| OLD | NEW |
| 1 /* | 1 /* |
| 2 ** 2001 September 15 | 2 ** 2001 September 15 |
| 3 ** | 3 ** |
| 4 ** The author disclaims copyright to this source code. In place of | 4 ** The author disclaims copyright to this source code. In place of |
| 5 ** a legal notice, here is a blessing: | 5 ** a legal notice, here is a blessing: |
| 6 ** | 6 ** |
| 7 ** May you do good and not evil. | 7 ** May you do good and not evil. |
| 8 ** May you find forgiveness for yourself and forgive others. | 8 ** May you find forgiveness for yourself and forgive others. |
| 9 ** May you share freely, never taking more than you give. | 9 ** May you share freely, never taking more than you give. |
| 10 ** | 10 ** |
| (...skipping 24 matching lines...) Expand all Loading... |
| 35 v = sqlite3GetVdbe(pParse); | 35 v = sqlite3GetVdbe(pParse); |
| 36 assert( opcode==OP_OpenWrite || opcode==OP_OpenRead ); | 36 assert( opcode==OP_OpenWrite || opcode==OP_OpenRead ); |
| 37 sqlite3TableLock(pParse, iDb, pTab->tnum, | 37 sqlite3TableLock(pParse, iDb, pTab->tnum, |
| 38 (opcode==OP_OpenWrite)?1:0, pTab->zName); | 38 (opcode==OP_OpenWrite)?1:0, pTab->zName); |
| 39 if( HasRowid(pTab) ){ | 39 if( HasRowid(pTab) ){ |
| 40 sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nCol); | 40 sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nCol); |
| 41 VdbeComment((v, "%s", pTab->zName)); | 41 VdbeComment((v, "%s", pTab->zName)); |
| 42 }else{ | 42 }else{ |
| 43 Index *pPk = sqlite3PrimaryKeyIndex(pTab); | 43 Index *pPk = sqlite3PrimaryKeyIndex(pTab); |
| 44 assert( pPk!=0 ); | 44 assert( pPk!=0 ); |
| 45 assert( pPk->tnum=pTab->tnum ); | 45 assert( pPk->tnum==pTab->tnum ); |
| 46 sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb); | 46 sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb); |
| 47 sqlite3VdbeSetP4KeyInfo(pParse, pPk); | 47 sqlite3VdbeSetP4KeyInfo(pParse, pPk); |
| 48 VdbeComment((v, "%s", pTab->zName)); | 48 VdbeComment((v, "%s", pTab->zName)); |
| 49 } | 49 } |
| 50 } | 50 } |
| 51 | 51 |
| 52 /* | 52 /* |
| 53 ** Return a pointer to the column affinity string associated with index | 53 ** Return a pointer to the column affinity string associated with index |
| 54 ** pIdx. A column affinity string has one character for each column in | 54 ** pIdx. A column affinity string has one character for each column in |
| 55 ** the table, according to the affinity of the column: | 55 ** the table, according to the affinity of the column: |
| 56 ** | 56 ** |
| 57 ** Character Column affinity | 57 ** Character Column affinity |
| 58 ** ------------------------------ | 58 ** ------------------------------ |
| 59 ** 'A' NONE | 59 ** 'A' BLOB |
| 60 ** 'B' TEXT | 60 ** 'B' TEXT |
| 61 ** 'C' NUMERIC | 61 ** 'C' NUMERIC |
| 62 ** 'D' INTEGER | 62 ** 'D' INTEGER |
| 63 ** 'F' REAL | 63 ** 'F' REAL |
| 64 ** | 64 ** |
| 65 ** An extra 'D' is appended to the end of the string to cover the | 65 ** An extra 'D' is appended to the end of the string to cover the |
| 66 ** rowid that appears as the last column in every index. | 66 ** rowid that appears as the last column in every index. |
| 67 ** | 67 ** |
| 68 ** Memory for the buffer containing the column index affinity string | 68 ** Memory for the buffer containing the column index affinity string |
| 69 ** is managed along with the rest of the Index structure. It will be | 69 ** is managed along with the rest of the Index structure. It will be |
| 70 ** released when sqlite3DeleteIndex() is called. | 70 ** released when sqlite3DeleteIndex() is called. |
| 71 */ | 71 */ |
| 72 const char *sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){ | 72 const char *sqlite3IndexAffinityStr(sqlite3 *db, Index *pIdx){ |
| 73 if( !pIdx->zColAff ){ | 73 if( !pIdx->zColAff ){ |
| 74 /* The first time a column affinity string for a particular index is | 74 /* The first time a column affinity string for a particular index is |
| 75 ** required, it is allocated and populated here. It is then stored as | 75 ** required, it is allocated and populated here. It is then stored as |
| 76 ** a member of the Index structure for subsequent use. | 76 ** a member of the Index structure for subsequent use. |
| 77 ** | 77 ** |
| 78 ** The column affinity string will eventually be deleted by | 78 ** The column affinity string will eventually be deleted by |
| 79 ** sqliteDeleteIndex() when the Index structure itself is cleaned | 79 ** sqliteDeleteIndex() when the Index structure itself is cleaned |
| 80 ** up. | 80 ** up. |
| 81 */ | 81 */ |
| 82 int n; | 82 int n; |
| 83 Table *pTab = pIdx->pTable; | 83 Table *pTab = pIdx->pTable; |
| 84 sqlite3 *db = sqlite3VdbeDb(v); | |
| 85 pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1); | 84 pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1); |
| 86 if( !pIdx->zColAff ){ | 85 if( !pIdx->zColAff ){ |
| 87 db->mallocFailed = 1; | 86 db->mallocFailed = 1; |
| 88 return 0; | 87 return 0; |
| 89 } | 88 } |
| 90 for(n=0; n<pIdx->nColumn; n++){ | 89 for(n=0; n<pIdx->nColumn; n++){ |
| 91 i16 x = pIdx->aiColumn[n]; | 90 i16 x = pIdx->aiColumn[n]; |
| 92 pIdx->zColAff[n] = x<0 ? SQLITE_AFF_INTEGER : pTab->aCol[x].affinity; | 91 if( x>=0 ){ |
| 92 pIdx->zColAff[n] = pTab->aCol[x].affinity; |
| 93 }else if( x==XN_ROWID ){ |
| 94 pIdx->zColAff[n] = SQLITE_AFF_INTEGER; |
| 95 }else{ |
| 96 char aff; |
| 97 assert( x==XN_EXPR ); |
| 98 assert( pIdx->aColExpr!=0 ); |
| 99 aff = sqlite3ExprAffinity(pIdx->aColExpr->a[n].pExpr); |
| 100 if( aff==0 ) aff = SQLITE_AFF_BLOB; |
| 101 pIdx->zColAff[n] = aff; |
| 102 } |
| 93 } | 103 } |
| 94 pIdx->zColAff[n] = 0; | 104 pIdx->zColAff[n] = 0; |
| 95 } | 105 } |
| 96 | 106 |
| 97 return pIdx->zColAff; | 107 return pIdx->zColAff; |
| 98 } | 108 } |
| 99 | 109 |
| 100 /* | 110 /* |
| 101 ** Compute the affinity string for table pTab, if it has not already been | 111 ** Compute the affinity string for table pTab, if it has not already been |
| 102 ** computed. As an optimization, omit trailing SQLITE_AFF_NONE affinities. | 112 ** computed. As an optimization, omit trailing SQLITE_AFF_BLOB affinities. |
| 103 ** | 113 ** |
| 104 ** If the affinity exists (if it is no entirely SQLITE_AFF_NONE values) and | 114 ** If the affinity exists (if it is no entirely SQLITE_AFF_BLOB values) and |
| 105 ** if iReg>0 then code an OP_Affinity opcode that will set the affinities | 115 ** if iReg>0 then code an OP_Affinity opcode that will set the affinities |
| 106 ** for register iReg and following. Or if affinities exists and iReg==0, | 116 ** for register iReg and following. Or if affinities exists and iReg==0, |
| 107 ** then just set the P4 operand of the previous opcode (which should be | 117 ** then just set the P4 operand of the previous opcode (which should be |
| 108 ** an OP_MakeRecord) to the affinity string. | 118 ** an OP_MakeRecord) to the affinity string. |
| 109 ** | 119 ** |
| 110 ** A column affinity string has one character per column: | 120 ** A column affinity string has one character per column: |
| 111 ** | 121 ** |
| 112 ** Character Column affinity | 122 ** Character Column affinity |
| 113 ** ------------------------------ | 123 ** ------------------------------ |
| 114 ** 'A' NONE | 124 ** 'A' BLOB |
| 115 ** 'B' TEXT | 125 ** 'B' TEXT |
| 116 ** 'C' NUMERIC | 126 ** 'C' NUMERIC |
| 117 ** 'D' INTEGER | 127 ** 'D' INTEGER |
| 118 ** 'E' REAL | 128 ** 'E' REAL |
| 119 */ | 129 */ |
| 120 void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){ | 130 void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){ |
| 121 int i; | 131 int i; |
| 122 char *zColAff = pTab->zColAff; | 132 char *zColAff = pTab->zColAff; |
| 123 if( zColAff==0 ){ | 133 if( zColAff==0 ){ |
| 124 sqlite3 *db = sqlite3VdbeDb(v); | 134 sqlite3 *db = sqlite3VdbeDb(v); |
| 125 zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1); | 135 zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1); |
| 126 if( !zColAff ){ | 136 if( !zColAff ){ |
| 127 db->mallocFailed = 1; | 137 db->mallocFailed = 1; |
| 128 return; | 138 return; |
| 129 } | 139 } |
| 130 | 140 |
| 131 for(i=0; i<pTab->nCol; i++){ | 141 for(i=0; i<pTab->nCol; i++){ |
| 132 zColAff[i] = pTab->aCol[i].affinity; | 142 zColAff[i] = pTab->aCol[i].affinity; |
| 133 } | 143 } |
| 134 do{ | 144 do{ |
| 135 zColAff[i--] = 0; | 145 zColAff[i--] = 0; |
| 136 }while( i>=0 && zColAff[i]==SQLITE_AFF_NONE ); | 146 }while( i>=0 && zColAff[i]==SQLITE_AFF_BLOB ); |
| 137 pTab->zColAff = zColAff; | 147 pTab->zColAff = zColAff; |
| 138 } | 148 } |
| 139 i = sqlite3Strlen30(zColAff); | 149 i = sqlite3Strlen30(zColAff); |
| 140 if( i ){ | 150 if( i ){ |
| 141 if( iReg ){ | 151 if( iReg ){ |
| 142 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i); | 152 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i); |
| 143 }else{ | 153 }else{ |
| 144 sqlite3VdbeChangeP4(v, -1, zColAff, i); | 154 sqlite3VdbeChangeP4(v, -1, zColAff, i); |
| 145 } | 155 } |
| 146 } | 156 } |
| (...skipping 96 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 243 AutoincInfo *p; /* Information about an AUTOINCREMENT */ | 253 AutoincInfo *p; /* Information about an AUTOINCREMENT */ |
| 244 sqlite3 *db = pParse->db; /* The database connection */ | 254 sqlite3 *db = pParse->db; /* The database connection */ |
| 245 Db *pDb; /* Database only autoinc table */ | 255 Db *pDb; /* Database only autoinc table */ |
| 246 int memId; /* Register holding max rowid */ | 256 int memId; /* Register holding max rowid */ |
| 247 int addr; /* A VDBE address */ | 257 int addr; /* A VDBE address */ |
| 248 Vdbe *v = pParse->pVdbe; /* VDBE under construction */ | 258 Vdbe *v = pParse->pVdbe; /* VDBE under construction */ |
| 249 | 259 |
| 250 /* This routine is never called during trigger-generation. It is | 260 /* This routine is never called during trigger-generation. It is |
| 251 ** only called from the top-level */ | 261 ** only called from the top-level */ |
| 252 assert( pParse->pTriggerTab==0 ); | 262 assert( pParse->pTriggerTab==0 ); |
| 253 assert( pParse==sqlite3ParseToplevel(pParse) ); | 263 assert( sqlite3IsToplevel(pParse) ); |
| 254 | 264 |
| 255 assert( v ); /* We failed long ago if this is not so */ | 265 assert( v ); /* We failed long ago if this is not so */ |
| 256 for(p = pParse->pAinc; p; p = p->pNext){ | 266 for(p = pParse->pAinc; p; p = p->pNext){ |
| 257 pDb = &db->aDb[p->iDb]; | 267 pDb = &db->aDb[p->iDb]; |
| 258 memId = p->regCtr; | 268 memId = p->regCtr; |
| 259 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); | 269 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); |
| 260 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); | 270 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); |
| 261 sqlite3VdbeAddOp3(v, OP_Null, 0, memId, memId+1); | 271 sqlite3VdbeAddOp3(v, OP_Null, 0, memId, memId+1); |
| 262 addr = sqlite3VdbeCurrentAddr(v); | 272 addr = sqlite3VdbeCurrentAddr(v); |
| 263 sqlite3VdbeAddOp4(v, OP_String8, 0, memId-1, 0, p->pTab->zName, 0); | 273 sqlite3VdbeLoadString(v, memId-1, p->pTab->zName); |
| 264 sqlite3VdbeAddOp2(v, OP_Rewind, 0, addr+9); VdbeCoverage(v); | 274 sqlite3VdbeAddOp2(v, OP_Rewind, 0, addr+9); VdbeCoverage(v); |
| 265 sqlite3VdbeAddOp3(v, OP_Column, 0, 0, memId); | 275 sqlite3VdbeAddOp3(v, OP_Column, 0, 0, memId); |
