Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(432)

Side by Side Diff: src/mips/assembler-mips.cc

Issue 1573983002: MIPS: Replace JR/JALR with JIC/JIALC for r6 (Closed) Base URL: https://chromium.googlesource.com/v8/v8.git@master
Patch Set: Created 4 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « src/mips/assembler-mips.h ('k') | src/mips/assembler-mips-inl.h » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
1 // Copyright (c) 1994-2006 Sun Microsystems Inc. 1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved. 2 // All Rights Reserved.
3 // 3 //
4 // Redistribution and use in source and binary forms, with or without 4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are 5 // modification, are permitted provided that the following conditions are
6 // met: 6 // met:
7 // 7 //
8 // - Redistributions of source code must retain the above copyright notice, 8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer. 9 // this list of conditions and the following disclaimer.
10 // 10 //
(...skipping 516 matching lines...) Expand 10 before | Expand all | Expand 10 after
527 } 527 }
528 528
529 529
530 bool Assembler::IsBnec(Instr instr) { 530 bool Assembler::IsBnec(Instr instr) {
531 uint32_t opcode = GetOpcodeField(instr); 531 uint32_t opcode = GetOpcodeField(instr);
532 uint32_t rs = GetRsField(instr); 532 uint32_t rs = GetRsField(instr);
533 uint32_t rt = GetRtField(instr); 533 uint32_t rt = GetRtField(instr);
534 return opcode == POP30 && rs != 0 && rs < rt; // && rt != 0 534 return opcode == POP30 && rs != 0 && rs < rt; // && rt != 0
535 } 535 }
536 536
537 bool Assembler::IsJicOrJialc(Instr instr) {
538 uint32_t opcode = GetOpcodeField(instr);
539 uint32_t rs = GetRsField(instr);
540 return (opcode == POP66 || opcode == POP76) && rs == 0;
541 }
537 542
538 bool Assembler::IsJump(Instr instr) { 543 bool Assembler::IsJump(Instr instr) {
539 uint32_t opcode = GetOpcodeField(instr); 544 uint32_t opcode = GetOpcodeField(instr);
540 uint32_t rt_field = GetRtField(instr); 545 uint32_t rt_field = GetRtField(instr);
541 uint32_t rd_field = GetRdField(instr); 546 uint32_t rd_field = GetRdField(instr);
542 uint32_t function_field = GetFunctionField(instr); 547 uint32_t function_field = GetFunctionField(instr);
543 // Checks if the instruction is a jump. 548 // Checks if the instruction is a jump.
544 return opcode == J || opcode == JAL || 549 return opcode == J || opcode == JAL ||
545 (opcode == SPECIAL && rt_field == 0 && 550 (opcode == SPECIAL && rt_field == 0 &&
546 ((function_field == JALR) || (rd_field == 0 && (function_field == JR)))); 551 ((function_field == JALR) || (rd_field == 0 && (function_field == JR))));
547 } 552 }
548 553
549
550 bool Assembler::IsJ(Instr instr) { 554 bool Assembler::IsJ(Instr instr) {
551 uint32_t opcode = GetOpcodeField(instr); 555 uint32_t opcode = GetOpcodeField(instr);
552 // Checks if the instruction is a jump. 556 // Checks if the instruction is a jump.
553 return opcode == J; 557 return opcode == J;
554 } 558 }
555 559
556 560
557 bool Assembler::IsJal(Instr instr) { 561 bool Assembler::IsJal(Instr instr) {
558 return GetOpcodeField(instr) == JAL; 562 return GetOpcodeField(instr) == JAL;
559 } 563 }
(...skipping 130 matching lines...) Expand 10 before | Expand all | Expand 10 after
690 int32_t imm = ((instr & mask) << bits) >> (bits - 2); 694 int32_t imm = ((instr & mask) << bits) >> (bits - 2);
691 695
692 if (imm == kEndOfChain) { 696 if (imm == kEndOfChain) {
693 // EndOfChain sentinel is returned directly, not relative to pc or pos. 697 // EndOfChain sentinel is returned directly, not relative to pc or pos.
