutToChange(p, pOut); | 1124 memAboutToChange(p, pOut); |
1083 sqlite3VdbeMemSetNull(pOut); | 1125 sqlite3VdbeMemSetNull(pOut); |
1084 pOut->flags = nullFlag; | 1126 pOut->flags = nullFlag; |
1085 cnt--; | 1127 cnt--; |
1086 } | 1128 } |
(...skipping 14 matching lines...) Expand all Loading... |
1101 pOut->flags = (pOut->flags|MEM_Null)&~MEM_Undefined; | 1143 pOut->flags = (pOut->flags|MEM_Null)&~MEM_Undefined; |
1102 break; | 1144 break; |
1103 } | 1145 } |
1104 | 1146 |
1105 /* Opcode: Blob P1 P2 * P4 * | 1147 /* Opcode: Blob P1 P2 * P4 * |
1106 ** Synopsis: r[P2]=P4 (len=P1) | 1148 ** Synopsis: r[P2]=P4 (len=P1) |
1107 ** | 1149 ** |
1108 ** P4 points to a blob of data P1 bytes long. Store this | 1150 ** P4 points to a blob of data P1 bytes long. Store this |
1109 ** blob in register P2. | 1151 ** blob in register P2. |
1110 */ | 1152 */ |
1111 case OP_Blob: { /* out2-prerelease */ | 1153 case OP_Blob: { /* out2 */ |
1112 assert( pOp->p1 <= SQLITE_MAX_LENGTH ); | 1154 assert( pOp->p1 <= SQLITE_MAX_LENGTH ); |
| 1155 pOut = out2Prerelease(p, pOp); |
1113 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0); | 1156 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0); |
1114 pOut->enc = encoding; | 1157 pOut->enc = encoding; |
1115 UPDATE_MAX_BLOBSIZE(pOut); | 1158 UPDATE_MAX_BLOBSIZE(pOut); |
1116 break; | 1159 break; |
1117 } | 1160 } |
1118 | 1161 |
1119 /* Opcode: Variable P1 P2 * P4 * | 1162 /* Opcode: Variable P1 P2 * P4 * |
1120 ** Synopsis: r[P2]=parameter(P1,P4) | 1163 ** Synopsis: r[P2]=parameter(P1,P4) |
1121 ** | 1164 ** |
1122 ** Transfer the values of bound parameter P1 into register P2 | 1165 ** Transfer the values of bound parameter P1 into register P2 |
1123 ** | 1166 ** |
1124 ** If the parameter is named, then its name appears in P4. | 1167 ** If the parameter is named, then its name appears in P4. |
1125 ** The P4 value is used by sqlite3_bind_parameter_name(). | 1168 ** The P4 value is used by sqlite3_bind_parameter_name(). |
1126 */ | 1169 */ |
1127 case OP_Variable: { /* out2-prerelease */ | 1170 case OP_Variable: { /* out2 */ |
1128 Mem *pVar; /* Value being transferred */ | 1171 Mem *pVar; /* Value being transferred */ |
1129 | 1172 |
1130 assert( pOp->p1>0 && pOp->p1<=p->nVar ); | 1173 assert( pOp->p1>0 && pOp->p1<=p->nVar ); |
1131 assert( pOp->p4.z==0 || pOp->p4.z==p->azVar[pOp->p1-1] ); | 1174 assert( pOp->p4.z==0 || pOp->p4.z==p->azVar[pOp->p1-1] ); |
1132 pVar = &p->aVar[pOp->p1 - 1]; | 1175 pVar = &p->aVar[pOp->p1 - 1]; |
1133 if( sqlite3VdbeMemTooBig(pVar) ){ | 1176 if( sqlite3VdbeMemTooBig(pVar) ){ |
1134 goto too_big; | 1177 goto too_big; |
1135 } | 1178 } |
| 1179 pOut = out2Prerelease(p, pOp); |
1136 sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static); | 1180 sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static); |
1137 UPDATE_MAX_BLOBSIZE(pOut); | 1181 UPDATE_MAX_BLOBSIZE(pOut); |
1138 break; | 1182 break; |
1139 } | 1183 } |
1140 | 1184 |
1141 /* Opcode: Move P1 P2 P3 * * | 1185 /* Opcode: Move P1 P2 P3 * * |
1142 ** Synopsis: r[P2@P3]=r[P1@P3] | 1186 ** Synopsis: r[P2@P3]=r[P1@P3] |
1143 ** | 1187 ** |
1144 ** Move the P3 values in register P1..P1+P3-1 over into | 1188 ** Move the P3 values in register P1..P1+P3-1 over into |
1145 ** registers P2..P2+P3-1. Registers P1..P1+P3-1 are | 1189 ** registers P2..P2+P3-1. Registers P1..P1+P3-1 are |
(...skipping 14 matching lines...) Expand all Loading... |
1160 | 1204 |
1161 pIn1 = &aMem[p1]; | 1205 pIn1 = &aMem[p1]; |
1162 pOut = &aMem[p2]; | 1206 pOut = &aMem[p2]; |
1163 do{ | 1207 do{ |
1164 assert( pOut<=&aMem[(p->nMem-p->nCursor)] ); | 1208 assert( pOut<=&aMem[(p->nMem-p->nCursor)] ); |
1165 assert( pIn1<=&aMem[(p->nMem-p->nCursor)] ); | 1209 assert( pIn1<=&aMem[(p->nMem-p->nCursor)] ); |
1166 assert( memIsValid(pIn1) ); | 1210 assert( memIsValid(pIn1) ); |
1167 memAboutToChange(p, pOut); | 1211 memAboutToChange(p, pOut); |
1168 sqlite3VdbeMemMove(pOut, pIn1); | 1212 sqlite3VdbeMemMove(pOut, pIn1); |
1169 #ifdef SQLITE_DEBUG | 1213 #ifdef SQLITE_DEBUG |
1170 if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<&aMem[p1+pOp->p3] ){ | 1214 if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<pOut ){ |
1171 pOut->pScopyFrom += p1 - pOp->p2; | 1215 pOut->pScopyFrom += pOp->p2 - p1; |
1172 } | 1216 } |
1173 #endif | 1217 #endif |
| 1218 Deephemeralize(pOut); |
1174 REGISTER_TRACE(p2++, pOut); | 1219 REGISTER_TRACE(p2++, pOut); |
1175 pIn1++; | 1220 pIn1++; |
1176 pOut++; | 1221 pOut++; |
1177 }while( --n ); | 1222 }while( --n ); |
1178 break; | 1223 break; |
1179 } | 1224 } |
1180 | 1225 |
1181 /* Opcode: Copy P1 P2 P3 * * | 1226 /* Opcode: Copy P1 P2 P3 * * |
1182 ** Synopsis: r[P2@P3+1]=r[P1@P3+1] | 1227 ** Synopsis: r[P2@P3+1]=r[P1@P3+1] |
1183 ** | 1228 ** |
(...skipping 40 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
1224 pIn1 = &aMem[pOp->p1]; | 1269 pIn1 = &aMem[pOp->p1]; |
1225 pOut = &aMem[pOp->p2]; | 1270 pOut = &aMem[pOp->p2]; |
1226 assert( pOut!=pIn1 ); | 1271 assert( pOut!=pIn1 ); |
1227 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); | 1272 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); |
1228 #ifdef SQLITE_DEBUG | 1273 #ifdef SQLITE_DEBUG |
1229 if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1; | 1274 if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1; |
1230 #endif | 1275 #endif |
1231 break; | 1276 break; |
1232 } | 1277 } |
1233 | 1278 |
| 1279 /* Opcode: IntCopy P1 P2 * * * |
| 1280 ** Synopsis: r[P2]=r[P1] |
| 1281 ** |
| 1282 ** Transfer the integer value held in register P1 into register P2. |
| 1283 ** |
| 1284 ** This is an optimized version of SCopy that works only for integer |
| 1285 ** values. |
| 1286 */ |
| 1287 case OP_IntCopy: { /* out2 */ |
| 1288 pIn1 = &aMem[pOp->p1]; |
| 1289 assert( (pIn1->flags & MEM_Int)!=0 ); |
| 1290 pOut = &aMem[pOp->p2]; |
| 1291 sqlite3VdbeMemSetInt64(pOut, pIn1->u.i); |
| 1292 break; |
| 1293 } |
| 1294 |
1234 /* Opcode: ResultRow P1 P2 * * * | 1295 /* Opcode: ResultRow P1 P2 * * * |
1235 ** Synopsis: output=r[P1@P2] | 1296 ** Synopsis: output=r[P1@P2] |
1236 ** | 1297 ** |
1237 ** The registers P1 through P1+P2-1 contain a single row of | 1298 ** The registers P1 through P1+P2-1 contain a single row of |
1238 ** results. This opcode causes the sqlite3_step() call to terminate | 1299 ** results. This opcode causes the sqlite3_step() call to terminate |
1239 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt | 1300 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt |
1240 ** structure to provide access to the r(P1)..r(P1+P2-1) values as | 1301 ** structure to provide access to the r(P1)..r(P1+P2-1) values as |
1241 ** the result row. | 1302 ** the result row. |
1242 */ | 1303 */ |
1243 case OP_ResultRow: { | 1304 case OP_ResultRow: { |
(...skipping 58 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
1302 Deephemeralize(&pMem[i]); | 1363 Deephemeralize(&pMem[i]); |
1303 assert( (pMem[i].flags & MEM_Ephem)==0 | 1364 assert( (pMem[i].flags & MEM_Ephem)==0 |
1304 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 ); | 1365 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 ); |
1305 sqlite3VdbeMemNulTerminate(&pMem[i]); | 1366 sqlite3VdbeMemNulTerminate(&pMem[i]); |
1306 REGISTER_TRACE(pOp->p1+i, &pMem[i]); | 1367 REGISTER_TRACE(pOp->p1+i, &pMem[i]); |
1307 } | 1368 } |
1308 if( db->mallocFailed ) goto no_mem; | 1369 if( db->mallocFailed ) goto no_mem; |
1309 | 1370 |
1310 /* Return SQLITE_ROW | 1371 /* Return SQLITE_ROW |
1311 */ | 1372 */ |
1312 p->pc = pc + 1; | 1373 p->pc = (int)(pOp - aOp) + 1; |
1313 rc = SQLITE_ROW; | 1374 rc = SQLITE_ROW; |
1314 goto vdbe_return; | 1375 goto vdbe_return; |
1315 } | 1376 } |
1316 | 1377 |
1317 /* Opcode: Concat P1 P2 P3 * * | 1378 /* Opcode: Concat P1 P2 P3 * * |
1318 ** Synopsis: r[P3]=r[P2]+r[P1] | 1379 ** Synopsis: r[P3]=r[P2]+r[P1] |
1319 ** | 1380 ** |
1320 ** Add the text in register P1 onto the end of the text in | 1381 ** Add the text in register P1 onto the end of the text in |
1321 ** register P2 and store the result in register P3. | 1382 ** register P2 and store the result in register P3. |
1322 ** If either the P1 or P2 text are NULL then store NULL in P3. | 1383 ** If either the P1 or P2 text are NULL then store NULL in P3. |
(...skipping 172 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
1495 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will | 1556 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will |
1496 ** be returned. This is used by the built-in min(), max() and nullif() | 1557 ** be returned. This is used by the built-in min(), max() and nullif() |
1497 ** functions. | 1558 ** functions. |
1498 ** | 1559 ** |
1499 ** If P1 is not zero, then it is a register that a subsequent min() or | 1560 ** If P1 is not zero, then it is a register that a subsequent min() or |
1500 ** max() aggregate will set to 1 if the current row is not the minimum or | 1561 ** max() aggregate will set to 1 if the current row is not the minimum or |
1501 ** maximum. The P1 register is initialized to 0 by this instruction. | 1562 ** maximum. The P1 register is initialized to 0 by this instruction. |
1502 ** | 1563 ** |
1503 ** The interface used by the implementation of the aforementioned functions | 1564 ** The interface used by the implementation of the aforementioned functions |
1504 ** to retrieve the collation sequence set by this opcode is not available | 1565 ** to retrieve the collation sequence set by this opcode is not available |
1505 ** publicly, only to user functions defined in func.c. | 1566 ** publicly. Only built-in functions have access to this feature. |
1506 */ | 1567 */ |
1507 case OP_CollSeq: { | 1568 case OP_CollSeq: { |
1508 assert( pOp->p4type==P4_COLLSEQ ); | 1569 assert( pOp->p4type==P4_COLLSEQ ); |
1509 if( pOp->p1 ){ | 1570 if( pOp->p1 ){ |
1510 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0); | 1571 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0); |
1511 } | 1572 } |
1512 break; | 1573 break; |
1513 } | 1574 } |
1514 | 1575 |
1515 /* Opcode: Function P1 P2 P3 P4 P5 | 1576 /* Opcode: Function0 P1 P2 P3 P4 P5 |
1516 ** Synopsis: r[P3]=func(r[P2@P5]) | 1577 ** Synopsis: r[P3]=func(r[P2@P5]) |
1517 ** | 1578 ** |
1518 ** Invoke a user function (P4 is a pointer to a Function structure that | 1579 ** Invoke a user function (P4 is a pointer to a FuncDef object that |
1519 ** defines the function) with P5 arguments taken from register P2 and | 1580 ** defines the function) with P5 arguments taken from register P2 and |
1520 ** successors. The result of the function is stored in register P3. | 1581 ** successors. The result of the function is stored in register P3. |
1521 ** Register P3 must not be one of the function inputs. | 1582 ** Register P3 must not be one of the function inputs. |
1522 ** | 1583 ** |
1523 ** P1 is a 32-bit bitmask indicating whether or not each argument to the | 1584 ** P1 is a 32-bit bitmask indicating whether or not each argument to the |
1524 ** function was determined to be constant at compile time. If the first | 1585 ** function was determined to be constant at compile time. If the first |
1525 ** argument was constant then bit 0 of P1 is set. This is used to determine | 1586 ** argument was constant then bit 0 of P1 is set. This is used to determine |
1526 ** whether meta data associated with a user function argument using the | 1587 ** whether meta data associated with a user function argument using the |
1527 ** sqlite3_set_auxdata() API may be safely retained until the next | 1588 ** sqlite3_set_auxdata() API may be safely retained until the next |
1528 ** invocation of this opcode. | 1589 ** invocation of this opcode. |
1529 ** | 1590 ** |
1530 ** See also: AggStep and AggFinal | 1591 ** See also: Function, AggStep, AggFinal |
1531 */ | 1592 */ |
| 1593 /* Opcode: Function P1 P2 P3 P4 P5 |
| 1594 ** Synopsis: r[P3]=func(r[P2@P5]) |
| 1595 ** |
| 1596 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that |
| 1597 ** contains a pointer to the function to be run) with P5 arguments taken |
| 1598 ** from register P2 and successors. The result of the function is stored |
| 1599 ** in register P3. Register P3 must not be one of the function inputs. |
| 1600 ** |
| 1601 ** P1 is a 32-bit bitmask indicating whether or not each argument to the |
| 1602 ** function was determined to be constant at compile time. If the first |
| 1603 ** argument was constant then bit 0 of P1 is set. This is used to determine |
| 1604 ** whether meta data associated with a user function argument using the |
| 1605 ** sqlite3_set_auxdata() API may be safely retained until the next |
| 1606 ** invocation of this opcode. |
| 1607 ** |
| 1608 ** SQL functions are initially coded as OP_Function0 with P4 pointing |
| 1609 ** to a FuncDef object. But on first evaluation, the P4 operand is |
| 1610 ** automatically converted into an sqlite3_context object and the operation |
| 1611 ** changed to this OP_Function opcode. In this way, the initialization of |
| 1612 ** the sqlite3_context object occurs only once, rather than once for each |
| 1613 ** evaluation of the function. |
| 1614 ** |
| 1615 ** See also: Function0, AggStep, AggFinal |
| 1616 */ |
| 1617 case OP_Function0: { |
| 1618 int n; |
| 1619 sqlite3_context *pCtx; |
| 1620 |
| 1621 assert( pOp->p4type==P4_FUNCDEF ); |
| 1622 n = pOp->p5; |
| 1623 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); |
| 1624 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem-p->nCursor)+1) ); |
| 1625 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); |
| 1626 pCtx = sqlite3DbMallocRaw(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*)); |
| 1627 if( pCtx==0 ) goto no_mem; |
| 1628 pCtx->pOut = 0; |
| 1629 pCtx->pFunc = pOp->p4.pFunc; |
| 1630 pCtx->iOp = (int)(pOp - aOp); |
| 1631 pCtx->pVdbe = p; |
| 1632 pCtx->argc = n; |
| 1633 pOp->p4type = P4_FUNCCTX; |
| 1634 pOp->p4.pCtx = pCtx; |
| 1635 pOp->opcode = OP_Function; |
| 1636 /* Fall through into OP_Function */ |
| 1637 } |
1532 case OP_Function: { | 1638 case OP_Function: { |
1533 int i; | 1639 int i; |
1534 Mem *pArg; | 1640 sqlite3_context *pCtx; |
1535 sqlite3_context ctx; | |
1536 sqlite3_value **apVal; | |
1537 int n; | |
1538 | 1641 |
1539 n = pOp->p5; | 1642 assert( pOp->p4type==P4_FUNCCTX ); |
1540 apVal = p->apArg; | 1643 pCtx = pOp->p4.pCtx; |
1541 assert( apVal || n==0 ); | |
1542 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); | |
1543 ctx.pOut = &aMem[pOp->p3]; | |
1544 memAboutToChange(p, ctx.pOut); | |
1545 | 1644 |
1546 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem-p->nCursor)+1) ); | 1645 /* If this function is inside of a trigger, the register array in aMem[] |
1547 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); | 1646 ** might change from one evaluation to the next. The next block of code |
1548 pArg = &aMem[pOp->p2]; | 1647 ** checks to see if the register array has changed, and if so it |
1549 for(i=0; i<n; i++, pArg++){ | 1648 ** reinitializes the relavant parts of the sqlite3_context object */ |
1550 assert( memIsValid(pArg) ); | 1649 pOut = &aMem[pOp->p3]; |
1551 apVal[i] = pArg; | 1650 if( pCtx->pOut != pOut ){ |
1552 Deephemeralize(pArg); | 1651 pCtx->pOut = pOut; |
1553 REGISTER_TRACE(pOp->p2+i, pArg); | 1652 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; |
1554 } | 1653 } |
1555 | 1654 |
1556 assert( pOp->p4type==P4_FUNCDEF ); | 1655 memAboutToChange(p, pCtx->pOut); |
1557 ctx.pFunc = pOp->p4.pFunc; | 1656 #ifdef SQLITE_DEBUG |
1558 ctx.iOp = pc; | 1657 for(i=0; i<pCtx->argc; i++){ |
1559 ctx.pVdbe = p; | 1658 assert( memIsValid(pCtx->argv[i]) ); |
1560 MemSetTypeFlag(ctx.pOut, MEM_Null); | 1659 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); |
1561 ctx.fErrorOrAux = 0; | 1660 } |
| 1661 #endif |
| 1662 MemSetTypeFlag(pCtx->pOut, MEM_Null); |
| 1663 pCtx->fErrorOrAux = 0; |
1562 db->lastRowid = lastRowid; | 1664 db->lastRowid = lastRowid; |
1563 (*ctx.pFunc->xFunc)(&ctx, n, apVal); /* IMP: R-24505-23230 */ | 1665 (*pCtx->pFunc->xFunc)(pCtx, pCtx->argc, pCtx->argv); /* IMP: R-24505-23230 */ |
1564 lastRowid = db->lastRowid; /* Remember rowid changes made by xFunc */ | 1666 lastRowid = db->lastRowid; /* Remember rowid changes made by xFunc */ |
1565 | 1667 |
1566 /* If the function returned an error, throw an exception */ | 1668 /* If the function returned an error, throw an exception */ |
1567 if( ctx.fErrorOrAux ){ | 1669 if( pCtx->fErrorOrAux ){ |
1568 if( ctx.isError ){ | 1670 if( pCtx->isError ){ |
1569 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(ctx.pOut)); | 1671 sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut)); |
1570 rc = ctx.isError; | 1672 rc = pCtx->isError; |
1571 } | 1673 } |
1572 sqlite3VdbeDeleteAuxData(p, pc, pOp->p1); | 1674 sqlite3VdbeDeleteAuxData(p, pCtx->iOp, pOp->p1); |
1573 } | 1675 } |
1574 | 1676 |
1575 /* Copy the result of the function into register P3 */ | 1677 /* Copy the result of the function into register P3 */ |
1576 sqlite3VdbeChangeEncoding(ctx.pOut, encoding); | 1678 if( pOut->flags & (MEM_Str|MEM_Blob) ){ |
1577 if( sqlite3VdbeMemTooBig(ctx.pOut) ){ | 1679 sqlite3VdbeChangeEncoding(pCtx->pOut, encoding); |
1578 goto too_big; | 1680 if( sqlite3VdbeMemTooBig(pCtx->pOut) ) goto too_big; |
1579 } | 1681 } |
1580 | 1682 |
1581 REGISTER_TRACE(pOp->p3, ctx.pOut); | 1683 REGISTER_TRACE(pOp->p3, pCtx->pOut); |
1582 UPDATE_MAX_BLOBSIZE(ctx.pOut); | 1684 UPDATE_MAX_BLOBSIZE(pCtx->pOut); |
1583 break; | 1685 break; |
1584 } | 1686 } |
1585 | 1687 |
1586 /* Opcode: BitAnd P1 P2 P3 * * | 1688 /* Opcode: BitAnd P1 P2 P3 * * |
1587 ** Synopsis: r[P3]=r[P1]&r[P2] | 1689 ** Synopsis: r[P3]=r[P1]&r[P2] |
1588 ** | 1690 ** |
1589 ** Take the bit-wise AND of the values in register P1 and P2 and | 1691 ** Take the bit-wise AND of the values in register P1 and P2 and |
1590 ** store the result in register P3. | 1692 ** store the result in register P3. |
1591 ** If either input is NULL, the result is NULL. | 1693 ** If either input is NULL, the result is NULL. |
1592 */ | 1694 */ |
(...skipping 98 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
1691 case OP_MustBeInt: { /* jump, in1 */ | 1793 case OP_MustBeInt: { /* jump, in1 */ |
1692 pIn1 = &aMem[pOp->p1]; | 1794 pIn1 = &aMem[pOp->p1]; |
1693 if( (pIn1->flags & MEM_Int)==0 ){ | 1795 if( (pIn1->flags & MEM_Int)==0 ){ |
1694 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding); | 1796 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding); |
1695 VdbeBranchTaken((pIn1->flags&MEM_Int)==0, 2); | 1797 VdbeBranchTaken((pIn1->flags&MEM_Int)==0, 2); |
1696 if( (pIn1->flags & MEM_Int)==0 ){ | 1798 if( (pIn1->flags & MEM_Int)==0 ){ |
1697 if( pOp->p2==0 ){ | 1799 if( pOp->p2==0 ){ |
1698 rc = SQLITE_MISMATCH; | 1800 rc = SQLITE_MISMATCH; |
1699 goto abort_due_to_error; | 1801 goto abort_due_to_error; |
1700 }else{ | 1802 }else{ |
1701 pc = pOp->p2 - 1; | 1803 goto jump_to_p2; |
1702 break; | |
1703 } | 1804 } |
1704 } | 1805 } |
1705 } | 1806 } |
1706 MemSetTypeFlag(pIn1, MEM_Int); | 1807 MemSetTypeFlag(pIn1, MEM_Int); |
1707 break; | 1808 break; |
1708 } | 1809 } |
1709 | 1810 |
1710 #ifndef SQLITE_OMIT_FLOATING_POINT | 1811 #ifndef SQLITE_OMIT_FLOATING_POINT |
1711 /* Opcode: RealAffinity P1 * * * * | 1812 /* Opcode: RealAffinity P1 * * * * |
1712 ** | 1813 ** |
(...skipping 23 matching lines...) Expand all Loading... |
1736 ** <li value="97"> TEXT | 1837 ** <li value="97"> TEXT |
1737 ** <li value="98"> BLOB | 1838 ** <li value="98"> BLOB |
1738 ** <li value="99"> NUMERIC | 1839 ** <li value="99"> NUMERIC |
1739 ** <li value="100"> INTEGER | 1840 ** <li value="100"> INTEGER |
1740 ** <li value="101"> REAL | 1841 ** <li value="101"> REAL |
1741 ** </ul> | 1842 ** </ul> |
1742 ** | 1843 ** |
1743 ** A NULL value is not changed by this routine. It remains NULL. | 1844 ** A NULL value is not changed by this routine. It remains NULL. |
1744 */ | 1845 */ |
1745 case OP_Cast: { /* in1 */ | 1846 case OP_Cast: { /* in1 */ |
1746 assert( pOp->p2>=SQLITE_AFF_NONE && pOp->p2<=SQLITE_AFF_REAL ); | 1847 assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL ); |
1747 testcase( pOp->p2==SQLITE_AFF_TEXT ); | 1848 testcase( pOp->p2==SQLITE_AFF_TEXT ); |
1748 testcase( pOp->p2==SQLITE_AFF_NONE ); | 1849 testcase( pOp->p2==SQLITE_AFF_BLOB ); |
1749 testcase( pOp->p2==SQLITE_AFF_NUMERIC ); | 1850 testcase( pOp->p2==SQLITE_AFF_NUMERIC ); |
1750 testcase( pOp->p2==SQLITE_AFF_INTEGER ); | 1851 testcase( pOp->p2==SQLITE_AFF_INTEGER ); |
1751 testcase( pOp->p2==SQLITE_AFF_REAL ); | 1852 testcase( pOp->p2==SQLITE_AFF_REAL ); |
1752 pIn1 = &aMem[pOp->p1]; | 1853 pIn1 = &aMem[pOp->p1]; |
1753 memAboutToChange(p, pIn1); | 1854 memAboutToChange(p, pIn1); |
1754 rc = ExpandBlob(pIn1); | 1855 rc = ExpandBlob(pIn1); |
1755 sqlite3VdbeMemCast(pIn1, pOp->p2, encoding); | 1856 sqlite3VdbeMemCast(pIn1, pOp->p2, encoding); |
1756 UPDATE_MAX_BLOBSIZE(pIn1); | 1857 UPDATE_MAX_BLOBSIZE(pIn1); |
1757 break; | 1858 break; |
1758 } | 1859 } |
(...skipping 114 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
1873 }else{ | 1974 }else{ |
1874 res = 1; /* Results are not equal */ | 1975 res = 1; /* Results are not equal */ |
1875 } | 1976 } |
1876 }else{ | 1977 }else{ |
1877 /* SQLITE_NULLEQ is clear and at least one operand is NULL, | 1978 /* SQLITE_NULLEQ is clear and at least one operand is NULL, |
1878 ** then the result is always NULL. | 1979 ** then the result is always NULL. |
1879 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set. | 1980 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set. |
1880 */ | 1981 */ |
1881 if( pOp->p5 & SQLITE_STOREP2 ){ | 1982 if( pOp->p5 & SQLITE_STOREP2 ){ |
1882 pOut = &aMem[pOp->p2]; | 1983 pOut = &aMem[pOp->p2]; |
| 1984 memAboutToChange(p, pOut); |
1883 MemSetTypeFlag(pOut, MEM_Null); | 1985 MemSetTypeFlag(pOut, MEM_Null); |
1884 REGISTER_TRACE(pOp->p2, pOut); | 1986 REGISTER_TRACE(pOp->p2, pOut); |
1885 }else{ | 1987 }else{ |
1886 VdbeBranchTaken(2,3); | 1988 VdbeBranchTaken(2,3); |
1887 if( pOp->p5 & SQLITE_JUMPIFNULL ){ | 1989 if( pOp->p5 & SQLITE_JUMPIFNULL ){ |
1888 pc = pOp->p2-1; | 1990 goto jump_to_p2; |
1889 } | 1991 } |
1890 } | 1992 } |
1891 break; | 1993 break; |
1892 } | 1994 } |
1893 }else{ | 1995 }else{ |
1894 /* Neither operand is NULL. Do a comparison. */ | 1996 /* Neither operand is NULL. Do a comparison. */ |
1895 affinity = pOp->p5 & SQLITE_AFF_MASK; | 1997 affinity = pOp->p5 & SQLITE_AFF_MASK; |
1896 if( affinity>=SQLITE_AFF_NUMERIC ){ | 1998 if( affinity>=SQLITE_AFF_NUMERIC ){ |
1897 if( (pIn1->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){ | 1999 if( (flags1 & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){ |
1898 applyNumericAffinity(pIn1,0); | 2000 applyNumericAffinity(pIn1,0); |
1899 } | 2001 } |
1900 if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){ | 2002 if( (flags3 & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){ |
1901 applyNumericAffinity(pIn3,0); | 2003 applyNumericAffinity(pIn3,0); |
1902 } | 2004 } |
1903 }else if( affinity==SQLITE_AFF_TEXT ){ | 2005 }else if( affinity==SQLITE_AFF_TEXT ){ |
1904 if( (pIn1->flags & MEM_Str)==0 && (pIn1->flags & (MEM_Int|MEM_Real))!=0 ){ | 2006 if( (flags1 & MEM_Str)==0 && (flags1 & (MEM_Int|MEM_Real))!=0 ){ |
1905 testcase( pIn1->flags & MEM_Int ); | 2007 testcase( pIn1->flags & MEM_Int ); |
1906 testcase( pIn1->flags & MEM_Real ); | 2008 testcase( pIn1->flags & MEM_Real ); |
1907 sqlite3VdbeMemStringify(pIn1, encoding, 1); | 2009 sqlite3VdbeMemStringify(pIn1, encoding, 1); |
| 2010 testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) ); |
| 2011 flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask); |
1908 } | 2012 } |
1909 if( (pIn3->flags & MEM_Str)==0 && (pIn3->flags & (MEM_Int|MEM_Real))!=0 ){ | 2013 if( (flags3 & MEM_Str)==0 && (flags3 & (MEM_Int|MEM_Real))!=0 ){ |
1910 testcase( pIn3->flags & MEM_Int ); | 2014 testcase( pIn3->flags & MEM_Int ); |
1911 testcase( pIn3->flags & MEM_Real ); | 2015 testcase( pIn3->flags & MEM_Real ); |
1912 sqlite3VdbeMemStringify(pIn3, encoding, 1); | 2016 sqlite3VdbeMemStringify(pIn3, encoding, 1); |
| 2017 testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) ); |
| 2018 flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask); |
1913 } | 2019 } |
1914 } | 2020 } |
1915 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 ); | 2021 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 ); |
1916 if( pIn1->flags & MEM_Zero ){ | 2022 if( flags1 & MEM_Zero ){ |
1917 sqlite3VdbeMemExpandBlob(pIn1); | 2023 sqlite3VdbeMemExpandBlob(pIn1); |
1918 flags1 &= ~MEM_Zero; | 2024 flags1 &= ~MEM_Zero; |
1919 } | 2025 } |
1920 if( pIn3->flags & MEM_Zero ){ | 2026 if( flags3 & MEM_Zero ){ |
1921 sqlite3VdbeMemExpandBlob(pIn3); | 2027 sqlite3VdbeMemExpandBlob(pIn3); |
1922 flags3 &= ~MEM_Zero; | 2028 flags3 &= ~MEM_Zero; |
1923 } | 2029 } |
1924 if( db->mallocFailed ) goto no_mem; | |
1925 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl); | 2030 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl); |
1926 } | 2031 } |
1927 switch( pOp->opcode ){ | 2032 switch( pOp->opcode ){ |
1928 case OP_Eq: res = res==0; break; | 2033 case OP_Eq: res = res==0; break; |
1929 case OP_Ne: res = res!=0; break; | 2034 case OP_Ne: res = res!=0; break; |
1930 case OP_Lt: res = res<0; break; | 2035 case OP_Lt: res = res<0; break; |
1931 case OP_Le: res = res<=0; break; | 2036 case OP_Le: res = res<=0; break; |
1932 case OP_Gt: res = res>0; break; | 2037 case OP_Gt: res = res>0; break; |
1933 default: res = res>=0; break; | 2038 default: res = res>=0; break; |
1934 } | 2039 } |
1935 | 2040 |
| 2041 /* Undo any changes made by applyAffinity() to the input registers. */ |
| 2042 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) ); |
| 2043 pIn1->flags = flags1; |
| 2044 assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) ); |
| 2045 pIn3->flags = flags3; |
| 2046 |
1936 if( pOp->p5 & SQLITE_STOREP2 ){ | 2047 if( pOp->p5 & SQLITE_STOREP2 ){ |
1937 pOut = &aMem[pOp->p2]; | 2048 pOut = &aMem[pOp->p2]; |
1938 memAboutToChange(p, pOut); | 2049 memAboutToChange(p, pOut); |
1939 MemSetTypeFlag(pOut, MEM_Int); | 2050 MemSetTypeFlag(pOut, MEM_Int); |
1940 pOut->u.i = res; | 2051 pOut->u.i = res; |
1941 REGISTER_TRACE(pOp->p2, pOut); | 2052 REGISTER_TRACE(pOp->p2, pOut); |
1942 }else{ | 2053 }else{ |
1943 VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3); | 2054 VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3); |
1944 if( res ){ | 2055 if( res ){ |
1945 pc = pOp->p2-1; | 2056 goto jump_to_p2; |
1946 } | 2057 } |
1947 } | 2058 } |
1948 /* Undo any changes made by applyAffinity() to the input registers. */ | |
1949 pIn1->flags = flags1; | |
1950 pIn3->flags = flags3; | |
1951 break; | 2059 break; |
1952 } | 2060 } |
1953 | 2061 |
1954 /* Opcode: Permutation * * * P4 * | 2062 /* Opcode: Permutation * * * P4 * |
1955 ** | 2063 ** |
1956 ** Set the permutation used by the OP_Compare operator to be the array | 2064 ** Set the permutation used by the OP_Compare operator to be the array |
1957 ** of integers in P4. | 2065 ** of integers in P4. |
1958 ** | 2066 ** |
1959 ** The permutation is only valid until the next OP_Compare that has | 2067 ** The permutation is only valid until the next OP_Compare that has |
1960 ** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should | 2068 ** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should |
(...skipping 74 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
2035 } | 2143 } |
2036 | 2144 |
2037 /* Opcode: Jump P1 P2 P3 * * | 2145 /* Opcode: Jump P1 P2 P3 * * |
2038 ** | 2146 ** |
2039 ** Jump to the instruction at address P1, P2, or P3 depending on whether | 2147 ** Jump to the instruction at address P1, P2, or P3 depending on whether |
2040 ** in the most recent OP_Compare instruction the P1 vector was less than | 2148 ** in the most recent OP_Compare instruction the P1 vector was less than |
2041 ** equal to, or greater than the P2 vector, respectively. | 2149 ** equal to, or greater than the P2 vector, respectively. |
2042 */ | 2150 */ |
2043 case OP_Jump: { /* jump */ | 2151 case OP_Jump: { /* jump */ |
2044 if( iCompare<0 ){ | 2152 if( iCompare<0 ){ |
2045 pc = pOp->p1 - 1; VdbeBranchTaken(0,3); | 2153 VdbeBranchTaken(0,3); pOp = &aOp[pOp->p1 - 1]; |
2046 }else if( iCompare==0 ){ | 2154 }else if( iCompare==0 ){ |
2047 pc = pOp->p2 - 1; VdbeBranchTaken(1,3); | 2155 VdbeBranchTaken(1,3); pOp = &aOp[pOp->p2 - 1]; |
2048 }else{ | 2156 }else{ |
2049 pc = pOp->p3 - 1; VdbeBranchTaken(2,3); | 2157 VdbeBranchTaken(2,3); pOp = &aOp[pOp->p3 - 1]; |
2050 } | 2158 } |
2051 break; | 2159 break; |
2052 } | 2160 } |
2053 | 2161 |
2054 /* Opcode: And P1 P2 P3 * * | 2162 /* Opcode: And P1 P2 P3 * * |
2055 ** Synopsis: r[P3]=(r[P1] && r[P2]) | 2163 ** Synopsis: r[P3]=(r[P1] && r[P2]) |
2056 ** | 2164 ** |
2057 ** Take the logical AND of the values in registers P1 and P2 and | 2165 ** Take the logical AND of the values in registers P1 and P2 and |
2058 ** write the result into register P3. | 2166 ** write the result into register P3. |
2059 ** | 2167 ** |
(...skipping 89 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
2149 ** (but not including P2) to run just once and to be skipped on subsequent | 2257 ** (but not including P2) to run just once and to be skipped on subsequent |
2150 ** times through the loop. | 2258 ** times through the loop. |
2151 ** | 2259 ** |
2152 ** All "once" flags are initially cleared whenever a prepared statement | 2260 ** All "once" flags are initially cleared whenever a prepared statement |
2153 ** first begins to run. | 2261 ** first begins to run. |
2154 */ | 2262 */ |
2155 case OP_Once: { /* jump */ | 2263 case OP_Once: { /* jump */ |
2156 assert( pOp->p1<p->nOnceFlag ); | 2264 assert( pOp->p1<p->nOnceFlag ); |
2157 VdbeBranchTaken(p->aOnceFlag[pOp->p1]!=0, 2); | 2265 VdbeBranchTaken(p->aOnceFlag[pOp->p1]!=0, 2); |
2158 if( p->aOnceFlag[pOp->p1] ){ | 2266 if( p->aOnceFlag[pOp->p1] ){ |
2159 pc = pOp->p2-1; | 2267 goto jump_to_p2; |
2160 }else{ | 2268 }else{ |
2161 p->aOnceFlag[pOp->p1] = 1; | 2269 p->aOnceFlag[pOp->p1] = 1; |
2162 } | 2270 } |
2163 break; | 2271 break; |
2164 } | 2272 } |
2165 | 2273 |
2166 /* Opcode: If P1 P2 P3 * * | 2274 /* Opcode: If P1 P2 P3 * * |
2167 ** | 2275 ** |
2168 ** Jump to P2 if the value in register P1 is true. The value | 2276 ** Jump to P2 if the value in register P1 is true. The value |
2169 ** is considered true if it is numeric and non-zero. If the value | 2277 ** is considered true if it is numeric and non-zero. If the value |
(...skipping 14 matching lines...) Expand all Loading... |
2184 }else{ | 2292 }else{ |
2185 #ifdef SQLITE_OMIT_FLOATING_POINT | 2293 #ifdef SQLITE_OMIT_FLOATING_POINT |
2186 c = sqlite3VdbeIntValue(pIn1)!=0; | 2294 c = sqlite3VdbeIntValue(pIn1)!=0; |
2187 #else | 2295 #else |
2188 c = sqlite3VdbeRealValue(pIn1)!=0.0; | 2296 c = sqlite3VdbeRealValue(pIn1)!=0.0; |
2189 #endif | 2297 #endif |
2190 if( pOp->opcode==OP_IfNot ) c = !c; | 2298 if( pOp->opcode==OP_IfNot ) c = !c; |
2191 } | 2299 } |
2192 VdbeBranchTaken(c!=0, 2); | 2300 VdbeBranchTaken(c!=0, 2); |
2193 if( c ){ | 2301 if( c ){ |
2194 pc = pOp->p2-1; | 2302 goto jump_to_p2; |
2195 } | 2303 } |
2196 break; | 2304 break; |
2197 } | 2305 } |
2198 | 2306 |
