Chromium Code Reviews| Index: src/heap/store-buffer.cc |
| diff --git a/src/heap/store-buffer.cc b/src/heap/store-buffer.cc |
| index 9a469ee5f2759be2af7c7250c98626a695acae85..c324b4b98e23fb3b7aba779660a8e0086bfb1a78 100644 |
| --- a/src/heap/store-buffer.cc |
| +++ b/src/heap/store-buffer.cc |
| @@ -17,24 +17,7 @@ namespace v8 { |
| namespace internal { |
| StoreBuffer::StoreBuffer(Heap* heap) |
| - : heap_(heap), |
| - start_(NULL), |
| - limit_(NULL), |
| - old_start_(NULL), |
| - old_limit_(NULL), |
| - old_top_(NULL), |
| - old_reserved_limit_(NULL), |
| - old_buffer_is_sorted_(false), |
| - old_buffer_is_filtered_(false), |
| - during_gc_(false), |
| - store_buffer_rebuilding_enabled_(false), |
| - callback_(NULL), |
| - may_move_store_buffer_entries_(true), |
| - virtual_memory_(NULL), |
| - hash_set_1_(NULL), |
| - hash_set_2_(NULL), |
| - hash_sets_are_empty_(true) {} |
| - |
| + : heap_(heap), start_(nullptr), limit_(nullptr), virtual_memory_(nullptr) {} |
| void StoreBuffer::SetUp() { |
| // Allocate 3x the buffer size, so that we can start the new store buffer |
| @@ -47,31 +30,6 @@ void StoreBuffer::SetUp() { |
| reinterpret_cast<Address*>(RoundUp(start_as_int, kStoreBufferSize * 2)); |
| limit_ = start_ + (kStoreBufferSize / kPointerSize); |
| - // Reserve space for the larger old buffer. |
| - old_virtual_memory_ = |
| - new base::VirtualMemory(kOldStoreBufferLength * kPointerSize); |
| - old_top_ = old_start_ = |
| - reinterpret_cast<Address*>(old_virtual_memory_->address()); |
| - // Don't know the alignment requirements of the OS, but it is certainly not |
| - // less than 0xfff. |
| - CHECK((reinterpret_cast<uintptr_t>(old_start_) & 0xfff) == 0); |
| - CHECK(kStoreBufferSize >= base::OS::CommitPageSize()); |
| - // Initial size of the old buffer is as big as the buffer for new pointers. |
| - // This means even if we later fail to enlarge the old buffer due to OOM from |
| - // the OS, we will still be able to empty the new pointer buffer into the old |
| - // buffer. |
| - int initial_length = static_cast<int>(kStoreBufferSize / kPointerSize); |
| - CHECK(initial_length > 0); |
| - CHECK(initial_length <= kOldStoreBufferLength); |
| - old_limit_ = old_start_ + initial_length; |
| - old_reserved_limit_ = old_start_ + kOldStoreBufferLength; |
| - |
| - if (!old_virtual_memory_->Commit(reinterpret_cast<void*>(old_start_), |
| - (old_limit_ - old_start_) * kPointerSize, |
| - false)) { |
| - V8::FatalProcessOutOfMemory("StoreBuffer::SetUp"); |
| - } |
| - |
| DCHECK(reinterpret_cast<Address>(start_) >= virtual_memory_->address()); |
| DCHECK(reinterpret_cast<Address>(limit_) >= virtual_memory_->address()); |
| Address* vm_limit = reinterpret_cast<Address*>( |
| @@ -90,195 +48,22 @@ void StoreBuffer::SetUp() { |
| V8::FatalProcessOutOfMemory("StoreBuffer::SetUp"); |
| } |
| heap_->set_store_buffer_top(reinterpret_cast<Smi*>(start_)); |
| - |
| - hash_set_1_ = new uintptr_t[kHashSetLength]; |
| - hash_set_2_ = new uintptr_t[kHashSetLength]; |
| - hash_sets_are_empty_ = false; |
| - |
| - ClearFilteringHashSets(); |
| } |
| void StoreBuffer::TearDown() { |