| 266 sqlite3VdbeAddOp3(v, OP_Ne, memId-1, addr+7, memId); VdbeCoverage(v); | 276 sqlite3VdbeAddOp3(v, OP_Ne, memId-1, addr+7, memId); VdbeCoverage(v); |
| 267 sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL); | 277 sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL); |
| 268 sqlite3VdbeAddOp2(v, OP_Rowid, 0, memId+1); | 278 sqlite3VdbeAddOp2(v, OP_Rowid, 0, memId+1); |
| 269 sqlite3VdbeAddOp3(v, OP_Column, 0, 1, memId); | 279 sqlite3VdbeAddOp3(v, OP_Column, 0, 1, memId); |
| 270 sqlite3VdbeAddOp2(v, OP_Goto, 0, addr+9); | 280 sqlite3VdbeGoto(v, addr+9); |
| 271 sqlite3VdbeAddOp2(v, OP_Next, 0, addr+2); VdbeCoverage(v); | 281 sqlite3VdbeAddOp2(v, OP_Next, 0, addr+2); VdbeCoverage(v); |
| 272 sqlite3VdbeAddOp2(v, OP_Integer, 0, memId); | 282 sqlite3VdbeAddOp2(v, OP_Integer, 0, memId); |
| 273 sqlite3VdbeAddOp0(v, OP_Close); | 283 sqlite3VdbeAddOp0(v, OP_Close); |
| 274 } | 284 } |
| 275 } | 285 } |
| 276 | 286 |
| 277 /* | 287 /* |
| 278 ** Update the maximum rowid for an autoincrement calculation. | 288 ** Update the maximum rowid for an autoincrement calculation. |
| 279 ** | 289 ** |
| 280 ** This routine should be called when the top of the stack holds a | 290 ** This routine should be called when the top of the stack holds a |
| (...skipping 15 matching lines...) Expand all Loading... |
| 296 ** routine just before the "exit" code. | 306 ** routine just before the "exit" code. |
| 297 */ | 307 */ |
| 298 void sqlite3AutoincrementEnd(Parse *pParse){ | 308 void sqlite3AutoincrementEnd(Parse *pParse){ |
| 299 AutoincInfo *p; | 309 AutoincInfo *p; |
| 300 Vdbe *v = pParse->pVdbe; | 310 Vdbe *v = pParse->pVdbe; |
| 301 sqlite3 *db = pParse->db; | 311 sqlite3 *db = pParse->db; |
| 302 | 312 |
| 303 assert( v ); | 313 assert( v ); |
| 304 for(p = pParse->pAinc; p; p = p->pNext){ | 314 for(p = pParse->pAinc; p; p = p->pNext){ |
| 305 Db *pDb = &db->aDb[p->iDb]; | 315 Db *pDb = &db->aDb[p->iDb]; |
| 306 int j1; | 316 int addr1; |
| 307 int iRec; | 317 int iRec; |
| 308 int memId = p->regCtr; | 318 int memId = p->regCtr; |
| 309 | 319 |
| 310 iRec = sqlite3GetTempReg(pParse); | 320 iRec = sqlite3GetTempReg(pParse); |
| 311 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); | 321 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); |
| 312 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); | 322 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); |
| 313 j1 = sqlite3VdbeAddOp1(v, OP_NotNull, memId+1); VdbeCoverage(v); | 323 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, memId+1); VdbeCoverage(v); |
| 314 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, memId+1); | 324 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, memId+1); |
| 315 sqlite3VdbeJumpHere(v, j1); | 325 sqlite3VdbeJumpHere(v, addr1); |
| 316 sqlite3VdbeAddOp3(v, OP_MakeRecord, memId-1, 2, iRec); | 326 sqlite3VdbeAddOp3(v, OP_MakeRecord, memId-1, 2, iRec); |
| 317 sqlite3VdbeAddOp3(v, OP_Insert, 0, iRec, memId+1); | 327 sqlite3VdbeAddOp3(v, OP_Insert, 0, iRec, memId+1); |
| 318 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); | 328 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); |
| 319 sqlite3VdbeAddOp0(v, OP_Close); | 329 sqlite3VdbeAddOp0(v, OP_Close); |
| 320 sqlite3ReleaseTempReg(pParse, iRec); | 330 sqlite3ReleaseTempReg(pParse, iRec); |
| 321 } | 331 } |
| 322 } | 332 } |
| 323 #else | 333 #else |
| 324 /* | 334 /* |
| 325 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines | 335 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines |
| 326 ** above are all no-ops | 336 ** above are all no-ops |
| 327 */ | 337 */ |
| 328 # define autoIncBegin(A,B,C) (0) | 338 # define autoIncBegin(A,B,C) (0) |
| 329 # define autoIncStep(A,B,C) | 339 # define autoIncStep(A,B,C) |
| 330 #endif /* SQLITE_OMIT_AUTOINCREMENT */ | 340 #endif /* SQLITE_OMIT_AUTOINCREMENT */ |
| 331 | 341 |
| 332 | 342 |
| 333 /* Forward declaration */ | 343 /* Forward declaration */ |
| 334 static int xferOptimization( | 344 static int xferOptimization( |
| 335 Parse *pParse, /* Parser context */ | 345 Parse *pParse, /* Parser context */ |
| 336 Table *pDest, /* The table we are inserting into */ | 346 Table *pDest, /* The table we are inserting into */ |
| 337 Select *pSelect, /* A SELECT statement to use as the data source */ | 347 Select *pSelect, /* A SELECT statement to use as the data source */ |
| 338 int onError, /* How to handle constraint errors */ | 348 int onError, /* How to handle constraint errors */ |
| 339 int iDbDest /* The database of pDest */ | 349 int iDbDest /* The database of pDest */ |
| 340 ); | 350 ); |
| 341 | 351 |
| 342 /* | 352 /* |
| 343 ** This routine is called to handle SQL of the following forms: | 353 ** This routine is called to handle SQL of the following forms: |
| 344 ** | 354 ** |
| 345 ** insert into TABLE (IDLIST) values(EXPRLIST) | 355 ** insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),... |
| 346 ** insert into TABLE (IDLIST) select | 356 ** insert into TABLE (IDLIST) select |
| 357 ** insert into TABLE (IDLIST) default values |
| 347 ** | 358 ** |
| 348 ** The IDLIST following the table name is always optional. If omitted, | 359 ** The IDLIST following the table name is always optional. If omitted, |
| 349 ** then a list of all columns for the table is substituted. The IDLIST | 360 ** then a list of all (non-hidden) columns for the table is substituted. |
| 350 ** appears in the pColumn parameter. pColumn is NULL if IDLIST is omitted. | 361 ** The IDLIST appears in the pColumn parameter. pColumn is NULL if IDLIST |
| 362 ** is omitted. |
| 351 ** | 363 ** |
| 352 ** The pList parameter holds EXPRLIST in the first form of the INSERT | 364 ** For the pSelect parameter holds the values to be inserted for the |
| 353 ** statement above, and pSelect is NULL. For the second form, pList is | 365 ** first two forms shown above. A VALUES clause is really just short-hand |
| 354 ** NULL and pSelect is a pointer to the select statement used to generate | 366 ** for a SELECT statement that omits the FROM clause and everything else |
| 355 ** data for the insert. | 367 ** that follows. If the pSelect parameter is NULL, that means that the |
| 368 ** DEFAULT VALUES form of the INSERT statement is intended. |
| 356 ** | 369 ** |
| 357 ** The code generated follows one of four templates. For a simple | 370 ** The code generated follows one of four templates. For a simple |
| 358 ** insert with data coming from a VALUES clause, the code executes | 371 ** insert with data coming from a single-row VALUES clause, the code executes |
| 359 ** once straight down through. Pseudo-code follows (we call this | 372 ** once straight down through. Pseudo-code follows (we call this |
| 360 ** the "1st template"): | 373 ** the "1st template"): |
| 361 ** | 374 ** |
| 362 ** open write cursor to <table> and its indices | 375 ** open write cursor to <table> and its indices |
| 363 ** put VALUES clause expressions into registers | 376 ** put VALUES clause expressions into registers |
| 364 ** write the resulting record into <table> | 377 ** write the resulting record into <table> |
| 365 ** cleanup | 378 ** cleanup |
| 366 ** | 379 ** |
| 367 ** The three remaining templates assume the statement is of the form | 380 ** The three remaining templates assume the statement is of the form |
| 368 ** | 381 ** |
| (...skipping 86 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 455 int endOfLoop; /* Label for the end of the insertion loop */ | 468 int endOfLoop; /* Label for the end of the insertion loop */ |
| 456 int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ | 469 int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ |
| 457 int addrInsTop = 0; /* Jump to label "D" */ | 470 int addrInsTop = 0; /* Jump to label "D" */ |
| 458 int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */ | 471 int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */ |
| 459 SelectDest dest; /* Destination for SELECT on rhs of INSERT */ | 472 SelectDest dest; /* Destination for SELECT on rhs of INSERT */ |
| 460 int iDb; /* Index of database holding TABLE */ | 473 int iDb; /* Index of database holding TABLE */ |
| 461 Db *pDb; /* The database containing table being inserted into */ | 474 Db *pDb; /* The database containing table being inserted into */ |
| 462 u8 useTempTable = 0; /* Store SELECT results in intermediate table */ | 475 u8 useTempTable = 0; /* Store SELECT results in intermediate table */ |
| 463 u8 appendFlag = 0; /* True if the insert is likely to be an append */ | 476 u8 appendFlag = 0; /* True if the insert is likely to be an append */ |
| 464 u8 withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */ | 477 u8 withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */ |
| 465 u8 bIdListInOrder = 1; /* True if IDLIST is in table order */ | 478 u8 bIdListInOrder; /* True if IDLIST is in table order */ |
| 466 ExprList *pList = 0; /* List of VALUES() to be inserted */ | 479 ExprList *pList = 0; /* List of VALUES() to be inserted */ |
| 467 | 480 |
| 468 /* Register allocations */ | 481 /* Register allocations */ |
| 469 int regFromSelect = 0;/* Base register for data coming from SELECT */ | 482 int regFromSelect = 0;/* Base register for data coming from SELECT */ |
| 470 int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */ | 483 int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */ |
| 471 int regRowCount = 0; /* Memory cell used for the row counter */ | 484 int regRowCount = 0; /* Memory cell used for the row counter */ |
| 472 int regIns; /* Block of regs holding rowid+data being inserted */ | 485 int regIns; /* Block of regs holding rowid+data being inserted */ |
| 473 int regRowid; /* registers holding insert rowid */ | 486 int regRowid; /* registers holding insert rowid */ |
| 474 int regData; /* register holding first column to insert */ | 487 int regData; /* register holding first column to insert */ |
| 475 int *aRegIdx = 0; /* One register allocated to each index */ | 488 int *aRegIdx = 0; /* One register allocated to each index */ |
| 476 | 489 |
| 477 #ifndef SQLITE_OMIT_TRIGGER | 490 #ifndef SQLITE_OMIT_TRIGGER |
| 478 int isView; /* True if attempting to insert into a view */ | 491 int isView; /* True if attempting to insert into a view */ |
| 479 Trigger *pTrigger; /* List of triggers on pTab, if required */ | 492 Trigger *pTrigger; /* List of triggers on pTab, if required */ |
| 480 int tmask; /* Mask of trigger times */ | 493 int tmask; /* Mask of trigger times */ |
| 481 #endif | 494 #endif |
| 482 | 495 |
| 483 db = pParse->db; | 496 db = pParse->db; |
| 484 memset(&dest, 0, sizeof(dest)); | 497 memset(&dest, 0, sizeof(dest)); |
| 485 if( pParse->nErr || db->mallocFailed ){ | 498 if( pParse->nErr || db->mallocFailed ){ |
| 486 goto insert_cleanup; | 499 goto insert_cleanup; |
| 487 } | 500 } |
| 488 | 501 |
| 489 /* If the Select object is really just a simple VALUES() list with a | 502 /* If the Select object is really just a simple VALUES() list with a |
| 490 ** single row values (the common case) then keep that one row of values | 503 ** single row (the common case) then keep that one row of values |
