OLD | NEW |
1 /* | 1 /* |
2 ** 2001 September 15 | 2 ** 2001 September 15 |
3 ** | 3 ** |
4 ** The author disclaims copyright to this source code. In place of | 4 ** The author disclaims copyright to this source code. In place of |
5 ** a legal notice, here is a blessing: | 5 ** a legal notice, here is a blessing: |
6 ** | 6 ** |
7 ** May you do good and not evil. | 7 ** May you do good and not evil. |
8 ** May you find forgiveness for yourself and forgive others. | 8 ** May you find forgiveness for yourself and forgive others. |
9 ** May you share freely, never taking more than you give. | 9 ** May you share freely, never taking more than you give. |
10 ** | 10 ** |
(...skipping 27 matching lines...) Expand all Loading... |
38 */ | 38 */ |
39 typedef struct ScratchFreeslot { | 39 typedef struct ScratchFreeslot { |
40 struct ScratchFreeslot *pNext; /* Next unused scratch buffer */ | 40 struct ScratchFreeslot *pNext; /* Next unused scratch buffer */ |
41 } ScratchFreeslot; | 41 } ScratchFreeslot; |
42 | 42 |
43 /* | 43 /* |
44 ** State information local to the memory allocation subsystem. | 44 ** State information local to the memory allocation subsystem. |
45 */ | 45 */ |
46 static SQLITE_WSD struct Mem0Global { | 46 static SQLITE_WSD struct Mem0Global { |
47 sqlite3_mutex *mutex; /* Mutex to serialize access */ | 47 sqlite3_mutex *mutex; /* Mutex to serialize access */ |
48 | 48 sqlite3_int64 alarmThreshold; /* The soft heap limit */ |
49 /* | |
50 ** The alarm callback and its arguments. The mem0.mutex lock will | |
51 ** be held while the callback is running. Recursive calls into | |
52 ** the memory subsystem are allowed, but no new callbacks will be | |
53 ** issued. | |
54 */ | |
55 sqlite3_int64 alarmThreshold; | |
56 void (*alarmCallback)(void*, sqlite3_int64,int); | |
57 void *alarmArg; | |
58 | 49 |
59 /* | 50 /* |
60 ** Pointers to the end of sqlite3GlobalConfig.pScratch memory | 51 ** Pointers to the end of sqlite3GlobalConfig.pScratch memory |
61 ** (so that a range test can be used to determine if an allocation | 52 ** (so that a range test can be used to determine if an allocation |
62 ** being freed came from pScratch) and a pointer to the list of | 53 ** being freed came from pScratch) and a pointer to the list of |
63 ** unused scratch allocations. | 54 ** unused scratch allocations. |
64 */ | 55 */ |
65 void *pScratchEnd; | 56 void *pScratchEnd; |
66 ScratchFreeslot *pScratchFree; | 57 ScratchFreeslot *pScratchFree; |
67 u32 nScratchFree; | 58 u32 nScratchFree; |
68 | 59 |
69 /* | 60 /* |
70 ** True if heap is nearly "full" where "full" is defined by the | 61 ** True if heap is nearly "full" where "full" is defined by the |
71 ** sqlite3_soft_heap_limit() setting. | 62 ** sqlite3_soft_heap_limit() setting. |
72 */ | 63 */ |
73 int nearlyFull; | 64 int nearlyFull; |
74 } mem0 = { 0, 0, 0, 0, 0, 0, 0, 0 }; | 65 } mem0 = { 0, 0, 0, 0, 0, 0 }; |
75 | 66 |
76 #define mem0 GLOBAL(struct Mem0Global, mem0) | 67 #define mem0 GLOBAL(struct Mem0Global, mem0) |
77 | 68 |
78 /* | 69 /* |
79 ** This routine runs when the memory allocator sees that the | 70 ** Return the memory allocator mutex. sqlite3_status() needs it. |
80 ** total memory allocation is about to exceed the soft heap | |
81 ** limit. | |
82 */ | 71 */ |
83 static void softHeapLimitEnforcer( | 72 sqlite3_mutex *sqlite3MallocMutex(void){ |
84 void *NotUsed, | 73 return mem0.mutex; |
85 sqlite3_int64 NotUsed2, | |
86 int allocSize | |
87 ){ | |
88 UNUSED_PARAMETER2(NotUsed, NotUsed2); | |
89 sqlite3_release_memory(allocSize); | |
90 } | |
91 | |
92 /* | |
93 ** Change the alarm callback | |
94 */ | |
95 static int sqlite3MemoryAlarm( | |
96 void(*xCallback)(void *pArg, sqlite3_int64 used,int N), | |
97 void *pArg, | |
98 sqlite3_int64 iThreshold | |
99 ){ | |
100 int nUsed; | |
101 sqlite3_mutex_enter(mem0.mutex); | |
102 mem0.alarmCallback = xCallback; | |
103 mem0.alarmArg = pArg; | |
104 mem0.alarmThreshold = iThreshold; | |
105 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); | |
106 mem0.nearlyFull = (iThreshold>0 && iThreshold<=nUsed); | |
107 sqlite3_mutex_leave(mem0.mutex); | |
108 return SQLITE_OK; | |
109 } | 74 } |
110 | 75 |
111 #ifndef SQLITE_OMIT_DEPRECATED | 76 #ifndef SQLITE_OMIT_DEPRECATED |
112 /* | 77 /* |
113 ** Deprecated external interface. Internal/core SQLite code | 78 ** Deprecated external interface. It used to set an alarm callback |
114 ** should call sqlite3MemoryAlarm. | 79 ** that was invoked when memory usage grew too large. Now it is a |
| 80 ** no-op. |
115 */ | 81 */ |
116 int sqlite3_memory_alarm( | 82 int sqlite3_memory_alarm( |