2199 /* Opcode: IsNull P1 P2 * * * | 2307 /* Opcode: IsNull P1 P2 * * * |
2200 ** Synopsis: if r[P1]==NULL goto P2 | 2308 ** Synopsis: if r[P1]==NULL goto P2 |
2201 ** | 2309 ** |
2202 ** Jump to P2 if the value in register P1 is NULL. | 2310 ** Jump to P2 if the value in register P1 is NULL. |
2203 */ | 2311 */ |
2204 case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */ | 2312 case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */ |
2205 pIn1 = &aMem[pOp->p1]; | 2313 pIn1 = &aMem[pOp->p1]; |
2206 VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2); | 2314 VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2); |
2207 if( (pIn1->flags & MEM_Null)!=0 ){ | 2315 if( (pIn1->flags & MEM_Null)!=0 ){ |
2208 pc = pOp->p2 - 1; | 2316 goto jump_to_p2; |
2209 } | 2317 } |
2210 break; | 2318 break; |
2211 } | 2319 } |
2212 | 2320 |
2213 /* Opcode: NotNull P1 P2 * * * | 2321 /* Opcode: NotNull P1 P2 * * * |
2214 ** Synopsis: if r[P1]!=NULL goto P2 | 2322 ** Synopsis: if r[P1]!=NULL goto P2 |
2215 ** | 2323 ** |
2216 ** Jump to P2 if the value in register P1 is not NULL. | 2324 ** Jump to P2 if the value in register P1 is not NULL. |
2217 */ | 2325 */ |
2218 case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */ | 2326 case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */ |
2219 pIn1 = &aMem[pOp->p1]; | 2327 pIn1 = &aMem[pOp->p1]; |
2220 VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2); | 2328 VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2); |
2221 if( (pIn1->flags & MEM_Null)==0 ){ | 2329 if( (pIn1->flags & MEM_Null)==0 ){ |
2222 pc = pOp->p2 - 1; | 2330 goto jump_to_p2; |
2223 } | 2331 } |
2224 break; | 2332 break; |
2225 } | 2333 } |
2226 | 2334 |
2227 /* Opcode: Column P1 P2 P3 P4 P5 | 2335 /* Opcode: Column P1 P2 P3 P4 P5 |
2228 ** Synopsis: r[P3]=PX | 2336 ** Synopsis: r[P3]=PX |
2229 ** | 2337 ** |
2230 ** Interpret the data that cursor P1 points to as a structure built using | 2338 ** Interpret the data that cursor P1 points to as a structure built using |
2231 ** the MakeRecord instruction. (See the MakeRecord opcode for additional | 2339 ** the MakeRecord instruction. (See the MakeRecord opcode for additional |
2232 ** information about the format of the data.) Extract the P2-th column | 2340 ** information about the format of the data.) Extract the P2-th column |
(...skipping 23 matching lines...) Expand all Loading... |
2256 BtCursor *pCrsr; /* The BTree cursor */ | 2364 BtCursor *pCrsr; /* The BTree cursor */ |
2257 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */ | 2365 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */ |
2258 int len; /* The length of the serialized data for the column */ | 2366 int len; /* The length of the serialized data for the column */ |
2259 int i; /* Loop counter */ | 2367 int i; /* Loop counter */ |
2260 Mem *pDest; /* Where to write the extracted value */ | 2368 Mem *pDest; /* Where to write the extracted value */ |
2261 Mem sMem; /* For storing the record being decoded */ | 2369 Mem sMem; /* For storing the record being decoded */ |
2262 const u8 *zData; /* Part of the record being decoded */ | 2370 const u8 *zData; /* Part of the record being decoded */ |
2263 const u8 *zHdr; /* Next unparsed byte of the header */ | 2371 const u8 *zHdr; /* Next unparsed byte of the header */ |
2264 const u8 *zEndHdr; /* Pointer to first byte after the header */ | 2372 const u8 *zEndHdr; /* Pointer to first byte after the header */ |
2265 u32 offset; /* Offset into the data */ | 2373 u32 offset; /* Offset into the data */ |
2266 u32 szField; /* Number of bytes in the content of a field */ | 2374 u64 offset64; /* 64-bit offset */ |
2267 u32 avail; /* Number of bytes of available data */ | 2375 u32 avail; /* Number of bytes of available data */ |
2268 u32 t; /* A type code from the record header */ | 2376 u32 t; /* A type code from the record header */ |
2269 u16 fx; /* pDest->flags value */ | 2377 u16 fx; /* pDest->flags value */ |
2270 Mem *pReg; /* PseudoTable input register */ | 2378 Mem *pReg; /* PseudoTable input register */ |
2271 | 2379 |
2272 p2 = pOp->p2; | 2380 p2 = pOp->p2; |
2273 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); | 2381 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); |
2274 pDest = &aMem[pOp->p3]; | 2382 pDest = &aMem[pOp->p3]; |
2275 memAboutToChange(p, pDest); | 2383 memAboutToChange(p, pDest); |
2276 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); | 2384 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
2277 pC = p->apCsr[pOp->p1]; | 2385 pC = p->apCsr[pOp->p1]; |
2278 assert( pC!=0 ); | 2386 assert( pC!=0 ); |
2279 assert( p2<pC->nField ); | 2387 assert( p2<pC->nField ); |
2280 aOffset = pC->aOffset; | 2388 aOffset = pC->aOffset; |
2281 #ifndef SQLITE_OMIT_VIRTUALTABLE | 2389 assert( pC->eCurType!=CURTYPE_VTAB ); |
2282 assert( pC->pVtabCursor==0 ); /* OP_Column never called on virtual table */ | 2390 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); |
2283 #endif | 2391 assert( pC->eCurType!=CURTYPE_SORTER ); |
2284 pCrsr = pC->pCursor; | 2392 pCrsr = pC->uc.pCursor; |
2285 assert( pCrsr!=0 || pC->pseudoTableReg>0 ); /* pCrsr NULL on PseudoTables */ | |
2286 assert( pCrsr!=0 || pC->nullRow ); /* pC->nullRow on PseudoTables */ | |
2287 | 2393 |
2288 /* If the cursor cache is stale, bring it up-to-date */ | 2394 /* If the cursor cache is stale, bring it up-to-date */ |
2289 rc = sqlite3VdbeCursorMoveto(pC); | 2395 rc = sqlite3VdbeCursorMoveto(pC); |
2290 if( rc ) goto abort_due_to_error; | 2396 if( rc ) goto abort_due_to_error; |
2291 if( pC->cacheStatus!=p->cacheCtr ){ | 2397 if( pC->cacheStatus!=p->cacheCtr ){ |
2292 if( pC->nullRow ){ | 2398 if( pC->nullRow ){ |
2293 if( pCrsr==0 ){ | 2399 if( pC->eCurType==CURTYPE_PSEUDO ){ |
2294 assert( pC->pseudoTableReg>0 ); | 2400 assert( pC->uc.pseudoTableReg>0 ); |
2295 pReg = &aMem[pC->pseudoTableReg]; | 2401 pReg = &aMem[pC->uc.pseudoTableReg]; |
2296 assert( pReg->flags & MEM_Blob ); | 2402 assert( pReg->flags & MEM_Blob ); |
2297 assert( memIsValid(pReg) ); | 2403 assert( memIsValid(pReg) ); |
2298 pC->payloadSize = pC->szRow = avail = pReg->n; | 2404 pC->payloadSize = pC->szRow = avail = pReg->n; |
2299 pC->aRow = (u8*)pReg->z; | 2405 pC->aRow = (u8*)pReg->z; |
2300 }else{ | 2406 }else{ |
2301 sqlite3VdbeMemSetNull(pDest); | 2407 sqlite3VdbeMemSetNull(pDest); |
2302 goto op_column_out; | 2408 goto op_column_out; |
2303 } | 2409 } |
2304 }else{ | 2410 }else{ |
| 2411 assert( pC->eCurType==CURTYPE_BTREE ); |
2305 assert( pCrsr ); | 2412 assert( pCrsr ); |
2306 if( pC->isTable==0 ){ | 2413 if( pC->isTable==0 ){ |
2307 assert( sqlite3BtreeCursorIsValid(pCrsr) ); | 2414 assert( sqlite3BtreeCursorIsValid(pCrsr) ); |
2308 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &payloadSize64); | 2415 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &payloadSize64); |
2309 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */ | 2416 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */ |
2310 /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the | 2417 /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the |
2311 ** payload size, so it is impossible for payloadSize64 to be | 2418 ** payload size, so it is impossible for payloadSize64 to be |
2312 ** larger than 32 bits. */ | 2419 ** larger than 32 bits. */ |
2313 assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 ); | 2420 assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 ); |
2314 pC->aRow = sqlite3BtreeKeyFetch(pCrsr, &avail); | 2421 pC->aRow = sqlite3BtreeKeyFetch(pCrsr, &avail); |
2315 pC->payloadSize = (u32)payloadSize64; | 2422 pC->payloadSize = (u32)payloadSize64; |
2316 }else{ | 2423 }else{ |
2317 assert( sqlite3BtreeCursorIsValid(pCrsr) ); | 2424 assert( sqlite3BtreeCursorIsValid(pCrsr) ); |
2318 VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &pC->payloadSize); | 2425 VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &pC->payloadSize); |
2319 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */ | 2426 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */ |
2320 pC->aRow = sqlite3BtreeDataFetch(pCrsr, &avail); | 2427 pC->aRow = sqlite3BtreeDataFetch(pCrsr, &avail); |
2321 } | 2428 } |
2322 assert( avail<=65536 ); /* Maximum page size is 64KiB */ | 2429 assert( avail<=65536 ); /* Maximum page size is 64KiB */ |
2323 if( pC->payloadSize <= (u32)avail ){ | 2430 if( pC->payloadSize <= (u32)avail ){ |
2324 pC->szRow = pC->payloadSize; | 2431 pC->szRow = pC->payloadSize; |
| 2432 }else if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ |
| 2433 goto too_big; |
2325 }else{ | 2434 }else{ |
2326 pC->szRow = avail; | 2435 pC->szRow = avail; |
2327 } | 2436 } |
2328 if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ | |
2329 goto too_big; | |
2330 } | |
2331 } | 2437 } |
2332 pC->cacheStatus = p->cacheCtr; | 2438 pC->cacheStatus = p->cacheCtr; |
2333 pC->iHdrOffset = getVarint32(pC->aRow, offset); | 2439 pC->iHdrOffset = getVarint32(pC->aRow, offset); |
2334 pC->nHdrParsed = 0; | 2440 pC->nHdrParsed = 0; |
2335 aOffset[0] = offset; | 2441 aOffset[0] = offset; |
2336 | 2442 |
2337 /* Make sure a corrupt database has not given us an oversize header. | |
2338 ** Do this now to avoid an oversize memory allocation. | |
2339 ** | |
2340 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte | |
2341 ** types use so much data space that there can only be 4096 and 32 of | |
2342 ** them, respectively. So the maximum header length results from a | |
2343 ** 3-byte type for each of the maximum of 32768 columns plus three | |
2344 ** extra bytes for the header length itself. 32768*3 + 3 = 98307. | |
2345 */ | |
2346 if( offset > 98307 || offset > pC->payloadSize ){ | |
2347 rc = SQLITE_CORRUPT_BKPT; | |
2348 goto op_column_error; | |
2349 } | |
2350 | 2443 |
2351 if( avail<offset ){ | 2444 if( avail<offset ){ |
2352 /* pC->aRow does not have to hold the entire row, but it does at least | 2445 /* pC->aRow does not have to hold the entire row, but it does at least |
2353 ** need to cover the header of the record. If pC->aRow does not contain | 2446 ** need to cover the header of the record. If pC->aRow does not contain |
2354 ** the complete header, then set it to zero, forcing the header to be | 2447 ** the complete header, then set it to zero, forcing the header to be |
2355 ** dynamically allocated. */ | 2448 ** dynamically allocated. */ |
2356 pC->aRow = 0; | 2449 pC->aRow = 0; |
2357 pC->szRow = 0; | 2450 pC->szRow = 0; |
| 2451 |
| 2452 /* Make sure a corrupt database has not given us an oversize header. |
| 2453 ** Do this now to avoid an oversize memory allocation. |
| 2454 ** |
| 2455 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte |
| 2456 ** types use so much data space that there can only be 4096 and 32 of |
| 2457 ** them, respectively. So the maximum header length results from a |
| 2458 ** 3-byte type for each of the maximum of 32768 columns plus three |
| 2459 ** extra bytes for the header length itself. 32768*3 + 3 = 98307. |
| 2460 */ |
| 2461 if( offset > 98307 || offset > pC->payloadSize ){ |
| 2462 rc = SQLITE_CORRUPT_BKPT; |
| 2463 goto op_column_error; |
| 2464 } |
2358 } | 2465 } |
2359 | 2466 |
2360 /* The following goto is an optimization. It can be omitted and | 2467 /* The following goto is an optimization. It can be omitted and |
2361 ** everything will still work. But OP_Column is measurably faster | 2468 ** everything will still work. But OP_Column is measurably faster |
2362 ** by skipping the subsequent conditional, which is always true. | 2469 ** by skipping the subsequent conditional, which is always true. |
2363 */ | 2470 */ |
2364 assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */ | 2471 assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */ |
2365 goto op_column_read_header; | 2472 goto op_column_read_header; |
2366 } | 2473 } |
2367 | 2474 |
2368 /* Make sure at least the first p2+1 entries of the header have been | 2475 /* Make sure at least the first p2+1 entries of the header have been |
2369 ** parsed and valid information is in aOffset[] and pC->aType[]. | 2476 ** parsed and valid information is in aOffset[] and pC->aType[]. |
2370 */ | 2477 */ |
2371 if( pC->nHdrParsed<=p2 ){ | 2478 if( pC->nHdrParsed<=p2 ){ |
2372 /* If there is more header available for parsing in the record, try | 2479 /* If there is more header available for parsing in the record, try |
2373 ** to extract additional fields up through the p2+1-th field | 2480 ** to extract additional fields up through the p2+1-th field |
2374 */ | 2481 */ |
2375 op_column_read_header: | 2482 op_column_read_header: |
2376 if( pC->iHdrOffset<aOffset[0] ){ | 2483 if( pC->iHdrOffset<aOffset[0] ){ |
2377 /* Make sure zData points to enough of the record to cover the header. */ | 2484 /* Make sure zData points to enough of the record to cover the header. */ |
2378 if( pC->aRow==0 ){ | 2485 if( pC->aRow==0 ){ |
2379 memset(&sMem, 0, sizeof(sMem)); | 2486 memset(&sMem, 0, sizeof(sMem)); |
2380 rc = sqlite3VdbeMemFromBtree(pCrsr, 0, aOffset[0], | 2487 rc = sqlite3VdbeMemFromBtree(pCrsr, 0, aOffset[0], !pC->isTable, &sMem); |
2381 !pC->isTable, &sMem); | 2488 if( rc!=SQLITE_OK ) goto op_column_error; |
2382 if( rc!=SQLITE_OK ){ | |
2383 goto op_column_error; | |
2384 } | |
2385 zData = (u8*)sMem.z; | 2489 zData = (u8*)sMem.z; |
2386 }else{ | 2490 }else{ |
2387 zData = pC->aRow; | 2491 zData = pC->aRow; |
2388 } | 2492 } |
2389 | 2493 |
2390 /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */ | 2494 /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */ |
2391 i = pC->nHdrParsed; | 2495 i = pC->nHdrParsed; |
2392 offset = aOffset[i]; | 2496 offset64 = aOffset[i]; |
2393 zHdr = zData + pC->iHdrOffset; | 2497 zHdr = zData + pC->iHdrOffset; |
2394 zEndHdr = zData + aOffset[0]; | 2498 zEndHdr = zData + aOffset[0]; |
2395 assert( i<=p2 && zHdr<zEndHdr ); | 2499 assert( i<=p2 && zHdr<zEndHdr ); |
2396 do{ | 2500 do{ |
2397 if( zHdr[0]<0x80 ){ | 2501 if( (t = zHdr[0])<0x80 ){ |
2398 t = zHdr[0]; | |
2399 zHdr++; | 2502 zHdr++; |
| 2503 offset64 += sqlite3VdbeOneByteSerialTypeLen(t); |
2400 }else{ | 2504 }else{ |
2401 zHdr += sqlite3GetVarint32(zHdr, &t); | 2505 zHdr += sqlite3GetVarint32(zHdr, &t); |
| 2506 offset64 += sqlite3VdbeSerialTypeLen(t); |
2402 } | 2507 } |
2403 pC->aType[i] = t; | 2508 pC->aType[i++] = t; |
2404 szField = sqlite3VdbeSerialTypeLen(t); | 2509 aOffset[i] = (u32)(offset64 & 0xffffffff); |
2405 offset += szField; | |
2406 if( offset<szField ){ /* True if offset overflows */ | |
2407 zHdr = &zEndHdr[1]; /* Forces SQLITE_CORRUPT return below */ | |
2408 break; | |
2409 } | |
2410 i++; | |
2411 aOffset[i] = offset; | |
2412 }while( i<=p2 && zHdr<zEndHdr ); | 2510 }while( i<=p2 && zHdr<zEndHdr ); |
2413 pC->nHdrParsed = i; | 2511 pC->nHdrParsed = i; |
2414 pC->iHdrOffset = (u32)(zHdr - zData); | 2512 pC->iHdrOffset = (u32)(zHdr - zData); |
2415 if( pC->aRow==0 ){ | 2513 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem); |
2416 sqlite3VdbeMemRelease(&sMem); | |
2417 sMem.flags = MEM_Null; | |
2418 } | |
2419 | 2514 |
2420 /* The record is corrupt if any of the following are true: | 2515 /* The record is corrupt if any of the following are true: |
2421 ** (1) the bytes of the header extend past the declared header size | 2516 ** (1) the bytes of the header extend past the declared header size |
2422 ** (zHdr>zEndHdr) | |
2423 ** (2) the entire header was used but not all data was used | 2517 ** (2) the entire header was used but not all data was used |
2424 ** (zHdr==zEndHdr && offset!=pC->payloadSize) | |
2425 ** (3) the end of the data extends beyond the end of the record. | 2518 ** (3) the end of the data extends beyond the end of the record. |
2426 ** (offset > pC->payloadSize) | |
2427 */ | 2519 */ |
2428 if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset!=pC->payloadSize)) | 2520 if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize)) |
2429 || (offset > pC->payloadSize) | 2521 || (offset64 > pC->payloadSize) |
2430 ){ | 2522 ){ |
2431 rc = SQLITE_CORRUPT_BKPT; | 2523 rc = SQLITE_CORRUPT_BKPT; |
2432 goto op_column_error; | 2524 goto op_column_error; |
2433 } | 2525 } |
| 2526 }else{ |
| 2527 t = 0; |
2434 } | 2528 } |
2435 | 2529 |
2436 /* If after trying to extra new entries from the header, nHdrParsed is | 2530 /* If after trying to extract new entries from the header, nHdrParsed is |
2437 ** still not up to p2, that means that the record has fewer than p2 | 2531 ** still not up to p2, that means that the record has fewer than p2 |
2438 ** columns. So the result will be either the default value or a NULL. | 2532 ** columns. So the result will be either the default value or a NULL. |
2439 */ | 2533 */ |
2440 if( pC->nHdrParsed<=p2 ){ | 2534 if( pC->nHdrParsed<=p2 ){ |
2441 if( pOp->p4type==P4_MEM ){ | 2535 if( pOp->p4type==P4_MEM ){ |
2442 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static); | 2536 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static); |
2443 }else{ | 2537 }else{ |
2444 sqlite3VdbeMemSetNull(pDest); | 2538 sqlite3VdbeMemSetNull(pDest); |
2445 } | 2539 } |
2446 goto op_column_out; | 2540 goto op_column_out; |
2447 } | 2541 } |
| 2542 }else{ |
| 2543 t = pC->aType[p2]; |
2448 } | 2544 } |
2449 | 2545 |
2450 /* Extract the content for the p2+1-th column. Control can only | 2546 /* Extract the content for the p2+1-th column. Control can only |
2451 ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are | 2547 ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are |
2452 ** all valid. | 2548 ** all valid. |
2453 */ | 2549 */ |
2454 assert( p2<pC->nHdrParsed ); | 2550 assert( p2<pC->nHdrParsed ); |
2455 assert( rc==SQLITE_OK ); | 2551 assert( rc==SQLITE_OK ); |
2456 assert( sqlite3VdbeCheckMemInvariants(pDest) ); | 2552 assert( sqlite3VdbeCheckMemInvariants(pDest) ); |
2457 if( VdbeMemDynamic(pDest) ) sqlite3VdbeMemSetNull(pDest); | 2553 if( VdbeMemDynamic(pDest) ) sqlite3VdbeMemSetNull(pDest); |
2458 t = pC->aType[p2]; | 2554 assert( t==pC->aType[p2] ); |
2459 if( pC->szRow>=aOffset[p2+1] ){ | 2555 if( pC->szRow>=aOffset[p2+1] ){ |
2460 /* This is the common case where the desired content fits on the original | 2556 /* This is the common case where the desired content fits on the original |
2461 ** page - where the content is not on an overflow page */ | 2557 ** page - where the content is not on an overflow page */ |
2462 sqlite3VdbeSerialGet(pC->aRow+aOffset[p2], t, pDest); | 2558 sqlite3VdbeSerialGet(pC->aRow+aOffset[p2], t, pDest); |
2463 }else{ | 2559 }else{ |
2464 /* This branch happens only when content is on overflow pages */ | 2560 /* This branch happens only when content is on overflow pages */ |
2465 if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0 | 2561 if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0 |
2466 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0)) | 2562 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0)) |
2467 || (len = sqlite3VdbeSerialTypeLen(t))==0 | 2563 || (len = sqlite3VdbeSerialTypeLen(t))==0 |
2468 ){ | 2564 ){ |
(...skipping 73 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
2542 ** use as a data record in a database table or as a key | 2638 ** use as a data record in a database table or as a key |
2543 ** in an index. The OP_Column opcode can decode the record later. | 2639 ** in an index. The OP_Column opcode can decode the record later. |
2544 ** | 2640 ** |
2545 ** P4 may be a string that is P2 characters long. The nth character of the | 2641 ** P4 may be a string that is P2 characters long. The nth character of the |
2546 ** string indicates the column affinity that should be used for the nth | 2642 ** string indicates the column affinity that should be used for the nth |
2547 ** field of the index key. | 2643 ** field of the index key. |
2548 ** | 2644 ** |
2549 ** The mapping from character to affinity is given by the SQLITE_AFF_ | 2645 ** The mapping from character to affinity is given by the SQLITE_AFF_ |
2550 ** macros defined in sqliteInt.h. | 2646 ** macros defined in sqliteInt.h. |
2551 ** | 2647 ** |
2552 ** If P4 is NULL then all index fields have the affinity NONE. | 2648 ** If P4 is NULL then all index fields have the affinity BLOB. |
2553 */ | 2649 */ |
2554 case OP_MakeRecord: { | 2650 case OP_MakeRecord: { |
2555 u8 *zNewRecord; /* A buffer to hold the data for the new record */ | 2651 u8 *zNewRecord; /* A buffer to hold the data for the new record */ |
2556 Mem *pRec; /* The new record */ | 2652 Mem *pRec; /* The new record */ |
2557 u64 nData; /* Number of bytes of data space */ | 2653 u64 nData; /* Number of bytes of data space */ |
2558 int nHdr; /* Number of bytes of header space */ | 2654 int nHdr; /* Number of bytes of header space */ |
2559 i64 nByte; /* Data space required for this record */ | 2655 i64 nByte; /* Data space required for this record */ |
2560 int nZero; /* Number of zero bytes at the end of the record */ | 2656 i64 nZero; /* Number of zero bytes at the end of the record */ |
2561 int nVarint; /* Number of bytes in a varint */ | 2657 int nVarint; /* Number of bytes in a varint */ |
2562 u32 serial_type; /* Type field */ | 2658 u32 serial_type; /* Type field */ |
2563 Mem *pData0; /* First field to be combined into the record */ | 2659 Mem *pData0; /* First field to be combined into the record */ |
2564 Mem *pLast; /* Last field of the record */ | 2660 Mem *pLast; /* Last field of the record */ |
2565 int nField; /* Number of fields in the record */ | 2661 int nField; /* Number of fields in the record */ |
2566 char *zAffinity; /* The affinity string for the record */ | 2662 char *zAffinity; /* The affinity string for the record */ |
2567 int file_format; /* File format to use for encoding */ | 2663 int file_format; /* File format to use for encoding */ |
2568 int i; /* Space used in zNewRecord[] header */ | 2664 int i; /* Space used in zNewRecord[] header */ |
2569 int j; /* Space used in zNewRecord[] content */ | 2665 int j; /* Space used in zNewRecord[] content */ |
2570 int len; /* Length of a field */ | 2666 u32 len; /* Length of a field */ |
2571 | 2667 |
2572 /* Assuming the record contains N fields, the record format looks | 2668 /* Assuming the record contains N fields, the record format looks |
2573 ** like this: | 2669 ** like this: |
2574 ** | 2670 ** |
2575 ** ------------------------------------------------------------------------ | 2671 ** ------------------------------------------------------------------------ |
2576 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | | 2672 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | |
2577 ** ------------------------------------------------------------------------ | 2673 ** ------------------------------------------------------------------------ |
2578 ** | 2674 ** |
2579 ** Data(0) is taken from register P1. Data(1) comes from register P1+1 | 2675 ** Data(0) is taken from register P1. Data(1) comes from register P1+1 |
2580 ** and so forth. | 2676 ** and so forth. |
(...skipping 29 matching lines...) Expand all Loading... |
2610 assert( zAffinity[0]==0 || pRec<=pLast ); | 2706 assert( zAffinity[0]==0 || pRec<=pLast ); |
2611 }while( zAffinity[0] ); | 2707 }while( zAffinity[0] ); |
2612 } | 2708 } |
2613 | 2709 |
2614 /* Loop through the elements that will make up the record to figure | 2710 /* Loop through the elements that will make up the record to figure |
2615 ** out how much space is required for the new record. | 2711 ** out how much space is required for the new record. |
2616 */ | 2712 */ |
2617 pRec = pLast; | 2713 pRec = pLast; |
2618 do{ | 2714 do{ |
2619 assert( memIsValid(pRec) ); | 2715 assert( memIsValid(pRec) ); |
2620 pRec->uTemp = serial_type = sqlite3VdbeSerialType(pRec, file_format); | 2716 pRec->uTemp = serial_type = sqlite3VdbeSerialType(pRec, file_format, &len); |
2621 len = sqlite3VdbeSerialTypeLen(serial_type); | |
2622 if( pRec->flags & MEM_Zero ){ | 2717 if( pRec->flags & MEM_Zero ){ |
2623 if( nData ){ | 2718 if( nData ){ |
2624 sqlite3VdbeMemExpandBlob(pRec); | 2719 if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem; |
2625 }else{ | 2720 }else{ |
2626 nZero += pRec->u.nZero; | 2721 nZero += pRec->u.nZero; |
2627 len -= pRec->u.nZero; | 2722 len -= pRec->u.nZero; |
2628 } | 2723 } |
2629 } | 2724 } |
2630 nData += len; | 2725 nData += len; |
2631 testcase( serial_type==127 ); | 2726 testcase( serial_type==127 ); |
2632 testcase( serial_type==128 ); | 2727 testcase( serial_type==128 ); |
2633 nHdr += serial_type<=127 ? 1 : sqlite3VarintLen(serial_type); | 2728 nHdr += serial_type<=127 ? 1 : sqlite3VarintLen(serial_type); |
2634 }while( (--pRec)>=pData0 ); | 2729 }while( (--pRec)>=pData0 ); |
2635 | 2730 |
2636 /* Add the initial header varint and total the size */ | 2731 /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint |
| 2732 ** which determines the total number of bytes in the header. The varint |
| 2733 ** value is the size of the header in bytes including the size varint |
| 2734 ** itself. */ |
2637 testcase( nHdr==126 ); | 2735 testcase( nHdr==126 ); |
2638 testcase( nHdr==127 ); | 2736 testcase( nHdr==127 ); |
2639 if( nHdr<=126 ){ | 2737 if( nHdr<=126 ){ |
2640 /* The common case */ | 2738 /* The common case */ |
2641 nHdr += 1; | 2739 nHdr += 1; |
2642 }else{ | 2740 }else{ |
2643 /* Rare case of a really large header */ | 2741 /* Rare case of a really large header */ |
2644 nVarint = sqlite3VarintLen(nHdr); | 2742 nVarint = sqlite3VarintLen(nHdr); |
2645 nHdr += nVarint; | 2743 nHdr += nVarint; |
2646 if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++; | 2744 if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++; |
2647 } | 2745 } |
2648 nByte = nHdr+nData; | 2746 nByte = nHdr+nData; |
2649 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ | 2747 if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){ |
2650 goto too_big; | 2748 goto too_big; |
2651 } | 2749 } |
2652 | 2750 |
2653 /* Make sure the output register has a buffer large enough to store | 2751 /* Make sure the output register has a buffer large enough to store |
2654 ** the new record. The output register (pOp->p3) is not allowed to | 2752 ** the new record. The output register (pOp->p3) is not allowed to |
2655 ** be one of the input registers (because the following call to | 2753 ** be one of the input registers (because the following call to |
2656 ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used). | 2754 ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used). |
2657 */ | 2755 */ |
2658 if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){ | 2756 if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){ |
2659 goto no_mem; | 2757 goto no_mem; |
2660 } | 2758 } |
2661 zNewRecord = (u8 *)pOut->z; | 2759 zNewRecord = (u8 *)pOut->z; |
2662 | 2760 |
2663 /* Write the record */ | 2761 /* Write the record */ |
2664 i = putVarint32(zNewRecord, nHdr); | 2762 i = putVarint32(zNewRecord, nHdr); |
2665 j = nHdr; | 2763 j = nHdr; |
2666 assert( pData0<=pLast ); | 2764 assert( pData0<=pLast ); |
2667 pRec = pData0; | 2765 pRec = pData0; |
2668 do{ | 2766 do{ |
2669 serial_type = pRec->uTemp; | 2767 serial_type = pRec->uTemp; |
| 2768 /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more |
| 2769 ** additional varints, one per column. */ |
2670 i += putVarint32(&zNewRecord[i], serial_type); /* serial type */ | 2770 i += putVarint32(&zNewRecord[i], serial_type); /* serial type */ |
| 2771 /* EVIDENCE-OF: R-64536-51728 The values for each column in the record |
| 2772 ** immediately follow the header. */ |
2671 j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */ | 2773 j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */ |
2672 }while( (++pRec)<=pLast ); | 2774 }while( (++pRec)<=pLast ); |
2673 assert( i==nHdr ); | 2775 assert( i==nHdr ); |
2674 assert( j==nByte ); | 2776 assert( j==nByte ); |
2675 | 2777 |
2676 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); | 2778 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); |
2677 pOut->n = (int)nByte; | 2779 pOut->n = (int)nByte; |
2678 pOut->flags = MEM_Blob; | 2780 pOut->flags = MEM_Blob; |
2679 if( nZero ){ | 2781 if( nZero ){ |
2680 pOut->u.nZero = nZero; | 2782 pOut->u.nZero = nZero; |
2681 pOut->flags |= MEM_Zero; | 2783 pOut->flags |= MEM_Zero; |
2682 } | 2784 } |
2683 pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */ | 2785 pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */ |
2684 REGISTER_TRACE(pOp->p3, pOut); | 2786 REGISTER_TRACE(pOp->p3, pOut); |
2685 UPDATE_MAX_BLOBSIZE(pOut); | 2787 UPDATE_MAX_BLOBSIZE(pOut); |
2686 break; | 2788 break; |
2687 } | 2789 } |
2688 | 2790 |
2689 /* Opcode: Count P1 P2 * * * | 2791 /* Opcode: Count P1 P2 * * * |
2690 ** Synopsis: r[P2]=count() | 2792 ** Synopsis: r[P2]=count() |
2691 ** | 2793 ** |
2692 ** Store the number of entries (an integer value) in the table or index | 2794 ** Store the number of entries (an integer value) in the table or index |
2693 ** opened by cursor P1 in register P2 | 2795 ** opened by cursor P1 in register P2 |
2694 */ | 2796 */ |
2695 #ifndef SQLITE_OMIT_BTREECOUNT | 2797 #ifndef SQLITE_OMIT_BTREECOUNT |
2696 case OP_Count: { /* out2-prerelease */ | 2798 case OP_Count: { /* out2 */ |
2697 i64 nEntry; | 2799 i64 nEntry; |
2698 BtCursor *pCrsr; | 2800 BtCursor *pCrsr; |
2699 | 2801 |
2700 pCrsr = p->apCsr[pOp->p1]->pCursor; | 2802 assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE ); |
| 2803 pCrsr = p->apCsr[pOp->p1]->uc.pCursor; |
2701 assert( pCrsr ); | 2804 assert( pCrsr ); |
2702 nEntry = 0; /* Not needed. Only used to silence a warning. */ | 2805 nEntry = 0; /* Not needed. Only used to silence a warning. */ |
2703 rc = sqlite3BtreeCount(pCrsr, &nEntry); | 2806 rc = sqlite3BtreeCount(pCrsr, &nEntry); |
| 2807 pOut = out2Prerelease(p, pOp); |
2704 pOut->u.i = nEntry; | 2808 pOut->u.i = nEntry; |
2705 break; | 2809 break; |
2706 } | 2810 } |
2707 #endif | 2811 #endif |
2708 | 2812 |
2709 /* Opcode: Savepoint P1 * * P4 * | 2813 /* Opcode: Savepoint P1 * * P4 * |
2710 ** | 2814 ** |
2711 ** Open, release or rollback the savepoint named by parameter P4, depending | 2815 ** Open, release or rollback the savepoint named by parameter P4, depending |
2712 ** on the value of P1. To open a new savepoint, P1==0. To release (commit) an | 2816 ** on the value of P1. To open a new savepoint, P1==0. To release (commit) an |
2713 ** existing savepoint, P1==1, or to rollback an existing savepoint P1==2. | 2817 ** existing savepoint, P1==1, or to rollback an existing savepoint P1==2. |
(...skipping 18 matching lines...) Expand all Loading... |
2732 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK ); | 2836 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK ); |
2733 assert( db->pSavepoint || db->isTransactionSavepoint==0 ); | 2837 assert( db->pSavepoint || db->isTransactionSavepoint==0 ); |
2734 assert( checkSavepointCount(db) ); | 2838 assert( checkSavepointCount(db) ); |
2735 assert( p->bIsReader ); | 2839 assert( p->bIsReader ); |
2736 | 2840 |
2737 if( p1==SAVEPOINT_BEGIN ){ | 2841 if( p1==SAVEPOINT_BEGIN ){ |
2738 if( db->nVdbeWrite>0 ){ | 2842 if( db->nVdbeWrite>0 ){ |
2739 /* A new savepoint cannot be created if there are active write | 2843 /* A new savepoint cannot be created if there are active write |