| delete virtual_memory_; |
| - delete old_virtual_memory_; |
| - delete[] hash_set_1_; |
| - delete[] hash_set_2_; |
| - old_start_ = old_top_ = old_limit_ = old_reserved_limit_ = NULL; |
| start_ = limit_ = NULL; |
| heap_->set_store_buffer_top(reinterpret_cast<Smi*>(start_)); |
| } |
| void StoreBuffer::StoreBufferOverflow(Isolate* isolate) { |
| - isolate->heap()->store_buffer()->Compact(); |
| + isolate->heap()->store_buffer()->InsertEntriesFromBuffer(); |
| isolate->counters()->store_buffer_overflows()->Increment(); |
| } |
| -bool StoreBuffer::SpaceAvailable(intptr_t space_needed) { |
| - return old_limit_ - old_top_ >= space_needed; |
| -} |
| - |
| - |
| -void StoreBuffer::EnsureSpace(intptr_t space_needed) { |
| - while (old_limit_ - old_top_ < space_needed && |
| - old_limit_ < old_reserved_limit_) { |
| - size_t grow = old_limit_ - old_start_; // Double size. |
| - if (old_virtual_memory_->Commit(reinterpret_cast<void*>(old_limit_), |
| - grow * kPointerSize, false)) { |
| - old_limit_ += grow; |
| - } else { |
| - break; |
| - } |
| - } |
| - |
| - if (SpaceAvailable(space_needed)) return; |
| - |
| - if (old_buffer_is_filtered_) return; |
| - DCHECK(may_move_store_buffer_entries_); |
| - Compact(); |
| - |
| - old_buffer_is_filtered_ = true; |
| - bool page_has_scan_on_scavenge_flag = false; |
| - |
| - PointerChunkIterator it(heap_); |
| - MemoryChunk* chunk; |
| - while ((chunk = it.next()) != NULL) { |
| - if (chunk->scan_on_scavenge()) { |
| - page_has_scan_on_scavenge_flag = true; |
| - break; |
| - } |
| - } |
| - |
| - if (page_has_scan_on_scavenge_flag) { |
| - Filter(MemoryChunk::SCAN_ON_SCAVENGE); |
| - } |
| - |
| - if (SpaceAvailable(space_needed)) return; |
| - |
| - // Sample 1 entry in 97 and filter out the pages where we estimate that more |
| - // than 1 in 8 pointers are to new space. |
| - static const int kSampleFinenesses = 5; |
| - static const struct Samples { |
| - int prime_sample_step; |
| - int threshold; |
| - } samples[kSampleFinenesses] = { |
| - {97, ((Page::kPageSize / kPointerSize) / 97) / 8}, |
| - {23, ((Page::kPageSize / kPointerSize) / 23) / 16}, |
| - {7, ((Page::kPageSize / kPointerSize) / 7) / 32}, |
| - {3, ((Page::kPageSize / kPointerSize) / 3) / 256}, |
| - {1, 0}}; |
| - for (int i = 0; i < kSampleFinenesses; i++) { |
| - ExemptPopularPages(samples[i].prime_sample_step, samples[i].threshold); |
| - // As a last resort we mark all pages as being exempt from the store buffer. |
| - DCHECK(i != (kSampleFinenesses - 1) || old_top_ == old_start_); |
| - if (SpaceAvailable(space_needed)) return; |
| - } |
| - UNREACHABLE(); |
| -} |
| - |
| - |
| -// Sample the store buffer to see if some pages are taking up a lot of space |
| -// in the store buffer. |
| -void StoreBuffer::ExemptPopularPages(int prime_sample_step, int threshold) { |
| - HashMap store_buffer_counts(HashMap::PointersMatch, 16); |
| - bool created_new_scan_on_scavenge_pages = false; |
| - MemoryChunk* previous_chunk = NULL; |
| - for (Address* p = old_start_; p < old_top_; p += prime_sample_step) { |
| - Address addr = *p; |
