OLD | NEW |
---|---|
1 //===- subzero/src/IceUtils.h - Utility functions ---------------*- C++ -*-===// | 1 //===- subzero/src/IceUtils.h - Utility functions ---------------*- C++ -*-===// |
2 // | 2 // |
3 // The Subzero Code Generator | 3 // The Subzero Code Generator |
4 // | 4 // |
5 // This file is distributed under the University of Illinois Open Source | 5 // This file is distributed under the University of Illinois Open Source |
6 // License. See LICENSE.TXT for details. | 6 // License. See LICENSE.TXT for details. |
7 // | 7 // |
8 //===----------------------------------------------------------------------===// | 8 //===----------------------------------------------------------------------===// |
9 /// | 9 /// |
10 /// \file | 10 /// \file |
11 /// \brief Defines some utility functions. | 11 /// \brief Defines some utility functions. |
12 /// | 12 /// |
13 //===----------------------------------------------------------------------===// | 13 //===----------------------------------------------------------------------===// |
14 | 14 |
15 #ifndef SUBZERO_SRC_ICEUTILS_H | 15 #ifndef SUBZERO_SRC_ICEUTILS_H |
16 #define SUBZERO_SRC_ICEUTILS_H | 16 #define SUBZERO_SRC_ICEUTILS_H |
17 | 17 |
18 #include <climits> | 18 #include <climits> |
19 #include <cmath> // std::signbit() | 19 #include <cmath> // std::signbit() |
20 | 20 |
21 namespace Ice { | 21 namespace Ice { |
22 namespace Utils { | |
22 | 23 |
23 /// Similar to bit_cast, but allows copying from types of unrelated sizes. This | 24 /// Allows copying from types of unrelated sizes. This method was introduced to |
24 /// method was introduced to enable the strict aliasing optimizations of GCC | 25 /// enable the strict aliasing optimizations of GCC 4.4. Basically, GCC |
25 /// 4.4. Basically, GCC mindlessly relies on obscure details in the C++ standard | 26 /// mindlessly relies on obscure details in the C++ standard that make |
26 /// that make reinterpret_cast virtually useless. | 27 /// reinterpret_cast virtually useless. |
27 template <class D, class S> inline D bit_copy(const S &source) { | 28 template <typename D, typename S> inline D bitCopy(const S &Source) { |
28 D destination; | 29 static_assert(sizeof(D) <= sizeof(S), |
30 "bitCopy between incompatible type widths"); | |
31 static_assert(!std::is_pointer<S>::value, ""); | |
32 D Destination; | |
29 // This use of memcpy is safe: source and destination cannot overlap. | 33 // This use of memcpy is safe: source and destination cannot overlap. |
30 memcpy(&destination, reinterpret_cast<const void *>(&source), | 34 memcpy(&Destination, reinterpret_cast<const void *>(&Source), sizeof(D)); |
31 sizeof(destination)); | 35 return Destination; |
32 return destination; | |
33 } | 36 } |
34 | 37 |
35 class Utils { | 38 /// Check whether an N-bit two's-complement representation can hold value. |
Jim Stichnoth
2016/01/13 19:30:33
Changes here and below are only indentation change
| |
36 Utils() = delete; | 39 template <typename T> static inline bool IsInt(int N, T value) { |
37 Utils(const Utils &) = delete; | 40 assert((0 < N) && |
38 Utils &operator=(const Utils &) = delete; | 41 (static_cast<unsigned int>(N) < (CHAR_BIT * sizeof(value)))); |
42 T limit = static_cast<T>(1) << (N - 1); | |
43 return (-limit <= value) && (value < limit); | |
44 } | |
39 | 45 |
40 public: | 46 template <typename T> static inline bool IsUint(int N, T value) { |
