OLD | NEW |
(Empty) | |
| 1 // Copyright (c) 2013 The Chromium Authors. All rights reserved. |
| 2 // Use of this source code is governed by a BSD-style license that can be |
| 3 // found in the LICENSE file. |
| 4 |
| 5 #include "google_apis/cup/client_update_protocol.h" |
| 6 |
| 7 #include "base/base64.h" |
| 8 #include "base/logging.h" |
| 9 #include "base/memory/scoped_ptr.h" |
| 10 #include "base/sha1.h" |
| 11 #include "base/string_util.h" |
| 12 #include "base/stringprintf.h" |
| 13 #include "crypto/hmac.h" |
| 14 #include "crypto/random.h" |
| 15 |
| 16 namespace { |
| 17 |
| 18 base::StringPiece ByteVectorToSP(const std::vector<uint8>& vec) { |
| 19 return base::StringPiece(reinterpret_cast<const char*>(&vec[0]), vec.size()); |
| 20 } |
| 21 |
| 22 // This class needs to implement the same hashing and signing functions as the |
| 23 // Google Update server; for now, this is SHA-1 and HMAC-SHA1, but this may |
| 24 // change to SHA-256 in the near future. For this reason, all primitives are |
| 25 // wrapped. The name "SymSign" is used to mirror the CUP specification. |
| 26 size_t HashDigestSize() { |
| 27 return base::kSHA1Length; |
| 28 } |
| 29 |
| 30 std::vector<uint8> Hash(const std::vector<uint8>& data) { |
| 31 std::vector<uint8> result(HashDigestSize()); |
| 32 base::SHA1HashBytes(data.empty() ? NULL : &data[0], |
| 33 data.size(), |
| 34 &result[0]); |
| 35 return result; |
| 36 } |
| 37 |
| 38 std::vector<uint8> Hash(const base::StringPiece& sdata) { |
| 39 std::vector<uint8> result(HashDigestSize()); |
| 40 base::SHA1HashBytes(sdata.empty() ? |
| 41 NULL : |
| 42 reinterpret_cast<const unsigned char*>(sdata.data()), |
| 43 sdata.length(), |
| 44 &result[0]); |
| 45 return result; |
| 46 } |
| 47 |
| 48 std::vector<uint8> SymConcat(uint8 id, |
| 49 const std::vector<uint8>* h1, |
| 50 const std::vector<uint8>* h2, |
| 51 const std::vector<uint8>* h3) { |
| 52 std::vector<uint8> result; |
| 53 result.push_back(id); |
| 54 const std::vector<uint8>* args[] = { h1, h2, h3 }; |
| 55 for (size_t i = 0; i != arraysize(args); ++i) { |
| 56 if (args[i]) { |
| 57 DCHECK_EQ(args[i]->size(), HashDigestSize()); |
| 58 result.insert(result.end(), args[i]->begin(), args[i]->end()); |
| 59 } |
| 60 } |
| 61 |
| 62 return result; |
| 63 } |
| 64 |
| 65 std::vector<uint8> SymSign(const std::vector<uint8>& key, |
| 66 const std::vector<uint8>& hashes) { |
| 67 crypto::HMAC hmac(crypto::HMAC::SHA1); |
| 68 if (!hmac.Init(&key[0], key.size())) |
| 69 return std::vector<uint8>(); |
| 70 |
| 71 std::vector<uint8> result(hmac.DigestLength()); |
| 72 if (!hmac.Sign(ByteVectorToSP(hashes), &result[0], result.size())) |
| 73 return std::vector<uint8>(); |
| 74 |
| 75 return result; |
| 76 } |
| 77 |
| 78 bool SymSignVerify(const std::vector<uint8>& key, |
| 79 const std::vector<uint8>& hashes, |
| 80 const std::vector<uint8>& server_proof) { |
| 81 crypto::HMAC hmac(crypto::HMAC::SHA1); |
| 82 if (!hmac.Init(&key[0], key.size())) |
| 83 return false; |
| 84 |
| 85 return hmac.Verify(ByteVectorToSP(hashes), ByteVectorToSP(server_proof)); |
| 86 } |
| 87 |
| 88 // RsaPad() is implemented as described in the CUP spec. It is NOT a general |
| 89 // purpose padding algorithm. |
| 90 std::vector<uint8> RsaPad(size_t rsa_key_size, |
| 91 const std::vector<uint8>& entropy) { |
| 92 DCHECK_GE(rsa_key_size, HashDigestSize()); |
| 93 |
| 94 // The result gets padded with zeros if the result size is greater than |
| 95 // the size of the buffer provided by the caller. |
| 96 std::vector<uint8> result(entropy); |
| 97 result.resize(rsa_key_size - HashDigestSize()); |
| 98 |
| 99 // For use with RSA, the input needs to be smaller than the RSA modulus, |
| 100 // which has always the msb set. |
