| Index: src/heap/store-buffer.cc
|
| diff --git a/src/heap/store-buffer.cc b/src/heap/store-buffer.cc
|
| index 9a469ee5f2759be2af7c7250c98626a695acae85..acfa70cf8ecafd8a0803d4c7fd38767fff565120 100644
|
| --- a/src/heap/store-buffer.cc
|
| +++ b/src/heap/store-buffer.cc
|
| @@ -17,24 +17,7 @@ namespace v8 {
|
| namespace internal {
|
|
|
| StoreBuffer::StoreBuffer(Heap* heap)
|
| - : heap_(heap),
|
| - start_(NULL),
|
| - limit_(NULL),
|
| - old_start_(NULL),
|
| - old_limit_(NULL),
|
| - old_top_(NULL),
|
| - old_reserved_limit_(NULL),
|
| - old_buffer_is_sorted_(false),
|
| - old_buffer_is_filtered_(false),
|
| - during_gc_(false),
|
| - store_buffer_rebuilding_enabled_(false),
|
| - callback_(NULL),
|
| - may_move_store_buffer_entries_(true),
|
| - virtual_memory_(NULL),
|
| - hash_set_1_(NULL),
|
| - hash_set_2_(NULL),
|
| - hash_sets_are_empty_(true) {}
|
| -
|
| + : heap_(heap), start_(nullptr), limit_(nullptr), virtual_memory_(nullptr) {}
|
|
|
| void StoreBuffer::SetUp() {
|
| // Allocate 3x the buffer size, so that we can start the new store buffer
|
| @@ -47,31 +30,6 @@ void StoreBuffer::SetUp() {
|
| reinterpret_cast<Address*>(RoundUp(start_as_int, kStoreBufferSize * 2));
|
| limit_ = start_ + (kStoreBufferSize / kPointerSize);
|
|
|
| - // Reserve space for the larger old buffer.
|
| - old_virtual_memory_ =
|
| - new base::VirtualMemory(kOldStoreBufferLength * kPointerSize);
|
| - old_top_ = old_start_ =
|
| - reinterpret_cast<Address*>(old_virtual_memory_->address());
|
| - // Don't know the alignment requirements of the OS, but it is certainly not
|
| - // less than 0xfff.
|
| - CHECK((reinterpret_cast<uintptr_t>(old_start_) & 0xfff) == 0);
|
| - CHECK(kStoreBufferSize >= base::OS::CommitPageSize());
|
| - // Initial size of the old buffer is as big as the buffer for new pointers.
|
| - // This means even if we later fail to enlarge the old buffer due to OOM from
|
| - // the OS, we will still be able to empty the new pointer buffer into the old
|
| - // buffer.
|
| - int initial_length = static_cast<int>(kStoreBufferSize / kPointerSize);
|
| - CHECK(initial_length > 0);
|
| - CHECK(initial_length <= kOldStoreBufferLength);
|
| - old_limit_ = old_start_ + initial_length;
|
| - old_reserved_limit_ = old_start_ + kOldStoreBufferLength;
|
| -
|
| - if (!old_virtual_memory_->Commit(reinterpret_cast<void*>(old_start_),
|
| - (old_limit_ - old_start_) * kPointerSize,
|
| - false)) {
|
| - V8::FatalProcessOutOfMemory("StoreBuffer::SetUp");
|
| - }
|
| -
|
| DCHECK(reinterpret_cast<Address>(start_) >= virtual_memory_->address());
|
| DCHECK(reinterpret_cast<Address>(limit_) >= virtual_memory_->address());
|
| Address* vm_limit = reinterpret_cast<Address*>(
|
| @@ -90,195 +48,22 @@ void StoreBuffer::SetUp() {
|
| V8::FatalProcessOutOfMemory("StoreBuffer::SetUp");
|
| }
|
| heap_->set_store_buffer_top(reinterpret_cast<Smi*>(start_));
|
| -
|
| - hash_set_1_ = new uintptr_t[kHashSetLength];