694 return kEndOfChain; 698 return kEndOfChain;
695 } else { 699 } else {
696 return pos + Assembler::kBranchPCOffset + imm; 700 return pos + Assembler::kBranchPCOffset + imm;
697 } 701 }
698 } 702 }
699 703
704 uint32_t Assembler::CreateTargetAddress(Instr instr_lui, Instr instr_jic) {
705 DCHECK(IsLui(instr_lui) && IsJicOrJialc(instr_jic));
706 int16_t jic_offset = GetImmediate16(instr_jic);
707 int16_t lui_offset = GetImmediate16(instr_lui);
708
709 if (jic_offset < 0) {
710 lui_offset += kImm16Mask;
711 }
712 uint32_t lui_offset_u = (static_cast<uint32_t>(lui_offset)) << kLuiShift;
713 uint32_t jic_offset_u = static_cast<uint32_t>(jic_offset) & kImm16Mask;
714
715 return lui_offset_u | jic_offset_u;
716 }
717
718 // Use just lui and jic instructions. Insert lower part of the target address in
719 // jic offset part. Since jic sign-extends offset and then add it with register,
720 // before that addition, difference between upper part of the target address and
721 // upper part of the sign-extended offset (0xffff or 0x0000), will be inserted
722 // in jic register with lui instruction.
723 void Assembler::UnpackTargetAddress(uint32_t address, int16_t& lui_offset,
724 int16_t& jic_offset) {
725 lui_offset = (address & kHiMask) >> kLuiShift;
726 jic_offset = address & kLoMask;
727
728 if (jic_offset < 0) {
729 lui_offset -= kImm16Mask;
730 }
731 }
732
733 void Assembler::UnpackTargetAddressUnsigned(uint32_t address,
734 uint32_t& lui_offset,
735 uint32_t& jic_offset) {
736 int16_t lui_offset16 = (address & kHiMask) >> kLuiShift;
737 int16_t jic_offset16 = address & kLoMask;
738
739 if (jic_offset16 < 0) {
740 lui_offset16 -= kImm16Mask;
741 }
742 lui_offset = static_cast<uint32_t>(lui_offset16) & kImm16Mask;
743 jic_offset = static_cast<uint32_t>(jic_offset16) & kImm16Mask;
744 }
700 745
701 int Assembler::target_at(int pos, bool is_internal) { 746 int Assembler::target_at(int pos, bool is_internal) {
702 Instr instr = instr_at(pos); 747 Instr instr = instr_at(pos);
703 if (is_internal) { 748 if (is_internal) {
704 if (instr == 0) { 749 if (instr == 0) {
705 return kEndOfChain; 750 return kEndOfChain;
706 } else { 751 } else {
707 int32_t instr_address = reinterpret_cast<int32_t>(buffer_ + pos); 752 int32_t instr_address = reinterpret_cast<int32_t>(buffer_ + pos);
708 int delta = static_cast<int>(instr_address - instr); 753 int delta = static_cast<int>(instr_address - instr);
709 DCHECK(pos > delta); 754 DCHECK(pos > delta);
710 return pos - delta; 755 return pos - delta;
711 } 756 }
712 } 757 }
713 if ((instr & ~kImm16Mask) == 0) { 758 if ((instr & ~kImm16Mask) == 0) {
714 // Emitted label constant, not part of a branch. 759 // Emitted label constant, not part of a branch.
715 if (instr == 0) { 760 if (instr == 0) {
716 return kEndOfChain; 761 return kEndOfChain;
717 } else { 762 } else {
718 int32_t imm18 =((instr & static_cast<int32_t>(kImm16Mask)) << 16) >> 14; 763 int32_t imm18 =((instr & static_cast<int32_t>(kImm16Mask)) << 16) >> 14;
719 return (imm18 + pos); 764 return (imm18 + pos);
720 } 765 }
721 } 766 }
722 // Check we have a branch or jump instruction. 767 // Check we have a branch or jump instruction.