| - MemoryChunk* containing_chunk = NULL; |
| - if (previous_chunk != NULL && previous_chunk->Contains(addr)) { |
| - containing_chunk = previous_chunk; |
| - } else { |
| - containing_chunk = MemoryChunk::FromAnyPointerAddress(heap_, addr); |
| - } |
| - HashMap::Entry* e = store_buffer_counts.LookupOrInsert( |
| - containing_chunk, |
| - static_cast<uint32_t>(reinterpret_cast<uintptr_t>(containing_chunk) >> |
| - kPageSizeBits)); |
| - intptr_t old_counter = bit_cast<intptr_t>(e->value); |
| - if (old_counter >= threshold) { |
| - containing_chunk->set_scan_on_scavenge(true); |
| - created_new_scan_on_scavenge_pages = true; |
| - } |
| - (*bit_cast<intptr_t*>(&e->value))++; |
| - previous_chunk = containing_chunk; |
| - } |
| - if (created_new_scan_on_scavenge_pages) { |
| - Filter(MemoryChunk::SCAN_ON_SCAVENGE); |
| - heap_->isolate()->CountUsage( |
| - v8::Isolate::UseCounterFeature::kStoreBufferOverflow); |
| - } |
| - old_buffer_is_filtered_ = true; |
| -} |
| - |
| - |
| -void StoreBuffer::Filter(int flag) { |
| - Address* new_top = old_start_; |
| - MemoryChunk* previous_chunk = NULL; |
| - for (Address* p = old_start_; p < old_top_; p++) { |
| - Address addr = *p; |
| - MemoryChunk* containing_chunk = NULL; |
| - if (previous_chunk != NULL && previous_chunk->Contains(addr)) { |
| - containing_chunk = previous_chunk; |
| - } else { |
| - containing_chunk = MemoryChunk::FromAnyPointerAddress(heap_, addr); |
| - previous_chunk = containing_chunk; |
| - } |
| - if (!containing_chunk->IsFlagSet(flag)) { |
| - *new_top++ = addr; |
| - } |
| - } |
| - old_top_ = new_top; |
| - |
| - // Filtering hash sets are inconsistent with the store buffer after this |
| - // operation. |
| - ClearFilteringHashSets(); |
| -} |
| - |
| - |
| -bool StoreBuffer::PrepareForIteration() { |
| - Compact(); |
| - PointerChunkIterator it(heap_); |
| - MemoryChunk* chunk; |
| - bool page_has_scan_on_scavenge_flag = false; |
| - while ((chunk = it.next()) != NULL) { |
| - if (chunk->scan_on_scavenge()) { |
| - page_has_scan_on_scavenge_flag = true; |
| - break; |
| - } |
| - } |
| - |
| - if (page_has_scan_on_scavenge_flag) { |
| - Filter(MemoryChunk::SCAN_ON_SCAVENGE); |
| - } |
| - |
| - // Filtering hash sets are inconsistent with the store buffer after |
| - // iteration. |
| - ClearFilteringHashSets(); |
| - |
| - return page_has_scan_on_scavenge_flag; |
| -} |
| - |
| - |
| -void StoreBuffer::ClearFilteringHashSets() { |
| - if (!hash_sets_are_empty_) { |
| - memset(reinterpret_cast<void*>(hash_set_1_), 0, |
| - sizeof(uintptr_t) * kHashSetLength); |
| - memset(reinterpret_cast<void*>(hash_set_2_), 0, |
| - sizeof(uintptr_t) * kHashSetLength); |
| - hash_sets_are_empty_ = true; |
| - } |
| -} |
| - |
| - |
| -void StoreBuffer::GCPrologue() { |
| - ClearFilteringHashSets(); |
| - during_gc_ = true; |
| -} |
| - |
| - |
| #ifdef VERIFY_HEAP |
| void StoreBuffer::VerifyPointers(LargeObjectSpace* space) { |
| LargeObjectIterator it(space); |
| @@ -286,7 +71,6 @@ void StoreBuffer::VerifyPointers(LargeObjectSpace* space) { |
| if (object->IsFixedArray()) { |
| Address slot_address = object->address(); |