117 void(*xCallback)(void *pArg, sqlite3_int64 used,int N), | 83 void(*xCallback)(void *pArg, sqlite3_int64 used,int N), |
118 void *pArg, | 84 void *pArg, |
119 sqlite3_int64 iThreshold | 85 sqlite3_int64 iThreshold |
120 ){ | 86 ){ |
121 return sqlite3MemoryAlarm(xCallback, pArg, iThreshold); | 87 (void)xCallback; |
| 88 (void)pArg; |
| 89 (void)iThreshold; |
| 90 return SQLITE_OK; |
122 } | 91 } |
123 #endif | 92 #endif |
124 | 93 |
125 /* | 94 /* |
126 ** Set the soft heap-size limit for the library. Passing a zero or | 95 ** Set the soft heap-size limit for the library. Passing a zero or |
127 ** negative value indicates no limit. | 96 ** negative value indicates no limit. |
128 */ | 97 */ |
129 sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 n){ | 98 sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 n){ |
130 sqlite3_int64 priorLimit; | 99 sqlite3_int64 priorLimit; |
131 sqlite3_int64 excess; | 100 sqlite3_int64 excess; |
| 101 sqlite3_int64 nUsed; |
132 #ifndef SQLITE_OMIT_AUTOINIT | 102 #ifndef SQLITE_OMIT_AUTOINIT |
133 int rc = sqlite3_initialize(); | 103 int rc = sqlite3_initialize(); |
134 if( rc ) return -1; | 104 if( rc ) return -1; |
135 #endif | 105 #endif |
136 sqlite3_mutex_enter(mem0.mutex); | 106 sqlite3_mutex_enter(mem0.mutex); |
137 priorLimit = mem0.alarmThreshold; | 107 priorLimit = mem0.alarmThreshold; |
| 108 if( n<0 ){ |
| 109 sqlite3_mutex_leave(mem0.mutex); |
| 110 return priorLimit; |
| 111 } |
| 112 mem0.alarmThreshold = n; |
| 113 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); |
| 114 mem0.nearlyFull = (n>0 && n<=nUsed); |
138 sqlite3_mutex_leave(mem0.mutex); | 115 sqlite3_mutex_leave(mem0.mutex); |
139 if( n<0 ) return priorLimit; | |
140 if( n>0 ){ | |
141 sqlite3MemoryAlarm(softHeapLimitEnforcer, 0, n); | |
142 }else{ | |
143 sqlite3MemoryAlarm(0, 0, 0); | |
144 } | |
145 excess = sqlite3_memory_used() - n; | 116 excess = sqlite3_memory_used() - n; |
146 if( excess>0 ) sqlite3_release_memory((int)(excess & 0x7fffffff)); | 117 if( excess>0 ) sqlite3_release_memory((int)(excess & 0x7fffffff)); |
147 return priorLimit; | 118 return priorLimit; |
148 } | 119 } |
149 void sqlite3_soft_heap_limit(int n){ | 120 void sqlite3_soft_heap_limit(int n){ |
150 if( n<0 ) n = 0; | 121 if( n<0 ) n = 0; |
151 sqlite3_soft_heap_limit64(n); | 122 sqlite3_soft_heap_limit64(n); |
152 } | 123 } |
153 | 124 |
154 /* | 125 /* |
155 ** Initialize the memory allocation subsystem. | 126 ** Initialize the memory allocation subsystem. |
156 */ | 127 */ |
157 int sqlite3MallocInit(void){ | 128 int sqlite3MallocInit(void){ |
| 129 int rc; |
158 if( sqlite3GlobalConfig.m.xMalloc==0 ){ | 130 if( sqlite3GlobalConfig.m.xMalloc==0 ){ |
159 sqlite3MemSetDefault(); | 131 sqlite3MemSetDefault(); |
160 } | 132 } |
161 memset(&mem0, 0, sizeof(mem0)); | 133 memset(&mem0, 0, sizeof(mem0)); |
162 if( sqlite3GlobalConfig.bCoreMutex ){ | 134 mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); |
163 mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); | |
164 } | |
165 if( sqlite3GlobalConfig.pScratch && sqlite3GlobalConfig.szScratch>=100 | 135 if( sqlite3GlobalConfig.pScratch && sqlite3GlobalConfig.szScratch>=100 |
166 && sqlite3GlobalConfig.nScratch>0 ){ | 136 && sqlite3GlobalConfig.nScratch>0 ){ |
167 int i, n, sz; | 137 int i, n, sz; |
168 ScratchFreeslot *pSlot; | 138 ScratchFreeslot *pSlot; |
169 sz = ROUNDDOWN8(sqlite3GlobalConfig.szScratch); | 139 sz = ROUNDDOWN8(sqlite3GlobalConfig.szScratch); |
170 sqlite3GlobalConfig.szScratch = sz; | 140 sqlite3GlobalConfig.szScratch = sz; |
171 pSlot = (ScratchFreeslot*)sqlite3GlobalConfig.pScratch; | 141 pSlot = (ScratchFreeslot*)sqlite3GlobalConfig.pScratch; |
172 n = sqlite3GlobalConfig.nScratch; | 142 n = sqlite3GlobalConfig.nScratch; |
173 mem0.pScratchFree = pSlot; | 143 mem0.pScratchFree = pSlot; |
174 mem0.nScratchFree = n; | 144 mem0.nScratchFree = n; |
175 for(i=0; i<n-1; i++){ | 145 for(i=0; i<n-1; i++){ |
176 pSlot->pNext = (ScratchFreeslot*)(sz+(char*)pSlot); | 146 pSlot->pNext = (ScratchFreeslot*)(sz+(char*)pSlot); |
177 pSlot = pSlot->pNext; | 147 pSlot = pSlot->pNext; |
178 } | 148 } |
179 pSlot->pNext = 0; | 149 pSlot->pNext = 0; |
180 mem0.pScratchEnd = (void*)&pSlot[1]; | 150 mem0.pScratchEnd = (void*)&pSlot[1]; |
181 }else{ | 151 }else{ |
182 mem0.pScratchEnd = 0; | 152 mem0.pScratchEnd = 0; |
183 sqlite3GlobalConfig.pScratch = 0; | 153 sqlite3GlobalConfig.pScratch = 0; |
184 sqlite3GlobalConfig.szScratch = 0; | 154 sqlite3GlobalConfig.szScratch = 0; |
185 sqlite3GlobalConfig.nScratch = 0; | 155 sqlite3GlobalConfig.nScratch = 0; |
186 } | 156 } |
