| Index: fusl/src/math/lgammal.c | 
| diff --git a/fusl/src/math/lgammal.c b/fusl/src/math/lgammal.c | 
| new file mode 100644 | 
| index 0000000000000000000000000000000000000000..2b354a7c13245a4dba257a298581a0fa24bac4cf | 
| --- /dev/null | 
| +++ b/fusl/src/math/lgammal.c | 
| @@ -0,0 +1,360 @@ | 
| +/* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_lgammal.c */ | 
| +/* | 
| + * ==================================================== | 
| + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | 
| + * | 
| + * Developed at SunPro, a Sun Microsystems, Inc. business. | 
| + * Permission to use, copy, modify, and distribute this | 
| + * software is freely granted, provided that this notice | 
| + * is preserved. | 
| + * ==================================================== | 
| + */ | 
| +/* | 
| + * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net> | 
| + * | 
| + * Permission to use, copy, modify, and distribute this software for any | 
| + * purpose with or without fee is hereby granted, provided that the above | 
| + * copyright notice and this permission notice appear in all copies. | 
| + * | 
| + * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | 
| + * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | 
| + * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | 
| + * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | 
| + * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | 
| + * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | 
| + * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | 
| + */ | 
| +/* lgammal(x) | 
| + * Reentrant version of the logarithm of the Gamma function | 
| + * with user provide pointer for the sign of Gamma(x). | 
| + * | 
| + * Method: | 
| + *   1. Argument Reduction for 0 < x <= 8 | 
| + *      Since gamma(1+s)=s*gamma(s), for x in [0,8], we may | 
| + *      reduce x to a number in [1.5,2.5] by | 
| + *              lgamma(1+s) = log(s) + lgamma(s) | 
| + *      for example, | 
| + *              lgamma(7.3) = log(6.3) + lgamma(6.3) | 
| + *                          = log(6.3*5.3) + lgamma(5.3) | 
| + *                          = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3) | 
| + *   2. Polynomial approximation of lgamma around its | 
| + *      minimun ymin=1.461632144968362245 to maintain monotonicity. | 
| + *      On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use | 
| + *              Let z = x-ymin; | 
| + *              lgamma(x) = -1.214862905358496078218 + z^2*poly(z) | 
| + *   2. Rational approximation in the primary interval [2,3] | 
| + *      We use the following approximation: | 
| + *              s = x-2.0; | 
| + *              lgamma(x) = 0.5*s + s*P(s)/Q(s) | 
| + *      Our algorithms are based on the following observation | 
| + * | 
| + *                             zeta(2)-1    2    zeta(3)-1    3 | 
| + * lgamma(2+s) = s*(1-Euler) + --------- * s  -  --------- * s  + ... | 
| + *                                 2                 3 | 
| + * | 
| + *      where Euler = 0.5771... is the Euler constant, which is very | 
| + *      close to 0.5. | 
| + * | 
| + *   3. For x>=8, we have | 
| + *      lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+.... | 
| + *      (better formula: | 
| + *         lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...) | 
| + *      Let z = 1/x, then we approximation | 
| + *              f(z) = lgamma(x) - (x-0.5)(log(x)-1) | 
| + *      by | 
| + *                                  3       5             11 | 
| + *              w = w0 + w1*z + w2*z  + w3*z  + ... + w6*z | 
| + * | 
| + *   4. For negative x, since (G is gamma function) | 
| + *              -x*G(-x)*G(x) = pi/sin(pi*x), | 
| + *      we have | 
| + *              G(x) = pi/(sin(pi*x)*(-x)*G(-x)) | 
| + *      since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0 | 
| + *      Hence, for x<0, signgam = sign(sin(pi*x)) and | 
| + *              lgamma(x) = log(|Gamma(x)|) | 
| + *                        = log(pi/(|x*sin(pi*x)|)) - lgamma(-x); | 
| + *      Note: one should avoid compute pi*(-x) directly in the | 
| + *            computation of sin(pi*(-x)). | 
| + * | 
| + *   5. Special Cases | 
| + *              lgamma(2+s) ~ s*(1-Euler) for tiny s | 
| + *              lgamma(1)=lgamma(2)=0 | 
| + *              lgamma(x) ~ -log(x) for tiny x | 
| + *              lgamma(0) = lgamma(inf) = inf | 
| + *              lgamma(-integer) = +-inf | 
| + * | 
| + */ | 
| + | 
| +#define _GNU_SOURCE | 
| +#include "libm.h" | 
| +#include "libc.h" | 
| + | 
| +#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024 | 
| +double __lgamma_r(double x, int *sg); | 
| + | 
| +long double __lgammal_r(long double x, int *sg) | 
| +{ | 
| +	return __lgamma_r(x, sg); | 
| +} | 