| Address end = object->address() + object->Size(); |
| - |
| while (slot_address < end) { |
| HeapObject** slot = reinterpret_cast<HeapObject**>(slot_address); |
| // When we are not in GC the Heap::InNewSpace() predicate |
| @@ -308,25 +92,38 @@ void StoreBuffer::Verify() { |
| #endif |
| } |
| - |
| -void StoreBuffer::GCEpilogue() { |
| - during_gc_ = false; |
| -#ifdef VERIFY_HEAP |
| - if (FLAG_verify_heap) { |
| - Verify(); |
| +void StoreBuffer::InsertEntriesFromBuffer() { |
| + Address* top = reinterpret_cast<Address*>(heap_->store_buffer_top()); |
| + if (top == start_) return; |
| + // There's no check of the limit in the loop below so we check here for |
| + // the worst case (compaction doesn't eliminate any pointers). |
| + DCHECK(top <= limit_); |
| + heap_->set_store_buffer_top(reinterpret_cast<Smi*>(start_)); |
| + Page* last_page = nullptr; |
|
Hannes Payer (out of office)
2016/02/02 12:40:37
You are currently not assigning to last_page and l
ulan
2016/02/02 13:27:28
Done.
|
| + SlotSet* last_slot_set = nullptr; |
| + for (Address* current = start_; current < top; current++) { |
| + DCHECK(!heap_->code_space()->Contains(*current)); |
| + Address addr = *current; |
| + Page* page = Page::FromAddress(addr); |
| + SlotSet* slot_set; |
| + uint32_t offset; |
| + if (page == last_page) { |
| + slot_set = last_slot_set; |
| + offset = static_cast<uint32_t>(addr - page->address()); |
| + } else { |
| + offset = AddressToSlotSetAndOffset(addr, &slot_set); |
| + } |
| + slot_set->Insert(offset); |
| } |
| -#endif |
| } |
| - |
| -void StoreBuffer::ProcessOldToNewSlot(Address slot_address, |
| - ObjectSlotCallback slot_callback) { |
| +static SlotSet::CallbackResult ProcessOldToNewSlot( |
| + Heap* heap, Address slot_address, ObjectSlotCallback slot_callback) { |
| Object** slot = reinterpret_cast<Object**>(slot_address); |
| Object* object = *slot; |
| - |
| // If the object is not in from space, it must be a duplicate store buffer |
| // entry and the slot was already updated. |
| - if (heap_->InFromSpace(object)) { |
| + if (heap->InFromSpace(object)) { |
| HeapObject* heap_object = reinterpret_cast<HeapObject*>(object); |
| DCHECK(heap_object->IsHeapObject()); |
| slot_callback(reinterpret_cast<HeapObject**>(slot), heap_object); |
| @@ -335,289 +132,84 @@ void StoreBuffer::ProcessOldToNewSlot(Address slot_address, |
| // callback in to space, the object is still live. |
| // Unfortunately, we do not know about the slot. It could be in a |
| // just freed free space object. |
| - if (heap_->InToSpace(object)) { |
| - EnterDirectlyIntoStoreBuffer(reinterpret_cast<Address>(slot)); |
| + if (heap->InToSpace(object)) { |
| + return SlotSet::KEEP_SLOT; |
| } |
| } |
| + return SlotSet::REMOVE_SLOT; |
| } |
| - |
| -void StoreBuffer::FindPointersToNewSpaceInRegion( |
| - Address start, Address end, ObjectSlotCallback slot_callback) { |
| - for (Address slot_address = start; slot_address < end; |
| - slot_address += kPointerSize) { |
| - ProcessOldToNewSlot(slot_address, slot_callback); |
| - } |
| +void StoreBuffer::IteratePointersToNewSpace(ObjectSlotCallback slot_callback) { |