187 if( sqlite3GlobalConfig.pPage==0 || sqlite3GlobalConfig.szPage<512 | 157 if( sqlite3GlobalConfig.pPage==0 || sqlite3GlobalConfig.szPage<512 |
188 || sqlite3GlobalConfig.nPage<1 ){ | 158 || sqlite3GlobalConfig.nPage<=0 ){ |
189 sqlite3GlobalConfig.pPage = 0; | 159 sqlite3GlobalConfig.pPage = 0; |
190 sqlite3GlobalConfig.szPage = 0; | 160 sqlite3GlobalConfig.szPage = 0; |
191 sqlite3GlobalConfig.nPage = 0; | |
192 } | 161 } |
193 return sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData); | 162 rc = sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData); |
| 163 if( rc!=SQLITE_OK ) memset(&mem0, 0, sizeof(mem0)); |
| 164 return rc; |
194 } | 165 } |
195 | 166 |
196 /* | 167 /* |
197 ** Return true if the heap is currently under memory pressure - in other | 168 ** Return true if the heap is currently under memory pressure - in other |
198 ** words if the amount of heap used is close to the limit set by | 169 ** words if the amount of heap used is close to the limit set by |
199 ** sqlite3_soft_heap_limit(). | 170 ** sqlite3_soft_heap_limit(). |
200 */ | 171 */ |
201 int sqlite3HeapNearlyFull(void){ | 172 int sqlite3HeapNearlyFull(void){ |
202 return mem0.nearlyFull; | 173 return mem0.nearlyFull; |
203 } | 174 } |
204 | 175 |
205 /* | 176 /* |
206 ** Deinitialize the memory allocation subsystem. | 177 ** Deinitialize the memory allocation subsystem. |
207 */ | 178 */ |
208 void sqlite3MallocEnd(void){ | 179 void sqlite3MallocEnd(void){ |
209 if( sqlite3GlobalConfig.m.xShutdown ){ | 180 if( sqlite3GlobalConfig.m.xShutdown ){ |
210 sqlite3GlobalConfig.m.xShutdown(sqlite3GlobalConfig.m.pAppData); | 181 sqlite3GlobalConfig.m.xShutdown(sqlite3GlobalConfig.m.pAppData); |
211 } | 182 } |
212 memset(&mem0, 0, sizeof(mem0)); | 183 memset(&mem0, 0, sizeof(mem0)); |
213 } | 184 } |
214 | 185 |
215 /* | 186 /* |
216 ** Return the amount of memory currently checked out. | 187 ** Return the amount of memory currently checked out. |
217 */ | 188 */ |
218 sqlite3_int64 sqlite3_memory_used(void){ | 189 sqlite3_int64 sqlite3_memory_used(void){ |
219 int n, mx; | 190 sqlite3_int64 res, mx; |
220 sqlite3_int64 res; | 191 sqlite3_status64(SQLITE_STATUS_MEMORY_USED, &res, &mx, 0); |
221 sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, 0); | |
222 res = (sqlite3_int64)n; /* Work around bug in Borland C. Ticket #3216 */ | |
223 return res; | 192 return res; |
224 } | 193 } |
225 | 194 |
226 /* | 195 /* |
227 ** Return the maximum amount of memory that has ever been | 196 ** Return the maximum amount of memory that has ever been |
228 ** checked out since either the beginning of this process | 197 ** checked out since either the beginning of this process |
229 ** or since the most recent reset. | 198 ** or since the most recent reset. |
230 */ | 199 */ |
231 sqlite3_int64 sqlite3_memory_highwater(int resetFlag){ | 200 sqlite3_int64 sqlite3_memory_highwater(int resetFlag){ |
232 int n, mx; | 201 sqlite3_int64 res, mx; |
233 sqlite3_int64 res; | 202 sqlite3_status64(SQLITE_STATUS_MEMORY_USED, &res, &mx, resetFlag); |
234 sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, resetFlag); | 203 return mx; |
235 res = (sqlite3_int64)mx; /* Work around bug in Borland C. Ticket #3216 */ | |
236 return res; | |
237 } | 204 } |
238 | 205 |
239 /* | 206 /* |
240 ** Trigger the alarm | 207 ** Trigger the alarm |
241 */ | 208 */ |
242 static void sqlite3MallocAlarm(int nByte){ | 209 static void sqlite3MallocAlarm(int nByte){ |
243 void (*xCallback)(void*,sqlite3_int64,int); | 210 if( mem0.alarmThreshold<=0 ) return; |
244 sqlite3_int64 nowUsed; | |
245 void *pArg; | |
246 if( mem0.alarmCallback==0 ) return; | |
247 xCallback = mem0.alarmCallback; | |
248 nowUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); | |
249 pArg = mem0.alarmArg; | |
250 mem0.alarmCallback = 0; | |
251 sqlite3_mutex_leave(mem0.mutex); | 211 sqlite3_mutex_leave(mem0.mutex); |
252 xCallback(pArg, nowUsed, nByte); | 212 sqlite3_release_memory(nByte); |
253 sqlite3_mutex_enter(mem0.mutex); | 213 sqlite3_mutex_enter(mem0.mutex); |
254 mem0.alarmCallback = xCallback; | |
255 mem0.alarmArg = pArg; | |
256 } | 214 } |
257 | 215 |
258 /* | 216 /* |
259 ** Do a memory allocation with statistics and alarms. Assume the | 217 ** Do a memory allocation with statistics and alarms. Assume the |
260 ** lock is already held. | 218 ** lock is already held. |
261 */ | 219 */ |
262 static int mallocWithAlarm(int n, void **pp){ | 220 static int mallocWithAlarm(int n, void **pp){ |
263 int nFull; | 221 int nFull; |
264 void *p; | 222 void *p; |
265 assert( sqlite3_mutex_held(mem0.mutex) ); | 223 assert( sqlite3_mutex_held(mem0.mutex) ); |