| 101 result[0] &= 127; // Reset msb |
| 102 result[0] |= 64; // Set second highest bit. |
| 103 |
| 104 std::vector<uint8> digest = Hash(result); |
| 105 result.insert(result.end(), digest.begin(), digest.end()); |
| 106 DCHECK_EQ(result.size(), rsa_key_size); |
| 107 return result; |
| 108 } |
| 109 |
| 110 // CUP passes the versioned secret in the query portion of the URL for the |
| 111 // update check service -- that means we need URL-safe variants of Base64. |
| 112 // Omaha has its own implementation in base/security/b64.c; for Chromium, |
| 113 // call the standard Base64 encoder/decoder and then apply fixups. |
| 114 std::string UrlSafeB64Encode(const std::vector<uint8>& data) { |
| 115 std::string result; |
| 116 if (!base::Base64Encode(ByteVectorToSP(data), &result)) { |
| 117 return std::string(); |
| 118 } |
| 119 |
| 120 // Do an tr|+/|-_| on the output, and strip any '=' padding. |
| 121 for (std::string::iterator it = result.begin(); it != result.end(); ++it) { |
| 122 switch (*it) { |
| 123 case '+': |
| 124 *it = '-'; |
| 125 break; |
| 126 case '/': |
| 127 *it = '_'; |
| 128 break; |
| 129 default: |
| 130 break; |
| 131 } |
| 132 } |
| 133 TrimString(result, "=", &result); |
| 134 |
| 135 return result; |
| 136 } |
| 137 |
| 138 std::vector<uint8> UrlSafeB64Decode(const base::StringPiece& input) { |
| 139 std::string unsafe(input.begin(), input.end()); |
| 140 for (std::string::iterator it = unsafe.begin(); it != unsafe.end(); ++it) { |
| 141 switch (*it) { |
| 142 case '-': |
| 143 *it = '+'; |
| 144 break; |
| 145 case '_': |
| 146 *it = '/'; |
| 147 break; |
| 148 default: |
| 149 break; |
| 150 } |
| 151 } |
| 152 while (unsafe.length() % 4 != 0) { |
| 153 unsafe.append("="); |
| 154 } |
| 155 |
| 156 std::string decoded; |
| 157 if (!base::Base64Decode(unsafe, &decoded)) { |
| 158 return std::vector<uint8>(); |
| 159 } |
| 160 |
| 161 return std::vector<uint8>(decoded.begin(), decoded.end()); |
| 162 } |
| 163 |
| 164 } // end namespace |
| 165 |
| 166 ClientUpdateProtocol::ClientUpdateProtocol(int key_version) |
| 167 : pub_key_version_(key_version) { |
| 168 } |
| 169 |
| 170 ClientUpdateProtocol::~ClientUpdateProtocol() { |
| 171 } |
| 172 |
| 173 ClientUpdateProtocol* ClientUpdateProtocol::Create( |
| 174 int key_version, |
| 175 const base::StringPiece& public_key) { |
| 176 DCHECK_GT(key_version, 0); |
| 177 DCHECK(!public_key.empty()); |
| 178 if (key_version <= 0 || public_key.empty()) |
| 179 return NULL; // At least one mandatory parameter is not valid. |
| 180 |
| 181 scoped_ptr<ClientUpdateProtocol> result( |
| 182 new ClientUpdateProtocol(key_version)); |
| 183 if (!result.get()) |
| 184 return NULL; |
| 185 |
| 186 result->public_key_impl_.reset(GetCupKeyImpl(public_key)); |
| 187 if (!result->public_key_impl_.get()) |
| 188 return NULL; // Public key couldn't be loaded. |
| 189 |
| 190 size_t key_size = result->public_key_impl_->PublicKeyLength(); |
| 191 if (key_size < HashDigestSize()) |
| 192 return NULL; // Public key is too small to be used. |
| 193 |
| 194 if (!result->BuildSharedKey(key_size, NULL)) |
| 195 return NULL; // Failed to generate w. |
| 196 |
| 197 return result.release(); |
| 198 } |
| 199 |
| 200 std::string ClientUpdateProtocol::GetVersionedSecret() const { |
| 201 return base::StringPrintf("%d:%s", |
| 202 pub_key_version_, |
| 203 UrlSafeB64Encode(encrypted_key_source_).c_str()); |
| 204 } |
| 205 |
| 206 bool ClientUpdateProtocol::SignRequest(const base::StringPiece& url, |
| 207 const base::StringPiece& request_body, |
| 208 std::string* client_proof) { |
| 209 if (encrypted_key_source_.empty()) |
| 210 return false; // Init() hasn't been called, and/or BuildSharedKey failed. |
| 211 |
| 212 // Compute the challenge hash: |