| + Heap* heap = heap_; |
| + Iterate([heap, slot_callback](Address addr) { |
| + return ProcessOldToNewSlot(heap, addr, slot_callback); |
| + }); |
| } |
| - |
| -void StoreBuffer::IteratePointersInStoreBuffer( |
| - ObjectSlotCallback slot_callback) { |
| - Address* limit = old_top_; |
| - old_top_ = old_start_; |
| - { |
| - DontMoveStoreBufferEntriesScope scope(this); |
| - for (Address* current = old_start_; current < limit; current++) { |
| -#ifdef DEBUG |
| - Address* saved_top = old_top_; |
| -#endif |
| - ProcessOldToNewSlot(*current, slot_callback); |
| - DCHECK(old_top_ == saved_top + 1 || old_top_ == saved_top); |
| +template <typename Callback> |
| +void StoreBuffer::Iterate(Callback callback) { |
| + InsertEntriesFromBuffer(); |
| + PointerChunkIterator it(heap_); |
| + MemoryChunk* chunk; |
| + while ((chunk = it.next()) != nullptr) { |
| + if (chunk->old_to_new_slots() != nullptr) { |
| + SlotSet* slots = chunk->old_to_new_slots(); |
| + size_t pages = (chunk->size() + Page::kPageSize - 1) / Page::kPageSize; |
| + for (size_t page = 0; page < pages; page++) { |
| + slots[page].Iterate(callback); |
| + } |
| } |
| } |
| } |
| void StoreBuffer::ClearInvalidStoreBufferEntries() { |
| - Compact(); |
| - Address* new_top = old_start_; |
| - for (Address* current = old_start_; current < old_top_; current++) { |
| - Address addr = *current; |
| - Object** slot = reinterpret_cast<Object**>(addr); |
| - Object* object = *slot; |
| - if (heap_->InNewSpace(object) && object->IsHeapObject()) { |
| - // If the target object is not black, the source slot must be part |
| - // of a non-black (dead) object. |
| - HeapObject* heap_object = HeapObject::cast(object); |
| - if (Marking::IsBlack(Marking::MarkBitFrom(heap_object)) && |
| - heap_->mark_compact_collector()->IsSlotInLiveObject(addr)) { |
| - *new_top++ = addr; |
| - } |
| - } |
| - } |
| - old_top_ = new_top; |
| - ClearFilteringHashSets(); |
| + InsertEntriesFromBuffer(); |
| - // Don't scan on scavenge dead large objects. |
| - LargeObjectIterator it(heap_->lo_space()); |
| - for (HeapObject* object = it.Next(); object != NULL; object = it.Next()) { |
| - MemoryChunk* chunk = MemoryChunk::FromAddress(object->address()); |
| - if (chunk->scan_on_scavenge() && |
| - Marking::IsWhite(Marking::MarkBitFrom(object))) { |
| - chunk->set_scan_on_scavenge(false); |
| + Heap* heap = heap_; |
| + PageIterator it(heap->old_space()); |
| + MemoryChunk* chunk; |
| + while (it.has_next()) { |
| + chunk = it.next(); |
| + if (chunk->old_to_new_slots() != nullptr) { |
| + SlotSet* slots = chunk->old_to_new_slots(); |
| + size_t pages = (chunk->size() + Page::kPageSize - 1) / Page::kPageSize; |
| + if (pages > 1) { |
| + // Large pages were processed above. |
| + continue; |
| + } |
| + slots->Iterate([heap](Address addr) { |
| + Object** slot = reinterpret_cast<Object**>(addr); |
| + Object* object = *slot; |
| + if (heap->InNewSpace(object) && object->IsHeapObject()) { |
|
Michael Lippautz
2016/02/01 17:36:13
nit: As far as I see, Heap::InNewSpace(Object*) co
ulan
2016/02/02 13:27:28
Done.