723 DCHECK(IsBranch(instr) || IsLui(instr)); 768 DCHECK(IsBranch(instr) || IsLui(instr));
724 if (IsBranch(instr)) { 769 if (IsBranch(instr)) {
725 return AddBranchOffset(pos, instr); 770 return AddBranchOffset(pos, instr);
726 } else { 771 } else {
727 Instr instr_lui = instr_at(pos + 0 * Assembler::kInstrSize); 772 Instr instr1 = instr_at(pos + 0 * Assembler::kInstrSize);
728 Instr instr_ori = instr_at(pos + 1 * Assembler::kInstrSize); 773 Instr instr2 = instr_at(pos + 1 * Assembler::kInstrSize);
729 DCHECK(IsOri(instr_ori)); 774 DCHECK(IsOri(instr2) || IsJicOrJialc(instr2));
730 int32_t imm = (instr_lui & static_cast<int32_t>(kImm16Mask)) << kLuiShift; 775 int32_t imm;
731 imm |= (instr_ori & static_cast<int32_t>(kImm16Mask)); 776 if (IsJicOrJialc(instr2)) {
777 imm = CreateTargetAddress(instr1, instr2);
778 } else {
779 imm = (instr1 & static_cast<int32_t>(kImm16Mask)) << kLuiShift;
780 imm |= (instr2 & static_cast<int32_t>(kImm16Mask));
781 }
732 782
733 if (imm == kEndOfJumpChain) { 783 if (imm == kEndOfJumpChain) {
734 // EndOfChain sentinel is returned directly, not relative to pc or pos. 784 // EndOfChain sentinel is returned directly, not relative to pc or pos.
735 return kEndOfChain; 785 return kEndOfChain;
736 } else { 786 } else {
737 uint32_t instr_address = reinterpret_cast<int32_t>(buffer_ + pos); 787 uint32_t instr_address = reinterpret_cast<int32_t>(buffer_ + pos);
738 int32_t delta = instr_address - imm; 788 int32_t delta = instr_address - imm;
739 DCHECK(pos > delta); 789 DCHECK(pos > delta);
740 return pos - delta; 790 return pos - delta;
741 } 791 }
(...skipping 32 matching lines...) Expand 10 before | Expand all | Expand 10 after
774 // Make label relative to Code* of generated Code object. 824 // Make label relative to Code* of generated Code object.
775 instr_at_put(pos, target_pos + (Code::kHeaderSize - kHeapObjectTag)); 825 instr_at_put(pos, target_pos + (Code::kHeaderSize - kHeapObjectTag));
776 return; 826 return;
777 } 827 }
778 828
779 DCHECK(IsBranch(instr) || IsLui(instr)); 829 DCHECK(IsBranch(instr) || IsLui(instr));
780 if (IsBranch(instr)) { 830 if (IsBranch(instr)) {
781 instr = SetBranchOffset(pos, target_pos, instr); 831 instr = SetBranchOffset(pos, target_pos, instr);
782 instr_at_put(pos, instr); 832 instr_at_put(pos, instr);
783 } else { 833 } else {
784 Instr instr_lui = instr_at(pos + 0 * Assembler::kInstrSize); 834 Instr instr1 = instr_at(pos + 0 * Assembler::kInstrSize);
785 Instr instr_ori = instr_at(pos + 1 * Assembler::kInstrSize); 835 Instr instr2 = instr_at(pos + 1 * Assembler::kInstrSize);
786 DCHECK(IsOri(instr_ori)); 836 DCHECK(IsOri(instr2) || IsJicOrJialc(instr2));
787 uint32_t imm = reinterpret_cast<uint32_t>(buffer_) + target_pos; 837 uint32_t imm = reinterpret_cast<uint32_t>(buffer_) + target_pos;
788 DCHECK((imm & 3) == 0); 838 DCHECK((imm & 3) == 0);
839 DCHECK(IsLui(instr1) && (IsJicOrJialc(instr2) || IsOri(instr2)));