|
| - hash_set_2_ = new uintptr_t[kHashSetLength];
|
| - hash_sets_are_empty_ = false;
|
| -
|
| - ClearFilteringHashSets();
|
| }
|
|
|
|
|
| void StoreBuffer::TearDown() {
|
| delete virtual_memory_;
|
| - delete old_virtual_memory_;
|
| - delete[] hash_set_1_;
|
| - delete[] hash_set_2_;
|
| - old_start_ = old_top_ = old_limit_ = old_reserved_limit_ = NULL;
|
| start_ = limit_ = NULL;
|
| heap_->set_store_buffer_top(reinterpret_cast<Smi*>(start_));
|
| }
|
|
|
|
|
| void StoreBuffer::StoreBufferOverflow(Isolate* isolate) {
|
| - isolate->heap()->store_buffer()->Compact();
|
| + isolate->heap()->store_buffer()->InsertEntriesFromBuffer();
|
| isolate->counters()->store_buffer_overflows()->Increment();
|
| }
|
|
|
|
|
| -bool StoreBuffer::SpaceAvailable(intptr_t space_needed) {
|
| - return old_limit_ - old_top_ >= space_needed;
|
| -}
|
| -
|
| -
|
| -void StoreBuffer::EnsureSpace(intptr_t space_needed) {
|
| - while (old_limit_ - old_top_ < space_needed &&
|
| - old_limit_ < old_reserved_limit_) {
|
| - size_t grow = old_limit_ - old_start_; // Double size.
|
| - if (old_virtual_memory_->Commit(reinterpret_cast<void*>(old_limit_),
|
| - grow * kPointerSize, false)) {
|
| - old_limit_ += grow;
|
| - } else {
|
| - break;
|
| - }
|
| - }
|
| -
|
| - if (SpaceAvailable(space_needed)) return;
|
| -
|
| - if (old_buffer_is_filtered_) return;
|
| - DCHECK(may_move_store_buffer_entries_);
|
| - Compact();
|
| -
|
| - old_buffer_is_filtered_ = true;
|
| - bool page_has_scan_on_scavenge_flag = false;
|
| -
|
| - PointerChunkIterator it(heap_);
|
| - MemoryChunk* chunk;
|
| - while ((chunk = it.next()) != NULL) {
|
| - if (chunk->scan_on_scavenge()) {
|
| - page_has_scan_on_scavenge_flag = true;
|
| - break;
|
| - }
|
| - }
|
| -
|
| - if (page_has_scan_on_scavenge_flag) {
|
| - Filter(MemoryChunk::SCAN_ON_SCAVENGE);
|
| - }
|
| -
|
| - if (SpaceAvailable(space_needed)) return;
|
| -
|
| - // Sample 1 entry in 97 and filter out the pages where we estimate that more
|
| - // than 1 in 8 pointers are to new space.
|
| - static const int kSampleFinenesses = 5;
|
| - static const struct Samples {
|
| - int prime_sample_step;
|
| - int threshold;
|
| - } samples[kSampleFinenesses] = {
|
| - {97, ((Page::kPageSize / kPointerSize) / 97) / 8},
|
| - {23, ((Page::kPageSize / kPointerSize) / 23) / 16},
|
| - {7, ((Page::kPageSize / kPointerSize) / 7) / 32},
|
| - {3, ((Page::kPageSize / kPointerSize) / 3) / 256},
|
| - {1, 0}};
|
| - for (int i = 0; i < kSampleFinenesses; i++) {
|
| - ExemptPopularPages(samples[i].prime_sample_step, samples[i].threshold);
|
| - // As a last resort we mark all pages as being exempt from the store buffer.
|
| - DCHECK(i != (kSampleFinenesses - 1) || old_top_ == old_start_);
|
| - if (SpaceAvailable(space_needed)) return;
|
| - }
|
| - UNREACHABLE();
|
| -}
|
| -
|
| -
|
| -// Sample the store buffer to see if some pages are taking up a lot of space
|
| -// in the store buffer.