2740 ** statements (i.e. open read/write incremental blob handles). | 2844 ** statements (i.e. open read/write incremental blob handles). |
2741 */ | 2845 */ |
2742 sqlite3SetString(&p->zErrMsg, db, "cannot open savepoint - " | 2846 sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress"); |
2743 "SQL statements in progress"); | |
2744 rc = SQLITE_BUSY; | 2847 rc = SQLITE_BUSY; |
2745 }else{ | 2848 }else{ |
2746 nName = sqlite3Strlen30(zName); | 2849 nName = sqlite3Strlen30(zName); |
2747 | 2850 |
2748 #ifndef SQLITE_OMIT_VIRTUALTABLE | 2851 #ifndef SQLITE_OMIT_VIRTUALTABLE |
2749 /* This call is Ok even if this savepoint is actually a transaction | 2852 /* This call is Ok even if this savepoint is actually a transaction |
2750 ** savepoint (and therefore should not prompt xSavepoint()) callbacks. | 2853 ** savepoint (and therefore should not prompt xSavepoint()) callbacks. |
2751 ** If this is a transaction savepoint being opened, it is guaranteed | 2854 ** If this is a transaction savepoint being opened, it is guaranteed |
2752 ** that the db->aVTrans[] array is empty. */ | 2855 ** that the db->aVTrans[] array is empty. */ |
2753 assert( db->autoCommit==0 || db->nVTrans==0 ); | 2856 assert( db->autoCommit==0 || db->nVTrans==0 ); |
(...skipping 30 matching lines...) Expand all Loading... |
2784 /* Find the named savepoint. If there is no such savepoint, then an | 2887 /* Find the named savepoint. If there is no such savepoint, then an |
2785 ** an error is returned to the user. */ | 2888 ** an error is returned to the user. */ |
2786 for( | 2889 for( |
2787 pSavepoint = db->pSavepoint; | 2890 pSavepoint = db->pSavepoint; |
2788 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName); | 2891 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName); |
2789 pSavepoint = pSavepoint->pNext | 2892 pSavepoint = pSavepoint->pNext |
2790 ){ | 2893 ){ |
2791 iSavepoint++; | 2894 iSavepoint++; |
2792 } | 2895 } |
2793 if( !pSavepoint ){ | 2896 if( !pSavepoint ){ |
2794 sqlite3SetString(&p->zErrMsg, db, "no such savepoint: %s", zName); | 2897 sqlite3VdbeError(p, "no such savepoint: %s", zName); |
2795 rc = SQLITE_ERROR; | 2898 rc = SQLITE_ERROR; |
2796 }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){ | 2899 }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){ |
2797 /* It is not possible to release (commit) a savepoint if there are | 2900 /* It is not possible to release (commit) a savepoint if there are |
2798 ** active write statements. | 2901 ** active write statements. |
2799 */ | 2902 */ |
2800 sqlite3SetString(&p->zErrMsg, db, | 2903 sqlite3VdbeError(p, "cannot release savepoint - " |
2801 "cannot release savepoint - SQL statements in progress" | 2904 "SQL statements in progress"); |
2802 ); | |
2803 rc = SQLITE_BUSY; | 2905 rc = SQLITE_BUSY; |
2804 }else{ | 2906 }else{ |
2805 | 2907 |
2806 /* Determine whether or not this is a transaction savepoint. If so, | 2908 /* Determine whether or not this is a transaction savepoint. If so, |
2807 ** and this is a RELEASE command, then the current transaction | 2909 ** and this is a RELEASE command, then the current transaction |
2808 ** is committed. | 2910 ** is committed. |
2809 */ | 2911 */ |
2810 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint; | 2912 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint; |
2811 if( isTransaction && p1==SAVEPOINT_RELEASE ){ | 2913 if( isTransaction && p1==SAVEPOINT_RELEASE ){ |
2812 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ | 2914 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ |
2813 goto vdbe_return; | 2915 goto vdbe_return; |
2814 } | 2916 } |
2815 db->autoCommit = 1; | 2917 db->autoCommit = 1; |
2816 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ | 2918 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ |
2817 p->pc = pc; | 2919 p->pc = (int)(pOp - aOp); |
2818 db->autoCommit = 0; | 2920 db->autoCommit = 0; |
2819 p->rc = rc = SQLITE_BUSY; | 2921 p->rc = rc = SQLITE_BUSY; |
2820 goto vdbe_return; | 2922 goto vdbe_return; |
2821 } | 2923 } |
2822 db->isTransactionSavepoint = 0; | 2924 db->isTransactionSavepoint = 0; |
2823 rc = p->rc; | 2925 rc = p->rc; |
2824 }else{ | 2926 }else{ |
2825 int isSchemaChange; | 2927 int isSchemaChange; |
2826 iSavepoint = db->nSavepoint - iSavepoint - 1; | 2928 iSavepoint = db->nSavepoint - iSavepoint - 1; |
2827 if( p1==SAVEPOINT_ROLLBACK ){ | 2929 if( p1==SAVEPOINT_ROLLBACK ){ |
(...skipping 38 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
2866 db->pSavepoint = pSavepoint->pNext; | 2968 db->pSavepoint = pSavepoint->pNext; |
2867 sqlite3DbFree(db, pSavepoint); | 2969 sqlite3DbFree(db, pSavepoint); |
2868 if( !isTransaction ){ | 2970 if( !isTransaction ){ |
2869 db->nSavepoint--; | 2971 db->nSavepoint--; |
2870 } | 2972 } |
2871 }else{ | 2973 }else{ |
2872 db->nDeferredCons = pSavepoint->nDeferredCons; | 2974 db->nDeferredCons = pSavepoint->nDeferredCons; |
2873 db->nDeferredImmCons = pSavepoint->nDeferredImmCons; | 2975 db->nDeferredImmCons = pSavepoint->nDeferredImmCons; |
2874 } | 2976 } |
2875 | 2977 |
2876 if( !isTransaction ){ | 2978 if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){ |
2877 rc = sqlite3VtabSavepoint(db, p1, iSavepoint); | 2979 rc = sqlite3VtabSavepoint(db, p1, iSavepoint); |
2878 if( rc!=SQLITE_OK ) goto abort_due_to_error; | 2980 if( rc!=SQLITE_OK ) goto abort_due_to_error; |
2879 } | 2981 } |
2880 } | 2982 } |
2881 } | 2983 } |
2882 | 2984 |
2883 break; | 2985 break; |
2884 } | 2986 } |
2885 | 2987 |
2886 /* Opcode: AutoCommit P1 P2 * * * | 2988 /* Opcode: AutoCommit P1 P2 * * * |
(...skipping 11 matching lines...) Expand all Loading... |
2898 int turnOnAC; | 3000 int turnOnAC; |
2899 | 3001 |
2900 desiredAutoCommit = pOp->p1; | 3002 desiredAutoCommit = pOp->p1; |
2901 iRollback = pOp->p2; | 3003 iRollback = pOp->p2; |
2902 turnOnAC = desiredAutoCommit && !db->autoCommit; | 3004 turnOnAC = desiredAutoCommit && !db->autoCommit; |
2903 assert( desiredAutoCommit==1 || desiredAutoCommit==0 ); | 3005 assert( desiredAutoCommit==1 || desiredAutoCommit==0 ); |
2904 assert( desiredAutoCommit==1 || iRollback==0 ); | 3006 assert( desiredAutoCommit==1 || iRollback==0 ); |
2905 assert( db->nVdbeActive>0 ); /* At least this one VM is active */ | 3007 assert( db->nVdbeActive>0 ); /* At least this one VM is active */ |
2906 assert( p->bIsReader ); | 3008 assert( p->bIsReader ); |
2907 | 3009 |
2908 #if 0 | |
2909 if( turnOnAC && iRollback && db->nVdbeActive>1 ){ | |
2910 /* If this instruction implements a ROLLBACK and other VMs are | |
2911 ** still running, and a transaction is active, return an error indicating | |
2912 ** that the other VMs must complete first. | |
2913 */ | |
2914 sqlite3SetString(&p->zErrMsg, db, "cannot rollback transaction - " | |
2915 "SQL statements in progress"); | |
2916 rc = SQLITE_BUSY; | |
2917 }else | |
2918 #endif | |
2919 if( turnOnAC && !iRollback && db->nVdbeWrite>0 ){ | 3010 if( turnOnAC && !iRollback && db->nVdbeWrite>0 ){ |
2920 /* If this instruction implements a COMMIT and other VMs are writing | 3011 /* If this instruction implements a COMMIT and other VMs are writing |
2921 ** return an error indicating that the other VMs must complete first. | 3012 ** return an error indicating that the other VMs must complete first. |
2922 */ | 3013 */ |
2923 sqlite3SetString(&p->zErrMsg, db, "cannot commit transaction - " | 3014 sqlite3VdbeError(p, "cannot commit transaction - " |
2924 "SQL statements in progress"); | 3015 "SQL statements in progress"); |
2925 rc = SQLITE_BUSY; | 3016 rc = SQLITE_BUSY; |
2926 }else if( desiredAutoCommit!=db->autoCommit ){ | 3017 }else if( desiredAutoCommit!=db->autoCommit ){ |
2927 if( iRollback ){ | 3018 if( iRollback ){ |
2928 assert( desiredAutoCommit==1 ); | 3019 assert( desiredAutoCommit==1 ); |
2929 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); | 3020 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); |
2930 db->autoCommit = 1; | 3021 db->autoCommit = 1; |
2931 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ | 3022 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ |
2932 goto vdbe_return; | 3023 goto vdbe_return; |
2933 }else{ | 3024 }else{ |
2934 db->autoCommit = (u8)desiredAutoCommit; | 3025 db->autoCommit = (u8)desiredAutoCommit; |
2935 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ | 3026 } |
2936 p->pc = pc; | 3027 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ |
2937 db->autoCommit = (u8)(1-desiredAutoCommit); | 3028 p->pc = (int)(pOp - aOp); |
2938 p->rc = rc = SQLITE_BUSY; | 3029 db->autoCommit = (u8)(1-desiredAutoCommit); |
2939 goto vdbe_return; | 3030 p->rc = rc = SQLITE_BUSY; |
2940 } | 3031 goto vdbe_return; |
2941 } | 3032 } |
2942 assert( db->nStatement==0 ); | 3033 assert( db->nStatement==0 ); |
2943 sqlite3CloseSavepoints(db); | 3034 sqlite3CloseSavepoints(db); |
2944 if( p->rc==SQLITE_OK ){ | 3035 if( p->rc==SQLITE_OK ){ |
2945 rc = SQLITE_DONE; | 3036 rc = SQLITE_DONE; |
2946 }else{ | 3037 }else{ |
2947 rc = SQLITE_ERROR; | 3038 rc = SQLITE_ERROR; |
2948 } | 3039 } |
2949 goto vdbe_return; | 3040 goto vdbe_return; |
2950 }else{ | 3041 }else{ |
2951 sqlite3SetString(&p->zErrMsg, db, | 3042 sqlite3VdbeError(p, |
2952 (!desiredAutoCommit)?"cannot start a transaction within a transaction":( | 3043 (!desiredAutoCommit)?"cannot start a transaction within a transaction":( |
2953 (iRollback)?"cannot rollback - no transaction is active": | 3044 (iRollback)?"cannot rollback - no transaction is active": |
2954 "cannot commit - no transaction is active")); | 3045 "cannot commit - no transaction is active")); |
2955 | 3046 |
2956 rc = SQLITE_ERROR; | 3047 rc = SQLITE_ERROR; |
2957 } | 3048 } |
2958 break; | 3049 break; |
2959 } | 3050 } |
2960 | 3051 |
2961 /* Opcode: Transaction P1 P2 P3 P4 P5 | 3052 /* Opcode: Transaction P1 P2 P3 P4 P5 |
(...skipping 40 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
3002 assert( pOp->p1>=0 && pOp->p1<db->nDb ); | 3093 assert( pOp->p1>=0 && pOp->p1<db->nDb ); |
3003 assert( DbMaskTest(p->btreeMask, pOp->p1) ); | 3094 assert( DbMaskTest(p->btreeMask, pOp->p1) ); |
3004 if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){ | 3095 if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){ |
3005 rc = SQLITE_READONLY; | 3096 rc = SQLITE_READONLY; |
3006 goto abort_due_to_error; | 3097 goto abort_due_to_error; |
3007 } | 3098 } |
3008 pBt = db->aDb[pOp->p1].pBt; | 3099 pBt = db->aDb[pOp->p1].pBt; |
3009 | 3100 |
3010 if( pBt ){ | 3101 if( pBt ){ |
3011 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2); | 3102 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2); |
3012 if( rc==SQLITE_BUSY ){ | 3103 testcase( rc==SQLITE_BUSY_SNAPSHOT ); |
3013 p->pc = pc; | 3104 testcase( rc==SQLITE_BUSY_RECOVERY ); |
3014 p->rc = rc = SQLITE_BUSY; | 3105 if( (rc&0xff)==SQLITE_BUSY ){ |
| 3106 p->pc = (int)(pOp - aOp); |
| 3107 p->rc = rc; |
3015 goto vdbe_return; | 3108 goto vdbe_return; |
3016 } | 3109 } |
3017 if( rc!=SQLITE_OK ){ | 3110 if( rc!=SQLITE_OK ){ |
3018 goto abort_due_to_error; | 3111 goto abort_due_to_error; |
3019 } | 3112 } |
3020 | 3113 |
3021 if( pOp->p2 && p->usesStmtJournal | 3114 if( pOp->p2 && p->usesStmtJournal |
3022 && (db->autoCommit==0 || db->nVdbeRead>1) | 3115 && (db->autoCommit==0 || db->nVdbeRead>1) |
3023 ){ | 3116 ){ |
3024 assert( sqlite3BtreeIsInTrans(pBt) ); | 3117 assert( sqlite3BtreeIsInTrans(pBt) ); |
3025 if( p->iStatement==0 ){ | 3118 if( p->iStatement==0 ){ |
3026 assert( db->nStatement>=0 && db->nSavepoint>=0 ); | 3119 assert( db->nStatement>=0 && db->nSavepoint>=0 ); |
3027 db->nStatement++; | 3120 db->nStatement++; |
3028 p->iStatement = db->nSavepoint + db->nStatement; | 3121 p->iStatement = db->nSavepoint + db->nStatement; |
3029 } | 3122 } |
3030 | 3123 |
3031 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1); | 3124 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1); |
3032 if( rc==SQLITE_OK ){ | 3125 if( rc==SQLITE_OK ){ |
3033 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement); | 3126 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement); |
3034 } | 3127 } |
3035 | 3128 |
3036 /* Store the current value of the database handles deferred constraint | 3129 /* Store the current value of the database handles deferred constraint |
3037 ** counter. If the statement transaction needs to be rolled back, | 3130 ** counter. If the statement transaction needs to be rolled back, |
3038 ** the value of this counter needs to be restored too. */ | 3131 ** the value of this counter needs to be restored too. */ |
3039 p->nStmtDefCons = db->nDeferredCons; | 3132 p->nStmtDefCons = db->nDeferredCons; |
3040 p->nStmtDefImmCons = db->nDeferredImmCons; | 3133 p->nStmtDefImmCons = db->nDeferredImmCons; |
3041 } | 3134 } |
3042 | 3135 |
3043 /* Gather the schema version number for checking */ | 3136 /* Gather the schema version number for checking: |
| 3137 ** IMPLEMENTATION-OF: R-32195-19465 The schema version is used by SQLite |
| 3138 ** each time a query is executed to ensure that the internal cache of the |
| 3139 ** schema used when compiling the SQL query matches the schema of the |
| 3140 ** database against which the compiled query is actually executed. |
| 3141 */ |
3044 sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta); | 3142 sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta); |
3045 iGen = db->aDb[pOp->p1].pSchema->iGeneration; | 3143 iGen = db->aDb[pOp->p1].pSchema->iGeneration; |
3046 }else{ | 3144 }else{ |
3047 iGen = iMeta = 0; | 3145 iGen = iMeta = 0; |
3048 } | 3146 } |
3049 assert( pOp->p5==0 || pOp->p4type==P4_INT32 ); | 3147 assert( pOp->p5==0 || pOp->p4type==P4_INT32 ); |
3050 if( pOp->p5 && (iMeta!=pOp->p3 || iGen!=pOp->p4.i) ){ | 3148 if( pOp->p5 && (iMeta!=pOp->p3 || iGen!=pOp->p4.i) ){ |
3051 sqlite3DbFree(db, p->zErrMsg); | 3149 sqlite3DbFree(db, p->zErrMsg); |
3052 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed"); | 3150 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed"); |
3053 /* If the schema-cookie from the database file matches the cookie | 3151 /* If the schema-cookie from the database file matches the cookie |
(...skipping 23 matching lines...) Expand all Loading... |
3077 ** Read cookie number P3 from database P1 and write it into register P2. | 3175 ** Read cookie number P3 from database P1 and write it into register P2. |
3078 ** P3==1 is the schema version. P3==2 is the database format. | 3176 ** P3==1 is the schema version. P3==2 is the database format. |
3079 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is | 3177 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is |
3080 ** the main database file and P1==1 is the database file used to store | 3178 ** the main database file and P1==1 is the database file used to store |
3081 ** temporary tables. | 3179 ** temporary tables. |
3082 ** | 3180 ** |
3083 ** There must be a read-lock on the database (either a transaction | 3181 ** There must be a read-lock on the database (either a transaction |
3084 ** must be started or there must be an open cursor) before | 3182 ** must be started or there must be an open cursor) before |
3085 ** executing this instruction. | 3183 ** executing this instruction. |
3086 */ | 3184 */ |
3087 case OP_ReadCookie: { /* out2-prerelease */ | 3185 case OP_ReadCookie: { /* out2 */ |
3088 int iMeta; | 3186 int iMeta; |
3089 int iDb; | 3187 int iDb; |
3090 int iCookie; | 3188 int iCookie; |
3091 | 3189 |
3092 assert( p->bIsReader ); | 3190 assert( p->bIsReader ); |
3093 iDb = pOp->p1; | 3191 iDb = pOp->p1; |
3094 iCookie = pOp->p3; | 3192 iCookie = pOp->p3; |
3095 assert( pOp->p3<SQLITE_N_BTREE_META ); | 3193 assert( pOp->p3<SQLITE_N_BTREE_META ); |
3096 assert( iDb>=0 && iDb<db->nDb ); | 3194 assert( iDb>=0 && iDb<db->nDb ); |
3097 assert( db->aDb[iDb].pBt!=0 ); | 3195 assert( db->aDb[iDb].pBt!=0 ); |
3098 assert( DbMaskTest(p->btreeMask, iDb) ); | 3196 assert( DbMaskTest(p->btreeMask, iDb) ); |
3099 | 3197 |
3100 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta); | 3198 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta); |
| 3199 pOut = out2Prerelease(p, pOp); |
3101 pOut->u.i = iMeta; | 3200 pOut->u.i = iMeta; |
3102 break; | 3201 break; |
3103 } | 3202 } |
3104 | 3203 |
3105 /* Opcode: SetCookie P1 P2 P3 * * | 3204 /* Opcode: SetCookie P1 P2 P3 * * |
3106 ** | 3205 ** |
3107 ** Write the content of register P3 (interpreted as an integer) | 3206 ** Write the content of register P3 (interpreted as an integer) |
3108 ** into cookie number P2 of database P1. P2==1 is the schema version. | 3207 ** into cookie number P2 of database P1. P2==1 is the schema version. |
3109 ** P2==2 is the database format. P2==3 is the recommended pager cache | 3208 ** P2==2 is the database format. P2==3 is the recommended pager cache |
3110 ** size, and so forth. P1==0 is the main database file and P1==1 is the | 3209 ** size, and so forth. P1==0 is the main database file and P1==1 is the |
(...skipping 90 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
3201 ** value, it is set to the number of columns in the table, or to the | 3300 ** value, it is set to the number of columns in the table, or to the |
3202 ** largest index of any column of the table that is actually used. | 3301 ** largest index of any column of the table that is actually used. |
3203 ** | 3302 ** |
3204 ** This instruction works just like OpenRead except that it opens the cursor | 3303 ** This instruction works just like OpenRead except that it opens the cursor |
3205 ** in read/write mode. For a given table, there can be one or more read-only | 3304 ** in read/write mode. For a given table, there can be one or more read-only |
3206 ** cursors or a single read/write cursor but not both. | 3305 ** cursors or a single read/write cursor but not both. |
3207 ** | 3306 ** |
3208 ** See also OpenRead. | 3307 ** See also OpenRead. |
3209 */ | 3308 */ |
3210 case OP_ReopenIdx: { | 3309 case OP_ReopenIdx: { |
3211 VdbeCursor *pCur; | |
3212 | |
3213 assert( pOp->p5==0 ); | |
3214 assert( pOp->p4type==P4_KEYINFO ); | |
3215 pCur = p->apCsr[pOp->p1]; | |
3216 if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){ | |
3217 assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */ | |
3218 break; | |
3219 } | |
3220 /* If the cursor is not currently open or is open on a different | |
3221 ** index, then fall through into OP_OpenRead to force a reopen */ | |
3222 } | |
3223 case OP_OpenRead: | |
3224 case OP_OpenWrite: { | |
3225 int nField; | 3310 int nField; |
3226 KeyInfo *pKeyInfo; | 3311 KeyInfo *pKeyInfo; |
3227 int p2; | 3312 int p2; |
3228 int iDb; | 3313 int iDb; |
3229 int wrFlag; | 3314 int wrFlag; |
3230 Btree *pX; | 3315 Btree *pX; |
3231 VdbeCursor *pCur; | 3316 VdbeCursor *pCur; |
3232 Db *pDb; | 3317 Db *pDb; |
3233 | 3318 |
3234 assert( (pOp->p5&(OPFLAG_P2ISREG|OPFLAG_BULKCSR))==pOp->p5 ); | 3319 assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ ); |
3235 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 ); | 3320 assert( pOp->p4type==P4_KEYINFO ); |
| 3321 pCur = p->apCsr[pOp->p1]; |
| 3322 if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){ |
| 3323 assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */ |
| 3324 goto open_cursor_set_hints; |
| 3325 } |
| 3326 /* If the cursor is not currently open or is open on a different |
| 3327 ** index, then fall through into OP_OpenRead to force a reopen */ |
| 3328 case OP_OpenRead: |
| 3329 case OP_OpenWrite: |
| 3330 |
| 3331 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ ); |
3236 assert( p->bIsReader ); | 3332 assert( p->bIsReader ); |
3237 assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx | 3333 assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx |
3238 || p->readOnly==0 ); | 3334 || p->readOnly==0 ); |
3239 | 3335 |
3240 if( p->expired ){ | 3336 if( p->expired ){ |
3241 rc = SQLITE_ABORT_ROLLBACK; | 3337 rc = SQLITE_ABORT_ROLLBACK; |
3242 break; | 3338 break; |
3243 } | 3339 } |
3244 | 3340 |
3245 nField = 0; | 3341 nField = 0; |
3246 pKeyInfo = 0; | 3342 pKeyInfo = 0; |
3247 p2 = pOp->p2; | 3343 p2 = pOp->p2; |
3248 iDb = pOp->p3; | 3344 iDb = pOp->p3; |
3249 assert( iDb>=0 && iDb<db->nDb ); | 3345 assert( iDb>=0 && iDb<db->nDb ); |
3250 assert( DbMaskTest(p->btreeMask, iDb) ); | 3346 assert( DbMaskTest(p->btreeMask, iDb) ); |
3251 pDb = &db->aDb[iDb]; | 3347 pDb = &db->aDb[iDb]; |
3252 pX = pDb->pBt; | 3348 pX = pDb->pBt; |
3253 assert( pX!=0 ); | 3349 assert( pX!=0 ); |
3254 if( pOp->opcode==OP_OpenWrite ){ | 3350 if( pOp->opcode==OP_OpenWrite ){ |
3255 wrFlag = 1; | 3351 assert( OPFLAG_FORDELETE==BTREE_FORDELETE ); |
| 3352 wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE); |
3256 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); | 3353 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); |
3257 if( pDb->pSchema->file_format < p->minWriteFileFormat ){ | 3354 if( pDb->pSchema->file_format < p->minWriteFileFormat ){ |
3258 p->minWriteFileFormat = pDb->pSchema->file_format; | 3355 p->minWriteFileFormat = pDb->pSchema->file_format; |
3259 } | 3356 } |
3260 }else{ | 3357 }else{ |
3261 wrFlag = 0; | 3358 wrFlag = 0; |
3262 } | 3359 } |
3263 if( pOp->p5 & OPFLAG_P2ISREG ){ | 3360 if( pOp->p5 & OPFLAG_P2ISREG ){ |
3264 assert( p2>0 ); | 3361 assert( p2>0 ); |
3265 assert( p2<=(p->nMem-p->nCursor) ); | 3362 assert( p2<=(p->nMem-p->nCursor) ); |
(...skipping 15 matching lines...) Expand all Loading... |
3281 pKeyInfo = pOp->p4.pKeyInfo; | 3378 pKeyInfo = pOp->p4.pKeyInfo; |
3282 assert( pKeyInfo->enc==ENC(db) ); | 3379 assert( pKeyInfo->enc==ENC(db) ); |
3283 assert( pKeyInfo->db==db ); | 3380 assert( pKeyInfo->db==db ); |
3284 nField = pKeyInfo->nField+pKeyInfo->nXField; | 3381 nField = pKeyInfo->nField+pKeyInfo->nXField; |
3285 }else if( pOp->p4type==P4_INT32 ){ | 3382 }else if( pOp->p4type==P4_INT32 ){ |
3286 nField = pOp->p4.i; | 3383 nField = pOp->p4.i; |
3287 } | 3384 } |
3288 assert( pOp->p1>=0 ); | 3385 assert( pOp->p1>=0 ); |
3289 assert( nField>=0 ); | 3386 assert( nField>=0 ); |
3290 testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */ | 3387 testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */ |
3291 pCur = allocateCursor(p, pOp->p1, nField, iDb, 1); | 3388 pCur = allocateCursor(p, pOp->p1, nField, iDb, CURTYPE_BTREE); |
3292 if( pCur==0 ) goto no_mem; | 3389 if( pCur==0 ) goto no_mem; |
3293 pCur->nullRow = 1; | 3390 pCur->nullRow = 1; |
3294 pCur->isOrdered = 1; | 3391 pCur->isOrdered = 1; |
3295 pCur->pgnoRoot = p2; | 3392 pCur->pgnoRoot = p2; |
3296 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor); | 3393 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor); |
3297 pCur->pKeyInfo = pKeyInfo; | 3394 pCur->pKeyInfo = pKeyInfo; |
3298 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD ); | |
3299 sqlite3BtreeCursorHints(pCur->pCursor, (pOp->p5 & OPFLAG_BULKCSR)); | |
3300 | |
3301 /* Set the VdbeCursor.isTable variable. Previous versions of | 3395 /* Set the VdbeCursor.isTable variable. Previous versions of |
3302 ** SQLite used to check if the root-page flags were sane at this point | 3396 ** SQLite used to check if the root-page flags were sane at this point |
3303 ** and report database corruption if they were not, but this check has | 3397 ** and report database corruption if they were not, but this check has |
3304 ** since moved into the btree layer. */ | 3398 ** since moved into the btree layer. */ |
3305 pCur->isTable = pOp->p4type!=P4_KEYINFO; | 3399 pCur->isTable = pOp->p4type!=P4_KEYINFO; |
| 3400 |
| 3401 open_cursor_set_hints: |
| 3402 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD ); |
| 3403 assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ ); |
| 3404 testcase( pOp->p5 & OPFLAG_BULKCSR ); |
| 3405 #ifdef SQLITE_ENABLE_CURSOR_HINTS |
| 3406 testcase( pOp->p2 & OPFLAG_SEEKEQ ); |
| 3407 #endif |
| 3408 sqlite3BtreeCursorHintFlags(pCur->uc.pCursor, |
| 3409 (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ))); |
3306 break; | 3410 break; |
3307 } | 3411 } |
3308 | 3412 |
3309 /* Opcode: OpenEphemeral P1 P2 * P4 P5 | 3413 /* Opcode: OpenEphemeral P1 P2 * P4 P5 |
3310 ** Synopsis: nColumn=P2 | 3414 ** Synopsis: nColumn=P2 |
3311 ** | 3415 ** |
3312 ** Open a new cursor P1 to a transient table. | 3416 ** Open a new cursor P1 to a transient table. |
3313 ** The cursor is always opened read/write even if | 3417 ** The cursor is always opened read/write even if |
3314 ** the main database is read-only. The ephemeral | 3418 ** the main database is read-only. The ephemeral |
3315 ** table is deleted automatically when the cursor is closed. | 3419 ** table is deleted automatically when the cursor is closed. |
(...skipping 22 matching lines...) Expand all Loading... |
3338 KeyInfo *pKeyInfo; | 3442 KeyInfo *pKeyInfo; |
3339 | 3443 |
3340 static const int vfsFlags = | 3444 static const int vfsFlags = |
3341 SQLITE_OPEN_READWRITE | | 3445 SQLITE_OPEN_READWRITE | |
3342 SQLITE_OPEN_CREATE | | 3446 SQLITE_OPEN_CREATE | |
3343 SQLITE_OPEN_EXCLUSIVE | | 3447 SQLITE_OPEN_EXCLUSIVE | |
3344 SQLITE_OPEN_DELETEONCLOSE | | 3448 SQLITE_OPEN_DELETEONCLOSE | |
3345 SQLITE_OPEN_TRANSIENT_DB; | 3449 SQLITE_OPEN_TRANSIENT_DB; |
3346 assert( pOp->p1>=0 ); | 3450 assert( pOp->p1>=0 ); |
3347 assert( pOp->p2>=0 ); | 3451 assert( pOp->p2>=0 ); |
3348 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1); | 3452 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_BTREE); |
3349 if( pCx==0 ) goto no_mem; | 3453 if( pCx==0 ) goto no_mem; |
3350 pCx->nullRow = 1; | 3454 pCx->nullRow = 1; |
3351 pCx->isEphemeral = 1; | 3455 pCx->isEphemeral = 1; |
3352 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBt, | 3456 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBt, |
3353 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags); | 3457 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags); |
3354 if( rc==SQLITE_OK ){ | 3458 if( rc==SQLITE_OK ){ |
3355 rc = sqlite3BtreeBeginTrans(pCx->pBt, 1); | 3459 rc = sqlite3BtreeBeginTrans(pCx->pBt, 1); |
3356 } | 3460 } |
3357 if( rc==SQLITE_OK ){ | 3461 if( rc==SQLITE_OK ){ |
3358 /* If a transient index is required, create it by calling | 3462 /* If a transient index is required, create it by calling |
3359 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before | 3463 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before |
3360 ** opening it. If a transient table is required, just use the | 3464 ** opening it. If a transient table is required, just use the |
3361 ** automatically created table with root-page 1 (an BLOB_INTKEY table). | 3465 ** automatically created table with root-page 1 (an BLOB_INTKEY table). |
3362 */ | 3466 */ |
3363 if( (pKeyInfo = pOp->p4.pKeyInfo)!=0 ){ | 3467 if( (pKeyInfo = pOp->p4.pKeyInfo)!=0 ){ |
3364 int pgno; | 3468 int pgno; |
3365 assert( pOp->p4type==P4_KEYINFO ); | 3469 assert( pOp->p4type==P4_KEYINFO ); |
3366 rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY | pOp->p5); | 3470 rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY | pOp->p5); |
3367 if( rc==SQLITE_OK ){ | 3471 if( rc==SQLITE_OK ){ |
3368 assert( pgno==MASTER_ROOT+1 ); | 3472 assert( pgno==MASTER_ROOT+1 ); |
3369 assert( pKeyInfo->db==db ); | 3473 assert( pKeyInfo->db==db ); |
3370 assert( pKeyInfo->enc==ENC(db) ); | 3474 assert( pKeyInfo->enc==ENC(db) ); |
3371 pCx->pKeyInfo = pKeyInfo; | 3475 pCx->pKeyInfo = pKeyInfo; |
3372 rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1, pKeyInfo, pCx->pCursor); | 3476 rc = sqlite3BtreeCursor(pCx->pBt, pgno, BTREE_WRCSR, |
| 3477 pKeyInfo, pCx->uc.pCursor); |
3373 } | 3478 } |
3374 pCx->isTable = 0; | 3479 pCx->isTable = 0; |
3375 }else{ | 3480 }else{ |
3376 rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor); | 3481 rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, BTREE_WRCSR, |
| 3482 0, pCx->uc.pCursor); |
3377 pCx->isTable = 1; | 3483 pCx->isTable = 1; |
3378 } | 3484 } |
3379 } | 3485 } |
3380 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED); | 3486 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED); |
3381 break; | 3487 break; |
3382 } | 3488 } |
3383 | 3489 |
3384 /* Opcode: SorterOpen P1 P2 P3 P4 * | 3490 /* Opcode: SorterOpen P1 P2 P3 P4 * |
3385 ** | 3491 ** |
3386 ** This opcode works like OP_OpenEphemeral except that it opens | 3492 ** This opcode works like OP_OpenEphemeral except that it opens |
3387 ** a transient index that is specifically designed to sort large | 3493 ** a transient index that is specifically designed to sort large |
3388 ** tables using an external merge-sort algorithm. | 3494 ** tables using an external merge-sort algorithm. |
3389 ** | 3495 ** |
3390 ** If argument P3 is non-zero, then it indicates that the sorter may | 3496 ** If argument P3 is non-zero, then it indicates that the sorter may |
3391 ** assume that a stable sort considering the first P3 fields of each | 3497 ** assume that a stable sort considering the first P3 fields of each |
3392 ** key is sufficient to produce the required results. | 3498 ** key is sufficient to produce the required results. |
3393 */ | 3499 */ |
3394 case OP_SorterOpen: { | 3500 case OP_SorterOpen: { |
3395 VdbeCursor *pCx; | 3501 VdbeCursor *pCx; |
3396 | 3502 |
3397 assert( pOp->p1>=0 ); | 3503 assert( pOp->p1>=0 ); |
3398 assert( pOp->p2>=0 ); | 3504 assert( pOp->p2>=0 ); |
3399 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1); | 3505 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_SORTER); |
3400 if( pCx==0 ) goto no_mem; | 3506 if( pCx==0 ) goto no_mem; |
3401 pCx->pKeyInfo = pOp->p4.pKeyInfo; | 3507 pCx->pKeyInfo = pOp->p4.pKeyInfo; |
3402 assert( pCx->pKeyInfo->db==db ); | 3508 assert( pCx->pKeyInfo->db==db ); |
3403 assert( pCx->pKeyInfo->enc==ENC(db) ); | 3509 assert( pCx->pKeyInfo->enc==ENC(db) ); |
3404 rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx); | 3510 rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx); |
3405 break; | 3511 break; |
3406 } | 3512 } |
3407 | 3513 |
3408 /* Opcode: SequenceTest P1 P2 * * * | 3514 /* Opcode: SequenceTest P1 P2 * * * |
3409 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2 | 3515 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2 |
3410 ** | 3516 ** |
3411 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump | 3517 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump |
3412 ** to P2. Regardless of whether or not the jump is taken, increment the | 3518 ** to P2. Regardless of whether or not the jump is taken, increment the |
3413 ** the sequence value. | 3519 ** the sequence value. |
3414 */ | 3520 */ |
3415 case OP_SequenceTest: { | 3521 case OP_SequenceTest: { |
3416 VdbeCursor *pC; | 3522 VdbeCursor *pC; |
3417 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); | 3523 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
3418 pC = p->apCsr[pOp->p1]; | 3524 pC = p->apCsr[pOp->p1]; |
3419 assert( pC->pSorter ); | 3525 assert( isSorter(pC) ); |
3420 if( (pC->seqCount++)==0 ){ | 3526 if( (pC->seqCount++)==0 ){ |
3421 pc = pOp->p2 - 1; | 3527 goto jump_to_p2; |
3422 } | 3528 } |
3423 break; | 3529 break; |
3424 } | 3530 } |
3425 | 3531 |
3426 /* Opcode: OpenPseudo P1 P2 P3 * * | 3532 /* Opcode: OpenPseudo P1 P2 P3 * * |
3427 ** Synopsis: P3 columns in r[P2] | 3533 ** Synopsis: P3 columns in r[P2] |
3428 ** | 3534 ** |