840 instr1 &= ~kImm16Mask;
841 instr2 &= ~kImm16Mask;
789 842
790 instr_lui &= ~kImm16Mask; 843 if (IsJicOrJialc(instr2)) {
791 instr_ori &= ~kImm16Mask; 844 uint32_t lui_offset_u, jic_offset_u;
792 845 UnpackTargetAddressUnsigned(imm, lui_offset_u, jic_offset_u);
793 instr_at_put(pos + 0 * Assembler::kInstrSize, 846 instr_at_put(pos + 0 * Assembler::kInstrSize, instr1 | lui_offset_u);
794 instr_lui | ((imm & kHiMask) >> kLuiShift)); 847 instr_at_put(pos + 1 * Assembler::kInstrSize, instr2 | jic_offset_u);
795 instr_at_put(pos + 1 * Assembler::kInstrSize, 848 } else {
796 instr_ori | (imm & kImm16Mask)); 849 instr_at_put(pos + 0 * Assembler::kInstrSize,
850 instr1 | ((imm & kHiMask) >> kLuiShift));
851 instr_at_put(pos + 1 * Assembler::kInstrSize,
852 instr2 | (imm & kImm16Mask));
853 }
797 } 854 }
798 } 855 }
799 856
800 857
801 void Assembler::print(Label* L) { 858 void Assembler::print(Label* L) {
802 if (L->is_unused()) { 859 if (L->is_unused()) {
803 PrintF("unused label\n"); 860 PrintF("unused label\n");
804 } else if (L->is_bound()) { 861 } else if (L->is_bound()) {
805 PrintF("bound label to %d\n", L->pos()); 862 PrintF("bound label to %d\n", L->pos());
806 } else if (L->is_linked()) { 863 } else if (L->is_linked()) {
(...skipping 1976 matching lines...) Expand 10 before | Expand all | Expand 10 after
2783 if (RelocInfo::IsInternalReference(rmode)) { 2840 if (RelocInfo::IsInternalReference(rmode)) {
2784 int32_t* p = reinterpret_cast<int32_t*>(pc); 2841 int32_t* p = reinterpret_cast<int32_t*>(pc);
2785 if (*p == 0) { 2842 if (*p == 0) {
2786 return 0; // Number of instructions patched. 2843 return 0; // Number of instructions patched.
2787 } 2844 }
2788 *p += pc_delta; 2845 *p += pc_delta;
2789 return 1; // Number of instructions patched. 2846 return 1; // Number of instructions patched.
2790 } else { 2847 } else {
2791 DCHECK(RelocInfo::IsInternalReferenceEncoded(rmode)); 2848 DCHECK(RelocInfo::IsInternalReferenceEncoded(rmode));
2792 if (IsLui(instr)) { 2849 if (IsLui(instr)) {
2793 Instr instr_lui = instr_at(pc + 0 * Assembler::kInstrSize); 2850 Instr instr1 = instr_at(pc + 0 * Assembler::kInstrSize);
2794 Instr instr_ori = instr_at(pc + 1 * Assembler::kInstrSize); 2851 Instr instr2 = instr_at(pc + 1 * Assembler::kInstrSize);
2795 DCHECK(IsOri(instr_ori)); 2852 DCHECK(IsOri(instr2) || IsJicOrJialc(instr2));
2796 int32_t imm = (instr_lui & static_cast<int32_t>(kImm16Mask)) << kLuiShift; 2853 int32_t imm;
2797 imm |= (instr_ori & static_cast<int32_t>(kImm16Mask)); 2854 if (IsJicOrJialc(instr2)) {
2855 imm = CreateTargetAddress(instr1, instr2);
2856 } else {
2857 imm = (instr1 & static_cast<int32_t>(kImm16Mask)) << kLuiShift;
2858 imm |= (instr2 & static_cast<int32_t>(kImm16Mask));
2859 }
2860
2798 if (imm == kEndOfJumpChain) { 2861 if (imm == kEndOfJumpChain) {
2799 return 0; // Number of instructions patched. 2862 return 0; // Number of instructions patched.