|
| + // If the target object is not black, the source slot must be part |
| + // of a non-black (dead) object. |
| + HeapObject* heap_object = HeapObject::cast(object); |
| + bool live = Marking::IsBlack(Marking::MarkBitFrom(heap_object)) && |
| + heap->mark_compact_collector()->IsSlotInLiveObject(addr); |
| + return live ? SlotSet::KEEP_SLOT : SlotSet::REMOVE_SLOT; |
| + } |
| + return SlotSet::REMOVE_SLOT; |
| + }); |
| } |
| } |
| } |
| void StoreBuffer::VerifyValidStoreBufferEntries() { |
| - for (Address* current = old_start_; current < old_top_; current++) { |
| - Object** slot = reinterpret_cast<Object**>(*current); |
| + Heap* heap = heap_; |
| + Iterate([heap](Address addr) { |
| + Object** slot = reinterpret_cast<Object**>(addr); |
| Object* object = *slot; |
| - CHECK(object->IsHeapObject()); |
| - CHECK(heap_->InNewSpace(object)); |
| - heap_->mark_compact_collector()->VerifyIsSlotInLiveObject( |
| - reinterpret_cast<Address>(slot), HeapObject::cast(object)); |
| - } |
| -} |
| - |
| - |
| -class FindPointersToNewSpaceVisitor final : public ObjectVisitor { |
| - public: |
| - FindPointersToNewSpaceVisitor(StoreBuffer* store_buffer, |
| - ObjectSlotCallback callback) |
| - : store_buffer_(store_buffer), callback_(callback) {} |
| - |
| - V8_INLINE void VisitPointers(Object** start, Object** end) override { |
| - store_buffer_->FindPointersToNewSpaceInRegion( |
| - reinterpret_cast<Address>(start), reinterpret_cast<Address>(end), |
| - callback_); |
| - } |
| - |
| - V8_INLINE void VisitCodeEntry(Address code_entry_slot) override {} |
| - |
| - private: |
| - StoreBuffer* store_buffer_; |
| - ObjectSlotCallback callback_; |
| -}; |
| - |
| - |
| -void StoreBuffer::IteratePointersToNewSpace(ObjectSlotCallback slot_callback) { |
| - // We do not sort or remove duplicated entries from the store buffer because |
| - // we expect that callback will rebuild the store buffer thus removing |
| - // all duplicates and pointers to old space. |
| - bool some_pages_to_scan = PrepareForIteration(); |
| - |
| - // TODO(gc): we want to skip slots on evacuation candidates |
| - // but we can't simply figure that out from slot address |
| - // because slot can belong to a large object. |
| - IteratePointersInStoreBuffer(slot_callback); |
| - |
| - // We are done scanning all the pointers that were in the store buffer, but |
| - // there may be some pages marked scan_on_scavenge that have pointers to new |
| - // space that are not in the store buffer. We must scan them now. As we |
| - // scan, the surviving pointers to new space will be added to the store |
| - // buffer. If there are still a lot of pointers to new space then we will |
| - // keep the scan_on_scavenge flag on the page and discard the pointers that |
| - // were added to the store buffer. If there are not many pointers to new |
| - // space left on the page we will keep the pointers in the store buffer and |
| - // remove the flag from the page. |
| - if (some_pages_to_scan) { |
| - if (callback_ != NULL) { |
| - (*callback_)(heap_, NULL, kStoreBufferStartScanningPagesEvent); |
| - } |
| - PointerChunkIterator it(heap_); |
| - MemoryChunk* chunk; |
| - FindPointersToNewSpaceVisitor visitor(this, slot_callback); |
| - while ((chunk = it.next()) != NULL) { |
| - if (chunk->scan_on_scavenge()) { |
| - chunk->set_scan_on_scavenge(false); |
| - if (callback_ != NULL) { |
| - (*callback_)(heap_, chunk, kStoreBufferScanningPageEvent); |
| - } |
| - if (chunk->owner() == heap_->lo_space()) { |
