OLD | NEW |
1 // Copyright 2011 the V8 project authors. All rights reserved. | 1 // Copyright 2011 the V8 project authors. All rights reserved. |
2 // Use of this source code is governed by a BSD-style license that can be | 2 // Use of this source code is governed by a BSD-style license that can be |
3 // found in the LICENSE file. | 3 // found in the LICENSE file. |
4 | 4 |
5 #ifndef V8_STORE_BUFFER_H_ | 5 #ifndef V8_STORE_BUFFER_H_ |
6 #define V8_STORE_BUFFER_H_ | 6 #define V8_STORE_BUFFER_H_ |
7 | 7 |
8 #include "src/allocation.h" | 8 #include "src/allocation.h" |
9 #include "src/base/logging.h" | 9 #include "src/base/logging.h" |
10 #include "src/base/platform/platform.h" | 10 #include "src/base/platform/platform.h" |
11 #include "src/globals.h" | 11 #include "src/globals.h" |
| 12 #include "src/heap/slot-set.h" |
12 | 13 |
13 namespace v8 { | 14 namespace v8 { |
14 namespace internal { | 15 namespace internal { |
15 | 16 |
16 class Page; | 17 class Page; |
17 class PagedSpace; | 18 class PagedSpace; |
18 class StoreBuffer; | 19 class StoreBuffer; |
19 | 20 |
20 typedef void (*ObjectSlotCallback)(HeapObject** from, HeapObject* to); | 21 typedef void (*ObjectSlotCallback)(HeapObject** from, HeapObject* to); |
21 | 22 |
22 // Used to implement the write barrier by collecting addresses of pointers | 23 // Used to implement the write barrier by collecting addresses of pointers |
23 // between spaces. | 24 // between spaces. |
24 class StoreBuffer { | 25 class StoreBuffer { |
25 public: | 26 public: |
26 explicit StoreBuffer(Heap* heap); | 27 explicit StoreBuffer(Heap* heap); |
27 | |
28 static void StoreBufferOverflow(Isolate* isolate); | 28 static void StoreBufferOverflow(Isolate* isolate); |
29 | |
30 void SetUp(); | 29 void SetUp(); |
31 void TearDown(); | 30 void TearDown(); |
32 | 31 |
| 32 static const int kStoreBufferOverflowBit = 1 << (14 + kPointerSizeLog2); |
| 33 static const int kStoreBufferSize = kStoreBufferOverflowBit; |
| 34 static const int kStoreBufferLength = kStoreBufferSize / sizeof(Address); |
| 35 |
33 // This is used to add addresses to the store buffer non-concurrently. | 36 // This is used to add addresses to the store buffer non-concurrently. |
34 inline void Mark(Address addr); | 37 inline void Mark(Address addr); |
35 | 38 |
36 // This is used by the heap traversal to enter the addresses into the store | 39 // Slots that do not point to the ToSpace after callback invocation will be |
37 // buffer that should still be in the store buffer after GC. It enters | 40 // removed from the set. |
38 // addresses directly into the old buffer because the GC starts by wiping the | |
39 // old buffer and thereafter only visits each cell once so there is no need | |
40 // to attempt to remove any dupes. During the first part of a GC we | |
41 // are using the store buffer to access the old spaces and at the same time | |
42 // we are rebuilding the store buffer using this function. There is, however | |
43 // no issue of overwriting the buffer we are iterating over, because this | |
44 // stage of the scavenge can only reduce the number of addresses in the store | |
45 // buffer (some objects are promoted so pointers to them do not need to be in | |
46 // the store buffer). The later parts of the GC scan the pages that are | |
47 // exempt from the store buffer and process the promotion queue. These steps | |
48 // can overflow this buffer. We check for this and on overflow we call the | |
49 // callback set up with the StoreBufferRebuildScope object. | |
50 inline void EnterDirectlyIntoStoreBuffer(Address addr); | |
51 | |
52 // Iterates over all pointers that go from old space to new space. It will | |
53 // delete the store buffer as it starts so the callback should reenter | |
54 // surviving old-to-new pointers into the store buffer to rebuild it. | |
55 void IteratePointersToNewSpace(ObjectSlotCallback callback); | 41 void IteratePointersToNewSpace(ObjectSlotCallback callback); |
56 | 42 |