| 491 ** and go ahead and discard the Select object | 504 ** and discard the other (unused) parts of the pSelect object |
| 492 */ | 505 */ |
| 493 if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){ | 506 if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){ |
| 494 pList = pSelect->pEList; | 507 pList = pSelect->pEList; |
| 495 pSelect->pEList = 0; | 508 pSelect->pEList = 0; |
| 496 sqlite3SelectDelete(db, pSelect); | 509 sqlite3SelectDelete(db, pSelect); |
| 497 pSelect = 0; | 510 pSelect = 0; |
| 498 } | 511 } |
| 499 | 512 |
| 500 /* Locate the table into which we will be inserting new information. | 513 /* Locate the table into which we will be inserting new information. |
| 501 */ | 514 */ |
| (...skipping 87 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 589 ** all elements of the IDLIST really are columns of the table and | 602 ** all elements of the IDLIST really are columns of the table and |
| 590 ** remember the column indices. | 603 ** remember the column indices. |
| 591 ** | 604 ** |
| 592 ** If the table has an INTEGER PRIMARY KEY column and that column | 605 ** If the table has an INTEGER PRIMARY KEY column and that column |
| 593 ** is named in the IDLIST, then record in the ipkColumn variable | 606 ** is named in the IDLIST, then record in the ipkColumn variable |
| 594 ** the index into IDLIST of the primary key column. ipkColumn is | 607 ** the index into IDLIST of the primary key column. ipkColumn is |
| 595 ** the index of the primary key as it appears in IDLIST, not as | 608 ** the index of the primary key as it appears in IDLIST, not as |
| 596 ** is appears in the original table. (The index of the INTEGER | 609 ** is appears in the original table. (The index of the INTEGER |
| 597 ** PRIMARY KEY in the original table is pTab->iPKey.) | 610 ** PRIMARY KEY in the original table is pTab->iPKey.) |
| 598 */ | 611 */ |
| 612 bIdListInOrder = (pTab->tabFlags & TF_OOOHidden)==0; |
| 599 if( pColumn ){ | 613 if( pColumn ){ |
| 600 for(i=0; i<pColumn->nId; i++){ | 614 for(i=0; i<pColumn->nId; i++){ |
| 601 pColumn->a[i].idx = -1; | 615 pColumn->a[i].idx = -1; |
| 602 } | 616 } |
| 603 for(i=0; i<pColumn->nId; i++){ | 617 for(i=0; i<pColumn->nId; i++){ |
| 604 for(j=0; j<pTab->nCol; j++){ | 618 for(j=0; j<pTab->nCol; j++){ |
| 605 if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){ | 619 if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){ |
| 606 pColumn->a[i].idx = j; | 620 pColumn->a[i].idx = j; |
| 607 if( i!=j ) bIdListInOrder = 0; | 621 if( i!=j ) bIdListInOrder = 0; |
| 608 if( j==pTab->iPKey ){ | 622 if( j==pTab->iPKey ){ |
| (...skipping 15 matching lines...) Expand all Loading... |
| 624 } | 638 } |
| 625 } | 639 } |
| 626 } | 640 } |
| 627 | 641 |
| 628 /* Figure out how many columns of data are supplied. If the data | 642 /* Figure out how many columns of data are supplied. If the data |
| 629 ** is coming from a SELECT statement, then generate a co-routine that | 643 ** is coming from a SELECT statement, then generate a co-routine that |
| 630 ** produces a single row of the SELECT on each invocation. The | 644 ** produces a single row of the SELECT on each invocation. The |
| 631 ** co-routine is the common header to the 3rd and 4th templates. | 645 ** co-routine is the common header to the 3rd and 4th templates. |
| 632 */ | 646 */ |
| 633 if( pSelect ){ | 647 if( pSelect ){ |
| 634 /* Data is coming from a SELECT. Generate a co-routine to run the SELECT */ | 648 /* Data is coming from a SELECT or from a multi-row VALUES clause. |
| 649 ** Generate a co-routine to run the SELECT. */ |
| 635 int regYield; /* Register holding co-routine entry-point */ | 650 int regYield; /* Register holding co-routine entry-point */ |
| 636 int addrTop; /* Top of the co-routine */ | 651 int addrTop; /* Top of the co-routine */ |
| 637 int rc; /* Result code */ | 652 int rc; /* Result code */ |
| 638 | 653 |
| 639 regYield = ++pParse->nMem; | 654 regYield = ++pParse->nMem; |
| 640 addrTop = sqlite3VdbeCurrentAddr(v) + 1; | 655 addrTop = sqlite3VdbeCurrentAddr(v) + 1; |
| 641 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); | 656 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); |
| 642 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); | 657 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); |
| 643 dest.iSdst = bIdListInOrder ? regData : 0; | 658 dest.iSdst = bIdListInOrder ? regData : 0; |
| 644 dest.nSdst = pTab->nCol; | 659 dest.nSdst = pTab->nCol; |
| 645 rc = sqlite3Select(pParse, pSelect, &dest); | 660 rc = sqlite3Select(pParse, pSelect, &dest); |
| 646 regFromSelect = dest.iSdst; | 661 regFromSelect = dest.iSdst; |
| 647 assert( pParse->nErr==0 || rc ); | 662 if( rc || db->mallocFailed || pParse->nErr ) goto insert_cleanup; |
| 648 if( rc || db->mallocFailed ) goto insert_cleanup; | |
| 649 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield); | 663 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield); |
| 650 sqlite3VdbeJumpHere(v, addrTop - 1); /* label B: */ | 664 sqlite3VdbeJumpHere(v, addrTop - 1); /* label B: */ |
| 651 assert( pSelect->pEList ); | 665 assert( pSelect->pEList ); |
| 652 nColumn = pSelect->pEList->nExpr; | 666 nColumn = pSelect->pEList->nExpr; |
| 653 | 667 |
| 654 /* Set useTempTable to TRUE if the result of the SELECT statement | 668 /* Set useTempTable to TRUE if the result of the SELECT statement |
| 655 ** should be written into a temporary table (template 4). Set to | 669 ** should be written into a temporary table (template 4). Set to |
| 656 ** FALSE if each output row of the SELECT can be written directly into | 670 ** FALSE if each output row of the SELECT can be written directly into |
| 657 ** the destination table (template 3). | 671 ** the destination table (template 3). |
| 658 ** | 672 ** |
| (...skipping 21 matching lines...) Expand all Loading... |
| 680 int addrL; /* Label "L" */ | 694 int addrL; /* Label "L" */ |
| 681 | 695 |
| 682 srcTab = pParse->nTab++; | 696 srcTab = pParse->nTab++; |
| 683 regRec = sqlite3GetTempReg(pParse); | 697 regRec = sqlite3GetTempReg(pParse); |
| 684 regTempRowid = sqlite3GetTempReg(pParse); | 698 regTempRowid = sqlite3GetTempReg(pParse); |
| 685 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn); | 699 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn); |
| 686 addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v); | 700 addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v); |
| 687 sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec); | 701 sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec); |
| 688 sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid); | 702 sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid); |
| 689 sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid); | 703 sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid); |
| 690 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrL); | 704 sqlite3VdbeGoto(v, addrL); |
| 691 sqlite3VdbeJumpHere(v, addrL); | 705 sqlite3VdbeJumpHere(v, addrL); |
| 692 sqlite3ReleaseTempReg(pParse, regRec); | 706 sqlite3ReleaseTempReg(pParse, regRec); |
| 693 sqlite3ReleaseTempReg(pParse, regTempRowid); | 707 sqlite3ReleaseTempReg(pParse, regTempRowid); |
| 694 } | 708 } |
| 695 }else{ | 709 }else{ |
| 696 /* This is the case if the data for the INSERT is coming from a VALUES | 710 /* This is the case if the data for the INSERT is coming from a |
| 697 ** clause | 711 ** single-row VALUES clause |
| 698 */ | 712 */ |
| 699 NameContext sNC; | 713 NameContext sNC; |
| 700 memset(&sNC, 0, sizeof(sNC)); | 714 memset(&sNC, 0, sizeof(sNC)); |
| 701 sNC.pParse = pParse; | 715 sNC.pParse = pParse; |
| 702 srcTab = -1; | 716 srcTab = -1; |
| 703 assert( useTempTable==0 ); | 717 assert( useTempTable==0 ); |
| 704 nColumn = pList ? pList->nExpr : 0; | 718 if( pList ){ |
| 705 for(i=0; i<nColumn; i++){ | 719 nColumn = pList->nExpr; |
| 706 if( sqlite3ResolveExprNames(&sNC, pList->a[i].pExpr) ){ | 720 if( sqlite3ResolveExprListNames(&sNC, pList) ){ |
| 707 goto insert_cleanup; | 721 goto insert_cleanup; |
| 708 } | 722 } |
| 723 }else{ |
| 724 nColumn = 0; |
| 709 } | 725 } |
| 710 } | 726 } |
| 711 | 727 |
| 712 /* If there is no IDLIST term but the table has an integer primary | 728 /* If there is no IDLIST term but the table has an integer primary |
| 713 ** key, the set the ipkColumn variable to the integer primary key | 729 ** key, the set the ipkColumn variable to the integer primary key |
| 714 ** column index in the original table definition. | 730 ** column index in the original table definition. |
| 715 */ | 731 */ |
| 716 if( pColumn==0 && nColumn>0 ){ | 732 if( pColumn==0 && nColumn>0 ){ |
| 717 ipkColumn = pTab->iPKey; | 733 ipkColumn = pTab->iPKey; |
| 718 } | 734 } |
| 719 | 735 |
| 720 /* Make sure the number of columns in the source data matches the number | 736 /* Make sure the number of columns in the source data matches the number |
| 721 ** of columns to be inserted into the table. | 737 ** of columns to be inserted into the table. |
| 722 */ | 738 */ |
| 723 if( IsVirtual(pTab) ){ | 739 for(i=0; i<pTab->nCol; i++){ |
| 724 for(i=0; i<pTab->nCol; i++){ | 740 nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0); |
| 725 nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0); | |
| 726 } | |
| 727 } | 741 } |
| 728 if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){ | 742 if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){ |
| 729 sqlite3ErrorMsg(pParse, | 743 sqlite3ErrorMsg(pParse, |
| 730 "table %S has %d columns but %d values were supplied", | 744 "table %S has %d columns but %d values were supplied", |
| 731 pTabList, 0, pTab->nCol-nHidden, nColumn); | 745 pTabList, 0, pTab->nCol-nHidden, nColumn); |
| 732 goto insert_cleanup; | 746 goto insert_cleanup; |
| 733 } | 747 } |
| 734 if( pColumn!=0 && nColumn!=pColumn->nId ){ | 748 if( pColumn!=0 && nColumn!=pColumn->nId ){ |
| 735 sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); | 749 sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); |
| 736 goto insert_cleanup; | 750 goto insert_cleanup; |
| 737 } | 751 } |
| 738 | 752 |
| 739 /* Initialize the count of rows to be inserted | 753 /* Initialize the count of rows to be inserted |
| 740 */ | 754 */ |
| 741 if( db->flags & SQLITE_CountRows ){ | 755 if( db->flags & SQLITE_CountRows ){ |
| 742 regRowCount = ++pParse->nMem; | 756 regRowCount = ++pParse->nMem; |
| 743 sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); | 757 sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); |
| 744 } | 758 } |
| 745 | 759 |
| 746 /* If this is not a view, open the table and and all indices */ | 760 /* If this is not a view, open the table and and all indices */ |
| 747 if( !isView ){ | 761 if( !isView ){ |
| 748 int nIdx; | 762 int nIdx; |
| 749 nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, -1, 0, | 763 nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0, |
| 750 &iDataCur, &iIdxCur); | 764 &iDataCur, &iIdxCur); |
| 751 aRegIdx = sqlite3DbMallocRaw(db, sizeof(int)*(nIdx+1)); | 765 aRegIdx = sqlite3DbMallocRaw(db, sizeof(int)*(nIdx+1)); |
| 752 if( aRegIdx==0 ){ | 766 if( aRegIdx==0 ){ |
| 753 goto insert_cleanup; | 767 goto insert_cleanup; |