|
| -void StoreBuffer::ExemptPopularPages(int prime_sample_step, int threshold) {
|
| - HashMap store_buffer_counts(HashMap::PointersMatch, 16);
|
| - bool created_new_scan_on_scavenge_pages = false;
|
| - MemoryChunk* previous_chunk = NULL;
|
| - for (Address* p = old_start_; p < old_top_; p += prime_sample_step) {
|
| - Address addr = *p;
|
| - MemoryChunk* containing_chunk = NULL;
|
| - if (previous_chunk != NULL && previous_chunk->Contains(addr)) {
|
| - containing_chunk = previous_chunk;
|
| - } else {
|
| - containing_chunk = MemoryChunk::FromAnyPointerAddress(heap_, addr);
|
| - }
|
| - HashMap::Entry* e = store_buffer_counts.LookupOrInsert(
|
| - containing_chunk,
|
| - static_cast<uint32_t>(reinterpret_cast<uintptr_t>(containing_chunk) >>
|
| - kPageSizeBits));
|
| - intptr_t old_counter = bit_cast<intptr_t>(e->value);
|
| - if (old_counter >= threshold) {
|
| - containing_chunk->set_scan_on_scavenge(true);
|
| - created_new_scan_on_scavenge_pages = true;
|
| - }
|
| - (*bit_cast<intptr_t*>(&e->value))++;
|
| - previous_chunk = containing_chunk;
|
| - }
|
| - if (created_new_scan_on_scavenge_pages) {
|
| - Filter(MemoryChunk::SCAN_ON_SCAVENGE);
|
| - heap_->isolate()->CountUsage(
|
| - v8::Isolate::UseCounterFeature::kStoreBufferOverflow);
|
| - }
|
| - old_buffer_is_filtered_ = true;
|
| -}
|
| -
|
| -
|
| -void StoreBuffer::Filter(int flag) {
|
| - Address* new_top = old_start_;
|
| - MemoryChunk* previous_chunk = NULL;
|
| - for (Address* p = old_start_; p < old_top_; p++) {
|
| - Address addr = *p;
|
| - MemoryChunk* containing_chunk = NULL;
|
| - if (previous_chunk != NULL && previous_chunk->Contains(addr)) {
|
| - containing_chunk = previous_chunk;
|
| - } else {
|
| - containing_chunk = MemoryChunk::FromAnyPointerAddress(heap_, addr);
|
| - previous_chunk = containing_chunk;
|
| - }
|
| - if (!containing_chunk->IsFlagSet(flag)) {
|
| - *new_top++ = addr;
|
| - }
|
| - }
|
| - old_top_ = new_top;
|
| -
|
| - // Filtering hash sets are inconsistent with the store buffer after this
|
| - // operation.
|
| - ClearFilteringHashSets();
|
| -}
|
| -
|
| -
|
| -bool StoreBuffer::PrepareForIteration() {
|
| - Compact();
|
| - PointerChunkIterator it(heap_);
|
| - MemoryChunk* chunk;
|
| - bool page_has_scan_on_scavenge_flag = false;
|
| - while ((chunk = it.next()) != NULL) {
|
| - if (chunk->scan_on_scavenge()) {
|
| - page_has_scan_on_scavenge_flag = true;
|
| - break;
|
| - }
|
| - }
|
| -
|
| - if (page_has_scan_on_scavenge_flag) {
|
| - Filter(MemoryChunk::SCAN_ON_SCAVENGE);
|
| - }
|
| -
|
| - // Filtering hash sets are inconsistent with the store buffer after
|
| - // iteration.