3429 ** Open a new cursor that points to a fake table that contains a single | 3535 ** Open a new cursor that points to a fake table that contains a single |
3430 ** row of data. The content of that one row is the content of memory | 3536 ** row of data. The content of that one row is the content of memory |
3431 ** register P2. In other words, cursor P1 becomes an alias for the | 3537 ** register P2. In other words, cursor P1 becomes an alias for the |
3432 ** MEM_Blob content contained in register P2. | 3538 ** MEM_Blob content contained in register P2. |
3433 ** | 3539 ** |
3434 ** A pseudo-table created by this opcode is used to hold a single | 3540 ** A pseudo-table created by this opcode is used to hold a single |
3435 ** row output from the sorter so that the row can be decomposed into | 3541 ** row output from the sorter so that the row can be decomposed into |
3436 ** individual columns using the OP_Column opcode. The OP_Column opcode | 3542 ** individual columns using the OP_Column opcode. The OP_Column opcode |
3437 ** is the only cursor opcode that works with a pseudo-table. | 3543 ** is the only cursor opcode that works with a pseudo-table. |
3438 ** | 3544 ** |
3439 ** P3 is the number of fields in the records that will be stored by | 3545 ** P3 is the number of fields in the records that will be stored by |
3440 ** the pseudo-table. | 3546 ** the pseudo-table. |
3441 */ | 3547 */ |
3442 case OP_OpenPseudo: { | 3548 case OP_OpenPseudo: { |
3443 VdbeCursor *pCx; | 3549 VdbeCursor *pCx; |
3444 | 3550 |
3445 assert( pOp->p1>=0 ); | 3551 assert( pOp->p1>=0 ); |
3446 assert( pOp->p3>=0 ); | 3552 assert( pOp->p3>=0 ); |
3447 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, 0); | 3553 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, CURTYPE_PSEUDO); |
3448 if( pCx==0 ) goto no_mem; | 3554 if( pCx==0 ) goto no_mem; |
3449 pCx->nullRow = 1; | 3555 pCx->nullRow = 1; |
3450 pCx->pseudoTableReg = pOp->p2; | 3556 pCx->uc.pseudoTableReg = pOp->p2; |
3451 pCx->isTable = 1; | 3557 pCx->isTable = 1; |
3452 assert( pOp->p5==0 ); | 3558 assert( pOp->p5==0 ); |
3453 break; | 3559 break; |
3454 } | 3560 } |
3455 | 3561 |
3456 /* Opcode: Close P1 * * * * | 3562 /* Opcode: Close P1 * * * * |
3457 ** | 3563 ** |
3458 ** Close a cursor previously opened as P1. If P1 is not | 3564 ** Close a cursor previously opened as P1. If P1 is not |
3459 ** currently open, this instruction is a no-op. | 3565 ** currently open, this instruction is a no-op. |
3460 */ | 3566 */ |
3461 case OP_Close: { | 3567 case OP_Close: { |
3462 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); | 3568 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
3463 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]); | 3569 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]); |
3464 p->apCsr[pOp->p1] = 0; | 3570 p->apCsr[pOp->p1] = 0; |
3465 break; | 3571 break; |
3466 } | 3572 } |
3467 | 3573 |
| 3574 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK |
| 3575 /* Opcode: ColumnsUsed P1 * * P4 * |
| 3576 ** |
| 3577 ** This opcode (which only exists if SQLite was compiled with |
| 3578 ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the |
| 3579 ** table or index for cursor P1 are used. P4 is a 64-bit integer |
| 3580 ** (P4_INT64) in which the first 63 bits are one for each of the |
| 3581 ** first 63 columns of the table or index that are actually used |
| 3582 ** by the cursor. The high-order bit is set if any column after |
| 3583 ** the 64th is used. |
| 3584 */ |
| 3585 case OP_ColumnsUsed: { |
| 3586 VdbeCursor *pC; |
| 3587 pC = p->apCsr[pOp->p1]; |
| 3588 assert( pC->eCurType==CURTYPE_BTREE ); |
| 3589 pC->maskUsed = *(u64*)pOp->p4.pI64; |
| 3590 break; |
| 3591 } |
| 3592 #endif |
| 3593 |
3468 /* Opcode: SeekGE P1 P2 P3 P4 * | 3594 /* Opcode: SeekGE P1 P2 P3 P4 * |
3469 ** Synopsis: key=r[P3@P4] | 3595 ** Synopsis: key=r[P3@P4] |
3470 ** | 3596 ** |
3471 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), | 3597 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), |
3472 ** use the value in register P3 as the key. If cursor P1 refers | 3598 ** use the value in register P3 as the key. If cursor P1 refers |
3473 ** to an SQL index, then P3 is the first in an array of P4 registers | 3599 ** to an SQL index, then P3 is the first in an array of P4 registers |
3474 ** that are used as an unpacked index key. | 3600 ** that are used as an unpacked index key. |
3475 ** | 3601 ** |
3476 ** Reposition cursor P1 so that it points to the smallest entry that | 3602 ** Reposition cursor P1 so that it points to the smallest entry that |
3477 ** is greater than or equal to the key value. If there are no records | 3603 ** is greater than or equal to the key value. If there are no records |
3478 ** greater than or equal to the key and P2 is not zero, then jump to P2. | 3604 ** greater than or equal to the key and P2 is not zero, then jump to P2. |
3479 ** | 3605 ** |
| 3606 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this |
| 3607 ** opcode will always land on a record that equally equals the key, or |
| 3608 ** else jump immediately to P2. When the cursor is OPFLAG_SEEKEQ, this |
| 3609 ** opcode must be followed by an IdxLE opcode with the same arguments. |
| 3610 ** The IdxLE opcode will be skipped if this opcode succeeds, but the |
| 3611 ** IdxLE opcode will be used on subsequent loop iterations. |
| 3612 ** |
3480 ** This opcode leaves the cursor configured to move in forward order, | 3613 ** This opcode leaves the cursor configured to move in forward order, |
3481 ** from the beginning toward the end. In other words, the cursor is | 3614 ** from the beginning toward the end. In other words, the cursor is |
3482 ** configured to use Next, not Prev. | 3615 ** configured to use Next, not Prev. |
3483 ** | 3616 ** |
3484 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe | 3617 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe |
3485 */ | 3618 */ |
3486 /* Opcode: SeekGT P1 P2 P3 P4 * | 3619 /* Opcode: SeekGT P1 P2 P3 P4 * |
3487 ** Synopsis: key=r[P3@P4] | 3620 ** Synopsis: key=r[P3@P4] |
3488 ** | 3621 ** |
3489 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), | 3622 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), |
(...skipping 38 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
3528 ** that are used as an unpacked index key. | 3661 ** that are used as an unpacked index key. |
3529 ** | 3662 ** |
3530 ** Reposition cursor P1 so that it points to the largest entry that | 3663 ** Reposition cursor P1 so that it points to the largest entry that |
3531 ** is less than or equal to the key value. If there are no records | 3664 ** is less than or equal to the key value. If there are no records |
3532 ** less than or equal to the key and P2 is not zero, then jump to P2. | 3665 ** less than or equal to the key and P2 is not zero, then jump to P2. |
3533 ** | 3666 ** |
3534 ** This opcode leaves the cursor configured to move in reverse order, | 3667 ** This opcode leaves the cursor configured to move in reverse order, |
3535 ** from the end toward the beginning. In other words, the cursor is | 3668 ** from the end toward the beginning. In other words, the cursor is |
3536 ** configured to use Prev, not Next. | 3669 ** configured to use Prev, not Next. |
3537 ** | 3670 ** |
| 3671 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this |
| 3672 ** opcode will always land on a record that equally equals the key, or |
| 3673 ** else jump immediately to P2. When the cursor is OPFLAG_SEEKEQ, this |
| 3674 ** opcode must be followed by an IdxGE opcode with the same arguments. |
| 3675 ** The IdxGE opcode will be skipped if this opcode succeeds, but the |
| 3676 ** IdxGE opcode will be used on subsequent loop iterations. |
| 3677 ** |
3538 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt | 3678 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt |
3539 */ | 3679 */ |
3540 case OP_SeekLT: /* jump, in3 */ | 3680 case OP_SeekLT: /* jump, in3 */ |
3541 case OP_SeekLE: /* jump, in3 */ | 3681 case OP_SeekLE: /* jump, in3 */ |
3542 case OP_SeekGE: /* jump, in3 */ | 3682 case OP_SeekGE: /* jump, in3 */ |
3543 case OP_SeekGT: { /* jump, in3 */ | 3683 case OP_SeekGT: { /* jump, in3 */ |
3544 int res; | 3684 int res; /* Comparison result */ |
3545 int oc; | 3685 int oc; /* Opcode */ |
3546 VdbeCursor *pC; | 3686 VdbeCursor *pC; /* The cursor to seek */ |
3547 UnpackedRecord r; | 3687 UnpackedRecord r; /* The key to seek for */ |
3548 int nField; | 3688 int nField; /* Number of columns or fields in the key */ |
3549 i64 iKey; /* The rowid we are to seek to */ | 3689 i64 iKey; /* The rowid we are to seek to */ |
| 3690 int eqOnly; /* Only interested in == results */ |
3550 | 3691 |
3551 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); | 3692 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
3552 assert( pOp->p2!=0 ); | 3693 assert( pOp->p2!=0 ); |
3553 pC = p->apCsr[pOp->p1]; | 3694 pC = p->apCsr[pOp->p1]; |
3554 assert( pC!=0 ); | 3695 assert( pC!=0 ); |
3555 assert( pC->pseudoTableReg==0 ); | 3696 assert( pC->eCurType==CURTYPE_BTREE ); |
3556 assert( OP_SeekLE == OP_SeekLT+1 ); | 3697 assert( OP_SeekLE == OP_SeekLT+1 ); |
3557 assert( OP_SeekGE == OP_SeekLT+2 ); | 3698 assert( OP_SeekGE == OP_SeekLT+2 ); |
3558 assert( OP_SeekGT == OP_SeekLT+3 ); | 3699 assert( OP_SeekGT == OP_SeekLT+3 ); |
3559 assert( pC->isOrdered ); | 3700 assert( pC->isOrdered ); |
3560 assert( pC->pCursor!=0 ); | 3701 assert( pC->uc.pCursor!=0 ); |
3561 oc = pOp->opcode; | 3702 oc = pOp->opcode; |
| 3703 eqOnly = 0; |
3562 pC->nullRow = 0; | 3704 pC->nullRow = 0; |
3563 #ifdef SQLITE_DEBUG | 3705 #ifdef SQLITE_DEBUG |
3564 pC->seekOp = pOp->opcode; | 3706 pC->seekOp = pOp->opcode; |
3565 #endif | 3707 #endif |
| 3708 |
3566 if( pC->isTable ){ | 3709 if( pC->isTable ){ |
| 3710 /* The BTREE_SEEK_EQ flag is only set on index cursors */ |
| 3711 assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0 ); |
| 3712 |
3567 /* The input value in P3 might be of any type: integer, real, string, | 3713 /* The input value in P3 might be of any type: integer, real, string, |
3568 ** blob, or NULL. But it needs to be an integer before we can do | 3714 ** blob, or NULL. But it needs to be an integer before we can do |
3569 ** the seek, so convert it. */ | 3715 ** the seek, so convert it. */ |
3570 pIn3 = &aMem[pOp->p3]; | 3716 pIn3 = &aMem[pOp->p3]; |
3571 if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){ | 3717 if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){ |
3572 applyNumericAffinity(pIn3, 0); | 3718 applyNumericAffinity(pIn3, 0); |
3573 } | 3719 } |
3574 iKey = sqlite3VdbeIntValue(pIn3); | 3720 iKey = sqlite3VdbeIntValue(pIn3); |
3575 | 3721 |
3576 /* If the P3 value could not be converted into an integer without | 3722 /* If the P3 value could not be converted into an integer without |
3577 ** loss of information, then special processing is required... */ | 3723 ** loss of information, then special processing is required... */ |
3578 if( (pIn3->flags & MEM_Int)==0 ){ | 3724 if( (pIn3->flags & MEM_Int)==0 ){ |
3579 if( (pIn3->flags & MEM_Real)==0 ){ | 3725 if( (pIn3->flags & MEM_Real)==0 ){ |
3580 /* If the P3 value cannot be converted into any kind of a number, | 3726 /* If the P3 value cannot be converted into any kind of a number, |
3581 ** then the seek is not possible, so jump to P2 */ | 3727 ** then the seek is not possible, so jump to P2 */ |
3582 pc = pOp->p2 - 1; VdbeBranchTaken(1,2); | 3728 VdbeBranchTaken(1,2); goto jump_to_p2; |
3583 break; | 3729 break; |
3584 } | 3730 } |
3585 | 3731 |
3586 /* If the approximation iKey is larger than the actual real search | 3732 /* If the approximation iKey is larger than the actual real search |
3587 ** term, substitute >= for > and < for <=. e.g. if the search term | 3733 ** term, substitute >= for > and < for <=. e.g. if the search term |
3588 ** is 4.9 and the integer approximation 5: | 3734 ** is 4.9 and the integer approximation 5: |
3589 ** | 3735 ** |
3590 ** (x > 4.9) -> (x >= 5) | 3736 ** (x > 4.9) -> (x >= 5) |
3591 ** (x <= 4.9) -> (x < 5) | 3737 ** (x <= 4.9) -> (x < 5) |
3592 */ | 3738 */ |
3593 if( pIn3->u.r<(double)iKey ){ | 3739 if( pIn3->u.r<(double)iKey ){ |
3594 assert( OP_SeekGE==(OP_SeekGT-1) ); | 3740 assert( OP_SeekGE==(OP_SeekGT-1) ); |
3595 assert( OP_SeekLT==(OP_SeekLE-1) ); | 3741 assert( OP_SeekLT==(OP_SeekLE-1) ); |
3596 assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) ); | 3742 assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) ); |
3597 if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--; | 3743 if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--; |
3598 } | 3744 } |
3599 | 3745 |
3600 /* If the approximation iKey is smaller than the actual real search | 3746 /* If the approximation iKey is smaller than the actual real search |
3601 ** term, substitute <= for < and > for >=. */ | 3747 ** term, substitute <= for < and > for >=. */ |
3602 else if( pIn3->u.r>(double)iKey ){ | 3748 else if( pIn3->u.r>(double)iKey ){ |
3603 assert( OP_SeekLE==(OP_SeekLT+1) ); | 3749 assert( OP_SeekLE==(OP_SeekLT+1) ); |
3604 assert( OP_SeekGT==(OP_SeekGE+1) ); | 3750 assert( OP_SeekGT==(OP_SeekGE+1) ); |
3605 assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) ); | 3751 assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) ); |
3606 if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++; | 3752 if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++; |
3607 } | 3753 } |
3608 } | 3754 } |
3609 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res); | 3755 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)iKey, 0, &res); |
3610 pC->movetoTarget = iKey; /* Used by OP_Delete */ | 3756 pC->movetoTarget = iKey; /* Used by OP_Delete */ |
3611 if( rc!=SQLITE_OK ){ | 3757 if( rc!=SQLITE_OK ){ |
3612 goto abort_due_to_error; | 3758 goto abort_due_to_error; |
3613 } | 3759 } |
3614 }else{ | 3760 }else{ |
| 3761 /* For a cursor with the BTREE_SEEK_EQ hint, only the OP_SeekGE and |
| 3762 ** OP_SeekLE opcodes are allowed, and these must be immediately followed |
| 3763 ** by an OP_IdxGT or OP_IdxLT opcode, respectively, with the same key. |
| 3764 */ |
| 3765 if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){ |
| 3766 eqOnly = 1; |
| 3767 assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE ); |
| 3768 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT ); |
| 3769 assert( pOp[1].p1==pOp[0].p1 ); |
| 3770 assert( pOp[1].p2==pOp[0].p2 ); |
| 3771 assert( pOp[1].p3==pOp[0].p3 ); |
| 3772 assert( pOp[1].p4.i==pOp[0].p4.i ); |
| 3773 } |
| 3774 |
3615 nField = pOp->p4.i; | 3775 nField = pOp->p4.i; |
3616 assert( pOp->p4type==P4_INT32 ); | 3776 assert( pOp->p4type==P4_INT32 ); |
3617 assert( nField>0 ); | 3777 assert( nField>0 ); |
3618 r.pKeyInfo = pC->pKeyInfo; | 3778 r.pKeyInfo = pC->pKeyInfo; |
3619 r.nField = (u16)nField; | 3779 r.nField = (u16)nField; |
3620 | 3780 |
3621 /* The next line of code computes as follows, only faster: | 3781 /* The next line of code computes as follows, only faster: |
3622 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){ | 3782 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){ |
3623 ** r.default_rc = -1; | 3783 ** r.default_rc = -1; |
3624 ** }else{ | 3784 ** }else{ |
3625 ** r.default_rc = +1; | 3785 ** r.default_rc = +1; |
3626 ** } | 3786 ** } |
3627 */ | 3787 */ |
3628 r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1); | 3788 r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1); |
3629 assert( oc!=OP_SeekGT || r.default_rc==-1 ); | 3789 assert( oc!=OP_SeekGT || r.default_rc==-1 ); |
3630 assert( oc!=OP_SeekLE || r.default_rc==-1 ); | 3790 assert( oc!=OP_SeekLE || r.default_rc==-1 ); |
3631 assert( oc!=OP_SeekGE || r.default_rc==+1 ); | 3791 assert( oc!=OP_SeekGE || r.default_rc==+1 ); |
3632 assert( oc!=OP_SeekLT || r.default_rc==+1 ); | 3792 assert( oc!=OP_SeekLT || r.default_rc==+1 ); |
3633 | 3793 |
3634 r.aMem = &aMem[pOp->p3]; | 3794 r.aMem = &aMem[pOp->p3]; |
3635 #ifdef SQLITE_DEBUG | 3795 #ifdef SQLITE_DEBUG |
3636 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } | 3796 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } |
3637 #endif | 3797 #endif |
3638 ExpandBlob(r.aMem); | 3798 ExpandBlob(r.aMem); |
3639 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res); | 3799 r.eqSeen = 0; |
| 3800 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, &r, 0, 0, &res); |
3640 if( rc!=SQLITE_OK ){ | 3801 if( rc!=SQLITE_OK ){ |
3641 goto abort_due_to_error; | 3802 goto abort_due_to_error; |
3642 } | 3803 } |
| 3804 if( eqOnly && r.eqSeen==0 ){ |
| 3805 assert( res!=0 ); |
| 3806 goto seek_not_found; |
| 3807 } |
3643 } | 3808 } |
3644 pC->deferredMoveto = 0; | 3809 pC->deferredMoveto = 0; |
3645 pC->cacheStatus = CACHE_STALE; | 3810 pC->cacheStatus = CACHE_STALE; |
3646 #ifdef SQLITE_TEST | 3811 #ifdef SQLITE_TEST |
3647 sqlite3_search_count++; | 3812 sqlite3_search_count++; |
3648 #endif | 3813 #endif |
3649 if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT ); | 3814 if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT ); |
3650 if( res<0 || (res==0 && oc==OP_SeekGT) ){ | 3815 if( res<0 || (res==0 && oc==OP_SeekGT) ){ |
3651 res = 0; | 3816 res = 0; |
3652 rc = sqlite3BtreeNext(pC->pCursor, &res); | 3817 rc = sqlite3BtreeNext(pC->uc.pCursor, &res); |
3653 if( rc!=SQLITE_OK ) goto abort_due_to_error; | 3818 if( rc!=SQLITE_OK ) goto abort_due_to_error; |
3654 }else{ | 3819 }else{ |
3655 res = 0; | 3820 res = 0; |
3656 } | 3821 } |
3657 }else{ | 3822 }else{ |
3658 assert( oc==OP_SeekLT || oc==OP_SeekLE ); | 3823 assert( oc==OP_SeekLT || oc==OP_SeekLE ); |
3659 if( res>0 || (res==0 && oc==OP_SeekLT) ){ | 3824 if( res>0 || (res==0 && oc==OP_SeekLT) ){ |
3660 res = 0; | 3825 res = 0; |
3661 rc = sqlite3BtreePrevious(pC->pCursor, &res); | 3826 rc = sqlite3BtreePrevious(pC->uc.pCursor, &res); |
3662 if( rc!=SQLITE_OK ) goto abort_due_to_error; | 3827 if( rc!=SQLITE_OK ) goto abort_due_to_error; |
3663 }else{ | 3828 }else{ |
3664 /* res might be negative because the table is empty. Check to | 3829 /* res might be negative because the table is empty. Check to |
3665 ** see if this is the case. | 3830 ** see if this is the case. |
3666 */ | 3831 */ |
3667 res = sqlite3BtreeEof(pC->pCursor); | 3832 res = sqlite3BtreeEof(pC->uc.pCursor); |
3668 } | 3833 } |
3669 } | 3834 } |
| 3835 seek_not_found: |
3670 assert( pOp->p2>0 ); | 3836 assert( pOp->p2>0 ); |
3671 VdbeBranchTaken(res!=0,2); | 3837 VdbeBranchTaken(res!=0,2); |
3672 if( res ){ | 3838 if( res ){ |
3673 pc = pOp->p2 - 1; | 3839 goto jump_to_p2; |
| 3840 }else if( eqOnly ){ |
| 3841 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT ); |
| 3842 pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */ |
3674 } | 3843 } |
3675 break; | 3844 break; |
3676 } | 3845 } |
3677 | 3846 |
3678 /* Opcode: Seek P1 P2 * * * | 3847 /* Opcode: Seek P1 P2 * * * |
3679 ** Synopsis: intkey=r[P2] | 3848 ** Synopsis: intkey=r[P2] |
3680 ** | 3849 ** |
3681 ** P1 is an open table cursor and P2 is a rowid integer. Arrange | 3850 ** P1 is an open table cursor and P2 is a rowid integer. Arrange |
3682 ** for P1 to move so that it points to the rowid given by P2. | 3851 ** for P1 to move so that it points to the rowid given by P2. |
3683 ** | 3852 ** |
3684 ** This is actually a deferred seek. Nothing actually happens until | 3853 ** This is actually a deferred seek. Nothing actually happens until |
3685 ** the cursor is used to read a record. That way, if no reads | 3854 ** the cursor is used to read a record. That way, if no reads |
3686 ** occur, no unnecessary I/O happens. | 3855 ** occur, no unnecessary I/O happens. |
3687 */ | 3856 */ |
3688 case OP_Seek: { /* in2 */ | 3857 case OP_Seek: { /* in2 */ |
3689 VdbeCursor *pC; | 3858 VdbeCursor *pC; |
3690 | 3859 |
3691 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); | 3860 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
3692 pC = p->apCsr[pOp->p1]; | 3861 pC = p->apCsr[pOp->p1]; |
3693 assert( pC!=0 ); | 3862 assert( pC!=0 ); |
3694 assert( pC->pCursor!=0 ); | 3863 assert( pC->eCurType==CURTYPE_BTREE ); |
| 3864 assert( pC->uc.pCursor!=0 ); |
3695 assert( pC->isTable ); | 3865 assert( pC->isTable ); |
3696 pC->nullRow = 0; | 3866 pC->nullRow = 0; |
3697 pIn2 = &aMem[pOp->p2]; | 3867 pIn2 = &aMem[pOp->p2]; |
3698 pC->movetoTarget = sqlite3VdbeIntValue(pIn2); | 3868 pC->movetoTarget = sqlite3VdbeIntValue(pIn2); |
3699 pC->deferredMoveto = 1; | 3869 pC->deferredMoveto = 1; |
3700 break; | 3870 break; |
3701 } | 3871 } |
3702 | 3872 |
3703 | 3873 |
3704 /* Opcode: Found P1 P2 P3 P4 * | 3874 /* Opcode: Found P1 P2 P3 P4 * |
(...skipping 52 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
3757 ** This operation leaves the cursor in a state where it cannot be | 3927 ** This operation leaves the cursor in a state where it cannot be |
3758 ** advanced in either direction. In other words, the Next and Prev | 3928 ** advanced in either direction. In other words, the Next and Prev |
3759 ** opcodes do not work after this operation. | 3929 ** opcodes do not work after this operation. |
3760 ** | 3930 ** |
3761 ** See also: NotFound, Found, NotExists | 3931 ** See also: NotFound, Found, NotExists |
3762 */ | 3932 */ |
3763 case OP_NoConflict: /* jump, in3 */ | 3933 case OP_NoConflict: /* jump, in3 */ |
3764 case OP_NotFound: /* jump, in3 */ | 3934 case OP_NotFound: /* jump, in3 */ |
3765 case OP_Found: { /* jump, in3 */ | 3935 case OP_Found: { /* jump, in3 */ |
3766 int alreadyExists; | 3936 int alreadyExists; |
| 3937 int takeJump; |
3767 int ii; | 3938 int ii; |
3768 VdbeCursor *pC; | 3939 VdbeCursor *pC; |
3769 int res; | 3940 int res; |
3770 char *pFree; | 3941 char *pFree; |
3771 UnpackedRecord *pIdxKey; | 3942 UnpackedRecord *pIdxKey; |
3772 UnpackedRecord r; | 3943 UnpackedRecord r; |
3773 char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*4 + 7]; | 3944 char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*4 + 7]; |
3774 | 3945 |
3775 #ifdef SQLITE_TEST | 3946 #ifdef SQLITE_TEST |
3776 if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++; | 3947 if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++; |
3777 #endif | 3948 #endif |
3778 | 3949 |
3779 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); | 3950 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
3780 assert( pOp->p4type==P4_INT32 ); | 3951 assert( pOp->p4type==P4_INT32 ); |
3781 pC = p->apCsr[pOp->p1]; | 3952 pC = p->apCsr[pOp->p1]; |
3782 assert( pC!=0 ); | 3953 assert( pC!=0 ); |
3783 #ifdef SQLITE_DEBUG | 3954 #ifdef SQLITE_DEBUG |
3784 pC->seekOp = pOp->opcode; | 3955 pC->seekOp = pOp->opcode; |
3785 #endif | 3956 #endif |
3786 pIn3 = &aMem[pOp->p3]; | 3957 pIn3 = &aMem[pOp->p3]; |
3787 assert( pC->pCursor!=0 ); | 3958 assert( pC->eCurType==CURTYPE_BTREE ); |
| 3959 assert( pC->uc.pCursor!=0 ); |
3788 assert( pC->isTable==0 ); | 3960 assert( pC->isTable==0 ); |
3789 pFree = 0; /* Not needed. Only used to suppress a compiler warning. */ | 3961 pFree = 0; |
3790 if( pOp->p4.i>0 ){ | 3962 if( pOp->p4.i>0 ){ |
3791 r.pKeyInfo = pC->pKeyInfo; | 3963 r.pKeyInfo = pC->pKeyInfo; |
3792 r.nField = (u16)pOp->p4.i; | 3964 r.nField = (u16)pOp->p4.i; |
3793 r.aMem = pIn3; | 3965 r.aMem = pIn3; |
3794 for(ii=0; ii<r.nField; ii++){ | 3966 for(ii=0; ii<r.nField; ii++){ |
3795 assert( memIsValid(&r.aMem[ii]) ); | 3967 assert( memIsValid(&r.aMem[ii]) ); |
3796 ExpandBlob(&r.aMem[ii]); | 3968 ExpandBlob(&r.aMem[ii]); |
3797 #ifdef SQLITE_DEBUG | 3969 #ifdef SQLITE_DEBUG |
3798 if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]); | 3970 if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]); |
3799 #endif | 3971 #endif |
3800 } | 3972 } |
3801 pIdxKey = &r; | 3973 pIdxKey = &r; |
3802 }else{ | 3974 }else{ |
3803 pIdxKey = sqlite3VdbeAllocUnpackedRecord( | 3975 pIdxKey = sqlite3VdbeAllocUnpackedRecord( |
3804 pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree | 3976 pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree |
3805 ); | 3977 ); |
3806 if( pIdxKey==0 ) goto no_mem; | 3978 if( pIdxKey==0 ) goto no_mem; |
3807 assert( pIn3->flags & MEM_Blob ); | 3979 assert( pIn3->flags & MEM_Blob ); |
3808 assert( (pIn3->flags & MEM_Zero)==0 ); /* zeroblobs already expanded */ | 3980 ExpandBlob(pIn3); |
3809 sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey); | 3981 sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey); |
3810 } | 3982 } |
3811 pIdxKey->default_rc = 0; | 3983 pIdxKey->default_rc = 0; |
| 3984 takeJump = 0; |
3812 if( pOp->opcode==OP_NoConflict ){ | 3985 if( pOp->opcode==OP_NoConflict ){ |
3813 /* For the OP_NoConflict opcode, take the jump if any of the | 3986 /* For the OP_NoConflict opcode, take the jump if any of the |
3814 ** input fields are NULL, since any key with a NULL will not | 3987 ** input fields are NULL, since any key with a NULL will not |
3815 ** conflict */ | 3988 ** conflict */ |
3816 for(ii=0; ii<r.nField; ii++){ | 3989 for(ii=0; ii<pIdxKey->nField; ii++){ |
3817 if( r.aMem[ii].flags & MEM_Null ){ | 3990 if( pIdxKey->aMem[ii].flags & MEM_Null ){ |
3818 pc = pOp->p2 - 1; VdbeBranchTaken(1,2); | 3991 takeJump = 1; |
3819 break; | 3992 break; |
3820 } | 3993 } |
3821 } | 3994 } |
3822 } | 3995 } |
3823 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, pIdxKey, 0, 0, &res); | 3996 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, pIdxKey, 0, 0, &res); |
3824 if( pOp->p4.i==0 ){ | 3997 sqlite3DbFree(db, pFree); |
3825 sqlite3DbFree(db, pFree); | |
3826 } | |
3827 if( rc!=SQLITE_OK ){ | 3998 if( rc!=SQLITE_OK ){ |
3828 break; | 3999 break; |
3829 } | 4000 } |
3830 pC->seekResult = res; | 4001 pC->seekResult = res; |
3831 alreadyExists = (res==0); | 4002 alreadyExists = (res==0); |
3832 pC->nullRow = 1-alreadyExists; | 4003 pC->nullRow = 1-alreadyExists; |
3833 pC->deferredMoveto = 0; | 4004 pC->deferredMoveto = 0; |
3834 pC->cacheStatus = CACHE_STALE; | 4005 pC->cacheStatus = CACHE_STALE; |
3835 if( pOp->opcode==OP_Found ){ | 4006 if( pOp->opcode==OP_Found ){ |
3836 VdbeBranchTaken(alreadyExists!=0,2); | 4007 VdbeBranchTaken(alreadyExists!=0,2); |
3837 if( alreadyExists ) pc = pOp->p2 - 1; | 4008 if( alreadyExists ) goto jump_to_p2; |
3838 }else{ | 4009 }else{ |
3839 VdbeBranchTaken(alreadyExists==0,2); | 4010 VdbeBranchTaken(takeJump||alreadyExists==0,2); |
3840 if( !alreadyExists ) pc = pOp->p2 - 1; | 4011 if( takeJump || !alreadyExists ) goto jump_to_p2; |
3841 } | 4012 } |
3842 break; | 4013 break; |
3843 } | 4014 } |
3844 | 4015 |
3845 /* Opcode: NotExists P1 P2 P3 * * | 4016 /* Opcode: NotExists P1 P2 P3 * * |
3846 ** Synopsis: intkey=r[P3] | 4017 ** Synopsis: intkey=r[P3] |
3847 ** | 4018 ** |
3848 ** P1 is the index of a cursor open on an SQL table btree (with integer | 4019 ** P1 is the index of a cursor open on an SQL table btree (with integer |
3849 ** keys). P3 is an integer rowid. If P1 does not contain a record with | 4020 ** keys). P3 is an integer rowid. If P1 does not contain a record with |
3850 ** rowid P3 then jump immediately to P2. If P1 does contain a record | 4021 ** rowid P3 then jump immediately to P2. Or, if P2 is 0, raise an |
3851 ** with rowid P3 then leave the cursor pointing at that record and fall | 4022 ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then |
3852 ** through to the next instruction. | 4023 ** leave the cursor pointing at that record and fall through to the next |
| 4024 ** instruction. |
3853 ** | 4025 ** |
3854 ** The OP_NotFound opcode performs the same operation on index btrees | 4026 ** The OP_NotFound opcode performs the same operation on index btrees |
3855 ** (with arbitrary multi-value keys). | 4027 ** (with arbitrary multi-value keys). |
3856 ** | 4028 ** |
3857 ** This opcode leaves the cursor in a state where it cannot be advanced | 4029 ** This opcode leaves the cursor in a state where it cannot be advanced |
3858 ** in either direction. In other words, the Next and Prev opcodes will | 4030 ** in either direction. In other words, the Next and Prev opcodes will |
3859 ** not work following this opcode. | 4031 ** not work following this opcode. |
3860 ** | 4032 ** |
3861 ** See also: Found, NotFound, NoConflict | 4033 ** See also: Found, NotFound, NoConflict |
3862 */ | 4034 */ |
3863 case OP_NotExists: { /* jump, in3 */ | 4035 case OP_NotExists: { /* jump, in3 */ |
3864 VdbeCursor *pC; | 4036 VdbeCursor *pC; |
3865 BtCursor *pCrsr; | 4037 BtCursor *pCrsr; |
3866 int res; | 4038 int res; |
3867 u64 iKey; | 4039 u64 iKey; |
3868 | 4040 |
3869 pIn3 = &aMem[pOp->p3]; | 4041 pIn3 = &aMem[pOp->p3]; |
3870 assert( pIn3->flags & MEM_Int ); | 4042 assert( pIn3->flags & MEM_Int ); |
3871 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); | 4043 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
3872 pC = p->apCsr[pOp->p1]; | 4044 pC = p->apCsr[pOp->p1]; |
3873 assert( pC!=0 ); | 4045 assert( pC!=0 ); |
3874 #ifdef SQLITE_DEBUG | 4046 #ifdef SQLITE_DEBUG |
3875 pC->seekOp = 0; | 4047 pC->seekOp = 0; |
3876 #endif | 4048 #endif |
3877 assert( pC->isTable ); | 4049 assert( pC->isTable ); |
3878 assert( pC->pseudoTableReg==0 ); | 4050 assert( pC->eCurType==CURTYPE_BTREE ); |
3879 pCrsr = pC->pCursor; | 4051 pCrsr = pC->uc.pCursor; |
3880 assert( pCrsr!=0 ); | 4052 assert( pCrsr!=0 ); |
3881 res = 0; | 4053 res = 0; |
3882 iKey = pIn3->u.i; | 4054 iKey = pIn3->u.i; |
3883 rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res); | 4055 rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res); |
| 4056 assert( rc==SQLITE_OK || res==0 ); |
3884 pC->movetoTarget = iKey; /* Used by OP_Delete */ | 4057 pC->movetoTarget = iKey; /* Used by OP_Delete */ |
3885 pC->nullRow = 0; | 4058 pC->nullRow = 0; |
3886 pC->cacheStatus = CACHE_STALE; | 4059 pC->cacheStatus = CACHE_STALE; |
3887 pC->deferredMoveto = 0; | 4060 pC->deferredMoveto = 0; |
3888 VdbeBranchTaken(res!=0,2); | 4061 VdbeBranchTaken(res!=0,2); |
| 4062 pC->seekResult = res; |
3889 if( res!=0 ){ | 4063 if( res!=0 ){ |
3890 pc = pOp->p2 - 1; | 4064 assert( rc==SQLITE_OK ); |
| 4065 if( pOp->p2==0 ){ |
| 4066 rc = SQLITE_CORRUPT_BKPT; |
| 4067 }else{ |
| 4068 goto jump_to_p2; |
| 4069 } |
3891 } | 4070 } |
3892 pC->seekResult = res; | |
3893 break; | 4071 break; |
3894 } | 4072 } |
3895 | 4073 |
3896 /* Opcode: Sequence P1 P2 * * * | 4074 /* Opcode: Sequence P1 P2 * * * |
3897 ** Synopsis: r[P2]=cursor[P1].ctr++ | 4075 ** Synopsis: r[P2]=cursor[P1].ctr++ |
3898 ** | 4076 ** |
3899 ** Find the next available sequence number for cursor P1. | 4077 ** Find the next available sequence number for cursor P1. |
3900 ** Write the sequence number into register P2. | 4078 ** Write the sequence number into register P2. |
3901 ** The sequence number on the cursor is incremented after this | 4079 ** The sequence number on the cursor is incremented after this |
3902 ** instruction. | 4080 ** instruction. |
3903 */ | 4081 */ |
3904 case OP_Sequence: { /* out2-prerelease */ | 4082 case OP_Sequence: { /* out2 */ |
3905 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); | 4083 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
3906 assert( p->apCsr[pOp->p1]!=0 ); | 4084 assert( p->apCsr[pOp->p1]!=0 ); |
| 4085 assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB ); |
| 4086 pOut = out2Prerelease(p, pOp); |