| 754 } | 768 } |
| 755 for(i=0; i<nIdx; i++){ | 769 for(i=0; i<nIdx; i++){ |
| 756 aRegIdx[i] = ++pParse->nMem; | 770 aRegIdx[i] = ++pParse->nMem; |
| 757 } | 771 } |
| 758 } | 772 } |
| 759 | 773 |
| (...skipping 31 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 791 | 805 |
| 792 /* build the NEW.* reference row. Note that if there is an INTEGER | 806 /* build the NEW.* reference row. Note that if there is an INTEGER |
| 793 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be | 807 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be |
| 794 ** translated into a unique ID for the row. But on a BEFORE trigger, | 808 ** translated into a unique ID for the row. But on a BEFORE trigger, |
| 795 ** we do not know what the unique ID will be (because the insert has | 809 ** we do not know what the unique ID will be (because the insert has |
| 796 ** not happened yet) so we substitute a rowid of -1 | 810 ** not happened yet) so we substitute a rowid of -1 |
| 797 */ | 811 */ |
| 798 if( ipkColumn<0 ){ | 812 if( ipkColumn<0 ){ |
| 799 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); | 813 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); |
| 800 }else{ | 814 }else{ |
| 801 int j1; | 815 int addr1; |
| 802 assert( !withoutRowid ); | 816 assert( !withoutRowid ); |
| 803 if( useTempTable ){ | 817 if( useTempTable ){ |
| 804 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols); | 818 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols); |
| 805 }else{ | 819 }else{ |
| 806 assert( pSelect==0 ); /* Otherwise useTempTable is true */ | 820 assert( pSelect==0 ); /* Otherwise useTempTable is true */ |
| 807 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols); | 821 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols); |
| 808 } | 822 } |
| 809 j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v); | 823 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v); |
| 810 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); | 824 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); |
| 811 sqlite3VdbeJumpHere(v, j1); | 825 sqlite3VdbeJumpHere(v, addr1); |
| 812 sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v); | 826 sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v); |
| 813 } | 827 } |
| 814 | 828 |
| 815 /* Cannot have triggers on a virtual table. If it were possible, | 829 /* Cannot have triggers on a virtual table. If it were possible, |
| 816 ** this block would have to account for hidden column. | 830 ** this block would have to account for hidden column. |
| 817 */ | 831 */ |
| 818 assert( !IsVirtual(pTab) ); | 832 assert( !IsVirtual(pTab) ); |
| 819 | 833 |
| 820 /* Create the new column data | 834 /* Create the new column data |
| 821 */ | 835 */ |
| 822 for(i=0; i<pTab->nCol; i++){ | 836 for(i=j=0; i<pTab->nCol; i++){ |
| 823 if( pColumn==0 ){ | 837 if( pColumn ){ |
| 824 j = i; | |
| 825 }else{ | |
| 826 for(j=0; j<pColumn->nId; j++){ | 838 for(j=0; j<pColumn->nId; j++){ |
| 827 if( pColumn->a[j].idx==i ) break; | 839 if( pColumn->a[j].idx==i ) break; |
| 828 } | 840 } |
| 829 } | 841 } |
| 830 if( (!useTempTable && !pList) || (pColumn && j>=pColumn->nId) ){ | 842 if( (!useTempTable && !pList) || (pColumn && j>=pColumn->nId) |
| 843 || (pColumn==0 && IsOrdinaryHiddenColumn(&pTab->aCol[i])) ){ |
| 831 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i+1); | 844 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i+1); |
| 832 }else if( useTempTable ){ | 845 }else if( useTempTable ){ |
| 833 sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i+1); | 846 sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i+1); |
| 834 }else{ | 847 }else{ |
| 835 assert( pSelect==0 ); /* Otherwise useTempTable is true */ | 848 assert( pSelect==0 ); /* Otherwise useTempTable is true */ |
| 836 sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i+1); | 849 sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i+1); |
| 837 } | 850 } |
| 851 if( pColumn==0 && !IsOrdinaryHiddenColumn(&pTab->aCol[i]) ) j++; |
| 838 } | 852 } |
| 839 | 853 |
| 840 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, | 854 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, |
| 841 ** do not attempt any conversions before assembling the record. | 855 ** do not attempt any conversions before assembling the record. |
| 842 ** If this is a real table, attempt conversions as required by the | 856 ** If this is a real table, attempt conversions as required by the |
| 843 ** table column affinities. | 857 ** table column affinities. |
| 844 */ | 858 */ |
| 845 if( !isView ){ | 859 if( !isView ){ |
| 846 sqlite3TableAffinity(v, pTab, regCols+1); | 860 sqlite3TableAffinity(v, pTab, regCols+1); |
| 847 } | 861 } |
| (...skipping 27 matching lines...) Expand all Loading... |
| 875 pOp->opcode = OP_NewRowid; | 889 pOp->opcode = OP_NewRowid; |
| 876 pOp->p1 = iDataCur; | 890 pOp->p1 = iDataCur; |
| 877 pOp->p2 = regRowid; | 891 pOp->p2 = regRowid; |
| 878 pOp->p3 = regAutoinc; | 892 pOp->p3 = regAutoinc; |
| 879 } | 893 } |
| 880 } | 894 } |
| 881 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid | 895 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid |
| 882 ** to generate a unique primary key value. | 896 ** to generate a unique primary key value. |
| 883 */ | 897 */ |
| 884 if( !appendFlag ){ | 898 if( !appendFlag ){ |
| 885 int j1; | 899 int addr1; |
| 886 if( !IsVirtual(pTab) ){ | 900 if( !IsVirtual(pTab) ){ |
| 887 j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v); | 901 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v); |
| 888 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); | 902 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); |
| 889 sqlite3VdbeJumpHere(v, j1); | 903 sqlite3VdbeJumpHere(v, addr1); |
| 890 }else{ | 904 }else{ |
| 891 j1 = sqlite3VdbeCurrentAddr(v); | 905 addr1 = sqlite3VdbeCurrentAddr(v); |
| 892 sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, j1+2); VdbeCoverage(v); | 906 sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, addr1+2); VdbeCoverage(v); |
| 893 } | 907 } |
| 894 sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v); | 908 sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v); |
| 895 } | 909 } |
| 896 }else if( IsVirtual(pTab) || withoutRowid ){ | 910 }else if( IsVirtual(pTab) || withoutRowid ){ |
| 897 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid); | 911 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid); |
| 898 }else{ | 912 }else{ |
| 899 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); | 913 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); |
| 900 appendFlag = 1; | 914 appendFlag = 1; |
| 901 } | 915 } |
| 902 autoIncStep(pParse, regAutoinc, regRowid); | 916 autoIncStep(pParse, regAutoinc, regRowid); |
| 903 | 917 |
| 904 /* Compute data for all columns of the new entry, beginning | 918 /* Compute data for all columns of the new entry, beginning |
| 905 ** with the first column. | 919 ** with the first column. |
| 906 */ | 920 */ |
| 907 nHidden = 0; | 921 nHidden = 0; |
| 908 for(i=0; i<pTab->nCol; i++){ | 922 for(i=0; i<pTab->nCol; i++){ |
| 909 int iRegStore = regRowid+1+i; | 923 int iRegStore = regRowid+1+i; |
| 910 if( i==pTab->iPKey ){ | 924 if( i==pTab->iPKey ){ |
| 911 /* The value of the INTEGER PRIMARY KEY column is always a NULL. | 925 /* The value of the INTEGER PRIMARY KEY column is always a NULL. |
| 912 ** Whenever this column is read, the rowid will be substituted | 926 ** Whenever this column is read, the rowid will be substituted |
| 913 ** in its place. Hence, fill this column with a NULL to avoid | 927 ** in its place. Hence, fill this column with a NULL to avoid |
| 914 ** taking up data space with information that will never be used. | 928 ** taking up data space with information that will never be used. |
| 915 ** As there may be shallow copies of this value, make it a soft-NULL */ | 929 ** As there may be shallow copies of this value, make it a soft-NULL */ |
| 916 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); | 930 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); |
| 917 continue; | 931 continue; |
| 918 } | 932 } |
| 919 if( pColumn==0 ){ | 933 if( pColumn==0 ){ |
| 920 if( IsHiddenColumn(&pTab->aCol[i]) ){ | 934 if( IsHiddenColumn(&pTab->aCol[i]) ){ |
| 921 assert( IsVirtual(pTab) ); | |
| 922 j = -1; | 935 j = -1; |
| 923 nHidden++; | 936 nHidden++; |
| 924 }else{ | 937 }else{ |
| 925 j = i - nHidden; | 938 j = i - nHidden; |
| 926 } | 939 } |
| 927 }else{ | 940 }else{ |
| 928 for(j=0; j<pColumn->nId; j++){ | 941 for(j=0; j<pColumn->nId; j++){ |
| 929 if( pColumn->a[j].idx==i ) break; | 942 if( pColumn->a[j].idx==i ) break; |
| 930 } | 943 } |
| 931 } | 944 } |
| (...skipping 47 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 979 | 992 |
| 980 /* The bottom of the main insertion loop, if the data source | 993 /* The bottom of the main insertion loop, if the data source |
| 981 ** is a SELECT statement. | 994 ** is a SELECT statement. |
| 982 */ | 995 */ |
| 983 sqlite3VdbeResolveLabel(v, endOfLoop); | 996 sqlite3VdbeResolveLabel(v, endOfLoop); |
| 984 if( useTempTable ){ | 997 if( useTempTable ){ |
| 985 sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v); | 998 sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v); |
| 986 sqlite3VdbeJumpHere(v, addrInsTop); | 999 sqlite3VdbeJumpHere(v, addrInsTop); |
| 987 sqlite3VdbeAddOp1(v, OP_Close, srcTab); | 1000 sqlite3VdbeAddOp1(v, OP_Close, srcTab); |
| 988 }else if( pSelect ){ | 1001 }else if( pSelect ){ |
| 989 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrCont); | 1002 sqlite3VdbeGoto(v, addrCont); |
| 990 sqlite3VdbeJumpHere(v, addrInsTop); | 1003 sqlite3VdbeJumpHere(v, addrInsTop); |
| 991 } | 1004 } |
| 992 | 1005 |
| 993 if( !IsVirtual(pTab) && !isView ){ | 1006 if( !IsVirtual(pTab) && !isView ){ |
| 994 /* Close all tables opened */ | 1007 /* Close all tables opened */ |
| 995 if( iDataCur<iIdxCur ) sqlite3VdbeAddOp1(v, OP_Close, iDataCur); | 1008 if( iDataCur<iIdxCur ) sqlite3VdbeAddOp1(v, OP_Close, iDataCur); |
| 996 for(idx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){ | 1009 for(idx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){ |
| 997 sqlite3VdbeAddOp1(v, OP_Close, idx+iIdxCur); | 1010 sqlite3VdbeAddOp1(v, OP_Close, idx+iIdxCur); |
| 998 } | 1011 } |
| 999 } | 1012 } |
| (...skipping 136 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 1136 int *pbMayReplace /* OUT: Set to true if constraint may cause a replace */ | 1149 int *pbMayReplace /* OUT: Set to true if constraint may cause a replace */ |
| 1137 ){ | 1150 ){ |
| 1138 Vdbe *v; /* VDBE under constrution */ | 1151 Vdbe *v; /* VDBE under constrution */ |
| 1139 Index *pIdx; /* Pointer to one of the indices */ | 1152 Index *pIdx; /* Pointer to one of the indices */ |
| 1140 Index *pPk = 0; /* The PRIMARY KEY index */ | 1153 Index *pPk = 0; /* The PRIMARY KEY index */ |
| 1141 sqlite3 *db; /* Database connection */ | 1154 sqlite3 *db; /* Database connection */ |
| 1142 int i; /* loop counter */ | 1155 int i; /* loop counter */ |
| 1143 int ix; /* Index loop counter */ | 1156 int ix; /* Index loop counter */ |
