| Index: base/hash.h
|
| diff --git a/base/hash.h b/base/hash.h
|
| index d5dc5499de522de7a10fd213290ba80739ae6eef..ed8d9fd4cc9b987272f9d54ffa854c2d86f7129e 100644
|
| --- a/base/hash.h
|
| +++ b/base/hash.h
|
| @@ -10,7 +10,6 @@
|
|
|
| #include <limits>
|
| #include <string>
|
| -#include <utility>
|
|
|
| #include "base/base_export.h"
|
| #include "base/logging.h"
|
| @@ -36,86 +35,6 @@
|
| return Hash(str.data(), str.size());
|
| }
|
|
|
| -// Implement hashing for pairs of at-most 32 bit integer values.
|
| -// When size_t is 32 bits, we turn the 64-bit hash code into 32 bits by using
|
| -// multiply-add hashing. This algorithm, as described in
|
| -// Theorem 4.3.3 of the thesis "Über die Komplexität der Multiplikation in
|
| -// eingeschränkten Branchingprogrammmodellen" by Woelfel, is:
|
| -//
|
| -// h32(x32, y32) = (h64(x32, y32) * rand_odd64 + rand16 * 2^16) % 2^64 / 2^32
|
| -//
|
| -// Contact danakj@chromium.org for any questions.
|
| -inline size_t HashInts32(uint32_t value1, uint32_t value2) {
|
| - uint64_t value1_64 = value1;
|
| - uint64_t hash64 = (value1_64 << 32) | value2;
|
| -
|
| - if (sizeof(size_t) >= sizeof(uint64_t))
|
| - return static_cast<size_t>(hash64);
|
| -
|
| - uint64_t odd_random = 481046412LL << 32 | 1025306955LL;
|
| - uint32_t shift_random = 10121U << 16;
|
| -
|
| - hash64 = hash64 * odd_random + shift_random;
|
| - size_t high_bits = static_cast<size_t>(
|
| - hash64 >> (8 * (sizeof(uint64_t) - sizeof(size_t))));
|
| - return high_bits;
|
| -}
|
| -
|
| -// Implement hashing for pairs of up-to 64-bit integer values.
|
| -// We use the compound integer hash method to produce a 64-bit hash code, by
|
| -// breaking the two 64-bit inputs into 4 32-bit values:
|
| -// http://opendatastructures.org/versions/edition-0.1d/ods-java/node33.html#SECTION00832000000000000000
|
| -// Then we reduce our result to 32 bits if required, similar to above.
|
| -inline size_t HashInts64(uint64_t value1, uint64_t value2) {
|
| - uint32_t short_random1 = 842304669U;
|
| - uint32_t short_random2 = 619063811U;
|
| - uint32_t short_random3 = 937041849U;
|
| - uint32_t short_random4 = 3309708029U;
|
| -
|
| - uint32_t value1a = static_cast<uint32_t>(value1 & 0xffffffff);
|
| - uint32_t value1b = static_cast<uint32_t>((value1 >> 32) & 0xffffffff);
|
| - uint32_t value2a = static_cast<uint32_t>(value2 & 0xffffffff);
|
| - uint32_t value2b = static_cast<uint32_t>((value2 >> 32) & 0xffffffff);
|
| -
|
| - uint64_t product1 = static_cast<uint64_t>(value1a) * short_random1;
|
| - uint64_t product2 = static_cast<uint64_t>(value1b) * short_random2;
|
| - uint64_t product3 = static_cast<uint64_t>(value2a) * short_random3;
|
| - uint64_t product4 = static_cast<uint64_t>(value2b) * short_random4;
|
| -
|
| - uint64_t hash64 = product1 + product2 + product3 + product4;
|
| -
|
| - if (sizeof(size_t) >= sizeof(uint64_t))
|
| - return static_cast<size_t>(hash64);
|
| -
|
| - uint64_t odd_random = 1578233944LL << 32 | 194370989LL;
|
| - uint32_t shift_random = 20591U << 16;
|
| -
|
| - hash64 = hash64 * odd_random + shift_random;
|
| - size_t high_bits = static_cast<size_t>(
|
| - hash64 >> (8 * (sizeof(uint64_t) - sizeof(size_t))));
|
| - return high_bits;
|
| -}
|
| -
|
| -template<typename T1, typename T2>
|
| -inline size_t HashInts(T1 value1, T2 value2) {
|
| - // This condition is expected to be compile-time evaluated and optimised away
|
| - // in release builds.
|
| - if (sizeof(T1) > sizeof(uint32_t) || (sizeof(T2) > sizeof(uint32_t)))
|
| - return HashInts64(value1, value2);
|
| -
|
| - return HashInts32(value1, value2);
|
| -}
|
| -
|
| -// A templated hasher for pairs of integer types.
|
| -template<typename T> struct IntPairHash;
|
| -
|
| -template<typename Type1, typename Type2>
|
| -struct IntPairHash<std::pair<Type1, Type2>> {
|
| - size_t operator()(std::pair<Type1, Type2> value) const {
|
| - return HashInts(value.first, value.second);
|
| - }
|
| -};
|
| -
|
| } // namespace base
|
|
|
| #endif // BASE_HASH_H_
|
|
|