41 /// Check whether an N-bit two's-complement representation can hold value. | 47 assert((0 < N) && |
42 template <typename T> static inline bool IsInt(int N, T value) { | 48 (static_cast<unsigned int>(N) < (CHAR_BIT * sizeof(value)))); |
43 assert((0 < N) && | 49 T limit = static_cast<T>(1) << N; |
44 (static_cast<unsigned int>(N) < (CHAR_BIT * sizeof(value)))); | 50 return (0 <= value) && (value < limit); |
45 T limit = static_cast<T>(1) << (N - 1); | 51 } |
46 return (-limit <= value) && (value < limit); | |
47 } | |
48 | 52 |
49 template <typename T> static inline bool IsUint(int N, T value) { | 53 /// Check whether the magnitude of value fits in N bits, i.e., whether an |
50 assert((0 < N) && | 54 /// (N+1)-bit sign-magnitude representation can hold value. |
51 (static_cast<unsigned int>(N) < (CHAR_BIT * sizeof(value)))); | 55 template <typename T> static inline bool IsAbsoluteUint(int N, T Value) { |
52 T limit = static_cast<T>(1) << N; | 56 assert((0 < N) && |
53 return (0 <= value) && (value < limit); | 57 (static_cast<unsigned int>(N) < (CHAR_BIT * sizeof(Value)))); |
54 } | 58 if (Value < 0) |
59 Value = -Value; | |
60 return IsUint(N, Value); | |
61 } | |
55 | 62 |
56 /// Check whether the magnitude of value fits in N bits, i.e., whether an | 63 /// Return true if the addition X + Y will cause integer overflow for integers |
57 /// (N+1)-bit sign-magnitude representation can hold value. | 64 /// of type T. |
58 template <typename T> static inline bool IsAbsoluteUint(int N, T Value) { | 65 template <typename T> static inline bool WouldOverflowAdd(T X, T Y) { |
59 assert((0 < N) && | 66 return ((X > 0 && Y > 0 && (X > std::numeric_limits<T>::max() - Y)) || |
60 (static_cast<unsigned int>(N) < (CHAR_BIT * sizeof(Value)))); | 67 (X < 0 && Y < 0 && (X < std::numeric_limits<T>::min() - Y))); |
61 if (Value < 0) | 68 } |
62 Value = -Value; | |
63 return IsUint(N, Value); | |
64 } | |
65 | 69 |
66 /// Return true if the addition X + Y will cause integer overflow for integers | 70 /// Adds x to y and stores the result in sum. Returns true if the addition |
67 /// of type T. | 71 /// overflowed. |
68 template <typename T> static inline bool WouldOverflowAdd(T X, T Y) { | 72 static inline bool add_overflow(uint32_t x, uint32_t y, uint32_t *sum) { |
69 return ((X > 0 && Y > 0 && (X > std::numeric_limits<T>::max() - Y)) || | 73 static_assert(std::is_same<uint32_t, unsigned>::value, "Must match type"); |
70 (X < 0 && Y < 0 && (X < std::numeric_limits<T>::min() - Y))); | 74 #if __has_builtin(__builtin_uadd_overflow) |
71 } | 75 return __builtin_uadd_overflow(x, y, sum); |
76 #else | |
77 *sum = x + y; | |
78 return WouldOverflowAdd(x, y); | |
79 #endif | |
80 } | |
72 | 81 |
73 /// Adds x to y and stores the result in sum. Returns true if the addition | 82 /// Return true if X is already aligned by N, where N is a power of 2. |
74 /// overflowed. | 83 template <typename T> static inline bool IsAligned(T X, intptr_t N) { |
75 static inline bool add_overflow(uint32_t x, uint32_t y, uint32_t *sum) { | 84 assert(llvm::isPowerOf2_64(N)); |
76 static_assert(std::is_same<uint32_t, unsigned>::value, "Must match type"); | 85 return (X & (N - 1)) == 0; |
77 #if __has_builtin(__builtin_uadd_overflow) | 86 } |
78 return __builtin_uadd_overflow(x, y, sum); | |
79 #else | |
80 *sum = x + y; | |
81 return WouldOverflowAdd(x, y); | |
82 #endif | |