| 1144 int nCol; /* Number of columns */ | 1157 int nCol; /* Number of columns */ |
| 1145 int onError; /* Conflict resolution strategy */ | 1158 int onError; /* Conflict resolution strategy */ |
| 1146 int j1; /* Address of jump instruction */ | 1159 int addr1; /* Address of jump instruction */ |
| 1147 int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */ | 1160 int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */ |
| 1148 int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */ | 1161 int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */ |
| 1149 int ipkTop = 0; /* Top of the rowid change constraint check */ | 1162 int ipkTop = 0; /* Top of the rowid change constraint check */ |
| 1150 int ipkBottom = 0; /* Bottom of the rowid change constraint check */ | 1163 int ipkBottom = 0; /* Bottom of the rowid change constraint check */ |
| 1151 u8 isUpdate; /* True if this is an UPDATE operation */ | 1164 u8 isUpdate; /* True if this is an UPDATE operation */ |
| 1152 u8 bAffinityDone = 0; /* True if the OP_Affinity operation has been run */ | 1165 u8 bAffinityDone = 0; /* True if the OP_Affinity operation has been run */ |
| 1153 int regRowid = -1; /* Register holding ROWID value */ | 1166 int regRowid = -1; /* Register holding ROWID value */ |
| 1154 | 1167 |
| 1155 isUpdate = regOldData!=0; | 1168 isUpdate = regOldData!=0; |
| 1156 db = pParse->db; | 1169 db = pParse->db; |
| (...skipping 50 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 1207 VdbeCoverage(v); | 1220 VdbeCoverage(v); |
| 1208 break; | 1221 break; |
| 1209 } | 1222 } |
| 1210 case OE_Ignore: { | 1223 case OE_Ignore: { |
| 1211 sqlite3VdbeAddOp2(v, OP_IsNull, regNewData+1+i, ignoreDest); | 1224 sqlite3VdbeAddOp2(v, OP_IsNull, regNewData+1+i, ignoreDest); |
| 1212 VdbeCoverage(v); | 1225 VdbeCoverage(v); |
| 1213 break; | 1226 break; |
| 1214 } | 1227 } |
| 1215 default: { | 1228 default: { |
| 1216 assert( onError==OE_Replace ); | 1229 assert( onError==OE_Replace ); |
| 1217 j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regNewData+1+i); VdbeCoverage(v); | 1230 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regNewData+1+i); |
| 1231 VdbeCoverage(v); |
| 1218 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regNewData+1+i); | 1232 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regNewData+1+i); |
| 1219 sqlite3VdbeJumpHere(v, j1); | 1233 sqlite3VdbeJumpHere(v, addr1); |
| 1220 break; | 1234 break; |
| 1221 } | 1235 } |
| 1222 } | 1236 } |
| 1223 } | 1237 } |
| 1224 | 1238 |
| 1225 /* Test all CHECK constraints | 1239 /* Test all CHECK constraints |
| 1226 */ | 1240 */ |
| 1227 #ifndef SQLITE_OMIT_CHECK | 1241 #ifndef SQLITE_OMIT_CHECK |
| 1228 if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){ | 1242 if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){ |
| 1229 ExprList *pCheck = pTab->pCheck; | 1243 ExprList *pCheck = pTab->pCheck; |
| 1230 pParse->ckBase = regNewData+1; | 1244 pParse->ckBase = regNewData+1; |
| 1231 onError = overrideError!=OE_Default ? overrideError : OE_Abort; | 1245 onError = overrideError!=OE_Default ? overrideError : OE_Abort; |
| 1232 for(i=0; i<pCheck->nExpr; i++){ | 1246 for(i=0; i<pCheck->nExpr; i++){ |
| 1233 int allOk = sqlite3VdbeMakeLabel(v); | 1247 int allOk = sqlite3VdbeMakeLabel(v); |
| 1234 sqlite3ExprIfTrue(pParse, pCheck->a[i].pExpr, allOk, SQLITE_JUMPIFNULL); | 1248 sqlite3ExprIfTrue(pParse, pCheck->a[i].pExpr, allOk, SQLITE_JUMPIFNULL); |
| 1235 if( onError==OE_Ignore ){ | 1249 if( onError==OE_Ignore ){ |
| 1236 sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); | 1250 sqlite3VdbeGoto(v, ignoreDest); |
| 1237 }else{ | 1251 }else{ |
| 1238 char *zName = pCheck->a[i].zName; | 1252 char *zName = pCheck->a[i].zName; |
| 1239 if( zName==0 ) zName = pTab->zName; | 1253 if( zName==0 ) zName = pTab->zName; |
| 1240 if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-15569-63625 */ | 1254 if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-15569-63625 */ |
| 1241 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK, | 1255 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK, |
| 1242 onError, zName, P4_TRANSIENT, | 1256 onError, zName, P4_TRANSIENT, |
| 1243 P5_ConstraintCheck); | 1257 P5_ConstraintCheck); |
| 1244 } | 1258 } |
| 1245 sqlite3VdbeResolveLabel(v, allOk); | 1259 sqlite3VdbeResolveLabel(v, allOk); |
| 1246 } | 1260 } |
| (...skipping 77 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 1324 ** to run without a statement journal if there are no indexes on the | 1338 ** to run without a statement journal if there are no indexes on the |
| 1325 ** table. | 1339 ** table. |
| 1326 */ | 1340 */ |
| 1327 Trigger *pTrigger = 0; | 1341 Trigger *pTrigger = 0; |
| 1328 if( db->flags&SQLITE_RecTriggers ){ | 1342 if( db->flags&SQLITE_RecTriggers ){ |
| 1329 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); | 1343 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); |
| 1330 } | 1344 } |
| 1331 if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){ | 1345 if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){ |
| 1332 sqlite3MultiWrite(pParse); | 1346 sqlite3MultiWrite(pParse); |
| 1333 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, | 1347 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, |
| 1334 regNewData, 1, 0, OE_Replace, 1); | 1348 regNewData, 1, 0, OE_Replace, |
| 1335 }else if( pTab->pIndex ){ | 1349 ONEPASS_SINGLE, -1); |
| 1336 sqlite3MultiWrite(pParse); | 1350 }else{ |
| 1337 sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur, 0); | 1351 if( pTab->pIndex ){ |
| 1352 sqlite3MultiWrite(pParse); |
| 1353 sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1); |
| 1354 } |
| 1338 } | 1355 } |
| 1339 seenReplace = 1; | 1356 seenReplace = 1; |
| 1340 break; | 1357 break; |
| 1341 } | 1358 } |
| 1342 case OE_Ignore: { | 1359 case OE_Ignore: { |
| 1343 /*assert( seenReplace==0 );*/ | 1360 /*assert( seenReplace==0 );*/ |
| 1344 sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); | 1361 sqlite3VdbeGoto(v, ignoreDest); |
| 1345 break; | 1362 break; |
| 1346 } | 1363 } |
| 1347 } | 1364 } |
| 1348 sqlite3VdbeResolveLabel(v, addrRowidOk); | 1365 sqlite3VdbeResolveLabel(v, addrRowidOk); |
| 1349 if( ipkTop ){ | 1366 if( ipkTop ){ |
| 1350 ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto); | 1367 ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto); |
| 1351 sqlite3VdbeJumpHere(v, ipkTop); | 1368 sqlite3VdbeJumpHere(v, ipkTop); |
| 1352 } | 1369 } |
| 1353 } | 1370 } |
| 1354 | 1371 |
| (...skipping 15 matching lines...) Expand all Loading... |
| 1370 sqlite3TableAffinity(v, pTab, regNewData+1); | 1387 sqlite3TableAffinity(v, pTab, regNewData+1); |
| 1371 bAffinityDone = 1; | 1388 bAffinityDone = 1; |
| 1372 } | 1389 } |
| 1373 iThisCur = iIdxCur+ix; | 1390 iThisCur = iIdxCur+ix; |
| 1374 addrUniqueOk = sqlite3VdbeMakeLabel(v); | 1391 addrUniqueOk = sqlite3VdbeMakeLabel(v); |
| 1375 | 1392 |
| 1376 /* Skip partial indices for which the WHERE clause is not true */ | 1393 /* Skip partial indices for which the WHERE clause is not true */ |
| 1377 if( pIdx->pPartIdxWhere ){ | 1394 if( pIdx->pPartIdxWhere ){ |
| 1378 sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]); | 1395 sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]); |
| 1379 pParse->ckBase = regNewData+1; | 1396 pParse->ckBase = regNewData+1; |
| 1380 sqlite3ExprIfFalse(pParse, pIdx->pPartIdxWhere, addrUniqueOk, | 1397 sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk, |
| 1381 SQLITE_JUMPIFNULL); | 1398 SQLITE_JUMPIFNULL); |
| 1382 pParse->ckBase = 0; | 1399 pParse->ckBase = 0; |
| 1383 } | 1400 } |
| 1384 | 1401 |
| 1385 /* Create a record for this index entry as it should appear after | 1402 /* Create a record for this index entry as it should appear after |
| 1386 ** the insert or update. Store that record in the aRegIdx[ix] register | 1403 ** the insert or update. Store that record in the aRegIdx[ix] register |
| 1387 */ | 1404 */ |
| 1388 regIdx = sqlite3GetTempRange(pParse, pIdx->nColumn); | 1405 regIdx = sqlite3GetTempRange(pParse, pIdx->nColumn); |
| 1389 for(i=0; i<pIdx->nColumn; i++){ | 1406 for(i=0; i<pIdx->nColumn; i++){ |
| 1390 int iField = pIdx->aiColumn[i]; | 1407 int iField = pIdx->aiColumn[i]; |
| 1391 int x; | 1408 int x; |
| 1392 if( iField<0 || iField==pTab->iPKey ){ | 1409 if( iField==XN_EXPR ){ |
| 1393 if( regRowid==regIdx+i ) continue; /* ROWID already in regIdx+i */ | 1410 pParse->ckBase = regNewData+1; |
| 1394 x = regNewData; | 1411 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i); |
| 1395 regRowid = pIdx->pPartIdxWhere ? -1 : regIdx+i; | 1412 pParse->ckBase = 0; |
| 1413 VdbeComment((v, "%s column %d", pIdx->zName, i)); |
| 1396 }else{ | 1414 }else{ |
| 1397 x = iField + regNewData + 1; | 1415 if( iField==XN_ROWID || iField==pTab->iPKey ){ |
| 1416 if( regRowid==regIdx+i ) continue; /* ROWID already in regIdx+i */ |
| 1417 x = regNewData; |
| 1418 regRowid = pIdx->pPartIdxWhere ? -1 : regIdx+i; |
| 1419 }else{ |
| 1420 x = iField + regNewData + 1; |
| 1421 } |
| 1422 sqlite3VdbeAddOp2(v, iField<0 ? OP_IntCopy : OP_SCopy, x, regIdx+i); |
| 1423 VdbeComment((v, "%s", iField<0 ? "rowid" : pTab->aCol[iField].zName)); |
| 1398 } | 1424 } |
| 1399 sqlite3VdbeAddOp2(v, OP_SCopy, x, regIdx+i); | |
| 1400 VdbeComment((v, "%s", iField<0 ? "rowid" : pTab->aCol[iField].zName)); | |
| 1401 } | 1425 } |
| 1402 sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]); | 1426 sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]); |
| 1403 VdbeComment((v, "for %s", pIdx->zName)); | 1427 VdbeComment((v, "for %s", pIdx->zName)); |
| 1404 sqlite3ExprCacheAffinityChange(pParse, regIdx, pIdx->nColumn); | 1428 sqlite3ExprCacheAffinityChange(pParse, regIdx, pIdx->nColumn); |
| 1405 | 1429 |
| 1406 /* In an UPDATE operation, if this index is the PRIMARY KEY index | 1430 /* In an UPDATE operation, if this index is the PRIMARY KEY index |
| 1407 ** of a WITHOUT ROWID table and there has been no change the | 1431 ** of a WITHOUT ROWID table and there has been no change the |
| 1408 ** primary key, then no collision is possible. The collision detection | 1432 ** primary key, then no collision is possible. The collision detection |
| 1409 ** logic below can all be skipped. */ | 1433 ** logic below can all be skipped. */ |
| 1410 if( isUpdate && pPk==pIdx && pkChng==0 ){ | 1434 if( isUpdate && pPk==pIdx && pkChng==0 ){ |
| (...skipping 29 matching lines...) Expand all Loading... |
| 1440 sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData); | 1464 sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData); |
| 1441 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); | 1465 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); |
| 1442 VdbeCoverage(v); | 1466 VdbeCoverage(v); |
| 1443 } | 1467 } |
| 1444 }else{ | 1468 }else{ |
| 1445 int x; | 1469 int x; |
| 1446 /* Extract the PRIMARY KEY from the end of the index entry and | 1470 /* Extract the PRIMARY KEY from the end of the index entry and |
| 1447 ** store it in registers regR..regR+nPk-1 */ | 1471 ** store it in registers regR..regR+nPk-1 */ |
| 1448 if( pIdx!=pPk ){ | 1472 if( pIdx!=pPk ){ |
| 1449 for(i=0; i<pPk->nKeyCol; i++){ | 1473 for(i=0; i<pPk->nKeyCol; i++){ |