266 nFull = sqlite3GlobalConfig.m.xRoundup(n); | 224 nFull = sqlite3GlobalConfig.m.xRoundup(n); |
267 sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, n); | 225 sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE, n); |
268 if( mem0.alarmCallback!=0 ){ | 226 if( mem0.alarmThreshold>0 ){ |
269 int nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); | 227 sqlite3_int64 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); |
270 if( nUsed >= mem0.alarmThreshold - nFull ){ | 228 if( nUsed >= mem0.alarmThreshold - nFull ){ |
271 mem0.nearlyFull = 1; | 229 mem0.nearlyFull = 1; |
272 sqlite3MallocAlarm(nFull); | 230 sqlite3MallocAlarm(nFull); |
273 }else{ | 231 }else{ |
274 mem0.nearlyFull = 0; | 232 mem0.nearlyFull = 0; |
275 } | 233 } |
276 } | 234 } |
277 p = sqlite3GlobalConfig.m.xMalloc(nFull); | 235 p = sqlite3GlobalConfig.m.xMalloc(nFull); |
278 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT | 236 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT |
279 if( p==0 && mem0.alarmCallback ){ | 237 if( p==0 && mem0.alarmThreshold>0 ){ |
280 sqlite3MallocAlarm(nFull); | 238 sqlite3MallocAlarm(nFull); |
281 p = sqlite3GlobalConfig.m.xMalloc(nFull); | 239 p = sqlite3GlobalConfig.m.xMalloc(nFull); |
282 } | 240 } |
283 #endif | 241 #endif |
284 if( p ){ | 242 if( p ){ |
285 nFull = sqlite3MallocSize(p); | 243 nFull = sqlite3MallocSize(p); |
286 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nFull); | 244 sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nFull); |
287 sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, 1); | 245 sqlite3StatusUp(SQLITE_STATUS_MALLOC_COUNT, 1); |
288 } | 246 } |
289 *pp = p; | 247 *pp = p; |
290 return nFull; | 248 return nFull; |
291 } | 249 } |
292 | 250 |
293 /* | 251 /* |
294 ** Allocate memory. This routine is like sqlite3_malloc() except that it | 252 ** Allocate memory. This routine is like sqlite3_malloc() except that it |
295 ** assumes the memory subsystem has already been initialized. | 253 ** assumes the memory subsystem has already been initialized. |
296 */ | 254 */ |
297 void *sqlite3Malloc(u64 n){ | 255 void *sqlite3Malloc(u64 n){ |
(...skipping 51 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
349 ** for situations where the memory might be held long-term. This | 307 ** for situations where the memory might be held long-term. This |
350 ** routine is intended to get memory to old large transient data | 308 ** routine is intended to get memory to old large transient data |
351 ** structures that would not normally fit on the stack of an | 309 ** structures that would not normally fit on the stack of an |
352 ** embedded processor. | 310 ** embedded processor. |
353 */ | 311 */ |
354 void *sqlite3ScratchMalloc(int n){ | 312 void *sqlite3ScratchMalloc(int n){ |
355 void *p; | 313 void *p; |
356 assert( n>0 ); | 314 assert( n>0 ); |
357 | 315 |
358 sqlite3_mutex_enter(mem0.mutex); | 316 sqlite3_mutex_enter(mem0.mutex); |
359 sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n); | 317 sqlite3StatusHighwater(SQLITE_STATUS_SCRATCH_SIZE, n); |
360 if( mem0.nScratchFree && sqlite3GlobalConfig.szScratch>=n ){ | 318 if( mem0.nScratchFree && sqlite3GlobalConfig.szScratch>=n ){ |
361 p = mem0.pScratchFree; | 319 p = mem0.pScratchFree; |
362 mem0.pScratchFree = mem0.pScratchFree->pNext; | 320 mem0.pScratchFree = mem0.pScratchFree->pNext; |
363 mem0.nScratchFree--; | 321 mem0.nScratchFree--; |
364 sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, 1); | 322 sqlite3StatusUp(SQLITE_STATUS_SCRATCH_USED, 1); |
365 sqlite3_mutex_leave(mem0.mutex); | 323 sqlite3_mutex_leave(mem0.mutex); |
366 }else{ | 324 }else{ |
367 sqlite3_mutex_leave(mem0.mutex); | 325 sqlite3_mutex_leave(mem0.mutex); |
368 p = sqlite3Malloc(n); | 326 p = sqlite3Malloc(n); |
369 if( sqlite3GlobalConfig.bMemstat && p ){ | 327 if( sqlite3GlobalConfig.bMemstat && p ){ |
370 sqlite3_mutex_enter(mem0.mutex); | 328 sqlite3_mutex_enter(mem0.mutex); |
371 sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, sqlite3MallocSize(p)); | 329 sqlite3StatusUp(SQLITE_STATUS_SCRATCH_OVERFLOW, sqlite3MallocSize(p)); |
372 sqlite3_mutex_leave(mem0.mutex); | 330 sqlite3_mutex_leave(mem0.mutex); |
373 } | 331 } |
374 sqlite3MemdebugSetType(p, MEMTYPE_SCRATCH); | 332 sqlite3MemdebugSetType(p, MEMTYPE_SCRATCH); |
375 } | 333 } |
376 assert( sqlite3_mutex_notheld(mem0.mutex) ); | 334 assert( sqlite3_mutex_notheld(mem0.mutex) ); |
377 | 335 |
378 | 336 |
379 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) | 337 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) |