2800 } 2863 }
2801 imm += pc_delta; 2864 imm += pc_delta;
2802 DCHECK((imm & 3) == 0); 2865 DCHECK((imm & 3) == 0);
2866 instr1 &= ~kImm16Mask;
2867 instr2 &= ~kImm16Mask;
2803 2868
2804 instr_lui &= ~kImm16Mask; 2869 if (IsJicOrJialc(instr2)) {
2805 instr_ori &= ~kImm16Mask; 2870 uint32_t lui_offset_u, jic_offset_u;
2806 2871 Assembler::UnpackTargetAddressUnsigned(imm, lui_offset_u, jic_offset_u);
2807 instr_at_put(pc + 0 * Assembler::kInstrSize, 2872 instr_at_put(pc + 0 * Assembler::kInstrSize, instr1 | lui_offset_u);
2808 instr_lui | ((imm >> kLuiShift) & kImm16Mask)); 2873 instr_at_put(pc + 1 * Assembler::kInstrSize, instr2 | jic_offset_u);
2809 instr_at_put(pc + 1 * Assembler::kInstrSize, 2874 } else {
2810 instr_ori | (imm & kImm16Mask)); 2875 instr_at_put(pc + 0 * Assembler::kInstrSize,
2876 instr1 | ((imm >> kLuiShift) & kImm16Mask));
2877 instr_at_put(pc + 1 * Assembler::kInstrSize,
2878 instr2 | (imm & kImm16Mask));
2879 }
2811 return 2; // Number of instructions patched. 2880 return 2; // Number of instructions patched.
2812 } else { 2881 } else {
2813 UNREACHABLE(); 2882 UNREACHABLE();
2814 return 0; 2883 return 0;
2815 } 2884 }
2816 } 2885 }
2817 } 2886 }
2818 2887
2819 2888
2820 void Assembler::GrowBuffer() { 2889 void Assembler::GrowBuffer() {
(...skipping 136 matching lines...) Expand 10 before | Expand all | Expand 10 after
2957 { BlockTrampolinePoolScope block_trampoline_pool(this); 3026 { BlockTrampolinePoolScope block_trampoline_pool(this);
2958 Label after_pool; 3027 Label after_pool;
2959 if (IsMipsArchVariant(kMips32r6)) { 3028 if (IsMipsArchVariant(kMips32r6)) {
2960 bc(&after_pool); 3029 bc(&after_pool);
2961 } else { 3030 } else {
2962 b(&after_pool); 3031 b(&after_pool);
2963 nop(); 3032 nop();
2964 } 3033 }
2965 3034
2966 int pool_start = pc_offset(); 3035 int pool_start = pc_offset();
2967 for (int i = 0; i < unbound_labels_count_; i++) { 3036 if (IsMipsArchVariant(kMips32r6)) {
2968 uint32_t imm32; 3037 for (int i = 0; i < unbound_labels_count_; i++) {
2969 imm32 = jump_address(&after_pool); 3038 uint32_t imm32;
2970 { BlockGrowBufferScope block_buf_growth(this); 3039 imm32 = jump_address(&after_pool);
2971 // Buffer growth (and relocation) must be blocked for internal 3040 uint32_t lui_offset, jic_offset;
2972 // references until associated instructions are emitted and available 3041 UnpackTargetAddressUnsigned(imm32, lui_offset, jic_offset);
2973 // to be patched. 3042 {
2974 RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE_ENCODED); 3043 BlockGrowBufferScope block_buf_growth(this);
2975 lui(at, (imm32 & kHiMask) >> kLuiShift); 3044 // Buffer growth (and relocation) must be blocked for internal
2976 ori(at, at, (imm32 & kImm16Mask)); 3045 // references until associated instructions are emitted and
3046 // available to be patched.
3047 RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE_ENCODED);
3048 lui(at, lui_offset);
3049 jic(at, jic_offset);
3050 }
3051 CheckBuffer();
2977 } 3052 }
2978 jr(at); 3053 } else {
2979 nop(); 3054 for (int i = 0; i < unbound_labels_count_; i++) {
3055 uint32_t imm32;
3056 imm32 = jump_address(&after_pool);
3057 {
3058 BlockGrowBufferScope block_buf_growth(this);
3059 // Buffer growth (and relocation) must be blocked for internal
3060 // references until associated instructions are emitted and
3061 // available to be patched.