| 1474 assert( pPk->aiColumn[i]>=0 ); |
| 1450 x = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[i]); | 1475 x = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[i]); |
| 1451 sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i); | 1476 sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i); |
| 1452 VdbeComment((v, "%s.%s", pTab->zName, | 1477 VdbeComment((v, "%s.%s", pTab->zName, |
| 1453 pTab->aCol[pPk->aiColumn[i]].zName)); | 1478 pTab->aCol[pPk->aiColumn[i]].zName)); |
| 1454 } | 1479 } |
| 1455 } | 1480 } |
| 1456 if( isUpdate ){ | 1481 if( isUpdate ){ |
| 1457 /* If currently processing the PRIMARY KEY of a WITHOUT ROWID | 1482 /* If currently processing the PRIMARY KEY of a WITHOUT ROWID |
| 1458 ** table, only conflict if the new PRIMARY KEY values are actually | 1483 ** table, only conflict if the new PRIMARY KEY values are actually |
| 1459 ** different from the old. | 1484 ** different from the old. |
| 1460 ** | 1485 ** |
| 1461 ** For a UNIQUE index, only conflict if the PRIMARY KEY values | 1486 ** For a UNIQUE index, only conflict if the PRIMARY KEY values |
| 1462 ** of the matched index row are different from the original PRIMARY | 1487 ** of the matched index row are different from the original PRIMARY |
| 1463 ** KEY values of this row before the update. */ | 1488 ** KEY values of this row before the update. */ |
| 1464 int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol; | 1489 int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol; |
| 1465 int op = OP_Ne; | 1490 int op = OP_Ne; |
| 1466 int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR); | 1491 int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR); |
| 1467 | 1492 |
| 1468 for(i=0; i<pPk->nKeyCol; i++){ | 1493 for(i=0; i<pPk->nKeyCol; i++){ |
| 1469 char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]); | 1494 char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]); |
| 1470 x = pPk->aiColumn[i]; | 1495 x = pPk->aiColumn[i]; |
| 1496 assert( x>=0 ); |
| 1471 if( i==(pPk->nKeyCol-1) ){ | 1497 if( i==(pPk->nKeyCol-1) ){ |
| 1472 addrJump = addrUniqueOk; | 1498 addrJump = addrUniqueOk; |
| 1473 op = OP_Eq; | 1499 op = OP_Eq; |
| 1474 } | 1500 } |
| 1475 sqlite3VdbeAddOp4(v, op, | 1501 sqlite3VdbeAddOp4(v, op, |
| 1476 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ | 1502 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ |
| 1477 ); | 1503 ); |
| 1478 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); | 1504 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); |
| 1479 VdbeCoverageIf(v, op==OP_Eq); | 1505 VdbeCoverageIf(v, op==OP_Eq); |
| 1480 VdbeCoverageIf(v, op==OP_Ne); | 1506 VdbeCoverageIf(v, op==OP_Ne); |
| 1481 } | 1507 } |
| 1482 } | 1508 } |
| 1483 } | 1509 } |
| 1484 } | 1510 } |
| 1485 | 1511 |
| 1486 /* Generate code that executes if the new index entry is not unique */ | 1512 /* Generate code that executes if the new index entry is not unique */ |
| 1487 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail | 1513 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail |
| 1488 || onError==OE_Ignore || onError==OE_Replace ); | 1514 || onError==OE_Ignore || onError==OE_Replace ); |
| 1489 switch( onError ){ | 1515 switch( onError ){ |
| 1490 case OE_Rollback: | 1516 case OE_Rollback: |
| 1491 case OE_Abort: | 1517 case OE_Abort: |
| 1492 case OE_Fail: { | 1518 case OE_Fail: { |
| 1493 sqlite3UniqueConstraint(pParse, onError, pIdx); | 1519 sqlite3UniqueConstraint(pParse, onError, pIdx); |
| 1494 break; | 1520 break; |
| 1495 } | 1521 } |
| 1496 case OE_Ignore: { | 1522 case OE_Ignore: { |
| 1497 sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); | 1523 sqlite3VdbeGoto(v, ignoreDest); |
| 1498 break; | 1524 break; |
| 1499 } | 1525 } |
| 1500 default: { | 1526 default: { |
| 1501 Trigger *pTrigger = 0; | 1527 Trigger *pTrigger = 0; |
| 1502 assert( onError==OE_Replace ); | 1528 assert( onError==OE_Replace ); |
| 1503 sqlite3MultiWrite(pParse); | 1529 sqlite3MultiWrite(pParse); |
| 1504 if( db->flags&SQLITE_RecTriggers ){ | 1530 if( db->flags&SQLITE_RecTriggers ){ |
| 1505 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); | 1531 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); |
| 1506 } | 1532 } |
| 1507 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, | 1533 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, |
| 1508 regR, nPkField, 0, OE_Replace, pIdx==pPk); | 1534 regR, nPkField, 0, OE_Replace, |
| 1535 (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), -1); |
| 1509 seenReplace = 1; | 1536 seenReplace = 1; |
| 1510 break; | 1537 break; |
| 1511 } | 1538 } |
| 1512 } | 1539 } |
| 1513 sqlite3VdbeResolveLabel(v, addrUniqueOk); | 1540 sqlite3VdbeResolveLabel(v, addrUniqueOk); |
| 1514 sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn); | 1541 sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn); |
| 1515 if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField); | 1542 if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField); |
| 1516 } | 1543 } |
| 1517 if( ipkTop ){ | 1544 if( ipkTop ){ |
| 1518 sqlite3VdbeAddOp2(v, OP_Goto, 0, ipkTop+1); | 1545 sqlite3VdbeGoto(v, ipkTop+1); |
| 1519 sqlite3VdbeJumpHere(v, ipkBottom); | 1546 sqlite3VdbeJumpHere(v, ipkBottom); |
| 1520 } | 1547 } |
| 1521 | 1548 |
| 1522 *pbMayReplace = seenReplace; | 1549 *pbMayReplace = seenReplace; |
| 1523 VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace)); | 1550 VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace)); |
| 1524 } | 1551 } |
| 1525 | 1552 |
| 1526 /* | 1553 /* |
| 1527 ** This routine generates code to finish the INSERT or UPDATE operation | 1554 ** This routine generates code to finish the INSERT or UPDATE operation |
| 1528 ** that was started by a prior call to sqlite3GenerateConstraintChecks. | 1555 ** that was started by a prior call to sqlite3GenerateConstraintChecks. |
| (...skipping 84 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 1613 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the | 1640 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the |
| 1614 ** pTab->pIndex list. | 1641 ** pTab->pIndex list. |
| 1615 ** | 1642 ** |
| 1616 ** If pTab is a virtual table, then this routine is a no-op and the | 1643 ** If pTab is a virtual table, then this routine is a no-op and the |
| 1617 ** *piDataCur and *piIdxCur values are left uninitialized. | 1644 ** *piDataCur and *piIdxCur values are left uninitialized. |
| 1618 */ | 1645 */ |
| 1619 int sqlite3OpenTableAndIndices( | 1646 int sqlite3OpenTableAndIndices( |
| 1620 Parse *pParse, /* Parsing context */ | 1647 Parse *pParse, /* Parsing context */ |
| 1621 Table *pTab, /* Table to be opened */ | 1648 Table *pTab, /* Table to be opened */ |
| 1622 int op, /* OP_OpenRead or OP_OpenWrite */ | 1649 int op, /* OP_OpenRead or OP_OpenWrite */ |
| 1650 u8 p5, /* P5 value for OP_Open* instructions */ |
| 1623 int iBase, /* Use this for the table cursor, if there is one */ | 1651 int iBase, /* Use this for the table cursor, if there is one */ |
| 1624 u8 *aToOpen, /* If not NULL: boolean for each table and index */ | 1652 u8 *aToOpen, /* If not NULL: boolean for each table and index */ |
| 1625 int *piDataCur, /* Write the database source cursor number here */ | 1653 int *piDataCur, /* Write the database source cursor number here */ |
| 1626 int *piIdxCur /* Write the first index cursor number here */ | 1654 int *piIdxCur /* Write the first index cursor number here */ |
| 1627 ){ | 1655 ){ |
| 1628 int i; | 1656 int i; |
| 1629 int iDb; | 1657 int iDb; |
| 1630 int iDataCur; | 1658 int iDataCur; |
| 1631 Index *pIdx; | 1659 Index *pIdx; |
| 1632 Vdbe *v; | 1660 Vdbe *v; |
| 1633 | 1661 |
| 1634 assert( op==OP_OpenRead || op==OP_OpenWrite ); | 1662 assert( op==OP_OpenRead || op==OP_OpenWrite ); |
| 1663 assert( op==OP_OpenWrite || p5==0 ); |
| 1635 if( IsVirtual(pTab) ){ | 1664 if( IsVirtual(pTab) ){ |
| 1636 /* This routine is a no-op for virtual tables. Leave the output | 1665 /* This routine is a no-op for virtual tables. Leave the output |
| 1637 ** variables *piDataCur and *piIdxCur uninitialized so that valgrind | 1666 ** variables *piDataCur and *piIdxCur uninitialized so that valgrind |
| 1638 ** can detect if they are used by mistake in the caller. */ | 1667 ** can detect if they are used by mistake in the caller. */ |
| 1639 return 0; | 1668 return 0; |
| 1640 } | 1669 } |
| 1641 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); | 1670 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); |
| 1642 v = sqlite3GetVdbe(pParse); | 1671 v = sqlite3GetVdbe(pParse); |
| 1643 assert( v!=0 ); | 1672 assert( v!=0 ); |
| 1644 if( iBase<0 ) iBase = pParse->nTab; | 1673 if( iBase<0 ) iBase = pParse->nTab; |
| 1645 iDataCur = iBase++; | 1674 iDataCur = iBase++; |
| 1646 if( piDataCur ) *piDataCur = iDataCur; | 1675 if( piDataCur ) *piDataCur = iDataCur; |
| 1647 if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){ | 1676 if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){ |
| 1648 sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op); | 1677 sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op); |
| 1649 }else{ | 1678 }else{ |
| 1650 sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName); | 1679 sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName); |
| 1651 } | 1680 } |
| 1652 if( piIdxCur ) *piIdxCur = iBase; | 1681 if( piIdxCur ) *piIdxCur = iBase; |
| 1653 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ | 1682 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ |
| 1654 int iIdxCur = iBase++; | 1683 int iIdxCur = iBase++; |
| 1655 assert( pIdx->pSchema==pTab->pSchema ); | 1684 assert( pIdx->pSchema==pTab->pSchema ); |
| 1656 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) && piDataCur ){ | 1685 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) && piDataCur ){ |
| 1657 *piDataCur = iIdxCur; | 1686 *piDataCur = iIdxCur; |
| 1658 } | 1687 } |
| 1659 if( aToOpen==0 || aToOpen[i+1] ){ | 1688 if( aToOpen==0 || aToOpen[i+1] ){ |
| 1660 sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb); | 1689 sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb); |
| 1661 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); | 1690 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); |
| 1691 sqlite3VdbeChangeP5(v, p5); |
| 1662 VdbeComment((v, "%s", pIdx->zName)); | 1692 VdbeComment((v, "%s", pIdx->zName)); |
| 1663 } | 1693 } |
| 1664 } | 1694 } |
| 1665 if( iBase>pParse->nTab ) pParse->nTab = iBase; | 1695 if( iBase>pParse->nTab ) pParse->nTab = iBase; |
| 1666 return i; | 1696 return i; |
| 1667 } | 1697 } |
| 1668 | 1698 |
| 1669 | 1699 |
| 1670 #ifdef SQLITE_TEST | 1700 #ifdef SQLITE_TEST |
| 1671 /* | 1701 /* |
| 1672 ** The following global variable is incremented whenever the | 1702 ** The following global variable is incremented whenever the |
| 1673 ** transfer optimization is used. This is used for testing | 1703 ** transfer optimization is used. This is used for testing |
| 1674 ** purposes only - to make sure the transfer optimization really | 1704 ** purposes only - to make sure the transfer optimization really |