|
| - ClearFilteringHashSets();
|
| -
|
| - return page_has_scan_on_scavenge_flag;
|
| -}
|
| -
|
| -
|
| -void StoreBuffer::ClearFilteringHashSets() {
|
| - if (!hash_sets_are_empty_) {
|
| - memset(reinterpret_cast<void*>(hash_set_1_), 0,
|
| - sizeof(uintptr_t) * kHashSetLength);
|
| - memset(reinterpret_cast<void*>(hash_set_2_), 0,
|
| - sizeof(uintptr_t) * kHashSetLength);
|
| - hash_sets_are_empty_ = true;
|
| - }
|
| -}
|
| -
|
| -
|
| -void StoreBuffer::GCPrologue() {
|
| - ClearFilteringHashSets();
|
| - during_gc_ = true;
|
| -}
|
| -
|
| -
|
| #ifdef VERIFY_HEAP
|
| void StoreBuffer::VerifyPointers(LargeObjectSpace* space) {
|
| LargeObjectIterator it(space);
|
| @@ -286,7 +71,6 @@ void StoreBuffer::VerifyPointers(LargeObjectSpace* space) {
|
| if (object->IsFixedArray()) {
|
| Address slot_address = object->address();
|
| Address end = object->address() + object->Size();
|
| -
|
| while (slot_address < end) {
|
| HeapObject** slot = reinterpret_cast<HeapObject**>(slot_address);
|
| // When we are not in GC the Heap::InNewSpace() predicate
|
| @@ -308,25 +92,38 @@ void StoreBuffer::Verify() {
|
| #endif
|
| }
|
|
|
| -
|
| -void StoreBuffer::GCEpilogue() {
|
| - during_gc_ = false;
|
| -#ifdef VERIFY_HEAP
|
| - if (FLAG_verify_heap) {
|
| - Verify();
|
| +void StoreBuffer::InsertEntriesFromBuffer() {
|
| + Address* top = reinterpret_cast<Address*>(heap_->store_buffer_top());
|
| + if (top == start_) return;
|
| + // There's no check of the limit in the loop below so we check here for
|
| + // the worst case (compaction doesn't eliminate any pointers).
|
| + DCHECK(top <= limit_);
|
| + heap_->set_store_buffer_top(reinterpret_cast<Smi*>(start_));
|
| + Page* last_page = nullptr;
|
| + SlotSet* last_slot_set = nullptr;
|
| + for (Address* current = start_; current < top; current++) {
|
| + DCHECK(!heap_->code_space()->Contains(*current));
|
| + Address addr = *current;
|
| + Page* page = Page::FromAddress(addr);
|
| + SlotSet* slot_set;
|
| + uint32_t offset;
|
| + if (page == last_page) {
|
| + slot_set = last_slot_set;
|
| + offset = static_cast<uint32_t>(addr - page->address());
|
| + } else {
|
| + offset = AddressToSlotSetAndOffset(addr, &slot_set);
|
| + last_page = page;
|
| + last_slot_set = slot_set;
|
| + }
|
| + slot_set->Insert(offset);
|
| }
|
| -#endif
|
| }
|
|
|
| -
|
| -void StoreBuffer::ProcessOldToNewSlot(Address slot_address,
|
| - ObjectSlotCallback slot_callback) {
|
| +static SlotSet::CallbackResult ProcessOldToNewSlot(
|
| + Heap* heap, Address slot_address, ObjectSlotCallback slot_callback) {
|
| Object** slot = reinterpret_cast<Object**>(slot_address);
|
| Object* object = *slot;
|
| -
|
| - // If the object is not in from space, it must be a duplicate store buffer
|
| - // entry and the slot was already updated.
|
| - if (heap_->InFromSpace(object)) {
|
| + if (heap->InFromSpace(object)) {
|
| HeapObject* heap_object = reinterpret_cast<HeapObject*>(object);
|
| DCHECK(heap_object->IsHeapObject());
|
| slot_callback(reinterpret_cast<HeapObject**>(slot), heap_object);
|
| @@ -335,289 +132,87 @@ void StoreBuffer::ProcessOldToNewSlot(Address slot_address,
|
| // callback in to space, the object is still live.
|
| // Unfortunately, we do not know about the slot. It could be in a
|
| // just freed free space object.