3907 pOut->u.i = p->apCsr[pOp->p1]->seqCount++; | 4087 pOut->u.i = p->apCsr[pOp->p1]->seqCount++; |
3908 break; | 4088 break; |
3909 } | 4089 } |
3910 | 4090 |
3911 | 4091 |
3912 /* Opcode: NewRowid P1 P2 P3 * * | 4092 /* Opcode: NewRowid P1 P2 P3 * * |
3913 ** Synopsis: r[P2]=rowid | 4093 ** Synopsis: r[P2]=rowid |
3914 ** | 4094 ** |
3915 ** Get a new integer record number (a.k.a "rowid") used as the key to a table. | 4095 ** Get a new integer record number (a.k.a "rowid") used as the key to a table. |
3916 ** The record number is not previously used as a key in the database | 4096 ** The record number is not previously used as a key in the database |
3917 ** table that cursor P1 points to. The new record number is written | 4097 ** table that cursor P1 points to. The new record number is written |
3918 ** written to register P2. | 4098 ** written to register P2. |
3919 ** | 4099 ** |
3920 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds | 4100 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds |
3921 ** the largest previously generated record number. No new record numbers are | 4101 ** the largest previously generated record number. No new record numbers are |
3922 ** allowed to be less than this value. When this value reaches its maximum, | 4102 ** allowed to be less than this value. When this value reaches its maximum, |
3923 ** an SQLITE_FULL error is generated. The P3 register is updated with the ' | 4103 ** an SQLITE_FULL error is generated. The P3 register is updated with the ' |
3924 ** generated record number. This P3 mechanism is used to help implement the | 4104 ** generated record number. This P3 mechanism is used to help implement the |
3925 ** AUTOINCREMENT feature. | 4105 ** AUTOINCREMENT feature. |
3926 */ | 4106 */ |
3927 case OP_NewRowid: { /* out2-prerelease */ | 4107 case OP_NewRowid: { /* out2 */ |
3928 i64 v; /* The new rowid */ | 4108 i64 v; /* The new rowid */ |
3929 VdbeCursor *pC; /* Cursor of table to get the new rowid */ | 4109 VdbeCursor *pC; /* Cursor of table to get the new rowid */ |
3930 int res; /* Result of an sqlite3BtreeLast() */ | 4110 int res; /* Result of an sqlite3BtreeLast() */ |
3931 int cnt; /* Counter to limit the number of searches */ | 4111 int cnt; /* Counter to limit the number of searches */ |
3932 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */ | 4112 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */ |
3933 VdbeFrame *pFrame; /* Root frame of VDBE */ | 4113 VdbeFrame *pFrame; /* Root frame of VDBE */ |
3934 | 4114 |
3935 v = 0; | 4115 v = 0; |
3936 res = 0; | 4116 res = 0; |
| 4117 pOut = out2Prerelease(p, pOp); |
3937 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); | 4118 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
3938 pC = p->apCsr[pOp->p1]; | 4119 pC = p->apCsr[pOp->p1]; |
3939 assert( pC!=0 ); | 4120 assert( pC!=0 ); |
3940 if( NEVER(pC->pCursor==0) ){ | 4121 assert( pC->eCurType==CURTYPE_BTREE ); |
3941 /* The zero initialization above is all that is needed */ | 4122 assert( pC->uc.pCursor!=0 ); |
3942 }else{ | 4123 { |
3943 /* The next rowid or record number (different terms for the same | 4124 /* The next rowid or record number (different terms for the same |
3944 ** thing) is obtained in a two-step algorithm. | 4125 ** thing) is obtained in a two-step algorithm. |
3945 ** | 4126 ** |
3946 ** First we attempt to find the largest existing rowid and add one | 4127 ** First we attempt to find the largest existing rowid and add one |
3947 ** to that. But if the largest existing rowid is already the maximum | 4128 ** to that. But if the largest existing rowid is already the maximum |
3948 ** positive integer, we have to fall through to the second | 4129 ** positive integer, we have to fall through to the second |
3949 ** probabilistic algorithm | 4130 ** probabilistic algorithm |
3950 ** | 4131 ** |
3951 ** The second algorithm is to select a rowid at random and see if | 4132 ** The second algorithm is to select a rowid at random and see if |
3952 ** it already exists in the table. If it does not exist, we have | 4133 ** it already exists in the table. If it does not exist, we have |
3953 ** succeeded. If the random rowid does exist, we select a new one | 4134 ** succeeded. If the random rowid does exist, we select a new one |
3954 ** and try again, up to 100 times. | 4135 ** and try again, up to 100 times. |
3955 */ | 4136 */ |
3956 assert( pC->isTable ); | 4137 assert( pC->isTable ); |
3957 | 4138 |
3958 #ifdef SQLITE_32BIT_ROWID | 4139 #ifdef SQLITE_32BIT_ROWID |
3959 # define MAX_ROWID 0x7fffffff | 4140 # define MAX_ROWID 0x7fffffff |
3960 #else | 4141 #else |
3961 /* Some compilers complain about constants of the form 0x7fffffffffffffff. | 4142 /* Some compilers complain about constants of the form 0x7fffffffffffffff. |
3962 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems | 4143 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems |
3963 ** to provide the constant while making all compilers happy. | 4144 ** to provide the constant while making all compilers happy. |
3964 */ | 4145 */ |
3965 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff ) | 4146 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff ) |
3966 #endif | 4147 #endif |
3967 | 4148 |
3968 if( !pC->useRandomRowid ){ | 4149 if( !pC->useRandomRowid ){ |
3969 rc = sqlite3BtreeLast(pC->pCursor, &res); | 4150 rc = sqlite3BtreeLast(pC->uc.pCursor, &res); |
3970 if( rc!=SQLITE_OK ){ | 4151 if( rc!=SQLITE_OK ){ |
3971 goto abort_due_to_error; | 4152 goto abort_due_to_error; |
3972 } | 4153 } |
3973 if( res ){ | 4154 if( res ){ |
3974 v = 1; /* IMP: R-61914-48074 */ | 4155 v = 1; /* IMP: R-61914-48074 */ |
3975 }else{ | 4156 }else{ |
3976 assert( sqlite3BtreeCursorIsValid(pC->pCursor) ); | 4157 assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) ); |
3977 rc = sqlite3BtreeKeySize(pC->pCursor, &v); | 4158 rc = sqlite3BtreeKeySize(pC->uc.pCursor, &v); |
3978 assert( rc==SQLITE_OK ); /* Cannot fail following BtreeLast() */ | 4159 assert( rc==SQLITE_OK ); /* Cannot fail following BtreeLast() */ |
3979 if( v>=MAX_ROWID ){ | 4160 if( v>=MAX_ROWID ){ |
3980 pC->useRandomRowid = 1; | 4161 pC->useRandomRowid = 1; |
3981 }else{ | 4162 }else{ |
3982 v++; /* IMP: R-29538-34987 */ | 4163 v++; /* IMP: R-29538-34987 */ |
3983 } | 4164 } |
3984 } | 4165 } |
3985 } | 4166 } |
3986 | 4167 |
3987 #ifndef SQLITE_OMIT_AUTOINCREMENT | 4168 #ifndef SQLITE_OMIT_AUTOINCREMENT |
(...skipping 30 matching lines...) Expand all Loading... |
4018 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the | 4199 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the |
4019 ** largest possible integer (9223372036854775807) then the database | 4200 ** largest possible integer (9223372036854775807) then the database |
4020 ** engine starts picking positive candidate ROWIDs at random until | 4201 ** engine starts picking positive candidate ROWIDs at random until |
4021 ** it finds one that is not previously used. */ | 4202 ** it finds one that is not previously used. */ |
4022 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is | 4203 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is |
4023 ** an AUTOINCREMENT table. */ | 4204 ** an AUTOINCREMENT table. */ |
4024 cnt = 0; | 4205 cnt = 0; |
4025 do{ | 4206 do{ |
4026 sqlite3_randomness(sizeof(v), &v); | 4207 sqlite3_randomness(sizeof(v), &v); |
4027 v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */ | 4208 v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */ |
4028 }while( ((rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)v, | 4209 }while( ((rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)v, |
4029 0, &res))==SQLITE_OK) | 4210 0, &res))==SQLITE_OK) |
4030 && (res==0) | 4211 && (res==0) |
4031 && (++cnt<100)); | 4212 && (++cnt<100)); |
4032 if( rc==SQLITE_OK && res==0 ){ | 4213 if( rc==SQLITE_OK && res==0 ){ |
4033 rc = SQLITE_FULL; /* IMP: R-38219-53002 */ | 4214 rc = SQLITE_FULL; /* IMP: R-38219-53002 */ |
4034 goto abort_due_to_error; | 4215 goto abort_due_to_error; |
4035 } | 4216 } |
4036 assert( v>0 ); /* EV: R-40812-03570 */ | 4217 assert( v>0 ); /* EV: R-40812-03570 */ |
4037 } | 4218 } |
4038 pC->deferredMoveto = 0; | 4219 pC->deferredMoveto = 0; |
(...skipping 59 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
4098 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */ | 4279 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */ |
4099 const char *zDb; /* database name - used by the update hook */ | 4280 const char *zDb; /* database name - used by the update hook */ |
4100 const char *zTbl; /* Table name - used by the opdate hook */ | 4281 const char *zTbl; /* Table name - used by the opdate hook */ |
4101 int op; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */ | 4282 int op; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */ |
4102 | 4283 |
4103 pData = &aMem[pOp->p2]; | 4284 pData = &aMem[pOp->p2]; |
4104 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); | 4285 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
4105 assert( memIsValid(pData) ); | 4286 assert( memIsValid(pData) ); |
4106 pC = p->apCsr[pOp->p1]; | 4287 pC = p->apCsr[pOp->p1]; |
4107 assert( pC!=0 ); | 4288 assert( pC!=0 ); |
4108 assert( pC->pCursor!=0 ); | 4289 assert( pC->eCurType==CURTYPE_BTREE ); |
4109 assert( pC->pseudoTableReg==0 ); | 4290 assert( pC->uc.pCursor!=0 ); |
4110 assert( pC->isTable ); | 4291 assert( pC->isTable ); |
4111 REGISTER_TRACE(pOp->p2, pData); | 4292 REGISTER_TRACE(pOp->p2, pData); |
4112 | 4293 |
4113 if( pOp->opcode==OP_Insert ){ | 4294 if( pOp->opcode==OP_Insert ){ |
4114 pKey = &aMem[pOp->p3]; | 4295 pKey = &aMem[pOp->p3]; |
4115 assert( pKey->flags & MEM_Int ); | 4296 assert( pKey->flags & MEM_Int ); |
4116 assert( memIsValid(pKey) ); | 4297 assert( memIsValid(pKey) ); |
4117 REGISTER_TRACE(pOp->p3, pKey); | 4298 REGISTER_TRACE(pOp->p3, pKey); |
4118 iKey = pKey->u.i; | 4299 iKey = pKey->u.i; |
4119 }else{ | 4300 }else{ |
4120 assert( pOp->opcode==OP_InsertInt ); | 4301 assert( pOp->opcode==OP_InsertInt ); |
4121 iKey = pOp->p3; | 4302 iKey = pOp->p3; |
4122 } | 4303 } |
4123 | 4304 |
4124 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; | 4305 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; |
4125 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = lastRowid = iKey; | 4306 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = lastRowid = iKey; |
4126 if( pData->flags & MEM_Null ){ | 4307 if( pData->flags & MEM_Null ){ |
4127 pData->z = 0; | 4308 pData->z = 0; |
4128 pData->n = 0; | 4309 pData->n = 0; |
4129 }else{ | 4310 }else{ |
4130 assert( pData->flags & (MEM_Blob|MEM_Str) ); | 4311 assert( pData->flags & (MEM_Blob|MEM_Str) ); |
4131 } | 4312 } |
4132 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0); | 4313 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0); |
4133 if( pData->flags & MEM_Zero ){ | 4314 if( pData->flags & MEM_Zero ){ |
4134 nZero = pData->u.nZero; | 4315 nZero = pData->u.nZero; |
4135 }else{ | 4316 }else{ |
4136 nZero = 0; | 4317 nZero = 0; |
4137 } | 4318 } |
4138 rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey, | 4319 rc = sqlite3BtreeInsert(pC->uc.pCursor, 0, iKey, |
4139 pData->z, pData->n, nZero, | 4320 pData->z, pData->n, nZero, |
4140 (pOp->p5 & OPFLAG_APPEND)!=0, seekResult | 4321 (pOp->p5 & OPFLAG_APPEND)!=0, seekResult |
4141 ); | 4322 ); |
4142 pC->deferredMoveto = 0; | 4323 pC->deferredMoveto = 0; |
4143 pC->cacheStatus = CACHE_STALE; | 4324 pC->cacheStatus = CACHE_STALE; |
4144 | 4325 |
4145 /* Invoke the update-hook if required. */ | 4326 /* Invoke the update-hook if required. */ |
4146 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){ | 4327 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){ |
4147 zDb = db->aDb[pC->iDb].zName; | 4328 zDb = db->aDb[pC->iDb].zName; |
4148 zTbl = pOp->p4.z; | 4329 zTbl = pOp->p4.z; |
4149 op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT); | 4330 op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT); |
4150 assert( pC->isTable ); | 4331 assert( pC->isTable ); |
4151 db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey); | 4332 db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey); |
4152 assert( pC->iDb>=0 ); | 4333 assert( pC->iDb>=0 ); |
4153 } | 4334 } |
4154 break; | 4335 break; |
4155 } | 4336 } |
4156 | 4337 |
4157 /* Opcode: Delete P1 P2 * P4 * | 4338 /* Opcode: Delete P1 P2 * P4 P5 |
4158 ** | 4339 ** |
4159 ** Delete the record at which the P1 cursor is currently pointing. | 4340 ** Delete the record at which the P1 cursor is currently pointing. |
4160 ** | 4341 ** |
4161 ** The cursor will be left pointing at either the next or the previous | 4342 ** If the P5 parameter is non-zero, the cursor will be left pointing at |
4162 ** record in the table. If it is left pointing at the next record, then | 4343 ** either the next or the previous record in the table. If it is left |
4163 ** the next Next instruction will be a no-op. Hence it is OK to delete | 4344 ** pointing at the next record, then the next Next instruction will be a |
4164 ** a record from within a Next loop. | 4345 ** no-op. As a result, in this case it is OK to delete a record from within a |
| 4346 ** Next loop. If P5 is zero, then the cursor is left in an undefined state. |
4165 ** | 4347 ** |
4166 ** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is | 4348 ** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is |
4167 ** incremented (otherwise not). | 4349 ** incremented (otherwise not). |
4168 ** | 4350 ** |
4169 ** P1 must not be pseudo-table. It has to be a real table with | 4351 ** P1 must not be pseudo-table. It has to be a real table with |
4170 ** multiple rows. | 4352 ** multiple rows. |
4171 ** | 4353 ** |
4172 ** If P4 is not NULL, then it is the name of the table that P1 is | 4354 ** If P4 is not NULL, then it is the name of the table that P1 is |
4173 ** pointing to. The update hook will be invoked, if it exists. | 4355 ** pointing to. The update hook will be invoked, if it exists. |
4174 ** If P4 is not NULL then the P1 cursor must have been positioned | 4356 ** If P4 is not NULL then the P1 cursor must have been positioned |
4175 ** using OP_NotFound prior to invoking this opcode. | 4357 ** using OP_NotFound prior to invoking this opcode. |
4176 */ | 4358 */ |
4177 case OP_Delete: { | 4359 case OP_Delete: { |
4178 VdbeCursor *pC; | 4360 VdbeCursor *pC; |
| 4361 u8 hasUpdateCallback; |
4179 | 4362 |
4180 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); | 4363 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
4181 pC = p->apCsr[pOp->p1]; | 4364 pC = p->apCsr[pOp->p1]; |
4182 assert( pC!=0 ); | 4365 assert( pC!=0 ); |
4183 assert( pC->pCursor!=0 ); /* Only valid for real tables, no pseudotables */ | 4366 assert( pC->eCurType==CURTYPE_BTREE ); |
| 4367 assert( pC->uc.pCursor!=0 ); |
4184 assert( pC->deferredMoveto==0 ); | 4368 assert( pC->deferredMoveto==0 ); |
4185 | 4369 |
| 4370 hasUpdateCallback = db->xUpdateCallback && pOp->p4.z && pC->isTable; |
| 4371 if( pOp->p5 && hasUpdateCallback ){ |
| 4372 sqlite3BtreeKeySize(pC->uc.pCursor, &pC->movetoTarget); |
| 4373 } |
| 4374 |
4186 #ifdef SQLITE_DEBUG | 4375 #ifdef SQLITE_DEBUG |
4187 /* The seek operation that positioned the cursor prior to OP_Delete will | 4376 /* The seek operation that positioned the cursor prior to OP_Delete will |
4188 ** have also set the pC->movetoTarget field to the rowid of the row that | 4377 ** have also set the pC->movetoTarget field to the rowid of the row that |
4189 ** is being deleted */ | 4378 ** is being deleted */ |
4190 if( pOp->p4.z && pC->isTable ){ | 4379 if( pOp->p4.z && pC->isTable && pOp->p5==0 ){ |
4191 i64 iKey = 0; | 4380 i64 iKey = 0; |
4192 sqlite3BtreeKeySize(pC->pCursor, &iKey); | 4381 sqlite3BtreeKeySize(pC->uc.pCursor, &iKey); |
4193 assert( pC->movetoTarget==iKey ); | 4382 assert( pC->movetoTarget==iKey ); |
4194 } | 4383 } |
4195 #endif | 4384 #endif |
4196 | 4385 |
4197 rc = sqlite3BtreeDelete(pC->pCursor); | 4386 rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5); |
4198 pC->cacheStatus = CACHE_STALE; | 4387 pC->cacheStatus = CACHE_STALE; |
4199 | 4388 |
4200 /* Invoke the update-hook if required. */ | 4389 /* Invoke the update-hook if required. */ |
4201 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z && pC->isTable ){ | 4390 if( rc==SQLITE_OK && hasUpdateCallback ){ |
4202 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, | 4391 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, |
4203 db->aDb[pC->iDb].zName, pOp->p4.z, pC->movetoTarget); | 4392 db->aDb[pC->iDb].zName, pOp->p4.z, pC->movetoTarget); |
4204 assert( pC->iDb>=0 ); | 4393 assert( pC->iDb>=0 ); |
4205 } | 4394 } |
4206 if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++; | 4395 if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++; |
4207 break; | 4396 break; |
4208 } | 4397 } |
4209 /* Opcode: ResetCount * * * * * | 4398 /* Opcode: ResetCount * * * * * |
4210 ** | 4399 ** |
4211 ** The value of the change counter is copied to the database handle | 4400 ** The value of the change counter is copied to the database handle |
(...skipping 28 matching lines...) Expand all Loading... |
4240 int nKeyCol; | 4429 int nKeyCol; |
4241 | 4430 |
4242 pC = p->apCsr[pOp->p1]; | 4431 pC = p->apCsr[pOp->p1]; |
4243 assert( isSorter(pC) ); | 4432 assert( isSorter(pC) ); |
4244 assert( pOp->p4type==P4_INT32 ); | 4433 assert( pOp->p4type==P4_INT32 ); |
4245 pIn3 = &aMem[pOp->p3]; | 4434 pIn3 = &aMem[pOp->p3]; |
4246 nKeyCol = pOp->p4.i; | 4435 nKeyCol = pOp->p4.i; |
4247 res = 0; | 4436 res = 0; |
4248 rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res); | 4437 rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res); |
4249 VdbeBranchTaken(res!=0,2); | 4438 VdbeBranchTaken(res!=0,2); |
4250 if( res ){ | 4439 if( res ) goto jump_to_p2; |
4251 pc = pOp->p2-1; | |
4252 } | |
4253 break; | 4440 break; |
4254 }; | 4441 }; |
4255 | 4442 |
4256 /* Opcode: SorterData P1 P2 P3 * * | 4443 /* Opcode: SorterData P1 P2 P3 * * |
4257 ** Synopsis: r[P2]=data | 4444 ** Synopsis: r[P2]=data |
4258 ** | 4445 ** |
4259 ** Write into register P2 the current sorter data for sorter cursor P1. | 4446 ** Write into register P2 the current sorter data for sorter cursor P1. |
4260 ** Then clear the column header cache on cursor P3. | 4447 ** Then clear the column header cache on cursor P3. |
4261 ** | 4448 ** |
4262 ** This opcode is normally use to move a record out of the sorter and into | 4449 ** This opcode is normally use to move a record out of the sorter and into |
(...skipping 43 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
4306 BtCursor *pCrsr; | 4493 BtCursor *pCrsr; |
4307 u32 n; | 4494 u32 n; |
4308 i64 n64; | 4495 i64 n64; |
4309 | 4496 |
4310 pOut = &aMem[pOp->p2]; | 4497 pOut = &aMem[pOp->p2]; |
4311 memAboutToChange(p, pOut); | 4498 memAboutToChange(p, pOut); |
4312 | 4499 |
4313 /* Note that RowKey and RowData are really exactly the same instruction */ | 4500 /* Note that RowKey and RowData are really exactly the same instruction */ |
4314 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); | 4501 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
4315 pC = p->apCsr[pOp->p1]; | 4502 pC = p->apCsr[pOp->p1]; |
| 4503 assert( pC!=0 ); |
| 4504 assert( pC->eCurType==CURTYPE_BTREE ); |
4316 assert( isSorter(pC)==0 ); | 4505 assert( isSorter(pC)==0 ); |
4317 assert( pC->isTable || pOp->opcode!=OP_RowData ); | 4506 assert( pC->isTable || pOp->opcode!=OP_RowData ); |
4318 assert( pC->isTable==0 || pOp->opcode==OP_RowData ); | 4507 assert( pC->isTable==0 || pOp->opcode==OP_RowData ); |
4319 assert( pC!=0 ); | |
4320 assert( pC->nullRow==0 ); | 4508 assert( pC->nullRow==0 ); |
4321 assert( pC->pseudoTableReg==0 ); | 4509 assert( pC->uc.pCursor!=0 ); |
4322 assert( pC->pCursor!=0 ); | 4510 pCrsr = pC->uc.pCursor; |
4323 pCrsr = pC->pCursor; | |
4324 | 4511 |
4325 /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or | 4512 /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or |
4326 ** OP_Rewind/Op_Next with no intervening instructions that might invalidate | 4513 ** OP_Rewind/Op_Next with no intervening instructions that might invalidate |
4327 ** the cursor. If this where not the case, on of the following assert()s | 4514 ** the cursor. If this where not the case, on of the following assert()s |
4328 ** would fail. Should this ever change (because of changes in the code | 4515 ** would fail. Should this ever change (because of changes in the code |
4329 ** generator) then the fix would be to insert a call to | 4516 ** generator) then the fix would be to insert a call to |
4330 ** sqlite3VdbeCursorMoveto(). | 4517 ** sqlite3VdbeCursorMoveto(). |
4331 */ | 4518 */ |
4332 assert( pC->deferredMoveto==0 ); | 4519 assert( pC->deferredMoveto==0 ); |
4333 assert( sqlite3BtreeCursorIsValid(pCrsr) ); | 4520 assert( sqlite3BtreeCursorIsValid(pCrsr) ); |
(...skipping 37 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
4371 /* Opcode: Rowid P1 P2 * * * | 4558 /* Opcode: Rowid P1 P2 * * * |
4372 ** Synopsis: r[P2]=rowid | 4559 ** Synopsis: r[P2]=rowid |
4373 ** | 4560 ** |
4374 ** Store in register P2 an integer which is the key of the table entry that | 4561 ** Store in register P2 an integer which is the key of the table entry that |
4375 ** P1 is currently point to. | 4562 ** P1 is currently point to. |
4376 ** | 4563 ** |
4377 ** P1 can be either an ordinary table or a virtual table. There used to | 4564 ** P1 can be either an ordinary table or a virtual table. There used to |
4378 ** be a separate OP_VRowid opcode for use with virtual tables, but this | 4565 ** be a separate OP_VRowid opcode for use with virtual tables, but this |
4379 ** one opcode now works for both table types. | 4566 ** one opcode now works for both table types. |
4380 */ | 4567 */ |
4381 case OP_Rowid: { /* out2-prerelease */ | 4568 case OP_Rowid: { /* out2 */ |
4382 VdbeCursor *pC; | 4569 VdbeCursor *pC; |
4383 i64 v; | 4570 i64 v; |
4384 sqlite3_vtab *pVtab; | 4571 sqlite3_vtab *pVtab; |
4385 const sqlite3_module *pModule; | 4572 const sqlite3_module *pModule; |
4386 | 4573 |
| 4574 pOut = out2Prerelease(p, pOp); |
4387 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); | 4575 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
4388 pC = p->apCsr[pOp->p1]; | 4576 pC = p->apCsr[pOp->p1]; |
4389 assert( pC!=0 ); | 4577 assert( pC!=0 ); |
4390 assert( pC->pseudoTableReg==0 || pC->nullRow ); | 4578 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); |
4391 if( pC->nullRow ){ | 4579 if( pC->nullRow ){ |
4392 pOut->flags = MEM_Null; | 4580 pOut->flags = MEM_Null; |
4393 break; | 4581 break; |
4394 }else if( pC->deferredMoveto ){ | 4582 }else if( pC->deferredMoveto ){ |
4395 v = pC->movetoTarget; | 4583 v = pC->movetoTarget; |
4396 #ifndef SQLITE_OMIT_VIRTUALTABLE | 4584 #ifndef SQLITE_OMIT_VIRTUALTABLE |
4397 }else if( pC->pVtabCursor ){ | 4585 }else if( pC->eCurType==CURTYPE_VTAB ){ |
4398 pVtab = pC->pVtabCursor->pVtab; | 4586 assert( pC->uc.pVCur!=0 ); |
| 4587 pVtab = pC->uc.pVCur->pVtab; |
4399 pModule = pVtab->pModule; | 4588 pModule = pVtab->pModule; |
4400 assert( pModule->xRowid ); | 4589 assert( pModule->xRowid ); |
4401 rc = pModule->xRowid(pC->pVtabCursor, &v); | 4590 rc = pModule->xRowid(pC->uc.pVCur, &v); |
4402 sqlite3VtabImportErrmsg(p, pVtab); | 4591 sqlite3VtabImportErrmsg(p, pVtab); |
4403 #endif /* SQLITE_OMIT_VIRTUALTABLE */ | 4592 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
4404 }else{ | 4593 }else{ |
4405 assert( pC->pCursor!=0 ); | 4594 assert( pC->eCurType==CURTYPE_BTREE ); |
| 4595 assert( pC->uc.pCursor!=0 ); |
4406 rc = sqlite3VdbeCursorRestore(pC); | 4596 rc = sqlite3VdbeCursorRestore(pC); |
4407 if( rc ) goto abort_due_to_error; | 4597 if( rc ) goto abort_due_to_error; |
4408 if( pC->nullRow ){ | 4598 if( pC->nullRow ){ |
4409 pOut->flags = MEM_Null; | 4599 pOut->flags = MEM_Null; |
4410 break; | 4600 break; |
4411 } | 4601 } |
4412 rc = sqlite3BtreeKeySize(pC->pCursor, &v); | 4602 rc = sqlite3BtreeKeySize(pC->uc.pCursor, &v); |
4413 assert( rc==SQLITE_OK ); /* Always so because of CursorRestore() above */ | 4603 assert( rc==SQLITE_OK ); /* Always so because of CursorRestore() above */ |
4414 } | 4604 } |
4415 pOut->u.i = v; | 4605 pOut->u.i = v; |
4416 break; | 4606 break; |
4417 } | 4607 } |
4418 | 4608 |
4419 /* Opcode: NullRow P1 * * * * | 4609 /* Opcode: NullRow P1 * * * * |
4420 ** | 4610 ** |
4421 ** Move the cursor P1 to a null row. Any OP_Column operations | 4611 ** Move the cursor P1 to a null row. Any OP_Column operations |
4422 ** that occur while the cursor is on the null row will always | 4612 ** that occur while the cursor is on the null row will always |
4423 ** write a NULL. | 4613 ** write a NULL. |
4424 */ | 4614 */ |
4425 case OP_NullRow: { | 4615 case OP_NullRow: { |
4426 VdbeCursor *pC; | 4616 VdbeCursor *pC; |
4427 | 4617 |
4428 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); | 4618 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
4429 pC = p->apCsr[pOp->p1]; | 4619 pC = p->apCsr[pOp->p1]; |
4430 assert( pC!=0 ); | 4620 assert( pC!=0 ); |
4431 pC->nullRow = 1; | 4621 pC->nullRow = 1; |
4432 pC->cacheStatus = CACHE_STALE; | 4622 pC->cacheStatus = CACHE_STALE; |
4433 if( pC->pCursor ){ | 4623 if( pC->eCurType==CURTYPE_BTREE ){ |
4434 sqlite3BtreeClearCursor(pC->pCursor); | 4624 assert( pC->uc.pCursor!=0 ); |
| 4625 sqlite3BtreeClearCursor(pC->uc.pCursor); |
4435 } | 4626 } |
4436 break; | 4627 break; |
4437 } | 4628 } |
4438 | 4629 |
4439 /* Opcode: Last P1 P2 * * * | 4630 /* Opcode: Last P1 P2 P3 * * |
4440 ** | 4631 ** |
4441 ** The next use of the Rowid or Column or Prev instruction for P1 | 4632 ** The next use of the Rowid or Column or Prev instruction for P1 |
4442 ** will refer to the last entry in the database table or index. | 4633 ** will refer to the last entry in the database table or index. |
4443 ** If the table or index is empty and P2>0, then jump immediately to P2. | 4634 ** If the table or index is empty and P2>0, then jump immediately to P2. |
4444 ** If P2 is 0 or if the table or index is not empty, fall through | 4635 ** If P2 is 0 or if the table or index is not empty, fall through |
4445 ** to the following instruction. | 4636 ** to the following instruction. |
4446 ** | 4637 ** |
4447 ** This opcode leaves the cursor configured to move in reverse order, | 4638 ** This opcode leaves the cursor configured to move in reverse order, |
4448 ** from the end toward the beginning. In other words, the cursor is | 4639 ** from the end toward the beginning. In other words, the cursor is |
4449 ** configured to use Prev, not Next. | 4640 ** configured to use Prev, not Next. |
4450 */ | 4641 */ |
4451 case OP_Last: { /* jump */ | 4642 case OP_Last: { /* jump */ |
4452 VdbeCursor *pC; | 4643 VdbeCursor *pC; |
4453 BtCursor *pCrsr; | 4644 BtCursor *pCrsr; |
4454 int res; | 4645 int res; |
4455 | 4646 |
4456 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); | 4647 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
4457 pC = p->apCsr[pOp->p1]; | 4648 pC = p->apCsr[pOp->p1]; |
4458 assert( pC!=0 ); | 4649 assert( pC!=0 ); |
4459 pCrsr = pC->pCursor; | 4650 assert( pC->eCurType==CURTYPE_BTREE ); |
| 4651 pCrsr = pC->uc.pCursor; |
4460 res = 0; | 4652 res = 0; |
4461 assert( pCrsr!=0 ); | 4653 assert( pCrsr!=0 ); |
4462 rc = sqlite3BtreeLast(pCrsr, &res); | 4654 rc = sqlite3BtreeLast(pCrsr, &res); |
4463 pC->nullRow = (u8)res; | 4655 pC->nullRow = (u8)res; |
4464 pC->deferredMoveto = 0; | 4656 pC->deferredMoveto = 0; |
4465 pC->cacheStatus = CACHE_STALE; | 4657 pC->cacheStatus = CACHE_STALE; |
| 4658 pC->seekResult = pOp->p3; |
4466 #ifdef SQLITE_DEBUG | 4659 #ifdef SQLITE_DEBUG |
4467 pC->seekOp = OP_Last; | 4660 pC->seekOp = OP_Last; |
4468 #endif | 4661 #endif |
4469 if( pOp->p2>0 ){ | 4662 if( pOp->p2>0 ){ |
4470 VdbeBranchTaken(res!=0,2); | 4663 VdbeBranchTaken(res!=0,2); |
4471 if( res ) pc = pOp->p2 - 1; | 4664 if( res ) goto jump_to_p2; |
4472 } | 4665 } |
4473 break; | 4666 break; |
4474 } | 4667 } |
4475 | 4668 |
4476 | 4669 |
4477 /* Opcode: Sort P1 P2 * * * | 4670 /* Opcode: Sort P1 P2 * * * |
4478 ** | 4671 ** |
4479 ** This opcode does exactly the same thing as OP_Rewind except that | 4672 ** This opcode does exactly the same thing as OP_Rewind except that |
4480 ** it increments an undocumented global variable used for testing. | 4673 ** it increments an undocumented global variable used for testing. |
4481 ** | 4674 ** |
(...skipping 10 matching lines...) Expand all Loading... |
4492 sqlite3_sort_count++; | 4685 sqlite3_sort_count++; |
4493 sqlite3_search_count--; | 4686 sqlite3_search_count--; |
4494 #endif | 4687 #endif |
4495 p->aCounter[SQLITE_STMTSTATUS_SORT]++; | 4688 p->aCounter[SQLITE_STMTSTATUS_SORT]++; |
4496 /* Fall through into OP_Rewind */ | 4689 /* Fall through into OP_Rewind */ |
4497 } | 4690 } |
4498 /* Opcode: Rewind P1 P2 * * * | 4691 /* Opcode: Rewind P1 P2 * * * |
4499 ** | 4692 ** |
4500 ** The next use of the Rowid or Column or Next instruction for P1 | 4693 ** The next use of the Rowid or Column or Next instruction for P1 |
4501 ** will refer to the first entry in the database table or index. | 4694 ** will refer to the first entry in the database table or index. |
4502 ** If the table or index is empty and P2>0, then jump immediately to P2. | 4695 ** If the table or index is empty, jump immediately to P2. |
4503 ** If P2 is 0 or if the table or index is not empty, fall through | 4696 ** If the table or index is not empty, fall through to the following |
4504 ** to the following instruction. | 4697 ** instruction. |
4505 ** | 4698 ** |
4506 ** This opcode leaves the cursor configured to move in forward order, | 4699 ** This opcode leaves the cursor configured to move in forward order, |
4507 ** from the beginning toward the end. In other words, the cursor is | 4700 ** from the beginning toward the end. In other words, the cursor is |
4508 ** configured to use Next, not Prev. | 4701 ** configured to use Next, not Prev. |
4509 */ | 4702 */ |
4510 case OP_Rewind: { /* jump */ | 4703 case OP_Rewind: { /* jump */ |
4511 VdbeCursor *pC; | 4704 VdbeCursor *pC; |
4512 BtCursor *pCrsr; | 4705 BtCursor *pCrsr; |
4513 int res; | 4706 int res; |
4514 | 4707 |
4515 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); | 4708 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
4516 pC = p->apCsr[pOp->p1]; | 4709 pC = p->apCsr[pOp->p1]; |
4517 assert( pC!=0 ); | 4710 assert( pC!=0 ); |
4518 assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) ); | 4711 assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) ); |
4519 res = 1; | 4712 res = 1; |
4520 #ifdef SQLITE_DEBUG | 4713 #ifdef SQLITE_DEBUG |
4521 pC->seekOp = OP_Rewind; | 4714 pC->seekOp = OP_Rewind; |
4522 #endif | 4715 #endif |
4523 if( isSorter(pC) ){ | 4716 if( isSorter(pC) ){ |
4524 rc = sqlite3VdbeSorterRewind(pC, &res); | 4717 rc = sqlite3VdbeSorterRewind(pC, &res); |
4525 }else{ | 4718 }else{ |
4526 pCrsr = pC->pCursor; | 4719 assert( pC->eCurType==CURTYPE_BTREE ); |
| 4720 pCrsr = pC->uc.pCursor; |
4527 assert( pCrsr ); | 4721 assert( pCrsr ); |
4528 rc = sqlite3BtreeFirst(pCrsr, &res); | 4722 rc = sqlite3BtreeFirst(pCrsr, &res); |