57 static const int kStoreBufferOverflowBit = 1 << (14 + kPointerSizeLog2); | |
58 static const int kStoreBufferSize = kStoreBufferOverflowBit; | |
59 static const int kStoreBufferLength = kStoreBufferSize / sizeof(Address); | |
60 static const int kOldStoreBufferLength = kStoreBufferLength * 16; | |
61 static const int kHashSetLengthLog2 = 12; | |
62 static const int kHashSetLength = 1 << kHashSetLengthLog2; | |
63 | |
64 void Compact(); | |
65 | |
66 void GCPrologue(); | |
67 void GCEpilogue(); | |
68 | |
69 Object*** Limit() { return reinterpret_cast<Object***>(old_limit_); } | |
70 Object*** Start() { return reinterpret_cast<Object***>(old_start_); } | |
71 Object*** Top() { return reinterpret_cast<Object***>(old_top_); } | |
72 void SetTop(Object*** top) { | |
73 DCHECK(top >= Start()); | |
74 DCHECK(top <= Limit()); | |
75 old_top_ = reinterpret_cast<Address*>(top); | |
76 } | |
77 | |
78 bool old_buffer_is_sorted() { return old_buffer_is_sorted_; } | |
79 bool old_buffer_is_filtered() { return old_buffer_is_filtered_; } | |
80 | |
81 void EnsureSpace(intptr_t space_needed); | |
82 void Verify(); | 43 void Verify(); |
83 | 44 |
84 bool PrepareForIteration(); | |
85 | |
86 void Filter(int flag); | |
87 | |
88 // Eliminates all stale store buffer entries from the store buffer, i.e., | 45 // Eliminates all stale store buffer entries from the store buffer, i.e., |
89 // slots that are not part of live objects anymore. This method must be | 46 // slots that are not part of live objects anymore. This method must be |
90 // called after marking, when the whole transitive closure is known and | 47 // called after marking, when the whole transitive closure is known and |
91 // must be called before sweeping when mark bits are still intact. | 48 // must be called before sweeping when mark bits are still intact. |
92 void ClearInvalidStoreBufferEntries(); | 49 void ClearInvalidStoreBufferEntries(); |
93 void VerifyValidStoreBufferEntries(); | 50 void VerifyValidStoreBufferEntries(); |
94 | 51 |
95 private: | 52 private: |
96 Heap* heap_; | 53 Heap* heap_; |
97 | 54 |
98 // The store buffer is divided up into a new buffer that is constantly being | 55 // The start and the limit of the buffer that contains store slots |
99 // filled by mutator activity and an old buffer that is filled with the data | 56 // added from the generated code. |
100 // from the new buffer after compression. | |
101 Address* start_; | 57 Address* start_; |
102 Address* limit_; | 58 Address* limit_; |
103 | 59 |
104 Address* old_start_; | |
105 Address* old_limit_; | |
106 Address* old_top_; | |
107 Address* old_reserved_limit_; | |
108 base::VirtualMemory* old_virtual_memory_; | |
109 | |
110 bool old_buffer_is_sorted_; | |
111 bool old_buffer_is_filtered_; | |
112 bool during_gc_; | |
113 // The garbage collector iterates over many pointers to new space that are not | |
114 // handled by the store buffer. This flag indicates whether the pointers | |
115 // found by the callbacks should be added to the store buffer or not. | |
116 bool store_buffer_rebuilding_enabled_; | |
117 StoreBufferCallback callback_; | |
118 bool may_move_store_buffer_entries_; | |
119 | |
120 base::VirtualMemory* virtual_memory_; | 60 base::VirtualMemory* virtual_memory_; |
121 | 61 |
122 // Two hash sets used for filtering. | |
123 // If address is in the hash set then it is guaranteed to be in the | |
124 // old part of the store buffer. | |
125 uintptr_t* hash_set_1_; | |
126 uintptr_t* hash_set_2_; | |
127 bool hash_sets_are_empty_; | |
128 | |
129 // Used for synchronization of concurrent store buffer access. | 62 // Used for synchronization of concurrent store buffer access. |
130 base::Mutex mutex_; | 63 base::Mutex mutex_; |
131 | 64 |
132 void ClearFilteringHashSets(); | 65 void InsertEntriesFromBuffer(); |
133 | 66 |
134 bool SpaceAvailable(intptr_t space_needed); | 67 inline uint32_t AddressToSlotSetAndOffset(Address slot_address, |
135 void ExemptPopularPages(int prime_sample_step, int threshold); | 68 SlotSet** slots); |