380 /* Verify that no more than two scratch allocations per thread | 338 /* EVIDENCE-OF: R-12970-05880 SQLite will not use more than one scratch |
381 ** are outstanding at one time. (This is only checked in the | 339 ** buffers per thread. |
382 ** single-threaded case since checking in the multi-threaded case | 340 ** |
383 ** would be much more complicated.) */ | 341 ** This can only be checked in single-threaded mode. |
384 assert( scratchAllocOut<=1 ); | 342 */ |
| 343 assert( scratchAllocOut==0 ); |
385 if( p ) scratchAllocOut++; | 344 if( p ) scratchAllocOut++; |
386 #endif | 345 #endif |
387 | 346 |
388 return p; | 347 return p; |
389 } | 348 } |
390 void sqlite3ScratchFree(void *p){ | 349 void sqlite3ScratchFree(void *p){ |
391 if( p ){ | 350 if( p ){ |
392 | 351 |
393 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) | 352 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) |
394 /* Verify that no more than two scratch allocation per thread | 353 /* Verify that no more than two scratch allocation per thread |
395 ** is outstanding at one time. (This is only checked in the | 354 ** is outstanding at one time. (This is only checked in the |
396 ** single-threaded case since checking in the multi-threaded case | 355 ** single-threaded case since checking in the multi-threaded case |
397 ** would be much more complicated.) */ | 356 ** would be much more complicated.) */ |
398 assert( scratchAllocOut>=1 && scratchAllocOut<=2 ); | 357 assert( scratchAllocOut>=1 && scratchAllocOut<=2 ); |
399 scratchAllocOut--; | 358 scratchAllocOut--; |
400 #endif | 359 #endif |
401 | 360 |
402 if( p>=sqlite3GlobalConfig.pScratch && p<mem0.pScratchEnd ){ | 361 if( SQLITE_WITHIN(p, sqlite3GlobalConfig.pScratch, mem0.pScratchEnd) ){ |
403 /* Release memory from the SQLITE_CONFIG_SCRATCH allocation */ | 362 /* Release memory from the SQLITE_CONFIG_SCRATCH allocation */ |
404 ScratchFreeslot *pSlot; | 363 ScratchFreeslot *pSlot; |
405 pSlot = (ScratchFreeslot*)p; | 364 pSlot = (ScratchFreeslot*)p; |
406 sqlite3_mutex_enter(mem0.mutex); | 365 sqlite3_mutex_enter(mem0.mutex); |
407 pSlot->pNext = mem0.pScratchFree; | 366 pSlot->pNext = mem0.pScratchFree; |
408 mem0.pScratchFree = pSlot; | 367 mem0.pScratchFree = pSlot; |
409 mem0.nScratchFree++; | 368 mem0.nScratchFree++; |
410 assert( mem0.nScratchFree <= (u32)sqlite3GlobalConfig.nScratch ); | 369 assert( mem0.nScratchFree <= (u32)sqlite3GlobalConfig.nScratch ); |
411 sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, -1); | 370 sqlite3StatusDown(SQLITE_STATUS_SCRATCH_USED, 1); |
412 sqlite3_mutex_leave(mem0.mutex); | 371 sqlite3_mutex_leave(mem0.mutex); |
413 }else{ | 372 }else{ |
414 /* Release memory back to the heap */ | 373 /* Release memory back to the heap */ |
415 assert( sqlite3MemdebugHasType(p, MEMTYPE_SCRATCH) ); | 374 assert( sqlite3MemdebugHasType(p, MEMTYPE_SCRATCH) ); |
416 assert( sqlite3MemdebugNoType(p, ~MEMTYPE_SCRATCH) ); | 375 assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_SCRATCH) ); |
417 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); | 376 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); |
418 if( sqlite3GlobalConfig.bMemstat ){ | 377 if( sqlite3GlobalConfig.bMemstat ){ |
419 int iSize = sqlite3MallocSize(p); | 378 int iSize = sqlite3MallocSize(p); |
420 sqlite3_mutex_enter(mem0.mutex); | 379 sqlite3_mutex_enter(mem0.mutex); |
421 sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, -iSize); | 380 sqlite3StatusDown(SQLITE_STATUS_SCRATCH_OVERFLOW, iSize); |
422 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -iSize); | 381 sqlite3StatusDown(SQLITE_STATUS_MEMORY_USED, iSize); |
423 sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, -1); | 382 sqlite3StatusDown(SQLITE_STATUS_MALLOC_COUNT, 1); |
424 sqlite3GlobalConfig.m.xFree(p); | 383 sqlite3GlobalConfig.m.xFree(p); |
425 sqlite3_mutex_leave(mem0.mutex); | 384 sqlite3_mutex_leave(mem0.mutex); |
426 }else{ | 385 }else{ |
427 sqlite3GlobalConfig.m.xFree(p); | 386 sqlite3GlobalConfig.m.xFree(p); |
428 } | 387 } |
429 } | 388 } |
430 } | 389 } |
431 } | 390 } |
432 | 391 |
433 /* | 392 /* |
434 ** TRUE if p is a lookaside memory allocation from db | 393 ** TRUE if p is a lookaside memory allocation from db |
435 */ | 394 */ |
436 #ifndef SQLITE_OMIT_LOOKASIDE | 395 #ifndef SQLITE_OMIT_LOOKASIDE |
437 static int isLookaside(sqlite3 *db, void *p){ | 396 static int isLookaside(sqlite3 *db, void *p){ |
438 return p>=db->lookaside.pStart && p<db->lookaside.pEnd; | 397 return SQLITE_WITHIN(p, db->lookaside.pStart, db->lookaside.pEnd); |
439 } | 398 } |
440 #else | 399 #else |
441 #define isLookaside(A,B) 0 | 400 #define isLookaside(A,B) 0 |
442 #endif | 401 #endif |