|
| - if (heap_->InToSpace(object)) {
|
| - EnterDirectlyIntoStoreBuffer(reinterpret_cast<Address>(slot));
|
| + if (heap->InToSpace(object)) {
|
| + return SlotSet::KEEP_SLOT;
|
| }
|
| + } else {
|
| + DCHECK(!heap->InNewSpace(object));
|
| }
|
| + return SlotSet::REMOVE_SLOT;
|
| }
|
|
|
| -
|
| -void StoreBuffer::FindPointersToNewSpaceInRegion(
|
| - Address start, Address end, ObjectSlotCallback slot_callback) {
|
| - for (Address slot_address = start; slot_address < end;
|
| - slot_address += kPointerSize) {
|
| - ProcessOldToNewSlot(slot_address, slot_callback);
|
| - }
|
| +void StoreBuffer::IteratePointersToNewSpace(ObjectSlotCallback slot_callback) {
|
| + Heap* heap = heap_;
|
| + Iterate([heap, slot_callback](Address addr) {
|
| + return ProcessOldToNewSlot(heap, addr, slot_callback);
|
| + });
|
| }
|
|
|
| -
|
| -void StoreBuffer::IteratePointersInStoreBuffer(
|
| - ObjectSlotCallback slot_callback) {
|
| - Address* limit = old_top_;
|
| - old_top_ = old_start_;
|
| - {
|
| - DontMoveStoreBufferEntriesScope scope(this);
|
| - for (Address* current = old_start_; current < limit; current++) {
|
| -#ifdef DEBUG
|
| - Address* saved_top = old_top_;
|
| -#endif
|
| - ProcessOldToNewSlot(*current, slot_callback);
|
| - DCHECK(old_top_ == saved_top + 1 || old_top_ == saved_top);
|
| +template <typename Callback>
|
| +void StoreBuffer::Iterate(Callback callback) {
|
| + InsertEntriesFromBuffer();
|
| + PointerChunkIterator it(heap_);
|
| + MemoryChunk* chunk;
|
| + while ((chunk = it.next()) != nullptr) {
|
| + if (chunk->old_to_new_slots() != nullptr) {
|
| + SlotSet* slots = chunk->old_to_new_slots();
|
| + size_t pages = (chunk->size() + Page::kPageSize - 1) / Page::kPageSize;
|
| + for (size_t page = 0; page < pages; page++) {
|
| + slots[page].Iterate(callback);
|
| + }
|
| }
|
| }
|
| }
|
|
|
|
|
| void StoreBuffer::ClearInvalidStoreBufferEntries() {
|
| - Compact();
|
| - Address* new_top = old_start_;
|
| - for (Address* current = old_start_; current < old_top_; current++) {
|
| - Address addr = *current;
|
| - Object** slot = reinterpret_cast<Object**>(addr);
|
| - Object* object = *slot;
|
| - if (heap_->InNewSpace(object) && object->IsHeapObject()) {
|
| - // If the target object is not black, the source slot must be part
|
| - // of a non-black (dead) object.
|
| - HeapObject* heap_object = HeapObject::cast(object);
|
| - if (Marking::IsBlack(Marking::MarkBitFrom(heap_object)) &&
|
| - heap_->mark_compact_collector()->IsSlotInLiveObject(addr)) {
|
| - *new_top++ = addr;
|
| - }
|
| - }
|
| - }
|
| - old_top_ = new_top;
|
| - ClearFilteringHashSets();
|
| + InsertEntriesFromBuffer();
|
|
|
| - // Don't scan on scavenge dead large objects.
|
| - LargeObjectIterator it(heap_->lo_space());
|
| - for (HeapObject* object = it.Next(); object != NULL; object = it.Next()) {
|
| - MemoryChunk* chunk = MemoryChunk::FromAddress(object->address());
|
| - if (chunk->scan_on_scavenge() &&
|
| - Marking::IsWhite(Marking::MarkBitFrom(object))) {
|
| - chunk->set_scan_on_scavenge(false);
|
| + Heap* heap = heap_;
|
| + PageIterator it(heap->old_space());
|
| + MemoryChunk* chunk;
|
| + while (it.has_next()) {
|
| + chunk = it.next();
|
| + if (chunk->old_to_new_slots() != nullptr) {
|
| + SlotSet* slots = chunk->old_to_new_slots();
|
| + size_t pages = (chunk->size() + Page::kPageSize - 1) / Page::kPageSize;
|
| + if (pages > 1) {
|
| + // Large pages were processed above.
|
| + continue;
|
| + }
|
| + slots->Iterate([heap](Address addr) {
|
| + Object** slot = reinterpret_cast<Object**>(addr);
|
| + Object* object = *slot;
|
| + if (heap->InNewSpace(object)) {
|
| + DCHECK(object->IsHeapObject());
|
| + // If the target object is not black, the source slot must be part
|
| + // of a non-black (dead) object.