4529 pC->deferredMoveto = 0; | 4723 pC->deferredMoveto = 0; |
4530 pC->cacheStatus = CACHE_STALE; | 4724 pC->cacheStatus = CACHE_STALE; |
4531 } | 4725 } |
4532 pC->nullRow = (u8)res; | 4726 pC->nullRow = (u8)res; |
4533 assert( pOp->p2>0 && pOp->p2<p->nOp ); | 4727 assert( pOp->p2>0 && pOp->p2<p->nOp ); |
4534 VdbeBranchTaken(res!=0,2); | 4728 VdbeBranchTaken(res!=0,2); |
4535 if( res ){ | 4729 if( res ) goto jump_to_p2; |
4536 pc = pOp->p2 - 1; | |
4537 } | |
4538 break; | 4730 break; |
4539 } | 4731 } |
4540 | 4732 |
4541 /* Opcode: Next P1 P2 P3 P4 P5 | 4733 /* Opcode: Next P1 P2 P3 P4 P5 |
4542 ** | 4734 ** |
4543 ** Advance cursor P1 so that it points to the next key/data pair in its | 4735 ** Advance cursor P1 so that it points to the next key/data pair in its |
4544 ** table or index. If there are no more key/value pairs then fall through | 4736 ** table or index. If there are no more key/value pairs then fall through |
4545 ** to the following instruction. But if the cursor advance was successful, | 4737 ** to the following instruction. But if the cursor advance was successful, |
4546 ** jump immediately to P2. | 4738 ** jump immediately to P2. |
4547 ** | 4739 ** |
(...skipping 67 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
4615 if( p->apCsr[pOp->p1]==0 ) break; | 4807 if( p->apCsr[pOp->p1]==0 ) break; |
4616 /* Fall through */ | 4808 /* Fall through */ |
4617 case OP_Prev: /* jump */ | 4809 case OP_Prev: /* jump */ |
4618 case OP_Next: /* jump */ | 4810 case OP_Next: /* jump */ |
4619 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); | 4811 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
4620 assert( pOp->p5<ArraySize(p->aCounter) ); | 4812 assert( pOp->p5<ArraySize(p->aCounter) ); |
4621 pC = p->apCsr[pOp->p1]; | 4813 pC = p->apCsr[pOp->p1]; |
4622 res = pOp->p3; | 4814 res = pOp->p3; |
4623 assert( pC!=0 ); | 4815 assert( pC!=0 ); |
4624 assert( pC->deferredMoveto==0 ); | 4816 assert( pC->deferredMoveto==0 ); |
4625 assert( pC->pCursor ); | 4817 assert( pC->eCurType==CURTYPE_BTREE ); |
4626 assert( res==0 || (res==1 && pC->isTable==0) ); | 4818 assert( res==0 || (res==1 && pC->isTable==0) ); |
4627 testcase( res==1 ); | 4819 testcase( res==1 ); |
4628 assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext ); | 4820 assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext ); |
4629 assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious ); | 4821 assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious ); |
4630 assert( pOp->opcode!=OP_NextIfOpen || pOp->p4.xAdvance==sqlite3BtreeNext ); | 4822 assert( pOp->opcode!=OP_NextIfOpen || pOp->p4.xAdvance==sqlite3BtreeNext ); |
4631 assert( pOp->opcode!=OP_PrevIfOpen || pOp->p4.xAdvance==sqlite3BtreePrevious); | 4823 assert( pOp->opcode!=OP_PrevIfOpen || pOp->p4.xAdvance==sqlite3BtreePrevious); |
4632 | 4824 |
4633 /* The Next opcode is only used after SeekGT, SeekGE, and Rewind. | 4825 /* The Next opcode is only used after SeekGT, SeekGE, and Rewind. |
4634 ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */ | 4826 ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */ |
4635 assert( pOp->opcode!=OP_Next || pOp->opcode!=OP_NextIfOpen | 4827 assert( pOp->opcode!=OP_Next || pOp->opcode!=OP_NextIfOpen |
4636 || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE | 4828 || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE |
4637 || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found); | 4829 || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found); |
4638 assert( pOp->opcode!=OP_Prev || pOp->opcode!=OP_PrevIfOpen | 4830 assert( pOp->opcode!=OP_Prev || pOp->opcode!=OP_PrevIfOpen |
4639 || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE | 4831 || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE |
4640 || pC->seekOp==OP_Last ); | 4832 || pC->seekOp==OP_Last ); |
4641 | 4833 |
4642 rc = pOp->p4.xAdvance(pC->pCursor, &res); | 4834 rc = pOp->p4.xAdvance(pC->uc.pCursor, &res); |
4643 next_tail: | 4835 next_tail: |
4644 pC->cacheStatus = CACHE_STALE; | 4836 pC->cacheStatus = CACHE_STALE; |
4645 VdbeBranchTaken(res==0,2); | 4837 VdbeBranchTaken(res==0,2); |
4646 if( res==0 ){ | 4838 if( res==0 ){ |
4647 pC->nullRow = 0; | 4839 pC->nullRow = 0; |
4648 pc = pOp->p2 - 1; | |
4649 p->aCounter[pOp->p5]++; | 4840 p->aCounter[pOp->p5]++; |
4650 #ifdef SQLITE_TEST | 4841 #ifdef SQLITE_TEST |
4651 sqlite3_search_count++; | 4842 sqlite3_search_count++; |
4652 #endif | 4843 #endif |
| 4844 goto jump_to_p2_and_check_for_interrupt; |
4653 }else{ | 4845 }else{ |
4654 pC->nullRow = 1; | 4846 pC->nullRow = 1; |
4655 } | 4847 } |
4656 goto check_for_interrupt; | 4848 goto check_for_interrupt; |
4657 } | 4849 } |
4658 | 4850 |
4659 /* Opcode: IdxInsert P1 P2 P3 * P5 | 4851 /* Opcode: IdxInsert P1 P2 P3 * P5 |
4660 ** Synopsis: key=r[P2] | 4852 ** Synopsis: key=r[P2] |
4661 ** | 4853 ** |
4662 ** Register P2 holds an SQL index key made using the | 4854 ** Register P2 holds an SQL index key made using the |
(...skipping 10 matching lines...) Expand all Loading... |
4673 ** If P5 has the OPFLAG_USESEEKRESULT bit set, then the cursor must have | 4865 ** If P5 has the OPFLAG_USESEEKRESULT bit set, then the cursor must have |
4674 ** just done a seek to the spot where the new entry is to be inserted. | 4866 ** just done a seek to the spot where the new entry is to be inserted. |
4675 ** This flag avoids doing an extra seek. | 4867 ** This flag avoids doing an extra seek. |
4676 ** | 4868 ** |
4677 ** This instruction only works for indices. The equivalent instruction | 4869 ** This instruction only works for indices. The equivalent instruction |
4678 ** for tables is OP_Insert. | 4870 ** for tables is OP_Insert. |
4679 */ | 4871 */ |
4680 case OP_SorterInsert: /* in2 */ | 4872 case OP_SorterInsert: /* in2 */ |
4681 case OP_IdxInsert: { /* in2 */ | 4873 case OP_IdxInsert: { /* in2 */ |
4682 VdbeCursor *pC; | 4874 VdbeCursor *pC; |
4683 BtCursor *pCrsr; | |
4684 int nKey; | 4875 int nKey; |
4685 const char *zKey; | 4876 const char *zKey; |
4686 | 4877 |
4687 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); | 4878 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
4688 pC = p->apCsr[pOp->p1]; | 4879 pC = p->apCsr[pOp->p1]; |
4689 assert( pC!=0 ); | 4880 assert( pC!=0 ); |
4690 assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) ); | 4881 assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) ); |
4691 pIn2 = &aMem[pOp->p2]; | 4882 pIn2 = &aMem[pOp->p2]; |
4692 assert( pIn2->flags & MEM_Blob ); | 4883 assert( pIn2->flags & MEM_Blob ); |
4693 pCrsr = pC->pCursor; | |
4694 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; | 4884 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; |
4695 assert( pCrsr!=0 ); | 4885 assert( pC->eCurType==CURTYPE_BTREE || pOp->opcode==OP_SorterInsert ); |
4696 assert( pC->isTable==0 ); | 4886 assert( pC->isTable==0 ); |
4697 rc = ExpandBlob(pIn2); | 4887 rc = ExpandBlob(pIn2); |
4698 if( rc==SQLITE_OK ){ | 4888 if( rc==SQLITE_OK ){ |
4699 if( isSorter(pC) ){ | 4889 if( pOp->opcode==OP_SorterInsert ){ |
4700 rc = sqlite3VdbeSorterWrite(pC, pIn2); | 4890 rc = sqlite3VdbeSorterWrite(pC, pIn2); |
4701 }else{ | 4891 }else{ |
4702 nKey = pIn2->n; | 4892 nKey = pIn2->n; |
4703 zKey = pIn2->z; | 4893 zKey = pIn2->z; |
4704 rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3, | 4894 rc = sqlite3BtreeInsert(pC->uc.pCursor, zKey, nKey, "", 0, 0, pOp->p3, |
4705 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0) | 4895 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0) |
4706 ); | 4896 ); |
4707 assert( pC->deferredMoveto==0 ); | 4897 assert( pC->deferredMoveto==0 ); |
4708 pC->cacheStatus = CACHE_STALE; | 4898 pC->cacheStatus = CACHE_STALE; |
4709 } | 4899 } |
4710 } | 4900 } |
4711 break; | 4901 break; |
4712 } | 4902 } |
4713 | 4903 |
4714 /* Opcode: IdxDelete P1 P2 P3 * * | 4904 /* Opcode: IdxDelete P1 P2 P3 * * |
4715 ** Synopsis: key=r[P2@P3] | 4905 ** Synopsis: key=r[P2@P3] |
4716 ** | 4906 ** |
4717 ** The content of P3 registers starting at register P2 form | 4907 ** The content of P3 registers starting at register P2 form |
4718 ** an unpacked index key. This opcode removes that entry from the | 4908 ** an unpacked index key. This opcode removes that entry from the |
4719 ** index opened by cursor P1. | 4909 ** index opened by cursor P1. |
4720 */ | 4910 */ |
4721 case OP_IdxDelete: { | 4911 case OP_IdxDelete: { |
4722 VdbeCursor *pC; | 4912 VdbeCursor *pC; |
4723 BtCursor *pCrsr; | 4913 BtCursor *pCrsr; |
4724 int res; | 4914 int res; |
4725 UnpackedRecord r; | 4915 UnpackedRecord r; |
4726 | 4916 |
4727 assert( pOp->p3>0 ); | 4917 assert( pOp->p3>0 ); |
4728 assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem-p->nCursor)+1 ); | 4918 assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem-p->nCursor)+1 ); |
4729 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); | 4919 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
4730 pC = p->apCsr[pOp->p1]; | 4920 pC = p->apCsr[pOp->p1]; |
4731 assert( pC!=0 ); | 4921 assert( pC!=0 ); |
4732 pCrsr = pC->pCursor; | 4922 assert( pC->eCurType==CURTYPE_BTREE ); |
| 4923 pCrsr = pC->uc.pCursor; |
4733 assert( pCrsr!=0 ); | 4924 assert( pCrsr!=0 ); |
4734 assert( pOp->p5==0 ); | 4925 assert( pOp->p5==0 ); |
4735 r.pKeyInfo = pC->pKeyInfo; | 4926 r.pKeyInfo = pC->pKeyInfo; |
4736 r.nField = (u16)pOp->p3; | 4927 r.nField = (u16)pOp->p3; |
4737 r.default_rc = 0; | 4928 r.default_rc = 0; |
4738 r.aMem = &aMem[pOp->p2]; | 4929 r.aMem = &aMem[pOp->p2]; |
4739 #ifdef SQLITE_DEBUG | 4930 #ifdef SQLITE_DEBUG |
4740 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } | 4931 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } |
4741 #endif | 4932 #endif |
4742 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res); | 4933 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res); |
4743 if( rc==SQLITE_OK && res==0 ){ | 4934 if( rc==SQLITE_OK && res==0 ){ |
4744 rc = sqlite3BtreeDelete(pCrsr); | 4935 rc = sqlite3BtreeDelete(pCrsr, 0); |
4745 } | 4936 } |
4746 assert( pC->deferredMoveto==0 ); | 4937 assert( pC->deferredMoveto==0 ); |
4747 pC->cacheStatus = CACHE_STALE; | 4938 pC->cacheStatus = CACHE_STALE; |
4748 break; | 4939 break; |
4749 } | 4940 } |
4750 | 4941 |
4751 /* Opcode: IdxRowid P1 P2 * * * | 4942 /* Opcode: IdxRowid P1 P2 * * * |
4752 ** Synopsis: r[P2]=rowid | 4943 ** Synopsis: r[P2]=rowid |
4753 ** | 4944 ** |
4754 ** Write into register P2 an integer which is the last entry in the record at | 4945 ** Write into register P2 an integer which is the last entry in the record at |
4755 ** the end of the index key pointed to by cursor P1. This integer should be | 4946 ** the end of the index key pointed to by cursor P1. This integer should be |
4756 ** the rowid of the table entry to which this index entry points. | 4947 ** the rowid of the table entry to which this index entry points. |
4757 ** | 4948 ** |
4758 ** See also: Rowid, MakeRecord. | 4949 ** See also: Rowid, MakeRecord. |
4759 */ | 4950 */ |
4760 case OP_IdxRowid: { /* out2-prerelease */ | 4951 case OP_IdxRowid: { /* out2 */ |
4761 BtCursor *pCrsr; | 4952 BtCursor *pCrsr; |
4762 VdbeCursor *pC; | 4953 VdbeCursor *pC; |
4763 i64 rowid; | 4954 i64 rowid; |
4764 | 4955 |
| 4956 pOut = out2Prerelease(p, pOp); |
4765 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); | 4957 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
4766 pC = p->apCsr[pOp->p1]; | 4958 pC = p->apCsr[pOp->p1]; |
4767 assert( pC!=0 ); | 4959 assert( pC!=0 ); |
4768 pCrsr = pC->pCursor; | 4960 assert( pC->eCurType==CURTYPE_BTREE ); |
| 4961 pCrsr = pC->uc.pCursor; |
4769 assert( pCrsr!=0 ); | 4962 assert( pCrsr!=0 ); |
4770 pOut->flags = MEM_Null; | 4963 pOut->flags = MEM_Null; |
4771 assert( pC->isTable==0 ); | 4964 assert( pC->isTable==0 ); |
4772 assert( pC->deferredMoveto==0 ); | 4965 assert( pC->deferredMoveto==0 ); |
4773 | 4966 |
4774 /* sqlite3VbeCursorRestore() can only fail if the record has been deleted | 4967 /* sqlite3VbeCursorRestore() can only fail if the record has been deleted |
4775 ** out from under the cursor. That will never happend for an IdxRowid | 4968 ** out from under the cursor. That will never happend for an IdxRowid |
4776 ** opcode, hence the NEVER() arround the check of the return value. | 4969 ** opcode, hence the NEVER() arround the check of the return value. |
4777 */ | 4970 */ |
4778 rc = sqlite3VdbeCursorRestore(pC); | 4971 rc = sqlite3VdbeCursorRestore(pC); |
(...skipping 60 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
4839 case OP_IdxLT: /* jump */ | 5032 case OP_IdxLT: /* jump */ |
4840 case OP_IdxGE: { /* jump */ | 5033 case OP_IdxGE: { /* jump */ |
4841 VdbeCursor *pC; | 5034 VdbeCursor *pC; |
4842 int res; | 5035 int res; |
4843 UnpackedRecord r; | 5036 UnpackedRecord r; |
4844 | 5037 |
4845 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); | 5038 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
4846 pC = p->apCsr[pOp->p1]; | 5039 pC = p->apCsr[pOp->p1]; |
4847 assert( pC!=0 ); | 5040 assert( pC!=0 ); |
4848 assert( pC->isOrdered ); | 5041 assert( pC->isOrdered ); |
4849 assert( pC->pCursor!=0); | 5042 assert( pC->eCurType==CURTYPE_BTREE ); |
| 5043 assert( pC->uc.pCursor!=0); |
4850 assert( pC->deferredMoveto==0 ); | 5044 assert( pC->deferredMoveto==0 ); |
4851 assert( pOp->p5==0 || pOp->p5==1 ); | 5045 assert( pOp->p5==0 || pOp->p5==1 ); |
4852 assert( pOp->p4type==P4_INT32 ); | 5046 assert( pOp->p4type==P4_INT32 ); |
4853 r.pKeyInfo = pC->pKeyInfo; | 5047 r.pKeyInfo = pC->pKeyInfo; |
4854 r.nField = (u16)pOp->p4.i; | 5048 r.nField = (u16)pOp->p4.i; |
4855 if( pOp->opcode<OP_IdxLT ){ | 5049 if( pOp->opcode<OP_IdxLT ){ |
4856 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT ); | 5050 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT ); |
4857 r.default_rc = -1; | 5051 r.default_rc = -1; |
4858 }else{ | 5052 }else{ |
4859 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT ); | 5053 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT ); |
4860 r.default_rc = 0; | 5054 r.default_rc = 0; |
4861 } | 5055 } |
4862 r.aMem = &aMem[pOp->p3]; | 5056 r.aMem = &aMem[pOp->p3]; |
4863 #ifdef SQLITE_DEBUG | 5057 #ifdef SQLITE_DEBUG |
4864 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } | 5058 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } |
4865 #endif | 5059 #endif |
4866 res = 0; /* Not needed. Only used to silence a warning. */ | 5060 res = 0; /* Not needed. Only used to silence a warning. */ |
4867 rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res); | 5061 rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res); |
4868 assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) ); | 5062 assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) ); |
4869 if( (pOp->opcode&1)==(OP_IdxLT&1) ){ | 5063 if( (pOp->opcode&1)==(OP_IdxLT&1) ){ |
4870 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT ); | 5064 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT ); |
4871 res = -res; | 5065 res = -res; |
4872 }else{ | 5066 }else{ |
4873 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT ); | 5067 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT ); |
4874 res++; | 5068 res++; |
4875 } | 5069 } |
4876 VdbeBranchTaken(res>0,2); | 5070 VdbeBranchTaken(res>0,2); |
4877 if( res>0 ){ | 5071 if( res>0 ) goto jump_to_p2; |
4878 pc = pOp->p2 - 1 ; | |
4879 } | |
4880 break; | 5072 break; |
4881 } | 5073 } |
4882 | 5074 |
4883 /* Opcode: Destroy P1 P2 P3 * * | 5075 /* Opcode: Destroy P1 P2 P3 * * |
4884 ** | 5076 ** |
4885 ** Delete an entire database table or index whose root page in the database | 5077 ** Delete an entire database table or index whose root page in the database |
4886 ** file is given by P1. | 5078 ** file is given by P1. |
4887 ** | 5079 ** |
4888 ** The table being destroyed is in the main database file if P3==0. If | 5080 ** The table being destroyed is in the main database file if P3==0. If |
4889 ** P3==1 then the table to be clear is in the auxiliary database file | 5081 ** P3==1 then the table to be clear is in the auxiliary database file |
4890 ** that is used to store tables create using CREATE TEMPORARY TABLE. | 5082 ** that is used to store tables create using CREATE TEMPORARY TABLE. |
4891 ** | 5083 ** |
4892 ** If AUTOVACUUM is enabled then it is possible that another root page | 5084 ** If AUTOVACUUM is enabled then it is possible that another root page |
4893 ** might be moved into the newly deleted root page in order to keep all | 5085 ** might be moved into the newly deleted root page in order to keep all |
4894 ** root pages contiguous at the beginning of the database. The former | 5086 ** root pages contiguous at the beginning of the database. The former |
4895 ** value of the root page that moved - its value before the move occurred - | 5087 ** value of the root page that moved - its value before the move occurred - |
4896 ** is stored in register P2. If no page | 5088 ** is stored in register P2. If no page |
4897 ** movement was required (because the table being dropped was already | 5089 ** movement was required (because the table being dropped was already |
4898 ** the last one in the database) then a zero is stored in register P2. | 5090 ** the last one in the database) then a zero is stored in register P2. |
4899 ** If AUTOVACUUM is disabled then a zero is stored in register P2. | 5091 ** If AUTOVACUUM is disabled then a zero is stored in register P2. |
4900 ** | 5092 ** |
4901 ** See also: Clear | 5093 ** See also: Clear |
4902 */ | 5094 */ |
4903 case OP_Destroy: { /* out2-prerelease */ | 5095 case OP_Destroy: { /* out2 */ |
4904 int iMoved; | 5096 int iMoved; |
4905 int iCnt; | |
4906 Vdbe *pVdbe; | |
4907 int iDb; | 5097 int iDb; |
4908 | 5098 |
4909 assert( p->readOnly==0 ); | 5099 assert( p->readOnly==0 ); |
4910 #ifndef SQLITE_OMIT_VIRTUALTABLE | 5100 pOut = out2Prerelease(p, pOp); |
4911 iCnt = 0; | |
4912 for(pVdbe=db->pVdbe; pVdbe; pVdbe = pVdbe->pNext){ | |
4913 if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->bIsReader | |
4914 && pVdbe->inVtabMethod<2 && pVdbe->pc>=0 | |
4915 ){ | |
4916 iCnt++; | |
4917 } | |
4918 } | |
4919 #else | |
4920 iCnt = db->nVdbeRead; | |
4921 #endif | |
4922 pOut->flags = MEM_Null; | 5101 pOut->flags = MEM_Null; |
4923 if( iCnt>1 ){ | 5102 if( db->nVdbeRead > db->nVDestroy+1 ){ |
4924 rc = SQLITE_LOCKED; | 5103 rc = SQLITE_LOCKED; |
4925 p->errorAction = OE_Abort; | 5104 p->errorAction = OE_Abort; |
4926 }else{ | 5105 }else{ |
4927 iDb = pOp->p3; | 5106 iDb = pOp->p3; |
4928 assert( iCnt==1 ); | |
4929 assert( DbMaskTest(p->btreeMask, iDb) ); | 5107 assert( DbMaskTest(p->btreeMask, iDb) ); |
4930 iMoved = 0; /* Not needed. Only to silence a warning. */ | 5108 iMoved = 0; /* Not needed. Only to silence a warning. */ |
4931 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved); | 5109 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved); |
4932 pOut->flags = MEM_Int; | 5110 pOut->flags = MEM_Int; |
4933 pOut->u.i = iMoved; | 5111 pOut->u.i = iMoved; |
4934 #ifndef SQLITE_OMIT_AUTOVACUUM | 5112 #ifndef SQLITE_OMIT_AUTOVACUUM |
4935 if( rc==SQLITE_OK && iMoved!=0 ){ | 5113 if( rc==SQLITE_OK && iMoved!=0 ){ |
4936 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1); | 5114 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1); |
4937 /* All OP_Destroy operations occur on the same btree */ | 5115 /* All OP_Destroy operations occur on the same btree */ |
4938 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 ); | 5116 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 ); |
(...skipping 49 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
4988 ** | 5166 ** |
4989 ** This opcode only works for cursors used for sorting and | 5167 ** This opcode only works for cursors used for sorting and |
4990 ** opened with OP_OpenEphemeral or OP_SorterOpen. | 5168 ** opened with OP_OpenEphemeral or OP_SorterOpen. |
4991 */ | 5169 */ |
4992 case OP_ResetSorter: { | 5170 case OP_ResetSorter: { |
4993 VdbeCursor *pC; | 5171 VdbeCursor *pC; |
4994 | 5172 |
4995 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); | 5173 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
4996 pC = p->apCsr[pOp->p1]; | 5174 pC = p->apCsr[pOp->p1]; |
4997 assert( pC!=0 ); | 5175 assert( pC!=0 ); |
4998 if( pC->pSorter ){ | 5176 if( isSorter(pC) ){ |
4999 sqlite3VdbeSorterReset(db, pC->pSorter); | 5177 sqlite3VdbeSorterReset(db, pC->uc.pSorter); |
5000 }else{ | 5178 }else{ |
| 5179 assert( pC->eCurType==CURTYPE_BTREE ); |
5001 assert( pC->isEphemeral ); | 5180 assert( pC->isEphemeral ); |
5002 rc = sqlite3BtreeClearTableOfCursor(pC->pCursor); | 5181 rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor); |
5003 } | 5182 } |
5004 break; | 5183 break; |
5005 } | 5184 } |
5006 | 5185 |
5007 /* Opcode: CreateTable P1 P2 * * * | 5186 /* Opcode: CreateTable P1 P2 * * * |
5008 ** Synopsis: r[P2]=root iDb=P1 | 5187 ** Synopsis: r[P2]=root iDb=P1 |
5009 ** | 5188 ** |
5010 ** Allocate a new table in the main database file if P1==0 or in the | 5189 ** Allocate a new table in the main database file if P1==0 or in the |
5011 ** auxiliary database file if P1==1 or in an attached database if | 5190 ** auxiliary database file if P1==1 or in an attached database if |
5012 ** P1>1. Write the root page number of the new table into | 5191 ** P1>1. Write the root page number of the new table into |
5013 ** register P2 | 5192 ** register P2 |
5014 ** | 5193 ** |
5015 ** The difference between a table and an index is this: A table must | 5194 ** The difference between a table and an index is this: A table must |
5016 ** have a 4-byte integer key and can have arbitrary data. An index | 5195 ** have a 4-byte integer key and can have arbitrary data. An index |
5017 ** has an arbitrary key but no data. | 5196 ** has an arbitrary key but no data. |
5018 ** | 5197 ** |
5019 ** See also: CreateIndex | 5198 ** See also: CreateIndex |
5020 */ | 5199 */ |
5021 /* Opcode: CreateIndex P1 P2 * * * | 5200 /* Opcode: CreateIndex P1 P2 * * * |
5022 ** Synopsis: r[P2]=root iDb=P1 | 5201 ** Synopsis: r[P2]=root iDb=P1 |
5023 ** | 5202 ** |
5024 ** Allocate a new index in the main database file if P1==0 or in the | 5203 ** Allocate a new index in the main database file if P1==0 or in the |
5025 ** auxiliary database file if P1==1 or in an attached database if | 5204 ** auxiliary database file if P1==1 or in an attached database if |
5026 ** P1>1. Write the root page number of the new table into | 5205 ** P1>1. Write the root page number of the new table into |
5027 ** register P2. | 5206 ** register P2. |
5028 ** | 5207 ** |
5029 ** See documentation on OP_CreateTable for additional information. | 5208 ** See documentation on OP_CreateTable for additional information. |
5030 */ | 5209 */ |
5031 case OP_CreateIndex: /* out2-prerelease */ | 5210 case OP_CreateIndex: /* out2 */ |
5032 case OP_CreateTable: { /* out2-prerelease */ | 5211 case OP_CreateTable: { /* out2 */ |
5033 int pgno; | 5212 int pgno; |
5034 int flags; | 5213 int flags; |
5035 Db *pDb; | 5214 Db *pDb; |
5036 | 5215 |
| 5216 pOut = out2Prerelease(p, pOp); |
5037 pgno = 0; | 5217 pgno = 0; |
5038 assert( pOp->p1>=0 && pOp->p1<db->nDb ); | 5218 assert( pOp->p1>=0 && pOp->p1<db->nDb ); |
5039 assert( DbMaskTest(p->btreeMask, pOp->p1) ); | 5219 assert( DbMaskTest(p->btreeMask, pOp->p1) ); |
5040 assert( p->readOnly==0 ); | 5220 assert( p->readOnly==0 ); |
5041 pDb = &db->aDb[pOp->p1]; | 5221 pDb = &db->aDb[pOp->p1]; |
5042 assert( pDb->pBt!=0 ); | 5222 assert( pDb->pBt!=0 ); |
5043 if( pOp->opcode==OP_CreateTable ){ | 5223 if( pOp->opcode==OP_CreateTable ){ |
5044 /* flags = BTREE_INTKEY; */ | 5224 /* flags = BTREE_INTKEY; */ |
5045 flags = BTREE_INTKEY; | 5225 flags = BTREE_INTKEY; |
5046 }else{ | 5226 }else{ |
(...skipping 205 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
5252 */ | 5432 */ |
5253 case OP_RowSetRead: { /* jump, in1, out3 */ | 5433 case OP_RowSetRead: { /* jump, in1, out3 */ |
5254 i64 val; | 5434 i64 val; |
5255 | 5435 |
5256 pIn1 = &aMem[pOp->p1]; | 5436 pIn1 = &aMem[pOp->p1]; |
5257 if( (pIn1->flags & MEM_RowSet)==0 | 5437 if( (pIn1->flags & MEM_RowSet)==0 |
5258 || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0 | 5438 || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0 |
5259 ){ | 5439 ){ |
5260 /* The boolean index is empty */ | 5440 /* The boolean index is empty */ |
5261 sqlite3VdbeMemSetNull(pIn1); | 5441 sqlite3VdbeMemSetNull(pIn1); |
5262 pc = pOp->p2 - 1; | |
5263 VdbeBranchTaken(1,2); | 5442 VdbeBranchTaken(1,2); |
| 5443 goto jump_to_p2_and_check_for_interrupt; |
5264 }else{ | 5444 }else{ |
5265 /* A value was pulled from the index */ | 5445 /* A value was pulled from the index */ |
| 5446 VdbeBranchTaken(0,2); |
5266 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val); | 5447 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val); |
5267 VdbeBranchTaken(0,2); | |
5268 } | 5448 } |
5269 goto check_for_interrupt; | 5449 goto check_for_interrupt; |
5270 } | 5450 } |
5271 | 5451 |
5272 /* Opcode: RowSetTest P1 P2 P3 P4 | 5452 /* Opcode: RowSetTest P1 P2 P3 P4 |
5273 ** Synopsis: if r[P3] in rowset(P1) goto P2 | 5453 ** Synopsis: if r[P3] in rowset(P1) goto P2 |
5274 ** | 5454 ** |
5275 ** Register P3 is assumed to hold a 64-bit integer value. If register P1 | 5455 ** Register P3 is assumed to hold a 64-bit integer value. If register P1 |
5276 ** contains a RowSet object and that RowSet object contains | 5456 ** contains a RowSet object and that RowSet object contains |
5277 ** the value held in P3, jump to register P2. Otherwise, insert the | 5457 ** the value held in P3, jump to register P2. Otherwise, insert the |
(...skipping 30 matching lines...) Expand all Loading... |
5308 if( (pIn1->flags & MEM_RowSet)==0 ){ | 5488 if( (pIn1->flags & MEM_RowSet)==0 ){ |
5309 sqlite3VdbeMemSetRowSet(pIn1); | 5489 sqlite3VdbeMemSetRowSet(pIn1); |
5310 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem; | 5490 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem; |
5311 } | 5491 } |
5312 | 5492 |
5313 assert( pOp->p4type==P4_INT32 ); | 5493 assert( pOp->p4type==P4_INT32 ); |
5314 assert( iSet==-1 || iSet>=0 ); | 5494 assert( iSet==-1 || iSet>=0 ); |
5315 if( iSet ){ | 5495 if( iSet ){ |
5316 exists = sqlite3RowSetTest(pIn1->u.pRowSet, iSet, pIn3->u.i); | 5496 exists = sqlite3RowSetTest(pIn1->u.pRowSet, iSet, pIn3->u.i); |
5317 VdbeBranchTaken(exists!=0,2); | 5497 VdbeBranchTaken(exists!=0,2); |
5318 if( exists ){ | 5498 if( exists ) goto jump_to_p2; |
5319 pc = pOp->p2 - 1; | |
5320 break; | |
5321 } | |
5322 } | 5499 } |
5323 if( iSet>=0 ){ | 5500 if( iSet>=0 ){ |
5324 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i); | 5501 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i); |
5325 } | 5502 } |
5326 break; | 5503 break; |
5327 } | 5504 } |
5328 | 5505 |
5329 | 5506 |
5330 #ifndef SQLITE_OMIT_TRIGGER | 5507 #ifndef SQLITE_OMIT_TRIGGER |
5331 | 5508 |
(...skipping 38 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
5370 ** single trigger all have the same value for the SubProgram.token | 5547 ** single trigger all have the same value for the SubProgram.token |
5371 ** variable. */ | 5548 ** variable. */ |
5372 if( pOp->p5 ){ | 5549 if( pOp->p5 ){ |
5373 t = pProgram->token; | 5550 t = pProgram->token; |
5374 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent); | 5551 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent); |
5375 if( pFrame ) break; | 5552 if( pFrame ) break; |
5376 } | 5553 } |
5377 | 5554 |
5378 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){ | 5555 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){ |
5379 rc = SQLITE_ERROR; | 5556 rc = SQLITE_ERROR; |
5380 sqlite3SetString(&p->zErrMsg, db, "too many levels of trigger recursion"); | 5557 sqlite3VdbeError(p, "too many levels of trigger recursion"); |
5381 break; | 5558 break; |
5382 } | 5559 } |
5383 | 5560 |
5384 /* Register pRt is used to store the memory required to save the state | 5561 /* Register pRt is used to store the memory required to save the state |
5385 ** of the current program, and the memory required at runtime to execute | 5562 ** of the current program, and the memory required at runtime to execute |
5386 ** the trigger program. If this trigger has been fired before, then pRt | 5563 ** the trigger program. If this trigger has been fired before, then pRt |
5387 ** is already allocated. Otherwise, it must be initialized. */ | 5564 ** is already allocated. Otherwise, it must be initialized. */ |
5388 if( (pRt->flags&MEM_Frame)==0 ){ | 5565 if( (pRt->flags&MEM_Frame)==0 ){ |
5389 /* SubProgram.nMem is set to the number of memory cells used by the | 5566 /* SubProgram.nMem is set to the number of memory cells used by the |
5390 ** program stored in SubProgram.aOp. As well as these, one memory | 5567 ** program stored in SubProgram.aOp. As well as these, one memory |
5391 ** cell is required for each cursor used by the program. Set local | 5568 ** cell is required for each cursor used by the program. Set local |
5392 ** variable nMem (and later, VdbeFrame.nChildMem) to this value. | 5569 ** variable nMem (and later, VdbeFrame.nChildMem) to this value. |
5393 */ | 5570 */ |
5394 nMem = pProgram->nMem + pProgram->nCsr; | 5571 nMem = pProgram->nMem + pProgram->nCsr; |
5395 nByte = ROUND8(sizeof(VdbeFrame)) | 5572 nByte = ROUND8(sizeof(VdbeFrame)) |
5396 + nMem * sizeof(Mem) | 5573 + nMem * sizeof(Mem) |
5397 + pProgram->nCsr * sizeof(VdbeCursor *) | 5574 + pProgram->nCsr * sizeof(VdbeCursor *) |
5398 + pProgram->nOnce * sizeof(u8); | 5575 + pProgram->nOnce * sizeof(u8); |
5399 pFrame = sqlite3DbMallocZero(db, nByte); | 5576 pFrame = sqlite3DbMallocZero(db, nByte); |
5400 if( !pFrame ){ | 5577 if( !pFrame ){ |
5401 goto no_mem; | 5578 goto no_mem; |
5402 } | 5579 } |
5403 sqlite3VdbeMemRelease(pRt); | 5580 sqlite3VdbeMemRelease(pRt); |
5404 pRt->flags = MEM_Frame; | 5581 pRt->flags = MEM_Frame; |
5405 pRt->u.pFrame = pFrame; | 5582 pRt->u.pFrame = pFrame; |
5406 | 5583 |
5407 pFrame->v = p; | 5584 pFrame->v = p; |
5408 pFrame->nChildMem = nMem; | 5585 pFrame->nChildMem = nMem; |
5409 pFrame->nChildCsr = pProgram->nCsr; | 5586 pFrame->nChildCsr = pProgram->nCsr; |
5410 pFrame->pc = pc; | 5587 pFrame->pc = (int)(pOp - aOp); |
5411 pFrame->aMem = p->aMem; | 5588 pFrame->aMem = p->aMem; |
5412 pFrame->nMem = p->nMem; | 5589 pFrame->nMem = p->nMem; |
5413 pFrame->apCsr = p->apCsr; | 5590 pFrame->apCsr = p->apCsr; |
5414 pFrame->nCursor = p->nCursor; | 5591 pFrame->nCursor = p->nCursor; |
5415 pFrame->aOp = p->aOp; | 5592 pFrame->aOp = p->aOp; |
5416 pFrame->nOp = p->nOp; | 5593 pFrame->nOp = p->nOp; |
5417 pFrame->token = pProgram->token; | 5594 pFrame->token = pProgram->token; |
5418 pFrame->aOnceFlag = p->aOnceFlag; | 5595 pFrame->aOnceFlag = p->aOnceFlag; |
5419 pFrame->nOnceFlag = p->nOnceFlag; | 5596 pFrame->nOnceFlag = p->nOnceFlag; |
| 5597 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS |
| 5598 pFrame->anExec = p->anExec; |
| 5599 #endif |
5420 | 5600 |
5421 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem]; | 5601 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem]; |
5422 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){ | 5602 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){ |