| - LargePage* large_page = reinterpret_cast<LargePage*>(chunk); |
| - HeapObject* array = large_page->GetObject(); |
| - DCHECK(array->IsFixedArray()); |
| - Address start = array->address(); |
| - Address end = start + array->Size(); |
| - FindPointersToNewSpaceInRegion(start, end, slot_callback); |
| - } else { |
| - Page* page = reinterpret_cast<Page*>(chunk); |
| - PagedSpace* owner = reinterpret_cast<PagedSpace*>(page->owner()); |
| - if (owner == heap_->map_space()) { |
| - DCHECK(page->SweepingDone()); |
| - HeapObjectIterator iterator(page); |
| - for (HeapObject* heap_object = iterator.Next(); heap_object != NULL; |
| - heap_object = iterator.Next()) { |
| - // We skip free space objects. |
| - if (!heap_object->IsFiller()) { |
| - DCHECK(heap_object->IsMap()); |
| - FindPointersToNewSpaceInRegion( |
| - heap_object->address() + Map::kPointerFieldsBeginOffset, |
| - heap_object->address() + Map::kPointerFieldsEndOffset, |
| - slot_callback); |
| - } |
| - } |
| - } else { |
| - if (page->IsFlagSet(Page::COMPACTION_WAS_ABORTED)) { |
| - // Aborted pages require iterating using mark bits because they |
| - // don't have an iterable object layout before sweeping (which can |
| - // only happen later). Note that we can never reach an |
| - // aborted page through the scavenger. |
| - DCHECK_EQ(heap_->gc_state(), Heap::MARK_COMPACT); |
| - heap_->mark_compact_collector()->VisitLiveObjectsBody(page, |
| - &visitor); |
| - } else { |
| - heap_->mark_compact_collector() |
| - ->SweepOrWaitUntilSweepingCompleted(page); |
| - HeapObjectIterator iterator(page); |
| - for (HeapObject* heap_object = iterator.Next(); |
| - heap_object != nullptr; heap_object = iterator.Next()) { |
| - // We iterate over objects that contain new space pointers only. |
| - heap_object->IterateBody(&visitor); |
| - } |
| - } |
| - } |
| - } |
| - } |
| - } |
| - if (callback_ != NULL) { |
| - (*callback_)(heap_, NULL, kStoreBufferScanningPageEvent); |
| - } |
| - } |
| -} |
| - |
| - |
| -void StoreBuffer::Compact() { |
| - Address* top = reinterpret_cast<Address*>(heap_->store_buffer_top()); |
| - |
| - if (top == start_) return; |
| - |
| - // There's no check of the limit in the loop below so we check here for |
| - // the worst case (compaction doesn't eliminate any pointers). |
| - DCHECK(top <= limit_); |
| - heap_->set_store_buffer_top(reinterpret_cast<Smi*>(start_)); |
| - EnsureSpace(top - start_); |
| - DCHECK(may_move_store_buffer_entries_); |
| - // Goes through the addresses in the store buffer attempting to remove |
| - // duplicates. In the interest of speed this is a lossy operation. Some |
| - // duplicates will remain. We have two hash sets with different hash |
| - // functions to reduce the number of unnecessary clashes. |
| - hash_sets_are_empty_ = false; // Hash sets are in use. |
| - for (Address* current = start_; current < top; current++) { |
| - DCHECK(!heap_->code_space()->Contains(*current)); |
| - uintptr_t int_addr = reinterpret_cast<uintptr_t>(*current); |
| - // Shift out the last bits including any tags. |
| - int_addr >>= kPointerSizeLog2; |
| - // The upper part of an address is basically random because of ASLR and OS |
| - // non-determinism, so we use only the bits within a page for hashing to |
| - // make v8's behavior (more) deterministic. |
| - uintptr_t hash_addr = |
| - int_addr & (Page::kPageAlignmentMask >> kPointerSizeLog2); |
| - int hash1 = ((hash_addr ^ (hash_addr >> kHashSetLengthLog2)) & |
| - (kHashSetLength - 1)); |
| - if (hash_set_1_[hash1] == int_addr) continue; |