|
| + HeapObject* heap_object = HeapObject::cast(object);
|
| + bool live = Marking::IsBlack(Marking::MarkBitFrom(heap_object)) &&
|
| + heap->mark_compact_collector()->IsSlotInLiveObject(addr);
|
| + return live ? SlotSet::KEEP_SLOT : SlotSet::REMOVE_SLOT;
|
| + }
|
| + return SlotSet::REMOVE_SLOT;
|
| + });
|
| }
|
| }
|
| }
|
|
|
|
|
| void StoreBuffer::VerifyValidStoreBufferEntries() {
|
| - for (Address* current = old_start_; current < old_top_; current++) {
|
| - Object** slot = reinterpret_cast<Object**>(*current);
|
| + Heap* heap = heap_;
|
| + Iterate([heap](Address addr) {
|
| + Object** slot = reinterpret_cast<Object**>(addr);
|
| Object* object = *slot;
|
| - CHECK(object->IsHeapObject());
|
| - CHECK(heap_->InNewSpace(object));
|
| - heap_->mark_compact_collector()->VerifyIsSlotInLiveObject(
|
| - reinterpret_cast<Address>(slot), HeapObject::cast(object));
|
| - }
|
| -}
|
| -
|
| -
|
| -class FindPointersToNewSpaceVisitor final : public ObjectVisitor {
|
| - public:
|
| - FindPointersToNewSpaceVisitor(StoreBuffer* store_buffer,
|
| - ObjectSlotCallback callback)
|
| - : store_buffer_(store_buffer), callback_(callback) {}
|
| -
|
| - V8_INLINE void VisitPointers(Object** start, Object** end) override {
|
| - store_buffer_->FindPointersToNewSpaceInRegion(
|
| - reinterpret_cast<Address>(start), reinterpret_cast<Address>(end),
|
| - callback_);
|
| - }
|
| -
|
| - V8_INLINE void VisitCodeEntry(Address code_entry_slot) override {}
|
| -
|
| - private:
|
| - StoreBuffer* store_buffer_;
|
| - ObjectSlotCallback callback_;
|
| -};
|
| -
|
| -
|
| -void StoreBuffer::IteratePointersToNewSpace(ObjectSlotCallback slot_callback) {
|
| - // We do not sort or remove duplicated entries from the store buffer because
|
| - // we expect that callback will rebuild the store buffer thus removing
|
| - // all duplicates and pointers to old space.
|
| - bool some_pages_to_scan = PrepareForIteration();
|
| -
|
| - // TODO(gc): we want to skip slots on evacuation candidates
|
| - // but we can't simply figure that out from slot address
|
| - // because slot can belong to a large object.
|
| - IteratePointersInStoreBuffer(slot_callback);
|
| -
|
| - // We are done scanning all the pointers that were in the store buffer, but
|
| - // there may be some pages marked scan_on_scavenge that have pointers to new
|
| - // space that are not in the store buffer. We must scan them now. As we
|
| - // scan, the surviving pointers to new space will be added to the store
|
| - // buffer. If there are still a lot of pointers to new space then we will
|
| - // keep the scan_on_scavenge flag on the page and discard the pointers that
|
| - // were added to the store buffer. If there are not many pointers to new
|
| - // space left on the page we will keep the pointers in the store buffer and
|
| - // remove the flag from the page.
|
| - if (some_pages_to_scan) {
|
| - if (callback_ != NULL) {
|
| - (*callback_)(heap_, NULL, kStoreBufferStartScanningPagesEvent);
|
| - }
|
| - PointerChunkIterator it(heap_);
|
| - MemoryChunk* chunk;
|
| - FindPointersToNewSpaceVisitor visitor(this, slot_callback);
|
| - while ((chunk = it.next()) != NULL) {
|
| - if (chunk->scan_on_scavenge()) {
|
| - chunk->set_scan_on_scavenge(false);
|
| - if (callback_ != NULL) {
|
| - (*callback_)(heap_, chunk, kStoreBufferScanningPageEvent);
|
| - }
|
| - if (chunk->owner() == heap_->lo_space()) {
|
| - LargePage* large_page = reinterpret_cast<LargePage*>(chunk);
|
| - HeapObject* array = large_page->GetObject();
|
| - DCHECK(array->IsFixedArray());
|
| - Address start = array->address();
|
| - Address end = start + array->Size();
|
| - FindPointersToNewSpaceInRegion(start, end, slot_callback);
|
| - } else {
|
| - Page* page = reinterpret_cast<Page*>(chunk);
|
| - PagedSpace* owner = reinterpret_cast<PagedSpace*>(page->owner());
|
| - if (owner == heap_->map_space()) {
|
| - DCHECK(page->SweepingDone());
|
| - HeapObjectIterator iterator(page);
|
| - for (HeapObject* heap_object = iterator.Next(); heap_object != NULL;
|
| - heap_object = iterator.Next()) {
|
| - // We skip free space objects.