5423 pMem->flags = MEM_Undefined; | 5603 pMem->flags = MEM_Undefined; |
5424 pMem->db = db; | 5604 pMem->db = db; |
5425 } | 5605 } |
5426 }else{ | 5606 }else{ |
5427 pFrame = pRt->u.pFrame; | 5607 pFrame = pRt->u.pFrame; |
5428 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem ); | 5608 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem ); |
5429 assert( pProgram->nCsr==pFrame->nChildCsr ); | 5609 assert( pProgram->nCsr==pFrame->nChildCsr ); |
5430 assert( pc==pFrame->pc ); | 5610 assert( (int)(pOp - aOp)==pFrame->pc ); |
5431 } | 5611 } |
5432 | 5612 |
5433 p->nFrame++; | 5613 p->nFrame++; |
5434 pFrame->pParent = p->pFrame; | 5614 pFrame->pParent = p->pFrame; |
5435 pFrame->lastRowid = lastRowid; | 5615 pFrame->lastRowid = lastRowid; |
5436 pFrame->nChange = p->nChange; | 5616 pFrame->nChange = p->nChange; |
| 5617 pFrame->nDbChange = p->db->nChange; |
5437 p->nChange = 0; | 5618 p->nChange = 0; |
5438 p->pFrame = pFrame; | 5619 p->pFrame = pFrame; |
5439 p->aMem = aMem = &VdbeFrameMem(pFrame)[-1]; | 5620 p->aMem = aMem = &VdbeFrameMem(pFrame)[-1]; |
5440 p->nMem = pFrame->nChildMem; | 5621 p->nMem = pFrame->nChildMem; |
5441 p->nCursor = (u16)pFrame->nChildCsr; | 5622 p->nCursor = (u16)pFrame->nChildCsr; |
5442 p->apCsr = (VdbeCursor **)&aMem[p->nMem+1]; | 5623 p->apCsr = (VdbeCursor **)&aMem[p->nMem+1]; |
5443 p->aOp = aOp = pProgram->aOp; | 5624 p->aOp = aOp = pProgram->aOp; |
5444 p->nOp = pProgram->nOp; | 5625 p->nOp = pProgram->nOp; |
5445 p->aOnceFlag = (u8 *)&p->apCsr[p->nCursor]; | 5626 p->aOnceFlag = (u8 *)&p->apCsr[p->nCursor]; |
5446 p->nOnceFlag = pProgram->nOnce; | 5627 p->nOnceFlag = pProgram->nOnce; |
5447 pc = -1; | 5628 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS |
| 5629 p->anExec = 0; |
| 5630 #endif |
| 5631 pOp = &aOp[-1]; |
5448 memset(p->aOnceFlag, 0, p->nOnceFlag); | 5632 memset(p->aOnceFlag, 0, p->nOnceFlag); |
5449 | 5633 |
5450 break; | 5634 break; |
5451 } | 5635 } |
5452 | 5636 |
5453 /* Opcode: Param P1 P2 * * * | 5637 /* Opcode: Param P1 P2 * * * |
5454 ** | 5638 ** |
5455 ** This opcode is only ever present in sub-programs called via the | 5639 ** This opcode is only ever present in sub-programs called via the |
5456 ** OP_Program instruction. Copy a value currently stored in a memory | 5640 ** OP_Program instruction. Copy a value currently stored in a memory |
5457 ** cell of the calling (parent) frame to cell P2 in the current frames | 5641 ** cell of the calling (parent) frame to cell P2 in the current frames |
5458 ** address space. This is used by trigger programs to access the new.* | 5642 ** address space. This is used by trigger programs to access the new.* |
5459 ** and old.* values. | 5643 ** and old.* values. |
5460 ** | 5644 ** |
5461 ** The address of the cell in the parent frame is determined by adding | 5645 ** The address of the cell in the parent frame is determined by adding |
5462 ** the value of the P1 argument to the value of the P1 argument to the | 5646 ** the value of the P1 argument to the value of the P1 argument to the |
5463 ** calling OP_Program instruction. | 5647 ** calling OP_Program instruction. |
5464 */ | 5648 */ |
5465 case OP_Param: { /* out2-prerelease */ | 5649 case OP_Param: { /* out2 */ |
5466 VdbeFrame *pFrame; | 5650 VdbeFrame *pFrame; |
5467 Mem *pIn; | 5651 Mem *pIn; |
| 5652 pOut = out2Prerelease(p, pOp); |
5468 pFrame = p->pFrame; | 5653 pFrame = p->pFrame; |
5469 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1]; | 5654 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1]; |
5470 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem); | 5655 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem); |
5471 break; | 5656 break; |
5472 } | 5657 } |
5473 | 5658 |
5474 #endif /* #ifndef SQLITE_OMIT_TRIGGER */ | 5659 #endif /* #ifndef SQLITE_OMIT_TRIGGER */ |
5475 | 5660 |
5476 #ifndef SQLITE_OMIT_FOREIGN_KEY | 5661 #ifndef SQLITE_OMIT_FOREIGN_KEY |
5477 /* Opcode: FkCounter P1 P2 * * * | 5662 /* Opcode: FkCounter P1 P2 * * * |
(...skipping 23 matching lines...) Expand all Loading... |
5501 ** instruction. | 5686 ** instruction. |
5502 ** | 5687 ** |
5503 ** If P1 is non-zero, then the jump is taken if the database constraint-counter | 5688 ** If P1 is non-zero, then the jump is taken if the database constraint-counter |
5504 ** is zero (the one that counts deferred constraint violations). If P1 is | 5689 ** is zero (the one that counts deferred constraint violations). If P1 is |
5505 ** zero, the jump is taken if the statement constraint-counter is zero | 5690 ** zero, the jump is taken if the statement constraint-counter is zero |
5506 ** (immediate foreign key constraint violations). | 5691 ** (immediate foreign key constraint violations). |
5507 */ | 5692 */ |
5508 case OP_FkIfZero: { /* jump */ | 5693 case OP_FkIfZero: { /* jump */ |
5509 if( pOp->p1 ){ | 5694 if( pOp->p1 ){ |
5510 VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2); | 5695 VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2); |
5511 if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) pc = pOp->p2-1; | 5696 if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; |
5512 }else{ | 5697 }else{ |
5513 VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2); | 5698 VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2); |
5514 if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) pc = pOp->p2-1; | 5699 if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; |
5515 } | 5700 } |
5516 break; | 5701 break; |
5517 } | 5702 } |
5518 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */ | 5703 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */ |
5519 | 5704 |
5520 #ifndef SQLITE_OMIT_AUTOINCREMENT | 5705 #ifndef SQLITE_OMIT_AUTOINCREMENT |
5521 /* Opcode: MemMax P1 P2 * * * | 5706 /* Opcode: MemMax P1 P2 * * * |
5522 ** Synopsis: r[P1]=max(r[P1],r[P2]) | 5707 ** Synopsis: r[P1]=max(r[P1],r[P2]) |
5523 ** | 5708 ** |
5524 ** P1 is a register in the root frame of this VM (the root frame is | 5709 ** P1 is a register in the root frame of this VM (the root frame is |
(...skipping 16 matching lines...) Expand all Loading... |
5541 sqlite3VdbeMemIntegerify(pIn1); | 5726 sqlite3VdbeMemIntegerify(pIn1); |
5542 pIn2 = &aMem[pOp->p2]; | 5727 pIn2 = &aMem[pOp->p2]; |
5543 sqlite3VdbeMemIntegerify(pIn2); | 5728 sqlite3VdbeMemIntegerify(pIn2); |
5544 if( pIn1->u.i<pIn2->u.i){ | 5729 if( pIn1->u.i<pIn2->u.i){ |
5545 pIn1->u.i = pIn2->u.i; | 5730 pIn1->u.i = pIn2->u.i; |
5546 } | 5731 } |
5547 break; | 5732 break; |
5548 } | 5733 } |
5549 #endif /* SQLITE_OMIT_AUTOINCREMENT */ | 5734 #endif /* SQLITE_OMIT_AUTOINCREMENT */ |
5550 | 5735 |
5551 /* Opcode: IfPos P1 P2 * * * | 5736 /* Opcode: IfPos P1 P2 P3 * * |
5552 ** Synopsis: if r[P1]>0 goto P2 | 5737 ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2 |
5553 ** | 5738 ** |
5554 ** If the value of register P1 is 1 or greater, jump to P2. | 5739 ** Register P1 must contain an integer. |
| 5740 ** If the value of register P1 is 1 or greater, subtract P3 from the |
| 5741 ** value in P1 and jump to P2. |
5555 ** | 5742 ** |
5556 ** It is illegal to use this instruction on a register that does | 5743 ** If the initial value of register P1 is less than 1, then the |
5557 ** not contain an integer. An assertion fault will result if you try. | 5744 ** value is unchanged and control passes through to the next instruction. |
5558 */ | 5745 */ |
5559 case OP_IfPos: { /* jump, in1 */ | 5746 case OP_IfPos: { /* jump, in1 */ |
5560 pIn1 = &aMem[pOp->p1]; | 5747 pIn1 = &aMem[pOp->p1]; |
5561 assert( pIn1->flags&MEM_Int ); | 5748 assert( pIn1->flags&MEM_Int ); |
5562 VdbeBranchTaken( pIn1->u.i>0, 2); | 5749 VdbeBranchTaken( pIn1->u.i>0, 2); |
5563 if( pIn1->u.i>0 ){ | 5750 if( pIn1->u.i>0 ){ |
5564 pc = pOp->p2 - 1; | 5751 pIn1->u.i -= pOp->p3; |
| 5752 goto jump_to_p2; |
5565 } | 5753 } |
5566 break; | 5754 break; |
5567 } | 5755 } |
5568 | 5756 |
5569 /* Opcode: IfNeg P1 P2 P3 * * | 5757 /* Opcode: SetIfNotPos P1 P2 P3 * * |
5570 ** Synopsis: r[P1]+=P3, if r[P1]<0 goto P2 | 5758 ** Synopsis: if r[P1]<=0 then r[P2]=P3 |
5571 ** | 5759 ** |
5572 ** Register P1 must contain an integer. Add literal P3 to the value in | 5760 ** Register P1 must contain an integer. |
5573 ** register P1 then if the value of register P1 is less than zero, jump to P2. | 5761 ** If the value of register P1 is not positive (if it is less than 1) then |
| 5762 ** set the value of register P2 to be the integer P3. |
5574 */ | 5763 */ |
5575 case OP_IfNeg: { /* jump, in1 */ | 5764 case OP_SetIfNotPos: { /* in1, in2 */ |
5576 pIn1 = &aMem[pOp->p1]; | 5765 pIn1 = &aMem[pOp->p1]; |
5577 assert( pIn1->flags&MEM_Int ); | 5766 assert( pIn1->flags&MEM_Int ); |
5578 pIn1->u.i += pOp->p3; | 5767 if( pIn1->u.i<=0 ){ |
5579 VdbeBranchTaken(pIn1->u.i<0, 2); | 5768 pOut = out2Prerelease(p, pOp); |
5580 if( pIn1->u.i<0 ){ | 5769 pOut->u.i = pOp->p3; |
5581 pc = pOp->p2 - 1; | |
5582 } | 5770 } |
5583 break; | 5771 break; |
5584 } | 5772 } |
5585 | 5773 |
5586 /* Opcode: IfZero P1 P2 P3 * * | 5774 /* Opcode: IfNotZero P1 P2 P3 * * |
5587 ** Synopsis: r[P1]+=P3, if r[P1]==0 goto P2 | 5775 ** Synopsis: if r[P1]!=0 then r[P1]-=P3, goto P2 |
5588 ** | 5776 ** |
5589 ** The register P1 must contain an integer. Add literal P3 to the | 5777 ** Register P1 must contain an integer. If the content of register P1 is |
5590 ** value in register P1. If the result is exactly 0, jump to P2. | 5778 ** initially nonzero, then subtract P3 from the value in register P1 and |
| 5779 ** jump to P2. If register P1 is initially zero, leave it unchanged |
| 5780 ** and fall through. |
5591 */ | 5781 */ |
5592 case OP_IfZero: { /* jump, in1 */ | 5782 case OP_IfNotZero: { /* jump, in1 */ |
5593 pIn1 = &aMem[pOp->p1]; | 5783 pIn1 = &aMem[pOp->p1]; |
5594 assert( pIn1->flags&MEM_Int ); | 5784 assert( pIn1->flags&MEM_Int ); |
5595 pIn1->u.i += pOp->p3; | 5785 VdbeBranchTaken(pIn1->u.i<0, 2); |
5596 VdbeBranchTaken(pIn1->u.i==0, 2); | 5786 if( pIn1->u.i ){ |
5597 if( pIn1->u.i==0 ){ | 5787 pIn1->u.i -= pOp->p3; |
5598 pc = pOp->p2 - 1; | 5788 goto jump_to_p2; |
5599 } | 5789 } |
5600 break; | 5790 break; |
5601 } | 5791 } |
5602 | 5792 |
| 5793 /* Opcode: DecrJumpZero P1 P2 * * * |
| 5794 ** Synopsis: if (--r[P1])==0 goto P2 |
| 5795 ** |
| 5796 ** Register P1 must hold an integer. Decrement the value in register P1 |
| 5797 ** then jump to P2 if the new value is exactly zero. |
| 5798 */ |
| 5799 case OP_DecrJumpZero: { /* jump, in1 */ |
| 5800 pIn1 = &aMem[pOp->p1]; |
| 5801 assert( pIn1->flags&MEM_Int ); |
| 5802 pIn1->u.i--; |
| 5803 VdbeBranchTaken(pIn1->u.i==0, 2); |
| 5804 if( pIn1->u.i==0 ) goto jump_to_p2; |
| 5805 break; |
| 5806 } |
| 5807 |
| 5808 |
| 5809 /* Opcode: JumpZeroIncr P1 P2 * * * |
| 5810 ** Synopsis: if (r[P1]++)==0 ) goto P2 |
| 5811 ** |
| 5812 ** The register P1 must contain an integer. If register P1 is initially |
| 5813 ** zero, then jump to P2. Increment register P1 regardless of whether or |
| 5814 ** not the jump is taken. |
| 5815 */ |
| 5816 case OP_JumpZeroIncr: { /* jump, in1 */ |
| 5817 pIn1 = &aMem[pOp->p1]; |
| 5818 assert( pIn1->flags&MEM_Int ); |
| 5819 VdbeBranchTaken(pIn1->u.i==0, 2); |
| 5820 if( (pIn1->u.i++)==0 ) goto jump_to_p2; |
| 5821 break; |
| 5822 } |
| 5823 |
| 5824 /* Opcode: AggStep0 * P2 P3 P4 P5 |
| 5825 ** Synopsis: accum=r[P3] step(r[P2@P5]) |
| 5826 ** |
| 5827 ** Execute the step function for an aggregate. The |
| 5828 ** function has P5 arguments. P4 is a pointer to the FuncDef |
| 5829 ** structure that specifies the function. Register P3 is the |
| 5830 ** accumulator. |
| 5831 ** |
| 5832 ** The P5 arguments are taken from register P2 and its |
| 5833 ** successors. |
| 5834 */ |
5603 /* Opcode: AggStep * P2 P3 P4 P5 | 5835 /* Opcode: AggStep * P2 P3 P4 P5 |
5604 ** Synopsis: accum=r[P3] step(r[P2@P5]) | 5836 ** Synopsis: accum=r[P3] step(r[P2@P5]) |
5605 ** | 5837 ** |
5606 ** Execute the step function for an aggregate. The | 5838 ** Execute the step function for an aggregate. The |
5607 ** function has P5 arguments. P4 is a pointer to the FuncDef | 5839 ** function has P5 arguments. P4 is a pointer to an sqlite3_context |
5608 ** structure that specifies the function. Use register | 5840 ** object that is used to run the function. Register P3 is |
5609 ** P3 as the accumulator. | 5841 ** as the accumulator. |
5610 ** | 5842 ** |
5611 ** The P5 arguments are taken from register P2 and its | 5843 ** The P5 arguments are taken from register P2 and its |
5612 ** successors. | 5844 ** successors. |
| 5845 ** |
| 5846 ** This opcode is initially coded as OP_AggStep0. On first evaluation, |
| 5847 ** the FuncDef stored in P4 is converted into an sqlite3_context and |
| 5848 ** the opcode is changed. In this way, the initialization of the |
| 5849 ** sqlite3_context only happens once, instead of on each call to the |
| 5850 ** step function. |
5613 */ | 5851 */ |
| 5852 case OP_AggStep0: { |
| 5853 int n; |
| 5854 sqlite3_context *pCtx; |
| 5855 |
| 5856 assert( pOp->p4type==P4_FUNCDEF ); |
| 5857 n = pOp->p5; |
| 5858 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); |
| 5859 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem-p->nCursor)+1) ); |
| 5860 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); |
| 5861 pCtx = sqlite3DbMallocRaw(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*)); |
| 5862 if( pCtx==0 ) goto no_mem; |
| 5863 pCtx->pMem = 0; |
| 5864 pCtx->pFunc = pOp->p4.pFunc; |
| 5865 pCtx->iOp = (int)(pOp - aOp); |
| 5866 pCtx->pVdbe = p; |
| 5867 pCtx->argc = n; |
| 5868 pOp->p4type = P4_FUNCCTX; |
| 5869 pOp->p4.pCtx = pCtx; |
| 5870 pOp->opcode = OP_AggStep; |
| 5871 /* Fall through into OP_AggStep */ |
| 5872 } |
5614 case OP_AggStep: { | 5873 case OP_AggStep: { |
5615 int n; | |
5616 int i; | 5874 int i; |
| 5875 sqlite3_context *pCtx; |
5617 Mem *pMem; | 5876 Mem *pMem; |
5618 Mem *pRec; | |
5619 Mem t; | 5877 Mem t; |
5620 sqlite3_context ctx; | |
5621 sqlite3_value **apVal; | |
5622 | 5878 |
5623 n = pOp->p5; | 5879 assert( pOp->p4type==P4_FUNCCTX ); |
5624 assert( n>=0 ); | 5880 pCtx = pOp->p4.pCtx; |
5625 pRec = &aMem[pOp->p2]; | 5881 pMem = &aMem[pOp->p3]; |
5626 apVal = p->apArg; | 5882 |
5627 assert( apVal || n==0 ); | 5883 /* If this function is inside of a trigger, the register array in aMem[] |
5628 for(i=0; i<n; i++, pRec++){ | 5884 ** might change from one evaluation to the next. The next block of code |
5629 assert( memIsValid(pRec) ); | 5885 ** checks to see if the register array has changed, and if so it |
5630 apVal[i] = pRec; | 5886 ** reinitializes the relavant parts of the sqlite3_context object */ |
5631 memAboutToChange(p, pRec); | 5887 if( pCtx->pMem != pMem ){ |
| 5888 pCtx->pMem = pMem; |
| 5889 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; |
5632 } | 5890 } |
5633 ctx.pFunc = pOp->p4.pFunc; | 5891 |
5634 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); | 5892 #ifdef SQLITE_DEBUG |
5635 ctx.pMem = pMem = &aMem[pOp->p3]; | 5893 for(i=0; i<pCtx->argc; i++){ |
| 5894 assert( memIsValid(pCtx->argv[i]) ); |
| 5895 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); |
| 5896 } |
| 5897 #endif |
| 5898 |
5636 pMem->n++; | 5899 pMem->n++; |
5637 sqlite3VdbeMemInit(&t, db, MEM_Null); | 5900 sqlite3VdbeMemInit(&t, db, MEM_Null); |
5638 ctx.pOut = &t; | 5901 pCtx->pOut = &t; |
5639 ctx.isError = 0; | 5902 pCtx->fErrorOrAux = 0; |
5640 ctx.pVdbe = p; | 5903 pCtx->skipFlag = 0; |
5641 ctx.iOp = pc; | 5904 (pCtx->pFunc->xStep)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */ |
5642 ctx.skipFlag = 0; | 5905 if( pCtx->fErrorOrAux ){ |
5643 (ctx.pFunc->xStep)(&ctx, n, apVal); /* IMP: R-24505-23230 */ | 5906 if( pCtx->isError ){ |
5644 if( ctx.isError ){ | 5907 sqlite3VdbeError(p, "%s", sqlite3_value_text(&t)); |
5645 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&t)); | 5908 rc = pCtx->isError; |
5646 rc = ctx.isError; | 5909 } |
| 5910 sqlite3VdbeMemRelease(&t); |
| 5911 }else{ |
| 5912 assert( t.flags==MEM_Null ); |
5647 } | 5913 } |
5648 if( ctx.skipFlag ){ | 5914 if( pCtx->skipFlag ){ |
5649 assert( pOp[-1].opcode==OP_CollSeq ); | 5915 assert( pOp[-1].opcode==OP_CollSeq ); |
5650 i = pOp[-1].p1; | 5916 i = pOp[-1].p1; |
5651 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1); | 5917 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1); |
5652 } | 5918 } |
5653 sqlite3VdbeMemRelease(&t); | |
5654 break; | 5919 break; |
5655 } | 5920 } |
5656 | 5921 |
5657 /* Opcode: AggFinal P1 P2 * P4 * | 5922 /* Opcode: AggFinal P1 P2 * P4 * |
5658 ** Synopsis: accum=r[P1] N=P2 | 5923 ** Synopsis: accum=r[P1] N=P2 |
5659 ** | 5924 ** |
5660 ** Execute the finalizer function for an aggregate. P1 is | 5925 ** Execute the finalizer function for an aggregate. P1 is |
5661 ** the memory location that is the accumulator for the aggregate. | 5926 ** the memory location that is the accumulator for the aggregate. |
5662 ** | 5927 ** |
5663 ** P2 is the number of arguments that the step function takes and | 5928 ** P2 is the number of arguments that the step function takes and |
5664 ** P4 is a pointer to the FuncDef for this function. The P2 | 5929 ** P4 is a pointer to the FuncDef for this function. The P2 |
5665 ** argument is not used by this opcode. It is only there to disambiguate | 5930 ** argument is not used by this opcode. It is only there to disambiguate |
5666 ** functions that can take varying numbers of arguments. The | 5931 ** functions that can take varying numbers of arguments. The |
5667 ** P4 argument is only needed for the degenerate case where | 5932 ** P4 argument is only needed for the degenerate case where |
5668 ** the step function was not previously called. | 5933 ** the step function was not previously called. |
5669 */ | 5934 */ |
5670 case OP_AggFinal: { | 5935 case OP_AggFinal: { |
5671 Mem *pMem; | 5936 Mem *pMem; |
5672 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) ); | 5937 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) ); |
5673 pMem = &aMem[pOp->p1]; | 5938 pMem = &aMem[pOp->p1]; |
5674 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 ); | 5939 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 ); |
5675 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc); | 5940 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc); |
5676 if( rc ){ | 5941 if( rc ){ |
5677 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(pMem)); | 5942 sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem)); |
5678 } | 5943 } |
5679 sqlite3VdbeChangeEncoding(pMem, encoding); | 5944 sqlite3VdbeChangeEncoding(pMem, encoding); |
5680 UPDATE_MAX_BLOBSIZE(pMem); | 5945 UPDATE_MAX_BLOBSIZE(pMem); |
5681 if( sqlite3VdbeMemTooBig(pMem) ){ | 5946 if( sqlite3VdbeMemTooBig(pMem) ){ |
5682 goto too_big; | 5947 goto too_big; |
5683 } | 5948 } |
5684 break; | 5949 break; |
5685 } | 5950 } |
5686 | 5951 |
5687 #ifndef SQLITE_OMIT_WAL | 5952 #ifndef SQLITE_OMIT_WAL |
5688 /* Opcode: Checkpoint P1 P2 P3 * * | 5953 /* Opcode: Checkpoint P1 P2 P3 * * |
5689 ** | 5954 ** |
5690 ** Checkpoint database P1. This is a no-op if P1 is not currently in | 5955 ** Checkpoint database P1. This is a no-op if P1 is not currently in |
5691 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL | 5956 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL, |
5692 ** or RESTART. Write 1 or 0 into mem[P3] if the checkpoint returns | 5957 ** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns |
5693 ** SQLITE_BUSY or not, respectively. Write the number of pages in the | 5958 ** SQLITE_BUSY or not, respectively. Write the number of pages in the |
5694 ** WAL after the checkpoint into mem[P3+1] and the number of pages | 5959 ** WAL after the checkpoint into mem[P3+1] and the number of pages |
5695 ** in the WAL that have been checkpointed after the checkpoint | 5960 ** in the WAL that have been checkpointed after the checkpoint |
5696 ** completes into mem[P3+2]. However on an error, mem[P3+1] and | 5961 ** completes into mem[P3+2]. However on an error, mem[P3+1] and |
5697 ** mem[P3+2] are initialized to -1. | 5962 ** mem[P3+2] are initialized to -1. |
5698 */ | 5963 */ |
5699 case OP_Checkpoint: { | 5964 case OP_Checkpoint: { |
5700 int i; /* Loop counter */ | 5965 int i; /* Loop counter */ |
5701 int aRes[3]; /* Results */ | 5966 int aRes[3]; /* Results */ |
5702 Mem *pMem; /* Write results here */ | 5967 Mem *pMem; /* Write results here */ |
5703 | 5968 |
5704 assert( p->readOnly==0 ); | 5969 assert( p->readOnly==0 ); |
5705 aRes[0] = 0; | 5970 aRes[0] = 0; |
5706 aRes[1] = aRes[2] = -1; | 5971 aRes[1] = aRes[2] = -1; |
5707 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE | 5972 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE |
5708 || pOp->p2==SQLITE_CHECKPOINT_FULL | 5973 || pOp->p2==SQLITE_CHECKPOINT_FULL |
5709 || pOp->p2==SQLITE_CHECKPOINT_RESTART | 5974 || pOp->p2==SQLITE_CHECKPOINT_RESTART |
| 5975 || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE |
5710 ); | 5976 ); |
5711 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]); | 5977 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]); |
5712 if( rc==SQLITE_BUSY ){ | 5978 if( rc==SQLITE_BUSY ){ |
5713 rc = SQLITE_OK; | 5979 rc = SQLITE_OK; |
5714 aRes[0] = 1; | 5980 aRes[0] = 1; |
5715 } | 5981 } |
5716 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){ | 5982 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){ |
5717 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]); | 5983 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]); |
5718 } | 5984 } |
5719 break; | 5985 break; |
5720 }; | 5986 }; |
5721 #endif | 5987 #endif |
5722 | 5988 |
5723 #ifndef SQLITE_OMIT_PRAGMA | 5989 #ifndef SQLITE_OMIT_PRAGMA |
5724 /* Opcode: JournalMode P1 P2 P3 * * | 5990 /* Opcode: JournalMode P1 P2 P3 * * |
5725 ** | 5991 ** |
5726 ** Change the journal mode of database P1 to P3. P3 must be one of the | 5992 ** Change the journal mode of database P1 to P3. P3 must be one of the |
5727 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback | 5993 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback |
5728 ** modes (delete, truncate, persist, off and memory), this is a simple | 5994 ** modes (delete, truncate, persist, off and memory), this is a simple |
5729 ** operation. No IO is required. | 5995 ** operation. No IO is required. |
5730 ** | 5996 ** |
5731 ** If changing into or out of WAL mode the procedure is more complicated. | 5997 ** If changing into or out of WAL mode the procedure is more complicated. |
5732 ** | 5998 ** |
5733 ** Write a string containing the final journal-mode to register P2. | 5999 ** Write a string containing the final journal-mode to register P2. |
5734 */ | 6000 */ |
5735 case OP_JournalMode: { /* out2-prerelease */ | 6001 case OP_JournalMode: { /* out2 */ |
5736 Btree *pBt; /* Btree to change journal mode of */ | 6002 Btree *pBt; /* Btree to change journal mode of */ |
5737 Pager *pPager; /* Pager associated with pBt */ | 6003 Pager *pPager; /* Pager associated with pBt */ |
5738 int eNew; /* New journal mode */ | 6004 int eNew; /* New journal mode */ |
5739 int eOld; /* The old journal mode */ | 6005 int eOld; /* The old journal mode */ |
5740 #ifndef SQLITE_OMIT_WAL | 6006 #ifndef SQLITE_OMIT_WAL |
5741 const char *zFilename; /* Name of database file for pPager */ | 6007 const char *zFilename; /* Name of database file for pPager */ |
5742 #endif | 6008 #endif |
5743 | 6009 |
| 6010 pOut = out2Prerelease(p, pOp); |
5744 eNew = pOp->p3; | 6011 eNew = pOp->p3; |
5745 assert( eNew==PAGER_JOURNALMODE_DELETE | 6012 assert( eNew==PAGER_JOURNALMODE_DELETE |
5746 || eNew==PAGER_JOURNALMODE_TRUNCATE | 6013 || eNew==PAGER_JOURNALMODE_TRUNCATE |
5747 || eNew==PAGER_JOURNALMODE_PERSIST | 6014 || eNew==PAGER_JOURNALMODE_PERSIST |
5748 || eNew==PAGER_JOURNALMODE_OFF | 6015 || eNew==PAGER_JOURNALMODE_OFF |
5749 || eNew==PAGER_JOURNALMODE_MEMORY | 6016 || eNew==PAGER_JOURNALMODE_MEMORY |
5750 || eNew==PAGER_JOURNALMODE_WAL | 6017 || eNew==PAGER_JOURNALMODE_WAL |
5751 || eNew==PAGER_JOURNALMODE_QUERY | 6018 || eNew==PAGER_JOURNALMODE_QUERY |
5752 ); | 6019 ); |
5753 assert( pOp->p1>=0 && pOp->p1<db->nDb ); | 6020 assert( pOp->p1>=0 && pOp->p1<db->nDb ); |
(...skipping 16 matching lines...) Expand all Loading... |
5770 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */ | 6037 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */ |
5771 ){ | 6038 ){ |
5772 eNew = eOld; | 6039 eNew = eOld; |
5773 } | 6040 } |
5774 | 6041 |
5775 if( (eNew!=eOld) | 6042 if( (eNew!=eOld) |
5776 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL) | 6043 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL) |
5777 ){ | 6044 ){ |
5778 if( !db->autoCommit || db->nVdbeRead>1 ){ | 6045 if( !db->autoCommit || db->nVdbeRead>1 ){ |
5779 rc = SQLITE_ERROR; | 6046 rc = SQLITE_ERROR; |
5780 sqlite3SetString(&p->zErrMsg, db, | 6047 sqlite3VdbeError(p, |
5781 "cannot change %s wal mode from within a transaction", | 6048 "cannot change %s wal mode from within a transaction", |
5782 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of") | 6049 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of") |
5783 ); | 6050 ); |
5784 break; | 6051 break; |
5785 }else{ | 6052 }else{ |
5786 | 6053 |
5787 if( eOld==PAGER_JOURNALMODE_WAL ){ | 6054 if( eOld==PAGER_JOURNALMODE_WAL ){ |
5788 /* If leaving WAL mode, close the log file. If successful, the call | 6055 /* If leaving WAL mode, close the log file. If successful, the call |
5789 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log | 6056 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log |
5790 ** file. An EXCLUSIVE lock may still be held on the database file | 6057 ** file. An EXCLUSIVE lock may still be held on the database file |
(...skipping 18 matching lines...) Expand all Loading... |
5809 } | 6076 } |
5810 } | 6077 } |
5811 } | 6078 } |
5812 #endif /* ifndef SQLITE_OMIT_WAL */ | 6079 #endif /* ifndef SQLITE_OMIT_WAL */ |
5813 | 6080 |
5814 if( rc ){ | 6081 if( rc ){ |
5815 eNew = eOld; | 6082 eNew = eOld; |
5816 } | 6083 } |
5817 eNew = sqlite3PagerSetJournalMode(pPager, eNew); | 6084 eNew = sqlite3PagerSetJournalMode(pPager, eNew); |
5818 | 6085 |
5819 pOut = &aMem[pOp->p2]; | |
5820 pOut->flags = MEM_Str|MEM_Static|MEM_Term; | 6086 pOut->flags = MEM_Str|MEM_Static|MEM_Term; |
5821 pOut->z = (char *)sqlite3JournalModename(eNew); | 6087 pOut->z = (char *)sqlite3JournalModename(eNew); |
5822 pOut->n = sqlite3Strlen30(pOut->z); | 6088 pOut->n = sqlite3Strlen30(pOut->z); |
5823 pOut->enc = SQLITE_UTF8; | 6089 pOut->enc = SQLITE_UTF8; |
5824 sqlite3VdbeChangeEncoding(pOut, encoding); | 6090 sqlite3VdbeChangeEncoding(pOut, encoding); |
5825 break; | 6091 break; |
5826 }; | 6092 }; |
5827 #endif /* SQLITE_OMIT_PRAGMA */ | 6093 #endif /* SQLITE_OMIT_PRAGMA */ |
5828 | 6094 |
5829 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH) | 6095 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH) |
(...skipping 20 matching lines...) Expand all Loading... |
5850 case OP_IncrVacuum: { /* jump */ | 6116 case OP_IncrVacuum: { /* jump */ |
5851 Btree *pBt; | 6117 Btree *pBt; |
5852 | 6118 |
5853 assert( pOp->p1>=0 && pOp->p1<db->nDb ); | 6119 assert( pOp->p1>=0 && pOp->p1<db->nDb ); |
5854 assert( DbMaskTest(p->btreeMask, pOp->p1) ); | 6120 assert( DbMaskTest(p->btreeMask, pOp->p1) ); |
5855 assert( p->readOnly==0 ); | 6121 assert( p->readOnly==0 ); |
5856 pBt = db->aDb[pOp->p1].pBt; | 6122 pBt = db->aDb[pOp->p1].pBt; |
5857 rc = sqlite3BtreeIncrVacuum(pBt); | 6123 rc = sqlite3BtreeIncrVacuum(pBt); |
5858 VdbeBranchTaken(rc==SQLITE_DONE,2); | 6124 VdbeBranchTaken(rc==SQLITE_DONE,2); |
5859 if( rc==SQLITE_DONE ){ | 6125 if( rc==SQLITE_DONE ){ |
5860 pc = pOp->p2 - 1; | |
5861 rc = SQLITE_OK; | 6126 rc = SQLITE_OK; |
| 6127 goto jump_to_p2; |
5862 } | 6128 } |
5863 break; | 6129 break; |
5864 } | 6130 } |
5865 #endif | 6131 #endif |
5866 | 6132 |
5867 /* Opcode: Expire P1 * * * * | 6133 /* Opcode: Expire P1 * * * * |
5868 ** | 6134 ** |
5869 ** Cause precompiled statements to expire. When an expired statement | 6135 ** Cause precompiled statements to expire. When an expired statement |
5870 ** is executed using sqlite3_step() it will either automatically | 6136 ** is executed using sqlite3_step() it will either automatically |
5871 ** reprepare itself (if it was originally created using sqlite3_prepare_v2()) | 6137 ** reprepare itself (if it was originally created using sqlite3_prepare_v2()) |
(...skipping 30 matching lines...) Expand all Loading... |
5902 case OP_TableLock: { | 6168 case OP_TableLock: { |
5903 u8 isWriteLock = (u8)pOp->p3; | 6169 u8 isWriteLock = (u8)pOp->p3; |
5904 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){ | 6170 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){ |
5905 int p1 = pOp->p1; | 6171 int p1 = pOp->p1; |
5906 assert( p1>=0 && p1<db->nDb ); | 6172 assert( p1>=0 && p1<db->nDb ); |
5907 assert( DbMaskTest(p->btreeMask, p1) ); | 6173 assert( DbMaskTest(p->btreeMask, p1) ); |
5908 assert( isWriteLock==0 || isWriteLock==1 ); | 6174 assert( isWriteLock==0 || isWriteLock==1 ); |
5909 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock); | 6175 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock); |
5910 if( (rc&0xFF)==SQLITE_LOCKED ){ | 6176 if( (rc&0xFF)==SQLITE_LOCKED ){ |
5911 const char *z = pOp->p4.z; | 6177 const char *z = pOp->p4.z; |
5912 sqlite3SetString(&p->zErrMsg, db, "database table is locked: %s", z); | 6178 sqlite3VdbeError(p, "database table is locked: %s", z); |
5913 } | 6179 } |
5914 } | 6180 } |
5915 break; | 6181 break; |
5916 } | 6182 } |
5917 #endif /* SQLITE_OMIT_SHARED_CACHE */ | 6183 #endif /* SQLITE_OMIT_SHARED_CACHE */ |
5918 | 6184 |
5919 #ifndef SQLITE_OMIT_VIRTUALTABLE | 6185 #ifndef SQLITE_OMIT_VIRTUALTABLE |
5920 /* Opcode: VBegin * * * P4 * | 6186 /* Opcode: VBegin * * * P4 * |
5921 ** | 6187 ** |
5922 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the | 6188 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the |
5923 ** xBegin method for that table. | 6189 ** xBegin method for that table. |
5924 ** | 6190 ** |
5925 ** Also, whether or not P4 is set, check that this is not being called from | 6191 ** Also, whether or not P4 is set, check that this is not being called from |
5926 ** within a callback to a virtual table xSync() method. If it is, the error | 6192 ** within a callback to a virtual table xSync() method. If it is, the error |
5927 ** code will be set to SQLITE_LOCKED. | 6193 ** code will be set to SQLITE_LOCKED. |
5928 */ | 6194 */ |
5929 case OP_VBegin: { | 6195 case OP_VBegin: { |
5930 VTable *pVTab; | 6196 VTable *pVTab; |
5931 pVTab = pOp->p4.pVtab; | 6197 pVTab = pOp->p4.pVtab; |
5932 rc = sqlite3VtabBegin(db, pVTab); | 6198 rc = sqlite3VtabBegin(db, pVTab); |
5933 if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab); | 6199 if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab); |
5934 break; | 6200 break; |
5935 } | 6201 } |
5936 #endif /* SQLITE_OMIT_VIRTUALTABLE */ | 6202 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
5937 | 6203 |
5938 #ifndef SQLITE_OMIT_VIRTUALTABLE | 6204 #ifndef SQLITE_OMIT_VIRTUALTABLE |
5939 /* Opcode: VCreate P1 * * P4 * | 6205 /* Opcode: VCreate P1 P2 * * * |
5940 ** | 6206 ** |