| 1675 ** is happening when it is supposed to. | 1705 ** is happening when it is supposed to. |
| 1676 */ | 1706 */ |
| 1677 int sqlite3_xferopt_count; | 1707 int sqlite3_xferopt_count; |
| 1678 #endif /* SQLITE_TEST */ | 1708 #endif /* SQLITE_TEST */ |
| 1679 | 1709 |
| 1680 | 1710 |
| 1681 #ifndef SQLITE_OMIT_XFER_OPT | 1711 #ifndef SQLITE_OMIT_XFER_OPT |
| 1682 /* | 1712 /* |
| 1683 ** Check to collation names to see if they are compatible. | |
| 1684 */ | |
| 1685 static int xferCompatibleCollation(const char *z1, const char *z2){ | |
| 1686 if( z1==0 ){ | |
| 1687 return z2==0; | |
| 1688 } | |
| 1689 if( z2==0 ){ | |
| 1690 return 0; | |
| 1691 } | |
| 1692 return sqlite3StrICmp(z1, z2)==0; | |
| 1693 } | |
| 1694 | |
| 1695 | |
| 1696 /* | |
| 1697 ** Check to see if index pSrc is compatible as a source of data | 1713 ** Check to see if index pSrc is compatible as a source of data |
| 1698 ** for index pDest in an insert transfer optimization. The rules | 1714 ** for index pDest in an insert transfer optimization. The rules |
| 1699 ** for a compatible index: | 1715 ** for a compatible index: |
| 1700 ** | 1716 ** |
| 1701 ** * The index is over the same set of columns | 1717 ** * The index is over the same set of columns |
| 1702 ** * The same DESC and ASC markings occurs on all columns | 1718 ** * The same DESC and ASC markings occurs on all columns |
| 1703 ** * The same onError processing (OE_Abort, OE_Ignore, etc) | 1719 ** * The same onError processing (OE_Abort, OE_Ignore, etc) |
| 1704 ** * The same collating sequence on each column | 1720 ** * The same collating sequence on each column |
| 1705 ** * The index has the exact same WHERE clause | 1721 ** * The index has the exact same WHERE clause |
| 1706 */ | 1722 */ |
| 1707 static int xferCompatibleIndex(Index *pDest, Index *pSrc){ | 1723 static int xferCompatibleIndex(Index *pDest, Index *pSrc){ |
| 1708 int i; | 1724 int i; |
| 1709 assert( pDest && pSrc ); | 1725 assert( pDest && pSrc ); |
| 1710 assert( pDest->pTable!=pSrc->pTable ); | 1726 assert( pDest->pTable!=pSrc->pTable ); |
| 1711 if( pDest->nKeyCol!=pSrc->nKeyCol ){ | 1727 if( pDest->nKeyCol!=pSrc->nKeyCol ){ |
| 1712 return 0; /* Different number of columns */ | 1728 return 0; /* Different number of columns */ |
| 1713 } | 1729 } |
| 1714 if( pDest->onError!=pSrc->onError ){ | 1730 if( pDest->onError!=pSrc->onError ){ |
| 1715 return 0; /* Different conflict resolution strategies */ | 1731 return 0; /* Different conflict resolution strategies */ |
| 1716 } | 1732 } |
| 1717 for(i=0; i<pSrc->nKeyCol; i++){ | 1733 for(i=0; i<pSrc->nKeyCol; i++){ |
| 1718 if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){ | 1734 if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){ |
| 1719 return 0; /* Different columns indexed */ | 1735 return 0; /* Different columns indexed */ |
| 1720 } | 1736 } |
| 1737 if( pSrc->aiColumn[i]==XN_EXPR ){ |
| 1738 assert( pSrc->aColExpr!=0 && pDest->aColExpr!=0 ); |
| 1739 if( sqlite3ExprCompare(pSrc->aColExpr->a[i].pExpr, |
| 1740 pDest->aColExpr->a[i].pExpr, -1)!=0 ){ |
| 1741 return 0; /* Different expressions in the index */ |
| 1742 } |
| 1743 } |
| 1721 if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){ | 1744 if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){ |
| 1722 return 0; /* Different sort orders */ | 1745 return 0; /* Different sort orders */ |
| 1723 } | 1746 } |
| 1724 if( !xferCompatibleCollation(pSrc->azColl[i],pDest->azColl[i]) ){ | 1747 if( sqlite3_stricmp(pSrc->azColl[i],pDest->azColl[i])!=0 ){ |
| 1725 return 0; /* Different collating sequences */ | 1748 return 0; /* Different collating sequences */ |
| 1726 } | 1749 } |
| 1727 } | 1750 } |
| 1728 if( sqlite3ExprCompare(pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){ | 1751 if( sqlite3ExprCompare(pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){ |
| 1729 return 0; /* Different WHERE clauses */ | 1752 return 0; /* Different WHERE clauses */ |
| 1730 } | 1753 } |
| 1731 | 1754 |
| 1732 /* If no test above fails then the indices must be compatible */ | 1755 /* If no test above fails then the indices must be compatible */ |
| 1733 return 1; | 1756 return 1; |
| 1734 } | 1757 } |
| (...skipping 23 matching lines...) Expand all Loading... |
| 1758 ** | 1781 ** |
| 1759 ** This optimization is particularly useful at making VACUUM run faster. | 1782 ** This optimization is particularly useful at making VACUUM run faster. |
| 1760 */ | 1783 */ |
| 1761 static int xferOptimization( | 1784 static int xferOptimization( |
| 1762 Parse *pParse, /* Parser context */ | 1785 Parse *pParse, /* Parser context */ |
| 1763 Table *pDest, /* The table we are inserting into */ | 1786 Table *pDest, /* The table we are inserting into */ |
| 1764 Select *pSelect, /* A SELECT statement to use as the data source */ | 1787 Select *pSelect, /* A SELECT statement to use as the data source */ |
| 1765 int onError, /* How to handle constraint errors */ | 1788 int onError, /* How to handle constraint errors */ |
| 1766 int iDbDest /* The database of pDest */ | 1789 int iDbDest /* The database of pDest */ |
| 1767 ){ | 1790 ){ |
| 1791 sqlite3 *db = pParse->db; |
| 1768 ExprList *pEList; /* The result set of the SELECT */ | 1792 ExprList *pEList; /* The result set of the SELECT */ |
| 1769 Table *pSrc; /* The table in the FROM clause of SELECT */ | 1793 Table *pSrc; /* The table in the FROM clause of SELECT */ |
| 1770 Index *pSrcIdx, *pDestIdx; /* Source and destination indices */ | 1794 Index *pSrcIdx, *pDestIdx; /* Source and destination indices */ |
| 1771 struct SrcList_item *pItem; /* An element of pSelect->pSrc */ | 1795 struct SrcList_item *pItem; /* An element of pSelect->pSrc */ |
| 1772 int i; /* Loop counter */ | 1796 int i; /* Loop counter */ |
| 1773 int iDbSrc; /* The database of pSrc */ | 1797 int iDbSrc; /* The database of pSrc */ |
| 1774 int iSrc, iDest; /* Cursors from source and destination */ | 1798 int iSrc, iDest; /* Cursors from source and destination */ |
| 1775 int addr1, addr2; /* Loop addresses */ | 1799 int addr1, addr2; /* Loop addresses */ |
| 1776 int emptyDestTest = 0; /* Address of test for empty pDest */ | 1800 int emptyDestTest = 0; /* Address of test for empty pDest */ |
| 1777 int emptySrcTest = 0; /* Address of test for empty pSrc */ | 1801 int emptySrcTest = 0; /* Address of test for empty pSrc */ |
| (...skipping 50 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 1828 } | 1852 } |
| 1829 if( pSelect->selFlags & SF_Distinct ){ | 1853 if( pSelect->selFlags & SF_Distinct ){ |
| 1830 return 0; /* SELECT may not be DISTINCT */ | 1854 return 0; /* SELECT may not be DISTINCT */ |
| 1831 } | 1855 } |
| 1832 pEList = pSelect->pEList; | 1856 pEList = pSelect->pEList; |
| 1833 assert( pEList!=0 ); | 1857 assert( pEList!=0 ); |
| 1834 if( pEList->nExpr!=1 ){ | 1858 if( pEList->nExpr!=1 ){ |
| 1835 return 0; /* The result set must have exactly one column */ | 1859 return 0; /* The result set must have exactly one column */ |
| 1836 } | 1860 } |
| 1837 assert( pEList->a[0].pExpr ); | 1861 assert( pEList->a[0].pExpr ); |
| 1838 if( pEList->a[0].pExpr->op!=TK_ALL ){ | 1862 if( pEList->a[0].pExpr->op!=TK_ASTERISK ){ |
| 1839 return 0; /* The result set must be the special operator "*" */ | 1863 return 0; /* The result set must be the special operator "*" */ |
| 1840 } | 1864 } |
| 1841 | 1865 |
| 1842 /* At this point we have established that the statement is of the | 1866 /* At this point we have established that the statement is of the |
| 1843 ** correct syntactic form to participate in this optimization. Now | 1867 ** correct syntactic form to participate in this optimization. Now |
| 1844 ** we have to check the semantics. | 1868 ** we have to check the semantics. |
| 1845 */ | 1869 */ |
| 1846 pItem = pSelect->pSrc->a; | 1870 pItem = pSelect->pSrc->a; |
| 1847 pSrc = sqlite3LocateTableItem(pParse, 0, pItem); | 1871 pSrc = sqlite3LocateTableItem(pParse, 0, pItem); |
| 1848 if( pSrc==0 ){ | 1872 if( pSrc==0 ){ |
| (...skipping 15 matching lines...) Expand all Loading... |
| 1864 } | 1888 } |
| 1865 if( pDest->nCol!=pSrc->nCol ){ | 1889 if( pDest->nCol!=pSrc->nCol ){ |
| 1866 return 0; /* Number of columns must be the same in tab1 and tab2 */ | 1890 return 0; /* Number of columns must be the same in tab1 and tab2 */ |
| 1867 } | 1891 } |
| 1868 if( pDest->iPKey!=pSrc->iPKey ){ | 1892 if( pDest->iPKey!=pSrc->iPKey ){ |
| 1869 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */ | 1893 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */ |
| 1870 } | 1894 } |
| 1871 for(i=0; i<pDest->nCol; i++){ | 1895 for(i=0; i<pDest->nCol; i++){ |
| 1872 Column *pDestCol = &pDest->aCol[i]; | 1896 Column *pDestCol = &pDest->aCol[i]; |
| 1873 Column *pSrcCol = &pSrc->aCol[i]; | 1897 Column *pSrcCol = &pSrc->aCol[i]; |
| 1898 #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS |
| 1899 if( (db->flags & SQLITE_Vacuum)==0 |
| 1900 && (pDestCol->colFlags | pSrcCol->colFlags) & COLFLAG_HIDDEN |
| 1901 ){ |
| 1902 return 0; /* Neither table may have __hidden__ columns */ |
| 1903 } |
| 1904 #endif |
| 1874 if( pDestCol->affinity!=pSrcCol->affinity ){ | 1905 if( pDestCol->affinity!=pSrcCol->affinity ){ |
| 1875 return 0; /* Affinity must be the same on all columns */ | 1906 return 0; /* Affinity must be the same on all columns */ |
| 1876 } | 1907 } |
| 1877 if( !xferCompatibleCollation(pDestCol->zColl, pSrcCol->zColl) ){ | 1908 if( sqlite3_stricmp(pDestCol->zColl, pSrcCol->zColl)!=0 ){ |
| 1878 return 0; /* Collating sequence must be the same on all columns */ | 1909 return 0; /* Collating sequence must be the same on all columns */ |
| 1879 } | 1910 } |
| 1880 if( pDestCol->notNull && !pSrcCol->notNull ){ | 1911 if( pDestCol->notNull && !pSrcCol->notNull ){ |
| 1881 return 0; /* tab2 must be NOT NULL if tab1 is */ | 1912 return 0; /* tab2 must be NOT NULL if tab1 is */ |
| 1882 } | 1913 } |
| 1883 /* Default values for second and subsequent columns need to match. */ | 1914 /* Default values for second and subsequent columns need to match. */ |
| 1884 if( i>0 | 1915 if( i>0 |
| 1885 && ((pDestCol->zDflt==0)!=(pSrcCol->zDflt==0) | 1916 && ((pDestCol->zDflt==0)!=(pSrcCol->zDflt==0) |
| 1886 || (pDestCol->zDflt && strcmp(pDestCol->zDflt, pSrcCol->zDflt)!=0)) | 1917 || (pDestCol->zDflt && strcmp(pDestCol->zDflt, pSrcCol->zDflt)!=0)) |
| 1887 ){ | 1918 ){ |
| (...skipping 17 matching lines...) Expand all Loading... |
| 1905 } | 1936 } |
| 1906 #endif | 1937 #endif |
| 1907 #ifndef SQLITE_OMIT_FOREIGN_KEY | 1938 #ifndef SQLITE_OMIT_FOREIGN_KEY |
| 1908 /* Disallow the transfer optimization if the destination table constains | 1939 /* Disallow the transfer optimization if the destination table constains |
| 1909 ** any foreign key constraints. This is more restrictive than necessary. | 1940 ** any foreign key constraints. This is more restrictive than necessary. |
| 1910 ** But the main beneficiary of the transfer optimization is the VACUUM | 1941 ** But the main beneficiary of the transfer optimization is the VACUUM |
| 1911 ** command, and the VACUUM command disables foreign key constraints. So | 1942 ** command, and the VACUUM command disables foreign key constraints. So |