443 | 402 |
444 /* | 403 /* |
445 ** Return the size of a memory allocation previously obtained from | 404 ** Return the size of a memory allocation previously obtained from |
446 ** sqlite3Malloc() or sqlite3_malloc(). | 405 ** sqlite3Malloc() or sqlite3_malloc(). |
447 */ | 406 */ |
448 int sqlite3MallocSize(void *p){ | 407 int sqlite3MallocSize(void *p){ |
449 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); | 408 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); |
450 return sqlite3GlobalConfig.m.xSize(p); | 409 return sqlite3GlobalConfig.m.xSize(p); |
451 } | 410 } |
452 int sqlite3DbMallocSize(sqlite3 *db, void *p){ | 411 int sqlite3DbMallocSize(sqlite3 *db, void *p){ |
453 if( db==0 ){ | 412 assert( p!=0 ); |
454 assert( sqlite3MemdebugNoType(p, ~MEMTYPE_HEAP) ); | 413 if( db==0 || !isLookaside(db,p) ){ |
455 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); | 414 #if SQLITE_DEBUG |
456 return sqlite3MallocSize(p); | 415 if( db==0 ){ |
| 416 assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) ); |
| 417 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); |
| 418 }else{ |
| 419 assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); |
| 420 assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); |
| 421 } |
| 422 #endif |
| 423 return sqlite3GlobalConfig.m.xSize(p); |
457 }else{ | 424 }else{ |
458 assert( sqlite3_mutex_held(db->mutex) ); | 425 assert( sqlite3_mutex_held(db->mutex) ); |
459 if( isLookaside(db, p) ){ | 426 return db->lookaside.sz; |
460 return db->lookaside.sz; | |
461 }else{ | |
462 assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); | |
463 assert( sqlite3MemdebugNoType(p, ~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); | |
464 return sqlite3GlobalConfig.m.xSize(p); | |
465 } | |
466 } | 427 } |
467 } | 428 } |
468 sqlite3_uint64 sqlite3_msize(void *p){ | 429 sqlite3_uint64 sqlite3_msize(void *p){ |
469 assert( sqlite3MemdebugNoType(p, ~MEMTYPE_HEAP) ); | 430 assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) ); |
470 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); | 431 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); |
471 return (sqlite3_uint64)sqlite3GlobalConfig.m.xSize(p); | 432 return p ? sqlite3GlobalConfig.m.xSize(p) : 0; |
472 } | 433 } |
473 | 434 |
474 /* | 435 /* |
475 ** Free memory previously obtained from sqlite3Malloc(). | 436 ** Free memory previously obtained from sqlite3Malloc(). |
476 */ | 437 */ |
477 void sqlite3_free(void *p){ | 438 void sqlite3_free(void *p){ |
478 if( p==0 ) return; /* IMP: R-49053-54554 */ | 439 if( p==0 ) return; /* IMP: R-49053-54554 */ |
479 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); | 440 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); |
480 assert( sqlite3MemdebugNoType(p, ~MEMTYPE_HEAP) ); | 441 assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) ); |
481 if( sqlite3GlobalConfig.bMemstat ){ | 442 if( sqlite3GlobalConfig.bMemstat ){ |
482 sqlite3_mutex_enter(mem0.mutex); | 443 sqlite3_mutex_enter(mem0.mutex); |
483 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -sqlite3MallocSize(p)); | 444 sqlite3StatusDown(SQLITE_STATUS_MEMORY_USED, sqlite3MallocSize(p)); |
484 sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, -1); | 445 sqlite3StatusDown(SQLITE_STATUS_MALLOC_COUNT, 1); |
485 sqlite3GlobalConfig.m.xFree(p); | 446 sqlite3GlobalConfig.m.xFree(p); |
486 sqlite3_mutex_leave(mem0.mutex); | 447 sqlite3_mutex_leave(mem0.mutex); |
487 }else{ | 448 }else{ |
488 sqlite3GlobalConfig.m.xFree(p); | 449 sqlite3GlobalConfig.m.xFree(p); |
489 } | 450 } |
490 } | 451 } |
491 | 452 |
492 /* | 453 /* |
493 ** Add the size of memory allocation "p" to the count in | 454 ** Add the size of memory allocation "p" to the count in |
494 ** *db->pnBytesFreed. | 455 ** *db->pnBytesFreed. |
(...skipping 20 matching lines...) Expand all Loading... |
515 /* Trash all content in the buffer being freed */ | 476 /* Trash all content in the buffer being freed */ |
516 memset(p, 0xaa, db->lookaside.sz); | 477 memset(p, 0xaa, db->lookaside.sz); |
517 #endif | 478 #endif |
518 pBuf->pNext = db->lookaside.pFree; | 479 pBuf->pNext = db->lookaside.pFree; |
519 db->lookaside.pFree = pBuf; | 480 db->lookaside.pFree = pBuf; |
520 db->lookaside.nOut--; | 481 db->lookaside.nOut--; |
521 return; | 482 return; |
522 } | 483 } |
523 } | 484 } |
524 assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); | 485 assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); |
525 assert( sqlite3MemdebugNoType(p, ~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); | 486 assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); |