5941 ** P4 is the name of a virtual table in database P1. Call the xCreate method | 6207 ** P2 is a register that holds the name of a virtual table in database |
5942 ** for that table. | 6208 ** P1. Call the xCreate method for that table. |
5943 */ | 6209 */ |
5944 case OP_VCreate: { | 6210 case OP_VCreate: { |
5945 rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p4.z, &p->zErrMsg); | 6211 Mem sMem; /* For storing the record being decoded */ |
| 6212 const char *zTab; /* Name of the virtual table */ |
| 6213 |
| 6214 memset(&sMem, 0, sizeof(sMem)); |
| 6215 sMem.db = db; |
| 6216 /* Because P2 is always a static string, it is impossible for the |
| 6217 ** sqlite3VdbeMemCopy() to fail */ |
| 6218 assert( (aMem[pOp->p2].flags & MEM_Str)!=0 ); |
| 6219 assert( (aMem[pOp->p2].flags & MEM_Static)!=0 ); |
| 6220 rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]); |
| 6221 assert( rc==SQLITE_OK ); |
| 6222 zTab = (const char*)sqlite3_value_text(&sMem); |
| 6223 assert( zTab || db->mallocFailed ); |
| 6224 if( zTab ){ |
| 6225 rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg); |
| 6226 } |
| 6227 sqlite3VdbeMemRelease(&sMem); |
5946 break; | 6228 break; |
5947 } | 6229 } |
5948 #endif /* SQLITE_OMIT_VIRTUALTABLE */ | 6230 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
5949 | 6231 |
5950 #ifndef SQLITE_OMIT_VIRTUALTABLE | 6232 #ifndef SQLITE_OMIT_VIRTUALTABLE |
5951 /* Opcode: VDestroy P1 * * P4 * | 6233 /* Opcode: VDestroy P1 * * P4 * |
5952 ** | 6234 ** |
5953 ** P4 is the name of a virtual table in database P1. Call the xDestroy method | 6235 ** P4 is the name of a virtual table in database P1. Call the xDestroy method |
5954 ** of that table. | 6236 ** of that table. |
5955 */ | 6237 */ |
5956 case OP_VDestroy: { | 6238 case OP_VDestroy: { |
5957 p->inVtabMethod = 2; | 6239 db->nVDestroy++; |
5958 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z); | 6240 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z); |
5959 p->inVtabMethod = 0; | 6241 db->nVDestroy--; |
5960 break; | 6242 break; |
5961 } | 6243 } |
5962 #endif /* SQLITE_OMIT_VIRTUALTABLE */ | 6244 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
5963 | 6245 |
5964 #ifndef SQLITE_OMIT_VIRTUALTABLE | 6246 #ifndef SQLITE_OMIT_VIRTUALTABLE |
5965 /* Opcode: VOpen P1 * * P4 * | 6247 /* Opcode: VOpen P1 * * P4 * |
5966 ** | 6248 ** |
5967 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. | 6249 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. |
5968 ** P1 is a cursor number. This opcode opens a cursor to the virtual | 6250 ** P1 is a cursor number. This opcode opens a cursor to the virtual |
5969 ** table and stores that cursor in P1. | 6251 ** table and stores that cursor in P1. |
5970 */ | 6252 */ |
5971 case OP_VOpen: { | 6253 case OP_VOpen: { |
5972 VdbeCursor *pCur; | 6254 VdbeCursor *pCur; |
5973 sqlite3_vtab_cursor *pVtabCursor; | 6255 sqlite3_vtab_cursor *pVCur; |
5974 sqlite3_vtab *pVtab; | 6256 sqlite3_vtab *pVtab; |
5975 sqlite3_module *pModule; | 6257 const sqlite3_module *pModule; |
5976 | 6258 |
5977 assert( p->bIsReader ); | 6259 assert( p->bIsReader ); |
5978 pCur = 0; | 6260 pCur = 0; |
5979 pVtabCursor = 0; | 6261 pVCur = 0; |
5980 pVtab = pOp->p4.pVtab->pVtab; | 6262 pVtab = pOp->p4.pVtab->pVtab; |
5981 pModule = (sqlite3_module *)pVtab->pModule; | 6263 if( pVtab==0 || NEVER(pVtab->pModule==0) ){ |
5982 assert(pVtab && pModule); | 6264 rc = SQLITE_LOCKED; |
5983 rc = pModule->xOpen(pVtab, &pVtabCursor); | 6265 break; |
| 6266 } |
| 6267 pModule = pVtab->pModule; |
| 6268 rc = pModule->xOpen(pVtab, &pVCur); |
5984 sqlite3VtabImportErrmsg(p, pVtab); | 6269 sqlite3VtabImportErrmsg(p, pVtab); |
5985 if( SQLITE_OK==rc ){ | 6270 if( SQLITE_OK==rc ){ |
5986 /* Initialize sqlite3_vtab_cursor base class */ | 6271 /* Initialize sqlite3_vtab_cursor base class */ |
5987 pVtabCursor->pVtab = pVtab; | 6272 pVCur->pVtab = pVtab; |
5988 | 6273 |
5989 /* Initialize vdbe cursor object */ | 6274 /* Initialize vdbe cursor object */ |
5990 pCur = allocateCursor(p, pOp->p1, 0, -1, 0); | 6275 pCur = allocateCursor(p, pOp->p1, 0, -1, CURTYPE_VTAB); |
5991 if( pCur ){ | 6276 if( pCur ){ |
5992 pCur->pVtabCursor = pVtabCursor; | 6277 pCur->uc.pVCur = pVCur; |
| 6278 pVtab->nRef++; |
5993 }else{ | 6279 }else{ |
5994 db->mallocFailed = 1; | 6280 assert( db->mallocFailed ); |
5995 pModule->xClose(pVtabCursor); | 6281 pModule->xClose(pVCur); |
| 6282 goto no_mem; |
5996 } | 6283 } |
5997 } | 6284 } |
5998 break; | 6285 break; |
5999 } | 6286 } |
6000 #endif /* SQLITE_OMIT_VIRTUALTABLE */ | 6287 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
6001 | 6288 |
6002 #ifndef SQLITE_OMIT_VIRTUALTABLE | 6289 #ifndef SQLITE_OMIT_VIRTUALTABLE |
6003 /* Opcode: VFilter P1 P2 P3 P4 * | 6290 /* Opcode: VFilter P1 P2 P3 P4 * |
6004 ** Synopsis: iplan=r[P3] zplan='P4' | 6291 ** Synopsis: iplan=r[P3] zplan='P4' |
6005 ** | 6292 ** |
(...skipping 12 matching lines...) Expand all Loading... |
6018 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter. | 6305 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter. |
6019 ** | 6306 ** |
6020 ** A jump is made to P2 if the result set after filtering would be empty. | 6307 ** A jump is made to P2 if the result set after filtering would be empty. |
6021 */ | 6308 */ |
6022 case OP_VFilter: { /* jump */ | 6309 case OP_VFilter: { /* jump */ |
6023 int nArg; | 6310 int nArg; |
6024 int iQuery; | 6311 int iQuery; |
6025 const sqlite3_module *pModule; | 6312 const sqlite3_module *pModule; |
6026 Mem *pQuery; | 6313 Mem *pQuery; |
6027 Mem *pArgc; | 6314 Mem *pArgc; |
6028 sqlite3_vtab_cursor *pVtabCursor; | 6315 sqlite3_vtab_cursor *pVCur; |
6029 sqlite3_vtab *pVtab; | 6316 sqlite3_vtab *pVtab; |
6030 VdbeCursor *pCur; | 6317 VdbeCursor *pCur; |
6031 int res; | 6318 int res; |
6032 int i; | 6319 int i; |
6033 Mem **apArg; | 6320 Mem **apArg; |
6034 | 6321 |
6035 pQuery = &aMem[pOp->p3]; | 6322 pQuery = &aMem[pOp->p3]; |
6036 pArgc = &pQuery[1]; | 6323 pArgc = &pQuery[1]; |
6037 pCur = p->apCsr[pOp->p1]; | 6324 pCur = p->apCsr[pOp->p1]; |
6038 assert( memIsValid(pQuery) ); | 6325 assert( memIsValid(pQuery) ); |
6039 REGISTER_TRACE(pOp->p3, pQuery); | 6326 REGISTER_TRACE(pOp->p3, pQuery); |
6040 assert( pCur->pVtabCursor ); | 6327 assert( pCur->eCurType==CURTYPE_VTAB ); |
6041 pVtabCursor = pCur->pVtabCursor; | 6328 pVCur = pCur->uc.pVCur; |
6042 pVtab = pVtabCursor->pVtab; | 6329 pVtab = pVCur->pVtab; |
6043 pModule = pVtab->pModule; | 6330 pModule = pVtab->pModule; |
6044 | 6331 |
6045 /* Grab the index number and argc parameters */ | 6332 /* Grab the index number and argc parameters */ |
6046 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int ); | 6333 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int ); |
6047 nArg = (int)pArgc->u.i; | 6334 nArg = (int)pArgc->u.i; |
6048 iQuery = (int)pQuery->u.i; | 6335 iQuery = (int)pQuery->u.i; |
6049 | 6336 |
6050 /* Invoke the xFilter method */ | 6337 /* Invoke the xFilter method */ |
6051 { | 6338 res = 0; |
6052 res = 0; | 6339 apArg = p->apArg; |
6053 apArg = p->apArg; | 6340 for(i = 0; i<nArg; i++){ |
6054 for(i = 0; i<nArg; i++){ | 6341 apArg[i] = &pArgc[i+1]; |
6055 apArg[i] = &pArgc[i+1]; | 6342 } |
6056 } | 6343 rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg); |
6057 | 6344 sqlite3VtabImportErrmsg(p, pVtab); |
6058 p->inVtabMethod = 1; | 6345 if( rc==SQLITE_OK ){ |
6059 rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg); | 6346 res = pModule->xEof(pVCur); |
6060 p->inVtabMethod = 0; | |
6061 sqlite3VtabImportErrmsg(p, pVtab); | |
6062 if( rc==SQLITE_OK ){ | |
6063 res = pModule->xEof(pVtabCursor); | |
6064 } | |
6065 VdbeBranchTaken(res!=0,2); | |
6066 if( res ){ | |
6067 pc = pOp->p2 - 1; | |
6068 } | |
6069 } | 6347 } |
6070 pCur->nullRow = 0; | 6348 pCur->nullRow = 0; |
6071 | 6349 VdbeBranchTaken(res!=0,2); |
| 6350 if( res ) goto jump_to_p2; |
6072 break; | 6351 break; |
6073 } | 6352 } |
6074 #endif /* SQLITE_OMIT_VIRTUALTABLE */ | 6353 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
6075 | 6354 |
6076 #ifndef SQLITE_OMIT_VIRTUALTABLE | 6355 #ifndef SQLITE_OMIT_VIRTUALTABLE |
6077 /* Opcode: VColumn P1 P2 P3 * * | 6356 /* Opcode: VColumn P1 P2 P3 * * |
6078 ** Synopsis: r[P3]=vcolumn(P2) | 6357 ** Synopsis: r[P3]=vcolumn(P2) |
6079 ** | 6358 ** |
6080 ** Store the value of the P2-th column of | 6359 ** Store the value of the P2-th column of |
6081 ** the row of the virtual-table that the | 6360 ** the row of the virtual-table that the |
6082 ** P1 cursor is pointing to into register P3. | 6361 ** P1 cursor is pointing to into register P3. |
6083 */ | 6362 */ |
6084 case OP_VColumn: { | 6363 case OP_VColumn: { |
6085 sqlite3_vtab *pVtab; | 6364 sqlite3_vtab *pVtab; |
6086 const sqlite3_module *pModule; | 6365 const sqlite3_module *pModule; |
6087 Mem *pDest; | 6366 Mem *pDest; |
6088 sqlite3_context sContext; | 6367 sqlite3_context sContext; |
6089 | 6368 |
6090 VdbeCursor *pCur = p->apCsr[pOp->p1]; | 6369 VdbeCursor *pCur = p->apCsr[pOp->p1]; |
6091 assert( pCur->pVtabCursor ); | 6370 assert( pCur->eCurType==CURTYPE_VTAB ); |
6092 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); | 6371 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); |
6093 pDest = &aMem[pOp->p3]; | 6372 pDest = &aMem[pOp->p3]; |
6094 memAboutToChange(p, pDest); | 6373 memAboutToChange(p, pDest); |
6095 if( pCur->nullRow ){ | 6374 if( pCur->nullRow ){ |
6096 sqlite3VdbeMemSetNull(pDest); | 6375 sqlite3VdbeMemSetNull(pDest); |
6097 break; | 6376 break; |
6098 } | 6377 } |
6099 pVtab = pCur->pVtabCursor->pVtab; | 6378 pVtab = pCur->uc.pVCur->pVtab; |
6100 pModule = pVtab->pModule; | 6379 pModule = pVtab->pModule; |
6101 assert( pModule->xColumn ); | 6380 assert( pModule->xColumn ); |
6102 memset(&sContext, 0, sizeof(sContext)); | 6381 memset(&sContext, 0, sizeof(sContext)); |
6103 sContext.pOut = pDest; | 6382 sContext.pOut = pDest; |
6104 MemSetTypeFlag(pDest, MEM_Null); | 6383 MemSetTypeFlag(pDest, MEM_Null); |
6105 rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2); | 6384 rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2); |
6106 sqlite3VtabImportErrmsg(p, pVtab); | 6385 sqlite3VtabImportErrmsg(p, pVtab); |
6107 if( sContext.isError ){ | 6386 if( sContext.isError ){ |
6108 rc = sContext.isError; | 6387 rc = sContext.isError; |
6109 } | 6388 } |
6110 sqlite3VdbeChangeEncoding(pDest, encoding); | 6389 sqlite3VdbeChangeEncoding(pDest, encoding); |
6111 REGISTER_TRACE(pOp->p3, pDest); | 6390 REGISTER_TRACE(pOp->p3, pDest); |
6112 UPDATE_MAX_BLOBSIZE(pDest); | 6391 UPDATE_MAX_BLOBSIZE(pDest); |
6113 | 6392 |
6114 if( sqlite3VdbeMemTooBig(pDest) ){ | 6393 if( sqlite3VdbeMemTooBig(pDest) ){ |
6115 goto too_big; | 6394 goto too_big; |
(...skipping 10 matching lines...) Expand all Loading... |
6126 ** the end of its result set, then fall through to the next instruction. | 6405 ** the end of its result set, then fall through to the next instruction. |
6127 */ | 6406 */ |
6128 case OP_VNext: { /* jump */ | 6407 case OP_VNext: { /* jump */ |
6129 sqlite3_vtab *pVtab; | 6408 sqlite3_vtab *pVtab; |
6130 const sqlite3_module *pModule; | 6409 const sqlite3_module *pModule; |
6131 int res; | 6410 int res; |
6132 VdbeCursor *pCur; | 6411 VdbeCursor *pCur; |
6133 | 6412 |
6134 res = 0; | 6413 res = 0; |
6135 pCur = p->apCsr[pOp->p1]; | 6414 pCur = p->apCsr[pOp->p1]; |
6136 assert( pCur->pVtabCursor ); | 6415 assert( pCur->eCurType==CURTYPE_VTAB ); |
6137 if( pCur->nullRow ){ | 6416 if( pCur->nullRow ){ |
6138 break; | 6417 break; |
6139 } | 6418 } |
6140 pVtab = pCur->pVtabCursor->pVtab; | 6419 pVtab = pCur->uc.pVCur->pVtab; |
6141 pModule = pVtab->pModule; | 6420 pModule = pVtab->pModule; |
6142 assert( pModule->xNext ); | 6421 assert( pModule->xNext ); |
6143 | 6422 |
6144 /* Invoke the xNext() method of the module. There is no way for the | 6423 /* Invoke the xNext() method of the module. There is no way for the |
6145 ** underlying implementation to return an error if one occurs during | 6424 ** underlying implementation to return an error if one occurs during |
6146 ** xNext(). Instead, if an error occurs, true is returned (indicating that | 6425 ** xNext(). Instead, if an error occurs, true is returned (indicating that |
6147 ** data is available) and the error code returned when xColumn or | 6426 ** data is available) and the error code returned when xColumn or |
6148 ** some other method is next invoked on the save virtual table cursor. | 6427 ** some other method is next invoked on the save virtual table cursor. |
6149 */ | 6428 */ |
6150 p->inVtabMethod = 1; | 6429 rc = pModule->xNext(pCur->uc.pVCur); |
6151 rc = pModule->xNext(pCur->pVtabCursor); | |
6152 p->inVtabMethod = 0; | |
6153 sqlite3VtabImportErrmsg(p, pVtab); | 6430 sqlite3VtabImportErrmsg(p, pVtab); |
6154 if( rc==SQLITE_OK ){ | 6431 if( rc==SQLITE_OK ){ |
6155 res = pModule->xEof(pCur->pVtabCursor); | 6432 res = pModule->xEof(pCur->uc.pVCur); |
6156 } | 6433 } |
6157 VdbeBranchTaken(!res,2); | 6434 VdbeBranchTaken(!res,2); |
6158 if( !res ){ | 6435 if( !res ){ |
6159 /* If there is data, jump to P2 */ | 6436 /* If there is data, jump to P2 */ |
6160 pc = pOp->p2 - 1; | 6437 goto jump_to_p2_and_check_for_interrupt; |
6161 } | 6438 } |
6162 goto check_for_interrupt; | 6439 goto check_for_interrupt; |
6163 } | 6440 } |
6164 #endif /* SQLITE_OMIT_VIRTUALTABLE */ | 6441 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
6165 | 6442 |
6166 #ifndef SQLITE_OMIT_VIRTUALTABLE | 6443 #ifndef SQLITE_OMIT_VIRTUALTABLE |
6167 /* Opcode: VRename P1 * * P4 * | 6444 /* Opcode: VRename P1 * * P4 * |
6168 ** | 6445 ** |
6169 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. | 6446 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. |
6170 ** This opcode invokes the corresponding xRename method. The value | 6447 ** This opcode invokes the corresponding xRename method. The value |
(...skipping 46 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
6217 ** | 6494 ** |
6218 ** P1 is a boolean flag. If it is set to true and the xUpdate call | 6495 ** P1 is a boolean flag. If it is set to true and the xUpdate call |
6219 ** is successful, then the value returned by sqlite3_last_insert_rowid() | 6496 ** is successful, then the value returned by sqlite3_last_insert_rowid() |
6220 ** is set to the value of the rowid for the row just inserted. | 6497 ** is set to the value of the rowid for the row just inserted. |
6221 ** | 6498 ** |
6222 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to | 6499 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to |
6223 ** apply in the case of a constraint failure on an insert or update. | 6500 ** apply in the case of a constraint failure on an insert or update. |
6224 */ | 6501 */ |
6225 case OP_VUpdate: { | 6502 case OP_VUpdate: { |
6226 sqlite3_vtab *pVtab; | 6503 sqlite3_vtab *pVtab; |
6227 sqlite3_module *pModule; | 6504 const sqlite3_module *pModule; |
6228 int nArg; | 6505 int nArg; |
6229 int i; | 6506 int i; |
6230 sqlite_int64 rowid; | 6507 sqlite_int64 rowid; |
6231 Mem **apArg; | 6508 Mem **apArg; |
6232 Mem *pX; | 6509 Mem *pX; |
6233 | 6510 |
6234 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback | 6511 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback |
6235 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace | 6512 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace |
6236 ); | 6513 ); |
6237 assert( p->readOnly==0 ); | 6514 assert( p->readOnly==0 ); |
6238 pVtab = pOp->p4.pVtab->pVtab; | 6515 pVtab = pOp->p4.pVtab->pVtab; |
6239 pModule = (sqlite3_module *)pVtab->pModule; | 6516 if( pVtab==0 || NEVER(pVtab->pModule==0) ){ |
| 6517 rc = SQLITE_LOCKED; |
| 6518 break; |
| 6519 } |
| 6520 pModule = pVtab->pModule; |
6240 nArg = pOp->p2; | 6521 nArg = pOp->p2; |
6241 assert( pOp->p4type==P4_VTAB ); | 6522 assert( pOp->p4type==P4_VTAB ); |
6242 if( ALWAYS(pModule->xUpdate) ){ | 6523 if( ALWAYS(pModule->xUpdate) ){ |
6243 u8 vtabOnConflict = db->vtabOnConflict; | 6524 u8 vtabOnConflict = db->vtabOnConflict; |
6244 apArg = p->apArg; | 6525 apArg = p->apArg; |
6245 pX = &aMem[pOp->p3]; | 6526 pX = &aMem[pOp->p3]; |
6246 for(i=0; i<nArg; i++){ | 6527 for(i=0; i<nArg; i++){ |
6247 assert( memIsValid(pX) ); | 6528 assert( memIsValid(pX) ); |
6248 memAboutToChange(p, pX); | 6529 memAboutToChange(p, pX); |
6249 apArg[i] = pX; | 6530 apArg[i] = pX; |
(...skipping 19 matching lines...) Expand all Loading... |
6269 } | 6550 } |
6270 break; | 6551 break; |
6271 } | 6552 } |
6272 #endif /* SQLITE_OMIT_VIRTUALTABLE */ | 6553 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
6273 | 6554 |
6274 #ifndef SQLITE_OMIT_PAGER_PRAGMAS | 6555 #ifndef SQLITE_OMIT_PAGER_PRAGMAS |
6275 /* Opcode: Pagecount P1 P2 * * * | 6556 /* Opcode: Pagecount P1 P2 * * * |
6276 ** | 6557 ** |
6277 ** Write the current number of pages in database P1 to memory cell P2. | 6558 ** Write the current number of pages in database P1 to memory cell P2. |
6278 */ | 6559 */ |
6279 case OP_Pagecount: { /* out2-prerelease */ | 6560 case OP_Pagecount: { /* out2 */ |
| 6561 pOut = out2Prerelease(p, pOp); |
6280 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt); | 6562 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt); |
6281 break; | 6563 break; |
6282 } | 6564 } |
6283 #endif | 6565 #endif |
6284 | 6566 |
6285 | 6567 |
6286 #ifndef SQLITE_OMIT_PAGER_PRAGMAS | 6568 #ifndef SQLITE_OMIT_PAGER_PRAGMAS |
6287 /* Opcode: MaxPgcnt P1 P2 P3 * * | 6569 /* Opcode: MaxPgcnt P1 P2 P3 * * |
6288 ** | 6570 ** |
6289 ** Try to set the maximum page count for database P1 to the value in P3. | 6571 ** Try to set the maximum page count for database P1 to the value in P3. |
6290 ** Do not let the maximum page count fall below the current page count and | 6572 ** Do not let the maximum page count fall below the current page count and |
6291 ** do not change the maximum page count value if P3==0. | 6573 ** do not change the maximum page count value if P3==0. |
6292 ** | 6574 ** |
6293 ** Store the maximum page count after the change in register P2. | 6575 ** Store the maximum page count after the change in register P2. |
6294 */ | 6576 */ |
6295 case OP_MaxPgcnt: { /* out2-prerelease */ | 6577 case OP_MaxPgcnt: { /* out2 */ |
6296 unsigned int newMax; | 6578 unsigned int newMax; |
6297 Btree *pBt; | 6579 Btree *pBt; |
6298 | 6580 |
| 6581 pOut = out2Prerelease(p, pOp); |
6299 pBt = db->aDb[pOp->p1].pBt; | 6582 pBt = db->aDb[pOp->p1].pBt; |
6300 newMax = 0; | 6583 newMax = 0; |
6301 if( pOp->p3 ){ | 6584 if( pOp->p3 ){ |
6302 newMax = sqlite3BtreeLastPage(pBt); | 6585 newMax = sqlite3BtreeLastPage(pBt); |
6303 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3; | 6586 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3; |
6304 } | 6587 } |
6305 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax); | 6588 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax); |
6306 break; | 6589 break; |
6307 } | 6590 } |
6308 #endif | 6591 #endif |
6309 | 6592 |
6310 | 6593 |
6311 /* Opcode: Init * P2 * P4 * | 6594 /* Opcode: Init * P2 * P4 * |
6312 ** Synopsis: Start at P2 | 6595 ** Synopsis: Start at P2 |
6313 ** | 6596 ** |
6314 ** Programs contain a single instance of this opcode as the very first | 6597 ** Programs contain a single instance of this opcode as the very first |
6315 ** opcode. | 6598 ** opcode. |
6316 ** | 6599 ** |
6317 ** If tracing is enabled (by the sqlite3_trace()) interface, then | 6600 ** If tracing is enabled (by the sqlite3_trace()) interface, then |
6318 ** the UTF-8 string contained in P4 is emitted on the trace callback. | 6601 ** the UTF-8 string contained in P4 is emitted on the trace callback. |
6319 ** Or if P4 is blank, use the string returned by sqlite3_sql(). | 6602 ** Or if P4 is blank, use the string returned by sqlite3_sql(). |
6320 ** | 6603 ** |
6321 ** If P2 is not zero, jump to instruction P2. | 6604 ** If P2 is not zero, jump to instruction P2. |
6322 */ | 6605 */ |
6323 case OP_Init: { /* jump */ | 6606 case OP_Init: { /* jump */ |
6324 char *zTrace; | 6607 char *zTrace; |
6325 char *z; | 6608 char *z; |
6326 | 6609 |
6327 if( pOp->p2 ){ | |
6328 pc = pOp->p2 - 1; | |
6329 } | |
6330 #ifndef SQLITE_OMIT_TRACE | 6610 #ifndef SQLITE_OMIT_TRACE |
6331 if( db->xTrace | 6611 if( db->xTrace |
6332 && !p->doingRerun | 6612 && !p->doingRerun |
6333 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 | 6613 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 |
6334 ){ | 6614 ){ |
6335 z = sqlite3VdbeExpandSql(p, zTrace); | 6615 z = sqlite3VdbeExpandSql(p, zTrace); |
6336 db->xTrace(db->pTraceArg, z); | 6616 db->xTrace(db->pTraceArg, z); |
6337 sqlite3DbFree(db, z); | 6617 sqlite3DbFree(db, z); |
6338 } | 6618 } |
6339 #ifdef SQLITE_USE_FCNTL_TRACE | 6619 #ifdef SQLITE_USE_FCNTL_TRACE |
6340 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql); | 6620 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql); |
6341 if( zTrace ){ | 6621 if( zTrace ){ |
6342 int i; | 6622 int i; |
6343 for(i=0; i<db->nDb; i++){ | 6623 for(i=0; i<db->nDb; i++){ |
6344 if( DbMaskTest(p->btreeMask, i)==0 ) continue; | 6624 if( DbMaskTest(p->btreeMask, i)==0 ) continue; |
6345 sqlite3_file_control(db, db->aDb[i].zName, SQLITE_FCNTL_TRACE, zTrace); | 6625 sqlite3_file_control(db, db->aDb[i].zName, SQLITE_FCNTL_TRACE, zTrace); |
6346 } | 6626 } |
6347 } | 6627 } |
6348 #endif /* SQLITE_USE_FCNTL_TRACE */ | 6628 #endif /* SQLITE_USE_FCNTL_TRACE */ |
6349 #ifdef SQLITE_DEBUG | 6629 #ifdef SQLITE_DEBUG |
6350 if( (db->flags & SQLITE_SqlTrace)!=0 | 6630 if( (db->flags & SQLITE_SqlTrace)!=0 |
6351 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 | 6631 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 |
6352 ){ | 6632 ){ |
6353 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace); | 6633 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace); |
6354 } | 6634 } |
6355 #endif /* SQLITE_DEBUG */ | 6635 #endif /* SQLITE_DEBUG */ |
6356 #endif /* SQLITE_OMIT_TRACE */ | 6636 #endif /* SQLITE_OMIT_TRACE */ |
| 6637 if( pOp->p2 ) goto jump_to_p2; |
6357 break; | 6638 break; |
6358 } | 6639 } |
6359 | 6640 |
| 6641 #ifdef SQLITE_ENABLE_CURSOR_HINTS |
| 6642 /* Opcode: CursorHint P1 * * P4 * |
| 6643 ** |
| 6644 ** Provide a hint to cursor P1 that it only needs to return rows that |
| 6645 ** satisfy the Expr in P4. TK_REGISTER terms in the P4 expression refer |
| 6646 ** to values currently held in registers. TK_COLUMN terms in the P4 |
| 6647 ** expression refer to columns in the b-tree to which cursor P1 is pointing. |
| 6648 */ |
| 6649 case OP_CursorHint: { |
| 6650 VdbeCursor *pC; |
| 6651 |
| 6652 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
| 6653 assert( pOp->p4type==P4_EXPR ); |
| 6654 pC = p->apCsr[pOp->p1]; |
| 6655 if( pC ){ |
| 6656 assert( pC->eCurType==CURTYPE_BTREE ); |
| 6657 sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE, |
| 6658 pOp->p4.pExpr, aMem); |
| 6659 } |
| 6660 break; |
| 6661 } |
| 6662 #endif /* SQLITE_ENABLE_CURSOR_HINTS */ |
6360 | 6663 |
6361 /* Opcode: Noop * * * * * | 6664 /* Opcode: Noop * * * * * |
6362 ** | 6665 ** |
6363 ** Do nothing. This instruction is often useful as a jump | 6666 ** Do nothing. This instruction is often useful as a jump |
6364 ** destination. | 6667 ** destination. |
6365 */ | 6668 */ |
6366 /* | 6669 /* |
6367 ** The magic Explain opcode are only inserted when explain==2 (which | 6670 ** The magic Explain opcode are only inserted when explain==2 (which |
6368 ** is to say when the EXPLAIN QUERY PLAN syntax is used.) | 6671 ** is to say when the EXPLAIN QUERY PLAN syntax is used.) |
6369 ** This opcode records information from the optimizer. It is the | 6672 ** This opcode records information from the optimizer. It is the |
6370 ** the same as a no-op. This opcodesnever appears in a real VM program. | 6673 ** the same as a no-op. This opcodesnever appears in a real VM program. |
6371 */ | 6674 */ |
6372 default: { /* This is really OP_Noop and OP_Explain */ | 6675 default: { /* This is really OP_Noop and OP_Explain */ |
6373 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain ); | 6676 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain ); |
6374 break; | 6677 break; |
6375 } | 6678 } |
6376 | 6679 |
6377 /***************************************************************************** | 6680 /***************************************************************************** |
6378 ** The cases of the switch statement above this line should all be indented | 6681 ** The cases of the switch statement above this line should all be indented |
6379 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the | 6682 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the |
6380 ** readability. From this point on down, the normal indentation rules are | 6683 ** readability. From this point on down, the normal indentation rules are |
6381 ** restored. | 6684 ** restored. |
6382 *****************************************************************************/ | 6685 *****************************************************************************/ |
6383 } | 6686 } |
6384 | 6687 |
6385 #ifdef VDBE_PROFILE | 6688 #ifdef VDBE_PROFILE |
6386 { | 6689 { |
6387 u64 endTime = sqlite3Hwtime(); | 6690 u64 endTime = sqlite3Hwtime(); |
6388 if( endTime>start ) pOp->cycles += endTime - start; | 6691 if( endTime>start ) pOrigOp->cycles += endTime - start; |
6389 pOp->cnt++; | 6692 pOrigOp->cnt++; |
6390 } | 6693 } |
6391 #endif | 6694 #endif |
6392 | 6695 |
6393 /* The following code adds nothing to the actual functionality | 6696 /* The following code adds nothing to the actual functionality |
6394 ** of the program. It is only here for testing and debugging. | 6697 ** of the program. It is only here for testing and debugging. |
6395 ** On the other hand, it does burn CPU cycles every time through | 6698 ** On the other hand, it does burn CPU cycles every time through |
6396 ** the evaluator loop. So we can leave it out when NDEBUG is defined. | 6699 ** the evaluator loop. So we can leave it out when NDEBUG is defined. |
6397 */ | 6700 */ |
6398 #ifndef NDEBUG | 6701 #ifndef NDEBUG |
6399 assert( pc>=-1 && pc<p->nOp ); | 6702 assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] ); |
6400 | 6703 |
6401 #ifdef SQLITE_DEBUG | 6704 #ifdef SQLITE_DEBUG |
6402 if( db->flags & SQLITE_VdbeTrace ){ | 6705 if( db->flags & SQLITE_VdbeTrace ){ |
6403 if( rc!=0 ) printf("rc=%d\n",rc); | 6706 if( rc!=0 ) printf("rc=%d\n",rc); |
6404 if( pOp->opflags & (OPFLG_OUT2_PRERELEASE|OPFLG_OUT2) ){ | 6707 if( pOrigOp->opflags & (OPFLG_OUT2) ){ |
6405 registerTrace(pOp->p2, &aMem[pOp->p2]); | 6708 registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]); |
6406 } | 6709 } |
6407 if( pOp->opflags & OPFLG_OUT3 ){ | 6710 if( pOrigOp->opflags & OPFLG_OUT3 ){ |
6408 registerTrace(pOp->p3, &aMem[pOp->p3]); | 6711 registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]); |
6409 } | 6712 } |
6410 } | 6713 } |
6411 #endif /* SQLITE_DEBUG */ | 6714 #endif /* SQLITE_DEBUG */ |
6412 #endif /* NDEBUG */ | 6715 #endif /* NDEBUG */ |
6413 } /* The end of the for(;;) loop the loops through opcodes */ | 6716 } /* The end of the for(;;) loop the loops through opcodes */ |
6414 | 6717 |
6415 /* If we reach this point, it means that execution is finished with | 6718 /* If we reach this point, it means that execution is finished with |
6416 ** an error of some kind. | 6719 ** an error of some kind. |
6417 */ | 6720 */ |
6418 vdbe_error_halt: | 6721 vdbe_error_halt: |
6419 assert( rc ); | 6722 assert( rc ); |
6420 p->rc = rc; | 6723 p->rc = rc; |
6421 testcase( sqlite3GlobalConfig.xLog!=0 ); | 6724 testcase( sqlite3GlobalConfig.xLog!=0 ); |
6422 sqlite3_log(rc, "statement aborts at %d: [%s] %s", | 6725 sqlite3_log(rc, "statement aborts at %d: [%s] %s", |
6423 pc, p->zSql, p->zErrMsg); | 6726 (int)(pOp - aOp), p->zSql, p->zErrMsg); |
6424 sqlite3VdbeHalt(p); | 6727 sqlite3VdbeHalt(p); |
6425 if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1; | 6728 if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1; |
6426 rc = SQLITE_ERROR; | 6729 rc = SQLITE_ERROR; |
6427 if( resetSchemaOnFault>0 ){ | 6730 if( resetSchemaOnFault>0 ){ |
6428 sqlite3ResetOneSchema(db, resetSchemaOnFault-1); | 6731 sqlite3ResetOneSchema(db, resetSchemaOnFault-1); |
6429 } | 6732 } |
6430 | 6733 |
6431 /* This is the only way out of this procedure. We have to | 6734 /* This is the only way out of this procedure. We have to |
6432 ** release the mutexes on btrees that were acquired at the | 6735 ** release the mutexes on btrees that were acquired at the |
6433 ** top. */ | 6736 ** top. */ |
6434 vdbe_return: | 6737 vdbe_return: |
6435 db->lastRowid = lastRowid; | 6738 db->lastRowid = lastRowid; |
6436 testcase( nVmStep>0 ); | 6739 testcase( nVmStep>0 ); |
6437 p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep; | 6740 p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep; |
6438 sqlite3VdbeLeave(p); | 6741 sqlite3VdbeLeave(p); |
6439 return rc; | 6742 return rc; |
6440 | 6743 |
6441 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH | 6744 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH |
6442 ** is encountered. | 6745 ** is encountered. |
6443 */ | 6746 */ |
6444 too_big: | 6747 too_big: |
6445 sqlite3SetString(&p->zErrMsg, db, "string or blob too big"); | 6748 sqlite3VdbeError(p, "string or blob too big"); |
6446 rc = SQLITE_TOOBIG; | 6749 rc = SQLITE_TOOBIG; |
6447 goto vdbe_error_halt; | 6750 goto vdbe_error_halt; |
6448 | 6751 |
6449 /* Jump to here if a malloc() fails. | 6752 /* Jump to here if a malloc() fails. |
6450 */ | 6753 */ |
6451 no_mem: | 6754 no_mem: |
6452 db->mallocFailed = 1; | 6755 db->mallocFailed = 1; |
6453 sqlite3SetString(&p->zErrMsg, db, "out of memory"); | 6756 sqlite3VdbeError(p, "out of memory"); |
6454 rc = SQLITE_NOMEM; | 6757 rc = SQLITE_NOMEM; |
6455 goto vdbe_error_halt; | 6758 goto vdbe_error_halt; |
6456 | 6759 |
6457 /* Jump to here for any other kind of fatal error. The "rc" variable | 6760 /* Jump to here for any other kind of fatal error. The "rc" variable |
6458 ** should hold the error number. | 6761 ** should hold the error number. |
6459 */ | 6762 */ |
6460 abort_due_to_error: | 6763 abort_due_to_error: |
6461 assert( p->zErrMsg==0 ); | 6764 assert( p->zErrMsg==0 ); |
6462 if( db->mallocFailed ) rc = SQLITE_NOMEM; | 6765 if( db->mallocFailed ) rc = SQLITE_NOMEM; |
6463 if( rc!=SQLITE_IOERR_NOMEM ){ | 6766 if( rc!=SQLITE_IOERR_NOMEM ){ |
6464 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc)); | 6767 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc)); |
6465 } | 6768 } |
6466 goto vdbe_error_halt; | 6769 goto vdbe_error_halt; |
6467 | 6770 |
6468 /* Jump to here if the sqlite3_interrupt() API sets the interrupt | 6771 /* Jump to here if the sqlite3_interrupt() API sets the interrupt |
6469 ** flag. | 6772 ** flag. |
6470 */ | 6773 */ |
6471 abort_due_to_interrupt: | 6774 abort_due_to_interrupt: |
6472 assert( db->u1.isInterrupted ); | 6775 assert( db->u1.isInterrupted ); |
6473 rc = SQLITE_INTERRUPT; | 6776 rc = SQLITE_INTERRUPT; |
6474 p->rc = rc; | 6777 p->rc = rc; |
6475 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc)); | 6778 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc)); |
6476 goto vdbe_error_halt; | 6779 goto vdbe_error_halt; |
6477 } | 6780 } |
OLD | NEW |