83 } | |
84 | 87 |
85 /// Return true if X is already aligned by N, where N is a power of 2. | 88 /// Return Value adjusted to the next highest multiple of Alignment. |
86 template <typename T> static inline bool IsAligned(T X, intptr_t N) { | 89 static inline uint32_t applyAlignment(uint32_t Value, uint32_t Alignment) { |
87 assert(llvm::isPowerOf2_64(N)); | 90 assert(llvm::isPowerOf2_32(Alignment)); |
88 return (X & (N - 1)) == 0; | 91 return (Value + Alignment - 1) & -Alignment; |
89 } | 92 } |
90 | 93 |
91 /// Return Value adjusted to the next highest multiple of Alignment. | 94 /// Return amount which must be added to adjust Pos to the next highest |
92 static inline uint32_t applyAlignment(uint32_t Value, uint32_t Alignment) { | 95 /// multiple of Align. |
93 assert(llvm::isPowerOf2_32(Alignment)); | 96 static inline uint64_t OffsetToAlignment(uint64_t Pos, uint64_t Align) { |
94 return (Value + Alignment - 1) & -Alignment; | 97 assert(llvm::isPowerOf2_64(Align)); |
95 } | 98 uint64_t Mod = Pos & (Align - 1); |
99 if (Mod == 0) | |
100 return 0; | |
101 return Align - Mod; | |
102 } | |
96 | 103 |
97 /// Return amount which must be added to adjust Pos to the next highest | 104 /// Rotate the value bit pattern to the left by shift bits. |
98 /// multiple of Align. | 105 /// Precondition: 0 <= shift < 32 |
99 static inline uint64_t OffsetToAlignment(uint64_t Pos, uint64_t Align) { | 106 static inline uint32_t rotateLeft32(uint32_t value, uint32_t shift) { |
100 assert(llvm::isPowerOf2_64(Align)); | 107 if (shift == 0) |
101 uint64_t Mod = Pos & (Align - 1); | 108 return value; |
102 if (Mod == 0) | 109 return (value << shift) | (value >> (32 - shift)); |
103 return 0; | 110 } |
104 return Align - Mod; | |
105 } | |
106 | 111 |
107 /// Rotate the value bit pattern to the left by shift bits. | 112 /// Rotate the value bit pattern to the right by shift bits. |
108 /// Precondition: 0 <= shift < 32 | 113 static inline uint32_t rotateRight32(uint32_t value, uint32_t shift) { |
109 static inline uint32_t rotateLeft32(uint32_t value, uint32_t shift) { | 114 if (shift == 0) |
110 if (shift == 0) | 115 return value; |
111 return value; | 116 return (value >> shift) | (value << (32 - shift)); |
112 return (value << shift) | (value >> (32 - shift)); | 117 } |
113 } | |
114 | 118 |
115 /// Rotate the value bit pattern to the right by shift bits. | 119 /// Returns true if Val is +0.0. It requires T to be a floating point type. |
116 static inline uint32_t rotateRight32(uint32_t value, uint32_t shift) { | 120 template <typename T> static bool isPositiveZero(T Val) { |
117 if (shift == 0) | 121 static_assert(std::is_floating_point<T>::value, |
118 return value; | 122 "Input type must be floating point"); |
119 return (value >> shift) | (value << (32 - shift)); | 123 return Val == 0 && !std::signbit(Val); |
120 } | 124 } |
121 | 125 |
122 /// Returns true if Val is +0.0. It requires T to be a floating point type. | 126 } // end of namespace Utils |
123 template <typename T> static bool isPositiveZero(T Val) { | |
124 static_assert(std::is_floating_point<T>::value, | |
125 "Input type must be floating point"); | |
126 return Val == 0 && !std::signbit(Val); | |
127 } | |
128 }; | |
129 | |
130 } // end of namespace Ice | 127 } // end of namespace Ice |
131 | 128 |
132 #endif // SUBZERO_SRC_ICEUTILS_H | 129 #endif // SUBZERO_SRC_ICEUTILS_H |
OLD | NEW |