|
| - if (!heap_object->IsFiller()) {
|
| - DCHECK(heap_object->IsMap());
|
| - FindPointersToNewSpaceInRegion(
|
| - heap_object->address() + Map::kPointerFieldsBeginOffset,
|
| - heap_object->address() + Map::kPointerFieldsEndOffset,
|
| - slot_callback);
|
| - }
|
| - }
|
| - } else {
|
| - if (page->IsFlagSet(Page::COMPACTION_WAS_ABORTED)) {
|
| - // Aborted pages require iterating using mark bits because they
|
| - // don't have an iterable object layout before sweeping (which can
|
| - // only happen later). Note that we can never reach an
|
| - // aborted page through the scavenger.
|
| - DCHECK_EQ(heap_->gc_state(), Heap::MARK_COMPACT);
|
| - heap_->mark_compact_collector()->VisitLiveObjectsBody(page,
|
| - &visitor);
|
| - } else {
|
| - heap_->mark_compact_collector()
|
| - ->SweepOrWaitUntilSweepingCompleted(page);
|
| - HeapObjectIterator iterator(page);
|
| - for (HeapObject* heap_object = iterator.Next();
|
| - heap_object != nullptr; heap_object = iterator.Next()) {
|
| - // We iterate over objects that contain new space pointers only.
|
| - heap_object->IterateBody(&visitor);
|
| - }
|
| - }
|
| - }
|
| - }
|
| - }
|
| - }
|
| - if (callback_ != NULL) {
|
| - (*callback_)(heap_, NULL, kStoreBufferScanningPageEvent);
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -void StoreBuffer::Compact() {
|
| - Address* top = reinterpret_cast<Address*>(heap_->store_buffer_top());
|
| -
|
| - if (top == start_) return;
|
| -
|
| - // There's no check of the limit in the loop below so we check here for
|
| - // the worst case (compaction doesn't eliminate any pointers).
|
| - DCHECK(top <= limit_);
|
| - heap_->set_store_buffer_top(reinterpret_cast<Smi*>(start_));
|
| - EnsureSpace(top - start_);
|
| - DCHECK(may_move_store_buffer_entries_);
|
| - // Goes through the addresses in the store buffer attempting to remove
|
| - // duplicates. In the interest of speed this is a lossy operation. Some
|
| - // duplicates will remain. We have two hash sets with different hash
|
| - // functions to reduce the number of unnecessary clashes.
|
| - hash_sets_are_empty_ = false; // Hash sets are in use.
|
| - for (Address* current = start_; current < top; current++) {
|
| - DCHECK(!heap_->code_space()->Contains(*current));
|
| - uintptr_t int_addr = reinterpret_cast<uintptr_t>(*current);
|
| - // Shift out the last bits including any tags.
|
| - int_addr >>= kPointerSizeLog2;
|
| - // The upper part of an address is basically random because of ASLR and OS
|
| - // non-determinism, so we use only the bits within a page for hashing to
|
| - // make v8's behavior (more) deterministic.
|
| - uintptr_t hash_addr =
|
| - int_addr & (Page::kPageAlignmentMask >> kPointerSizeLog2);
|
| - int hash1 = ((hash_addr ^ (hash_addr >> kHashSetLengthLog2)) &
|
| - (kHashSetLength - 1));
|
| - if (hash_set_1_[hash1] == int_addr) continue;
|
| - uintptr_t hash2 = (hash_addr - (hash_addr >> kHashSetLengthLog2));
|
| - hash2 ^= hash2 >> (kHashSetLengthLog2 * 2);
|
| - hash2 &= (kHashSetLength - 1);
|
| - if (hash_set_2_[hash2] == int_addr) continue;
|
| - if (hash_set_1_[hash1] == 0) {
|
| - hash_set_1_[hash1] = int_addr;
|
| - } else if (hash_set_2_[hash2] == 0) {
|
| - hash_set_2_[hash2] = int_addr;
|
| - } else {
|
| - // Rather than slowing down we just throw away some entries. This will
|
| - // cause some duplicates to remain undetected.