| - uintptr_t hash2 = (hash_addr - (hash_addr >> kHashSetLengthLog2)); |
| - hash2 ^= hash2 >> (kHashSetLengthLog2 * 2); |
| - hash2 &= (kHashSetLength - 1); |
| - if (hash_set_2_[hash2] == int_addr) continue; |
| - if (hash_set_1_[hash1] == 0) { |
| - hash_set_1_[hash1] = int_addr; |
| - } else if (hash_set_2_[hash2] == 0) { |
| - hash_set_2_[hash2] = int_addr; |
| - } else { |
| - // Rather than slowing down we just throw away some entries. This will |
| - // cause some duplicates to remain undetected. |
| - hash_set_1_[hash1] = int_addr; |
| - hash_set_2_[hash2] = 0; |
| - } |
| - old_buffer_is_sorted_ = false; |
| - old_buffer_is_filtered_ = false; |
| - *old_top_++ = reinterpret_cast<Address>(int_addr << kPointerSizeLog2); |
| - DCHECK(old_top_ <= old_limit_); |
| - } |
| - heap_->isolate()->counters()->store_buffer_compactions()->Increment(); |
| -} |
| - |
| - |
| -void StoreBufferRebuilder::Callback(MemoryChunk* page, StoreBufferEvent event) { |
| - if (event == kStoreBufferStartScanningPagesEvent) { |
| - start_of_current_page_ = NULL; |
| - current_page_ = NULL; |
| - } else if (event == kStoreBufferScanningPageEvent) { |
| - if (current_page_ != NULL) { |
| - // If this page already overflowed the store buffer during this iteration. |
| - if (current_page_->scan_on_scavenge()) { |
| - // Then we should wipe out the entries that have been added for it. |
| - store_buffer_->SetTop(start_of_current_page_); |
| - } else if (store_buffer_->Top() - start_of_current_page_ >= |
| - (store_buffer_->Limit() - store_buffer_->Top()) >> 2) { |
| - // Did we find too many pointers in the previous page? The heuristic is |
| - // that no page can take more then 1/5 the remaining slots in the store |
| - // buffer. |
| - current_page_->set_scan_on_scavenge(true); |
| - store_buffer_->SetTop(start_of_current_page_); |
| - } else { |
| - // In this case the page we scanned took a reasonable number of slots in |
| - // the store buffer. It has now been rehabilitated and is no longer |
| - // marked scan_on_scavenge. |
| - DCHECK(!current_page_->scan_on_scavenge()); |
| - } |
| - } |
| - start_of_current_page_ = store_buffer_->Top(); |
| - current_page_ = page; |
| - } else if (event == kStoreBufferFullEvent) { |
| - // The current page overflowed the store buffer again. Wipe out its entries |
| - // in the store buffer and mark it scan-on-scavenge again. This may happen |
| - // several times while scanning. |
| - if (current_page_ == NULL) { |
| - // Store Buffer overflowed while scanning promoted objects. These are not |
| - // in any particular page, though they are likely to be clustered by the |
| - // allocation routines. |
| - store_buffer_->EnsureSpace(StoreBuffer::kStoreBufferSize / 2); |
| - } else { |
| - // Store Buffer overflowed while scanning a particular old space page for |
| - // pointers to new space. |
| - DCHECK(current_page_ == page); |
| - DCHECK(page != NULL); |
| - current_page_->set_scan_on_scavenge(true); |
| - DCHECK(start_of_current_page_ != store_buffer_->Top()); |
| - store_buffer_->SetTop(start_of_current_page_); |
| - } |
| - } else { |
| - UNREACHABLE(); |
| - } |
| + if (Page::FromAddress(addr)->owner() != nullptr && |
| + Page::FromAddress(addr)->owner()->identity() == OLD_SPACE) { |
| + CHECK(object->IsHeapObject()); |
| + CHECK(heap->InNewSpace(object)); |
| + heap->mark_compact_collector()->VerifyIsSlotInLiveObject( |
| + reinterpret_cast<Address>(slot), HeapObject::cast(object)); |
| + } |
| + return SlotSet::KEEP_SLOT; |
| + }); |
| } |
| } // namespace internal |