526 assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) ); | 487 assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) ); |
527 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); | 488 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); |
528 sqlite3_free(p); | 489 sqlite3_free(p); |
529 } | 490 } |
530 | 491 |
531 /* | 492 /* |
532 ** Change the size of an existing memory allocation | 493 ** Change the size of an existing memory allocation |
533 */ | 494 */ |
534 void *sqlite3Realloc(void *pOld, u64 nBytes){ | 495 void *sqlite3Realloc(void *pOld, u64 nBytes){ |
535 int nOld, nNew, nDiff; | 496 int nOld, nNew, nDiff; |
536 void *pNew; | 497 void *pNew; |
537 assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) ); | 498 assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) ); |
538 assert( sqlite3MemdebugNoType(pOld, ~MEMTYPE_HEAP) ); | 499 assert( sqlite3MemdebugNoType(pOld, (u8)~MEMTYPE_HEAP) ); |
539 if( pOld==0 ){ | 500 if( pOld==0 ){ |
540 return sqlite3Malloc(nBytes); /* IMP: R-04300-56712 */ | 501 return sqlite3Malloc(nBytes); /* IMP: R-04300-56712 */ |
541 } | 502 } |
542 if( nBytes==0 ){ | 503 if( nBytes==0 ){ |
543 sqlite3_free(pOld); /* IMP: R-26507-47431 */ | 504 sqlite3_free(pOld); /* IMP: R-26507-47431 */ |
544 return 0; | 505 return 0; |
545 } | 506 } |
546 if( nBytes>=0x7fffff00 ){ | 507 if( nBytes>=0x7fffff00 ){ |
547 /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */ | 508 /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */ |
548 return 0; | 509 return 0; |
549 } | 510 } |
550 nOld = sqlite3MallocSize(pOld); | 511 nOld = sqlite3MallocSize(pOld); |
551 /* IMPLEMENTATION-OF: R-46199-30249 SQLite guarantees that the second | 512 /* IMPLEMENTATION-OF: R-46199-30249 SQLite guarantees that the second |
552 ** argument to xRealloc is always a value returned by a prior call to | 513 ** argument to xRealloc is always a value returned by a prior call to |
553 ** xRoundup. */ | 514 ** xRoundup. */ |
554 nNew = sqlite3GlobalConfig.m.xRoundup((int)nBytes); | 515 nNew = sqlite3GlobalConfig.m.xRoundup((int)nBytes); |
555 if( nOld==nNew ){ | 516 if( nOld==nNew ){ |
556 pNew = pOld; | 517 pNew = pOld; |
557 }else if( sqlite3GlobalConfig.bMemstat ){ | 518 }else if( sqlite3GlobalConfig.bMemstat ){ |
558 sqlite3_mutex_enter(mem0.mutex); | 519 sqlite3_mutex_enter(mem0.mutex); |
559 sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, (int)nBytes); | 520 sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE, (int)nBytes); |
560 nDiff = nNew - nOld; | 521 nDiff = nNew - nOld; |
561 if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED) >= | 522 if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED) >= |
562 mem0.alarmThreshold-nDiff ){ | 523 mem0.alarmThreshold-nDiff ){ |
563 sqlite3MallocAlarm(nDiff); | 524 sqlite3MallocAlarm(nDiff); |
564 } | 525 } |
565 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); | 526 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); |
566 if( pNew==0 && mem0.alarmCallback ){ | 527 if( pNew==0 && mem0.alarmThreshold>0 ){ |
567 sqlite3MallocAlarm((int)nBytes); | 528 sqlite3MallocAlarm((int)nBytes); |
568 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); | 529 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); |
569 } | 530 } |
570 if( pNew ){ | 531 if( pNew ){ |
571 nNew = sqlite3MallocSize(pNew); | 532 nNew = sqlite3MallocSize(pNew); |
572 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nNew-nOld); | 533 sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nNew-nOld); |
573 } | 534 } |
574 sqlite3_mutex_leave(mem0.mutex); | 535 sqlite3_mutex_leave(mem0.mutex); |
575 }else{ | 536 }else{ |
576 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); | 537 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); |
577 } | 538 } |
578 assert( EIGHT_BYTE_ALIGNMENT(pNew) ); /* IMP: R-11148-40995 */ | 539 assert( EIGHT_BYTE_ALIGNMENT(pNew) ); /* IMP: R-11148-40995 */ |
579 return pNew; | 540 return pNew; |
580 } | 541 } |
581 | 542 |
582 /* | 543 /* |
(...skipping 112 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
695 if( n<=db->lookaside.sz ){ | 656 if( n<=db->lookaside.sz ){ |
696 return p; | 657 return p; |
697 } | 658 } |
698 pNew = sqlite3DbMallocRaw(db, n); | 659 pNew = sqlite3DbMallocRaw(db, n); |
699 if( pNew ){ | 660 if( pNew ){ |
700 memcpy(pNew, p, db->lookaside.sz); | 661 memcpy(pNew, p, db->lookaside.sz); |
701 sqlite3DbFree(db, p); | 662 sqlite3DbFree(db, p); |
702 } | 663 } |
703 }else{ | 664 }else{ |
704 assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); | 665 assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); |