| 213 // hw = HASH(HASH(v|w)|HASH(request_url)|HASH(body)). |
| 214 // Keep the challenge hash for later to validate the server's response. |
| 215 std::vector<uint8> internal_hashes; |
| 216 |
| 217 std::vector<uint8> h; |
| 218 h = Hash(GetVersionedSecret()); |
| 219 internal_hashes.insert(internal_hashes.end(), h.begin(), h.end()); |
| 220 h = Hash(url); |
| 221 internal_hashes.insert(internal_hashes.end(), h.begin(), h.end()); |
| 222 h = Hash(request_body); |
| 223 internal_hashes.insert(internal_hashes.end(), h.begin(), h.end()); |
| 224 DCHECK_EQ(internal_hashes.size(), 3 * HashDigestSize()); |
| 225 |
| 226 client_challenge_hash_ = Hash(internal_hashes); |
| 227 |
| 228 // Sign the challenge hash (hw) using the shared key (sk) to produce the |
| 229 // client proof (cp). |
| 230 std::vector<uint8> raw_client_proof = |
| 231 SymSign(shared_key_, SymConcat(3, &client_challenge_hash_, NULL, NULL)); |
| 232 if (raw_client_proof.empty()) { |
| 233 client_challenge_hash_.clear(); |
| 234 return false; |
| 235 } |
| 236 |
| 237 if (client_proof) |
| 238 *client_proof = UrlSafeB64Encode(raw_client_proof); |
| 239 |
| 240 return true; |
| 241 } |
| 242 |
| 243 bool ClientUpdateProtocol::ValidateResponse( |
| 244 const base::StringPiece& response_body, |
| 245 const base::StringPiece& server_cookie, |
| 246 const base::StringPiece& server_proof) { |
| 247 if (client_challenge_hash_.empty()) |
| 248 return false; // There hasn't been a call to SignRequest() yet. |
| 249 |
| 250 // Decode the server proof from URL-safe Base64 to a binary HMAC for the |
| 251 // response. |
| 252 std::vector<uint8> sp_decoded = UrlSafeB64Decode(server_proof); |
| 253 if (sp_decoded.empty()) |
| 254 return false; |
| 255 |
| 256 // If the request was received by the server, the server will use its |
| 257 // private key to decrypt |w_|, yielding the original contents of |r_|. |
| 258 // The server can then recreate |sk_|, compute |hw_|, and SymSign(3|hw) |
| 259 // to ensure that the cp matches the contents. It will then use |sk_| |
| 260 // to sign its response, producing the server proof |sp|. |
| 261 std::vector<uint8> hm = Hash(response_body); |
| 262 std::vector<uint8> hc = Hash(server_cookie); |
| 263 return SymSignVerify(shared_key_, |
| 264 SymConcat(1, &client_challenge_hash_, &hm, &hc), |
| 265 sp_decoded); |
| 266 } |
| 267 |
| 268 bool ClientUpdateProtocol::BuildSharedKey(size_t public_key_length, |
| 269 const uint8* opt_key_source) { |
| 270 // Start by generating some random bytes that are suitable to be encrypted; |
| 271 // this will be the source of the shared HMAC key that client and server use. |
| 272 // (CUP specification calls this "r".) |
| 273 |
| 274 DCHECK_GE(public_key_length, HashDigestSize()); |
| 275 if (public_key_length < HashDigestSize()) |
| 276 return false; |
| 277 |
| 278 std::vector<uint8> key_source; |
| 279 if (opt_key_source) { |
| 280 key_source.assign(opt_key_source, opt_key_source + public_key_length); |
| 281 } else { |
| 282 std::vector<uint8> entropy(public_key_length - HashDigestSize()); |
| 283 crypto::RandBytes(&entropy[0], entropy.size()); |
| 284 |
| 285 key_source = RsaPad(public_key_length, entropy); |
| 286 } |
| 287 DCHECK_EQ(public_key_length, key_source.size()); |
| 288 |
| 289 // Hash the key source (r) to generate a new shared HMAC key (sk'). |
| 290 shared_key_ = Hash(key_source); |
| 291 |
| 292 // Encrypt the key source (r) using the public key (pk[v]) to generate the |
| 293 // encrypted key source (w). |
| 294 encrypted_key_source_ = public_key_impl_->EncryptKeySource(key_source); |
| 295 if (encrypted_key_source_.size() != public_key_length) |
| 296 return false; |
| 297 |
| 298 return true; |
| 299 } |
| 300 |
OLD | NEW |