3062 RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE_ENCODED);
3063 lui(at, (imm32 & kHiMask) >> kLuiShift);
3064 ori(at, at, (imm32 & kImm16Mask));
3065 }
3066 CheckBuffer();
3067 jr(at);
3068 nop();
3069 }
2980 } 3070 }
2981 bind(&after_pool); 3071 bind(&after_pool);
2982 trampoline_ = Trampoline(pool_start, unbound_labels_count_); 3072 trampoline_ = Trampoline(pool_start, unbound_labels_count_);
2983 3073
2984 trampoline_emitted_ = true; 3074 trampoline_emitted_ = true;
2985 // As we are only going to emit trampoline once, we need to prevent any 3075 // As we are only going to emit trampoline once, we need to prevent any
2986 // further emission. 3076 // further emission.
2987 next_buffer_check_ = kMaxInt; 3077 next_buffer_check_ = kMaxInt;
2988 } 3078 }
2989 } else { 3079 } else {
2990 // Number of branches to unbound label at this point is zero, so we can 3080 // Number of branches to unbound label at this point is zero, so we can
2991 // move next buffer check to maximum. 3081 // move next buffer check to maximum.
2992 next_buffer_check_ = pc_offset() + 3082 next_buffer_check_ = pc_offset() +
2993 kMaxBranchOffset - kTrampolineSlotsSize * 16; 3083 kMaxBranchOffset - kTrampolineSlotsSize * 16;
2994 } 3084 }
2995 return; 3085 return;
2996 } 3086 }
2997 3087
2998 3088
2999 Address Assembler::target_address_at(Address pc) { 3089 Address Assembler::target_address_at(Address pc) {
3000 Instr instr1 = instr_at(pc); 3090 Instr instr1 = instr_at(pc);
3001 Instr instr2 = instr_at(pc + kInstrSize); 3091 Instr instr2 = instr_at(pc + kInstrSize);
3002 // Interpret 2 instructions generated by li: lui/ori 3092 // Interpret 2 instructions generated by li: lui/ori
3003 if ((GetOpcodeField(instr1) == LUI) && (GetOpcodeField(instr2) == ORI)) { 3093 if (IsLui(instr1) && IsOri(instr2)) {
3004 // Assemble the 32 bit value. 3094 // Assemble the 32 bit value.
3005 return reinterpret_cast<Address>( 3095 return reinterpret_cast<Address>((GetImmediate16(instr1) << kLuiShift) |
3006 (GetImmediate16(instr1) << 16) | GetImmediate16(instr2)); 3096 GetImmediate16(instr2));
3007 } 3097 }
3008 3098
3009 // We should never get here, force a bad address if we do. 3099 // We should never get here, force a bad address if we do.
3010 UNREACHABLE(); 3100 UNREACHABLE();
3011 return (Address)0x0; 3101 return (Address)0x0;
3012 } 3102 }
3013 3103
3014 3104
3015 // MIPS and ia32 use opposite encoding for qNaN and sNaN, such that ia32 3105 // MIPS and ia32 use opposite encoding for qNaN and sNaN, such that ia32
3016 // qNaN is a MIPS sNaN, and ia32 sNaN is MIPS qNaN. If running from a heap 3106 // qNaN is a MIPS sNaN, and ia32 sNaN is MIPS qNaN. If running from a heap
3017 // snapshot generated on ia32, the resulting MIPS sNaN must be quieted. 3107 // snapshot generated on ia32, the resulting MIPS sNaN must be quieted.
3018 // OS::nan_value() returns a qNaN. 3108 // OS::nan_value() returns a qNaN.
3019 void Assembler::QuietNaN(HeapObject* object) { 3109 void Assembler::QuietNaN(HeapObject* object) {
3020 HeapNumber::cast(object)->set_value(std::numeric_limits<double>::quiet_NaN()); 3110 HeapNumber::cast(object)->set_value(std::numeric_limits<double>::quiet_NaN());
3021 } 3111 }
3022 3112
3023 3113
3024 // On Mips, a target address is stored in a lui/ori instruction pair, each 3114 // On Mips, a target address is stored in a lui/ori instruction pair, each
3025 // of which load 16 bits of the 32-bit address to a register. 3115 // of which load 16 bits of the 32-bit address to a register.