705 assert( sqlite3MemdebugNoType(p, ~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); | 666 assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); |
706 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); | 667 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); |
707 pNew = sqlite3_realloc64(p, n); | 668 pNew = sqlite3_realloc64(p, n); |
708 if( !pNew ){ | 669 if( !pNew ){ |
709 db->mallocFailed = 1; | 670 db->mallocFailed = 1; |
710 } | 671 } |
711 sqlite3MemdebugSetType(pNew, | 672 sqlite3MemdebugSetType(pNew, |
712 (db->lookaside.bEnabled ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP)); | 673 (db->lookaside.bEnabled ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP)); |
713 } | 674 } |
714 } | 675 } |
715 return pNew; | 676 return pNew; |
(...skipping 41 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
757 assert( (n&0x7fffffff)==n ); | 718 assert( (n&0x7fffffff)==n ); |
758 zNew = sqlite3DbMallocRaw(db, n+1); | 719 zNew = sqlite3DbMallocRaw(db, n+1); |
759 if( zNew ){ | 720 if( zNew ){ |
760 memcpy(zNew, z, (size_t)n); | 721 memcpy(zNew, z, (size_t)n); |
761 zNew[n] = 0; | 722 zNew[n] = 0; |
762 } | 723 } |
763 return zNew; | 724 return zNew; |
764 } | 725 } |
765 | 726 |
766 /* | 727 /* |
767 ** Create a string from the zFromat argument and the va_list that follows. | 728 ** Free any prior content in *pz and replace it with a copy of zNew. |
768 ** Store the string in memory obtained from sqliteMalloc() and make *pz | |
769 ** point to that string. | |
770 */ | 729 */ |
771 void sqlite3SetString(char **pz, sqlite3 *db, const char *zFormat, ...){ | 730 void sqlite3SetString(char **pz, sqlite3 *db, const char *zNew){ |
772 va_list ap; | |
773 char *z; | |
774 | |
775 va_start(ap, zFormat); | |
776 z = sqlite3VMPrintf(db, zFormat, ap); | |
777 va_end(ap); | |
778 sqlite3DbFree(db, *pz); | 731 sqlite3DbFree(db, *pz); |
779 *pz = z; | 732 *pz = sqlite3DbStrDup(db, zNew); |
780 } | 733 } |
781 | 734 |
782 /* | 735 /* |
783 ** Take actions at the end of an API call to indicate an OOM error | 736 ** Take actions at the end of an API call to indicate an OOM error |
784 */ | 737 */ |
785 static SQLITE_NOINLINE int apiOomError(sqlite3 *db){ | 738 static SQLITE_NOINLINE int apiOomError(sqlite3 *db){ |
786 db->mallocFailed = 0; | 739 db->mallocFailed = 0; |
787 sqlite3Error(db, SQLITE_NOMEM); | 740 sqlite3Error(db, SQLITE_NOMEM); |
788 return SQLITE_NOMEM; | 741 return SQLITE_NOMEM; |
789 } | 742 } |
790 | 743 |
791 /* | 744 /* |
792 ** This function must be called before exiting any API function (i.e. | 745 ** This function must be called before exiting any API function (i.e. |
793 ** returning control to the user) that has called sqlite3_malloc or | 746 ** returning control to the user) that has called sqlite3_malloc or |
794 ** sqlite3_realloc. | 747 ** sqlite3_realloc. |
795 ** | 748 ** |
796 ** The returned value is normally a copy of the second argument to this | 749 ** The returned value is normally a copy of the second argument to this |
797 ** function. However, if a malloc() failure has occurred since the previous | 750 ** function. However, if a malloc() failure has occurred since the previous |
798 ** invocation SQLITE_NOMEM is returned instead. | 751 ** invocation SQLITE_NOMEM is returned instead. |
799 ** | 752 ** |
800 ** If the first argument, db, is not NULL and a malloc() error has occurred, | 753 ** If an OOM as occurred, then the connection error-code (the value |
801 ** then the connection error-code (the value returned by sqlite3_errcode()) | 754 ** returned by sqlite3_errcode()) is set to SQLITE_NOMEM. |
802 ** is set to SQLITE_NOMEM. | |
803 */ | 755 */ |
804 int sqlite3ApiExit(sqlite3* db, int rc){ | 756 int sqlite3ApiExit(sqlite3* db, int rc){ |
805 /* If the db handle is not NULL, then we must hold the connection handle | 757 /* If the db handle must hold the connection handle mutex here. |
806 ** mutex here. Otherwise the read (and possible write) of db->mallocFailed | 758 ** Otherwise the read (and possible write) of db->mallocFailed |
807 ** is unsafe, as is the call to sqlite3Error(). | 759 ** is unsafe, as is the call to sqlite3Error(). |
808 */ | 760 */ |
809 assert( !db || sqlite3_mutex_held(db->mutex) ); | 761 assert( db!=0 ); |
810 if( db==0 ) return rc & 0xff; | 762 assert( sqlite3_mutex_held(db->mutex) ); |
811 if( db->mallocFailed || rc==SQLITE_IOERR_NOMEM ){ | 763 if( db->mallocFailed || rc==SQLITE_IOERR_NOMEM ){ |
812 return apiOomError(db); | 764 return apiOomError(db); |
813 } | 765 } |
814 return rc & db->errMask; | 766 return rc & db->errMask; |
815 } | 767 } |
OLD | NEW |