136 | 69 |
137 void ProcessOldToNewSlot(Address slot_address, | 70 template <typename Callback> |
138 ObjectSlotCallback slot_callback); | 71 void Iterate(Callback callback); |
139 | |
140 void FindPointersToNewSpaceInRegion(Address start, Address end, | |
141 ObjectSlotCallback slot_callback); | |
142 | |
143 void IteratePointersInStoreBuffer(ObjectSlotCallback slot_callback); | |
144 | 72 |
145 #ifdef VERIFY_HEAP | 73 #ifdef VERIFY_HEAP |
146 void VerifyPointers(LargeObjectSpace* space); | 74 void VerifyPointers(LargeObjectSpace* space); |
147 #endif | 75 #endif |
148 | |
149 friend class DontMoveStoreBufferEntriesScope; | |
150 friend class FindPointersToNewSpaceVisitor; | |
151 friend class StoreBufferRebuildScope; | |
152 }; | 76 }; |
153 | 77 |
154 | 78 |
155 class StoreBufferRebuilder { | |
156 public: | |
157 explicit StoreBufferRebuilder(StoreBuffer* store_buffer) | |
158 : store_buffer_(store_buffer) {} | |
159 | |
160 void Callback(MemoryChunk* page, StoreBufferEvent event); | |
161 | |
162 private: | |
163 StoreBuffer* store_buffer_; | |
164 | |
165 // We record in this variable how full the store buffer was when we started | |
166 // iterating over the current page, finding pointers to new space. If the | |
167 // store buffer overflows again we can exempt the page from the store buffer | |
168 // by rewinding to this point instead of having to search the store buffer. | |
169 Object*** start_of_current_page_; | |
170 // The current page we are scanning in the store buffer iterator. | |
171 MemoryChunk* current_page_; | |
172 }; | |
173 | |
174 | |
175 class StoreBufferRebuildScope { | |
176 public: | |
177 explicit StoreBufferRebuildScope(Heap* heap, StoreBuffer* store_buffer, | |
178 StoreBufferCallback callback) | |
179 : store_buffer_(store_buffer), | |
180 stored_state_(store_buffer->store_buffer_rebuilding_enabled_), | |
181 stored_callback_(store_buffer->callback_) { | |
182 store_buffer_->store_buffer_rebuilding_enabled_ = true; | |
183 store_buffer_->callback_ = callback; | |
184 (*callback)(heap, NULL, kStoreBufferStartScanningPagesEvent); | |
185 } | |
186 | |
187 ~StoreBufferRebuildScope() { | |
188 store_buffer_->callback_ = stored_callback_; | |
189 store_buffer_->store_buffer_rebuilding_enabled_ = stored_state_; | |
190 } | |
191 | |
192 private: | |
193 StoreBuffer* store_buffer_; | |
194 bool stored_state_; | |
195 StoreBufferCallback stored_callback_; | |
196 }; | |
197 | |
198 | |
199 class DontMoveStoreBufferEntriesScope { | |
200 public: | |
201 explicit DontMoveStoreBufferEntriesScope(StoreBuffer* store_buffer) | |
202 : store_buffer_(store_buffer), | |
203 stored_state_(store_buffer->may_move_store_buffer_entries_) { | |
204 store_buffer_->may_move_store_buffer_entries_ = false; | |
205 } | |
206 | |
207 ~DontMoveStoreBufferEntriesScope() { | |
208 store_buffer_->may_move_store_buffer_entries_ = stored_state_; | |
209 } | |
210 | |
211 private: | |
212 StoreBuffer* store_buffer_; | |
213 bool stored_state_; | |
214 }; | |
215 | |
216 class LocalStoreBuffer BASE_EMBEDDED { | 79 class LocalStoreBuffer BASE_EMBEDDED { |
217 public: | 80 public: |
218 LocalStoreBuffer() : top_(new Node(nullptr)) {} | 81 LocalStoreBuffer() : top_(new Node(nullptr)) {} |
219 | 82 |
220 ~LocalStoreBuffer() { | 83 ~LocalStoreBuffer() { |
221 Node* current = top_; | 84 Node* current = top_; |
222 while (current != nullptr) { | 85 while (current != nullptr) { |
223 Node* tmp = current->next; | 86 Node* tmp = current->next; |
224 delete current; | 87 delete current; |
225 current = tmp; | 88 current = tmp; |
(...skipping 16 matching lines...) Expand all Loading... |
242 int count; | 105 int count; |
243 }; | 106 }; |
244 | 107 |
245 Node* top_; | 108 Node* top_; |
246 }; | 109 }; |
247 | 110 |
248 } // namespace internal | 111 } // namespace internal |
249 } // namespace v8 | 112 } // namespace v8 |
250 | 113 |
251 #endif // V8_STORE_BUFFER_H_ | 114 #endif // V8_STORE_BUFFER_H_ |
OLD | NEW |