3026 // Patching the address must replace both instr, and flush the i-cache. 3116 // Patching the address must replace both instr, and flush the i-cache.
3117 // On r6, target address is stored in a lui/jic pair, and both instr have to be
3118 // patched.
3027 // 3119 //
3028 // There is an optimization below, which emits a nop when the address 3120 // There is an optimization below, which emits a nop when the address
3029 // fits in just 16 bits. This is unlikely to help, and should be benchmarked, 3121 // fits in just 16 bits. This is unlikely to help, and should be benchmarked,
3030 // and possibly removed. 3122 // and possibly removed.
3031 void Assembler::set_target_address_at(Isolate* isolate, Address pc, 3123 void Assembler::set_target_address_at(Isolate* isolate, Address pc,
3032 Address target, 3124 Address target,
3033 ICacheFlushMode icache_flush_mode) { 3125 ICacheFlushMode icache_flush_mode) {
3034 Instr instr2 = instr_at(pc + kInstrSize); 3126 Instr instr2 = instr_at(pc + kInstrSize);
3035 uint32_t rt_code = GetRtField(instr2); 3127 uint32_t rt_code = GetRtField(instr2);
3036 uint32_t* p = reinterpret_cast<uint32_t*>(pc); 3128 uint32_t* p = reinterpret_cast<uint32_t*>(pc);
3037 uint32_t itarget = reinterpret_cast<uint32_t>(target); 3129 uint32_t itarget = reinterpret_cast<uint32_t>(target);
3038 3130
3039 #ifdef DEBUG 3131 #ifdef DEBUG
3040 // Check we have the result from a li macro-instruction, using instr pair. 3132 // Check we have the result from a li macro-instruction, using instr pair.
3041 Instr instr1 = instr_at(pc); 3133 Instr instr1 = instr_at(pc);
3042 CHECK((GetOpcodeField(instr1) == LUI && GetOpcodeField(instr2) == ORI)); 3134 CHECK(IsLui(instr1) && (IsOri(instr2) || IsJicOrJialc(instr2)));
3043 #endif 3135 #endif
3044 3136
3045 // Must use 2 instructions to insure patchable code => just use lui and ori. 3137 if (IsJicOrJialc(instr2)) {
3046 // lui rt, upper-16. 3138 // Must use 2 instructions to insure patchable code => use lui and jic
3047 // ori rt rt, lower-16. 3139 uint32_t lui_offset, jic_offset;
3048 *p = LUI | rt_code | ((itarget & kHiMask) >> kLuiShift); 3140 Assembler::UnpackTargetAddressUnsigned(itarget, lui_offset, jic_offset);
3049 *(p + 1) = ORI | rt_code | (rt_code << 5) | (itarget & kImm16Mask);
3050 3141
3142 *p &= ~kImm16Mask;
3143 *(p + 1) &= ~kImm16Mask;
3144
3145 *p |= lui_offset;
3146 *(p + 1) |= jic_offset;
3147
3148 } else {
3149 // Must use 2 instructions to insure patchable code => just use lui and ori.
3150 // lui rt, upper-16.
3151 // ori rt rt, lower-16.
3152 *p = LUI | rt_code | ((itarget & kHiMask) >> kLuiShift);
3153 *(p + 1) = ORI | rt_code | (rt_code << 5) | (itarget & kImm16Mask);
3154 }
3051 3155
3052 if (icache_flush_mode != SKIP_ICACHE_FLUSH) { 3156 if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
3053 Assembler::FlushICache(isolate, pc, 2 * sizeof(int32_t)); 3157 Assembler::FlushICache(isolate, pc, 2 * sizeof(int32_t));
3054 } 3158 }
3055 } 3159 }
3056 3160
3057 } // namespace internal 3161 } // namespace internal
3058 } // namespace v8 3162 } // namespace v8
3059 3163
3060 #endif // V8_TARGET_ARCH_MIPS 3164 #endif // V8_TARGET_ARCH_MIPS
OLDNEW
« no previous file with comments | « src/mips/assembler-mips.h ('k') | src/mips/assembler-mips-inl.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698