| 1912 ** the extra complication to make this rule less restrictive is probably | 1943 ** the extra complication to make this rule less restrictive is probably |
| 1913 ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e] | 1944 ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e] |
| 1914 */ | 1945 */ |
| 1915 if( (pParse->db->flags & SQLITE_ForeignKeys)!=0 && pDest->pFKey!=0 ){ | 1946 if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->pFKey!=0 ){ |
| 1916 return 0; | 1947 return 0; |
| 1917 } | 1948 } |
| 1918 #endif | 1949 #endif |
| 1919 if( (pParse->db->flags & SQLITE_CountRows)!=0 ){ | 1950 if( (db->flags & SQLITE_CountRows)!=0 ){ |
| 1920 return 0; /* xfer opt does not play well with PRAGMA count_changes */ | 1951 return 0; /* xfer opt does not play well with PRAGMA count_changes */ |
| 1921 } | 1952 } |
| 1922 | 1953 |
| 1923 /* If we get this far, it means that the xfer optimization is at | 1954 /* If we get this far, it means that the xfer optimization is at |
| 1924 ** least a possibility, though it might only work if the destination | 1955 ** least a possibility, though it might only work if the destination |
| 1925 ** table (tab1) is initially empty. | 1956 ** table (tab1) is initially empty. |
| 1926 */ | 1957 */ |
| 1927 #ifdef SQLITE_TEST | 1958 #ifdef SQLITE_TEST |
| 1928 sqlite3_xferopt_count++; | 1959 sqlite3_xferopt_count++; |
| 1929 #endif | 1960 #endif |
| 1930 iDbSrc = sqlite3SchemaToIndex(pParse->db, pSrc->pSchema); | 1961 iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema); |
| 1931 v = sqlite3GetVdbe(pParse); | 1962 v = sqlite3GetVdbe(pParse); |
| 1932 sqlite3CodeVerifySchema(pParse, iDbSrc); | 1963 sqlite3CodeVerifySchema(pParse, iDbSrc); |
| 1933 iSrc = pParse->nTab++; | 1964 iSrc = pParse->nTab++; |
| 1934 iDest = pParse->nTab++; | 1965 iDest = pParse->nTab++; |
| 1935 regAutoinc = autoIncBegin(pParse, iDbDest, pDest); | 1966 regAutoinc = autoIncBegin(pParse, iDbDest, pDest); |
| 1936 regData = sqlite3GetTempReg(pParse); | 1967 regData = sqlite3GetTempReg(pParse); |
| 1937 regRowid = sqlite3GetTempReg(pParse); | 1968 regRowid = sqlite3GetTempReg(pParse); |
| 1938 sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite); | 1969 sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite); |
| 1939 assert( HasRowid(pDest) || destHasUniqueIdx ); | 1970 assert( HasRowid(pDest) || destHasUniqueIdx ); |
| 1940 if( (pDest->iPKey<0 && pDest->pIndex!=0) /* (1) */ | 1971 if( (db->flags & SQLITE_Vacuum)==0 && ( |
| 1972 (pDest->iPKey<0 && pDest->pIndex!=0) /* (1) */ |
| 1941 || destHasUniqueIdx /* (2) */ | 1973 || destHasUniqueIdx /* (2) */ |
| 1942 || (onError!=OE_Abort && onError!=OE_Rollback) /* (3) */ | 1974 || (onError!=OE_Abort && onError!=OE_Rollback) /* (3) */ |
| 1943 ){ | 1975 )){ |
| 1944 /* In some circumstances, we are able to run the xfer optimization | 1976 /* In some circumstances, we are able to run the xfer optimization |
| 1945 ** only if the destination table is initially empty. This code makes | 1977 ** only if the destination table is initially empty. Unless the |
| 1946 ** that determination. Conditions under which the destination must | 1978 ** SQLITE_Vacuum flag is set, this block generates code to make |
| 1947 ** be empty: | 1979 ** that determination. If SQLITE_Vacuum is set, then the destination |
| 1980 ** table is always empty. |
| 1981 ** |
| 1982 ** Conditions under which the destination must be empty: |
| 1948 ** | 1983 ** |
| 1949 ** (1) There is no INTEGER PRIMARY KEY but there are indices. | 1984 ** (1) There is no INTEGER PRIMARY KEY but there are indices. |
| 1950 ** (If the destination is not initially empty, the rowid fields | 1985 ** (If the destination is not initially empty, the rowid fields |
| 1951 ** of index entries might need to change.) | 1986 ** of index entries might need to change.) |
| 1952 ** | 1987 ** |
| 1953 ** (2) The destination has a unique index. (The xfer optimization | 1988 ** (2) The destination has a unique index. (The xfer optimization |
| 1954 ** is unable to test uniqueness.) | 1989 ** is unable to test uniqueness.) |
| 1955 ** | 1990 ** |
| 1956 ** (3) onError is something other than OE_Abort and OE_Rollback. | 1991 ** (3) onError is something other than OE_Abort and OE_Rollback. |
| 1957 */ | 1992 */ |
| 1958 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v); | 1993 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v); |
| 1959 emptyDestTest = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0); | 1994 emptyDestTest = sqlite3VdbeAddOp0(v, OP_Goto); |
| 1960 sqlite3VdbeJumpHere(v, addr1); | 1995 sqlite3VdbeJumpHere(v, addr1); |
| 1961 } | 1996 } |
| 1962 if( HasRowid(pSrc) ){ | 1997 if( HasRowid(pSrc) ){ |
| 1963 sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); | 1998 sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); |
| 1964 emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); | 1999 emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); |
| 1965 if( pDest->iPKey>=0 ){ | 2000 if( pDest->iPKey>=0 ){ |
| 1966 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); | 2001 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); |
| 1967 addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid); | 2002 addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid); |
| 1968 VdbeCoverage(v); | 2003 VdbeCoverage(v); |
| 1969 sqlite3RowidConstraint(pParse, onError, pDest); | 2004 sqlite3RowidConstraint(pParse, onError, pDest); |
| (...skipping 10 matching lines...) Expand all Loading... |
| 1980 sqlite3VdbeChangeP5(v, OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND); | 2015 sqlite3VdbeChangeP5(v, OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND); |
| 1981 sqlite3VdbeChangeP4(v, -1, pDest->zName, 0); | 2016 sqlite3VdbeChangeP4(v, -1, pDest->zName, 0); |
| 1982 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v); | 2017 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v); |
| 1983 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); | 2018 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); |
| 1984 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); | 2019 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); |
| 1985 }else{ | 2020 }else{ |
| 1986 sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName); | 2021 sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName); |
| 1987 sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName); | 2022 sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName); |
| 1988 } | 2023 } |
| 1989 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ | 2024 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ |
| 2025 u8 idxInsFlags = 0; |
| 1990 for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){ | 2026 for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){ |
| 1991 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; | 2027 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; |
| 1992 } | 2028 } |
| 1993 assert( pSrcIdx ); | 2029 assert( pSrcIdx ); |
| 1994 sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc); | 2030 sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc); |
| 1995 sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx); | 2031 sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx); |
| 1996 VdbeComment((v, "%s", pSrcIdx->zName)); | 2032 VdbeComment((v, "%s", pSrcIdx->zName)); |
| 1997 sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest); | 2033 sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest); |
| 1998 sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx); | 2034 sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx); |
| 1999 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR); | 2035 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR); |
| 2000 VdbeComment((v, "%s", pDestIdx->zName)); | 2036 VdbeComment((v, "%s", pDestIdx->zName)); |
| 2001 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); | 2037 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); |
| 2002 sqlite3VdbeAddOp2(v, OP_RowKey, iSrc, regData); | 2038 sqlite3VdbeAddOp2(v, OP_RowKey, iSrc, regData); |
| 2039 if( db->flags & SQLITE_Vacuum ){ |
| 2040 /* This INSERT command is part of a VACUUM operation, which guarantees |
| 2041 ** that the destination table is empty. If all indexed columns use |
| 2042 ** collation sequence BINARY, then it can also be assumed that the |
| 2043 ** index will be populated by inserting keys in strictly sorted |
| 2044 ** order. In this case, instead of seeking within the b-tree as part |
| 2045 ** of every OP_IdxInsert opcode, an OP_Last is added before the |
| 2046 ** OP_IdxInsert to seek to the point within the b-tree where each key |
| 2047 ** should be inserted. This is faster. |
| 2048 ** |
| 2049 ** If any of the indexed columns use a collation sequence other than |
| 2050 ** BINARY, this optimization is disabled. This is because the user |
| 2051 ** might change the definition of a collation sequence and then run |
| 2052 ** a VACUUM command. In that case keys may not be written in strictly |
| 2053 ** sorted order. */ |
| 2054 for(i=0; i<pSrcIdx->nColumn; i++){ |
| 2055 const char *zColl = pSrcIdx->azColl[i]; |
| 2056 assert( sqlite3_stricmp(sqlite3StrBINARY, zColl)!=0 |
| 2057 || sqlite3StrBINARY==zColl ); |
| 2058 if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break; |
| 2059 } |
| 2060 if( i==pSrcIdx->nColumn ){ |
| 2061 idxInsFlags = OPFLAG_USESEEKRESULT; |
| 2062 sqlite3VdbeAddOp3(v, OP_Last, iDest, 0, -1); |
| 2063 } |
| 2064 } |
| 2065 if( !HasRowid(pSrc) && pDestIdx->idxType==2 ){ |
| 2066 idxInsFlags |= OPFLAG_NCHANGE; |
| 2067 } |
| 2003 sqlite3VdbeAddOp3(v, OP_IdxInsert, iDest, regData, 1); | 2068 sqlite3VdbeAddOp3(v, OP_IdxInsert, iDest, regData, 1); |
| 2069 sqlite3VdbeChangeP5(v, idxInsFlags); |
| 2004 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v); | 2070 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v); |
| 2005 sqlite3VdbeJumpHere(v, addr1); | 2071 sqlite3VdbeJumpHere(v, addr1); |
| 2006 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); | 2072 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); |
| 2007 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); | 2073 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); |
| 2008 } | 2074 } |
| 2009 if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest); | 2075 if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest); |
| 2010 sqlite3ReleaseTempReg(pParse, regRowid); | 2076 sqlite3ReleaseTempReg(pParse, regRowid); |
| 2011 sqlite3ReleaseTempReg(pParse, regData); | 2077 sqlite3ReleaseTempReg(pParse, regData); |
| 2012 if( emptyDestTest ){ | 2078 if( emptyDestTest ){ |
| 2013 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0); | 2079 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0); |
| 2014 sqlite3VdbeJumpHere(v, emptyDestTest); | 2080 sqlite3VdbeJumpHere(v, emptyDestTest); |
| 2015 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); | 2081 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); |
| 2016 return 0; | 2082 return 0; |
| 2017 }else{ | 2083 }else{ |
| 2018 return 1; | 2084 return 1; |
| 2019 } | 2085 } |
| 2020 } | 2086 } |
| 2021 #endif /* SQLITE_OMIT_XFER_OPT */ | 2087 #endif /* SQLITE_OMIT_XFER_OPT */ |
| OLD | NEW |