|
| - hash_set_1_[hash1] = int_addr;
|
| - hash_set_2_[hash2] = 0;
|
| - }
|
| - old_buffer_is_sorted_ = false;
|
| - old_buffer_is_filtered_ = false;
|
| - *old_top_++ = reinterpret_cast<Address>(int_addr << kPointerSizeLog2);
|
| - DCHECK(old_top_ <= old_limit_);
|
| - }
|
| - heap_->isolate()->counters()->store_buffer_compactions()->Increment();
|
| -}
|
| -
|
| -
|
| -void StoreBufferRebuilder::Callback(MemoryChunk* page, StoreBufferEvent event) {
|
| - if (event == kStoreBufferStartScanningPagesEvent) {
|
| - start_of_current_page_ = NULL;
|
| - current_page_ = NULL;
|
| - } else if (event == kStoreBufferScanningPageEvent) {
|
| - if (current_page_ != NULL) {
|
| - // If this page already overflowed the store buffer during this iteration.
|
| - if (current_page_->scan_on_scavenge()) {
|
| - // Then we should wipe out the entries that have been added for it.
|
| - store_buffer_->SetTop(start_of_current_page_);
|
| - } else if (store_buffer_->Top() - start_of_current_page_ >=
|
| - (store_buffer_->Limit() - store_buffer_->Top()) >> 2) {
|
| - // Did we find too many pointers in the previous page? The heuristic is
|
| - // that no page can take more then 1/5 the remaining slots in the store
|
| - // buffer.
|
| - current_page_->set_scan_on_scavenge(true);
|
| - store_buffer_->SetTop(start_of_current_page_);
|
| - } else {
|
| - // In this case the page we scanned took a reasonable number of slots in
|
| - // the store buffer. It has now been rehabilitated and is no longer
|
| - // marked scan_on_scavenge.
|
| - DCHECK(!current_page_->scan_on_scavenge());
|
| - }
|
| - }
|
| - start_of_current_page_ = store_buffer_->Top();
|
| - current_page_ = page;
|
| - } else if (event == kStoreBufferFullEvent) {
|
| - // The current page overflowed the store buffer again. Wipe out its entries
|
| - // in the store buffer and mark it scan-on-scavenge again. This may happen
|
| - // several times while scanning.
|
| - if (current_page_ == NULL) {
|
| - // Store Buffer overflowed while scanning promoted objects. These are not
|
| - // in any particular page, though they are likely to be clustered by the
|
| - // allocation routines.
|
| - store_buffer_->EnsureSpace(StoreBuffer::kStoreBufferSize / 2);
|
| - } else {
|
| - // Store Buffer overflowed while scanning a particular old space page for
|
| - // pointers to new space.
|
| - DCHECK(current_page_ == page);
|
| - DCHECK(page != NULL);
|
| - current_page_->set_scan_on_scavenge(true);
|
| - DCHECK(start_of_current_page_ != store_buffer_->Top());
|
| - store_buffer_->SetTop(start_of_current_page_);
|
| - }
|
| - } else {
|
| - UNREACHABLE();
|
| - }
|
| + if (Page::FromAddress(addr)->owner() != nullptr &&
|
| + Page::FromAddress(addr)->owner()->identity() == OLD_SPACE) {
|
| + CHECK(object->IsHeapObject());
|
| + CHECK(heap->InNewSpace(object));
|
| + heap->mark_compact_collector()->VerifyIsSlotInLiveObject(
|
| + reinterpret_cast<Address>(slot), HeapObject::cast(object));
|
| + }
|
| + return SlotSet::KEEP_SLOT;
|
| + });
|
| }
|
|
|
| } // namespace internal
|
|
|