| +#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384 | 
| +static const long double | 
| +pi = 3.14159265358979323846264L, | 
| + | 
| +/* lgam(1+x) = 0.5 x + x a(x)/b(x) | 
| +    -0.268402099609375 <= x <= 0 | 
| +    peak relative error 6.6e-22 */ | 
| +a0 = -6.343246574721079391729402781192128239938E2L, | 
| +a1 =  1.856560238672465796768677717168371401378E3L, | 
| +a2 =  2.404733102163746263689288466865843408429E3L, | 
| +a3 =  8.804188795790383497379532868917517596322E2L, | 
| +a4 =  1.135361354097447729740103745999661157426E2L, | 
| +a5 =  3.766956539107615557608581581190400021285E0L, | 
| + | 
| +b0 =  8.214973713960928795704317259806842490498E3L, | 
| +b1 =  1.026343508841367384879065363925870888012E4L, | 
| +b2 =  4.553337477045763320522762343132210919277E3L, | 
| +b3 =  8.506975785032585797446253359230031874803E2L, | 
| +b4 =  6.042447899703295436820744186992189445813E1L, | 
| +/* b5 =  1.000000000000000000000000000000000000000E0 */ | 
| + | 
| + | 
| +tc =  1.4616321449683623412626595423257213284682E0L, | 
| +tf = -1.2148629053584961146050602565082954242826E-1, /* double precision */ | 
| +/* tt = (tail of tf), i.e. tf + tt has extended precision. */ | 
| +tt = 3.3649914684731379602768989080467587736363E-18L, | 
| +/* lgam ( 1.4616321449683623412626595423257213284682E0 ) = | 
| +-1.2148629053584960809551455717769158215135617312999903886372437313313530E-1 */ | 
| + | 
| +/* lgam (x + tc) = tf + tt + x g(x)/h(x) | 
| +    -0.230003726999612341262659542325721328468 <= x | 
| +       <= 0.2699962730003876587373404576742786715318 | 
| +     peak relative error 2.1e-21 */ | 
| +g0 = 3.645529916721223331888305293534095553827E-18L, | 
| +g1 = 5.126654642791082497002594216163574795690E3L, | 
| +g2 = 8.828603575854624811911631336122070070327E3L, | 
| +g3 = 5.464186426932117031234820886525701595203E3L, | 
| +g4 = 1.455427403530884193180776558102868592293E3L, | 
| +g5 = 1.541735456969245924860307497029155838446E2L, | 
| +g6 = 4.335498275274822298341872707453445815118E0L, | 
| + | 
| +h0 = 1.059584930106085509696730443974495979641E4L, | 
| +h1 = 2.147921653490043010629481226937850618860E4L, | 
| +h2 = 1.643014770044524804175197151958100656728E4L, | 
| +h3 = 5.869021995186925517228323497501767586078E3L, | 
| +h4 = 9.764244777714344488787381271643502742293E2L, | 
| +h5 = 6.442485441570592541741092969581997002349E1L, | 
| +/* h6 = 1.000000000000000000000000000000000000000E0 */ | 
| + | 
| + | 
| +/* lgam (x+1) = -0.5 x + x u(x)/v(x) | 
| +    -0.100006103515625 <= x <= 0.231639862060546875 | 
| +    peak relative error 1.3e-21 */ | 
| +u0 = -8.886217500092090678492242071879342025627E1L, | 
| +u1 =  6.840109978129177639438792958320783599310E2L, | 
| +u2 =  2.042626104514127267855588786511809932433E3L, | 
| +u3 =  1.911723903442667422201651063009856064275E3L, | 
| +u4 =  7.447065275665887457628865263491667767695E2L, | 
| +u5 =  1.132256494121790736268471016493103952637E2L, | 
| +u6 =  4.484398885516614191003094714505960972894E0L, | 
| + | 
| +v0 =  1.150830924194461522996462401210374632929E3L, | 
| +v1 =  3.399692260848747447377972081399737098610E3L, | 
| +v2 =  3.786631705644460255229513563657226008015E3L, | 
| +v3 =  1.966450123004478374557778781564114347876E3L, | 
| +v4 =  4.741359068914069299837355438370682773122E2L, | 
| +v5 =  4.508989649747184050907206782117647852364E1L, | 
| +/* v6 =  1.000000000000000000000000000000000000000E0 */ | 
| + | 
| + | 
| +/* lgam (x+2) = .5 x + x s(x)/r(x) | 
| +     0 <= x <= 1 | 
| +     peak relative error 7.2e-22 */ | 
| +s0 =  1.454726263410661942989109455292824853344E6L, | 
| +s1 = -3.901428390086348447890408306153378922752E6L, | 
| +s2 = -6.573568698209374121847873064292963089438E6L, | 
| +s3 = -3.319055881485044417245964508099095984643E6L, | 
| +s4 = -7.094891568758439227560184618114707107977E5L, | 
| +s5 = -6.263426646464505837422314539808112478303E4L, | 
| +s6 = -1.684926520999477529949915657519454051529E3L, | 
| + | 
| +r0 = -1.883978160734303518163008696712983134698E7L, | 
| +r1 = -2.815206082812062064902202753264922306830E7L, | 
| +r2 = -1.600245495251915899081846093343626358398E7L, | 
| +r3 = -4.310526301881305003489257052083370058799E6L, | 
| +r4 = -5.563807682263923279438235987186184968542E5L, | 
| +r5 = -3.027734654434169996032905158145259713083E4L, | 
| +r6 = -4.501995652861105629217250715790764371267E2L, | 
| +/* r6 =  1.000000000000000000000000000000000000000E0 */ | 
| + | 
| + | 
| +/* lgam(x) = ( x - 0.5 ) * log(x) - x + LS2PI + 1/x w(1/x^2) | 
| +    x >= 8 | 
| +    Peak relative error 1.51e-21 | 
| +w0 = LS2PI - 0.5 */ | 
| +w0 =  4.189385332046727417803e-1L, | 
| +w1 =  8.333333333333331447505E-2L, | 
| +w2 = -2.777777777750349603440E-3L, | 
| +w3 =  7.936507795855070755671E-4L, | 
| +w4 = -5.952345851765688514613E-4L, | 
| +w5 =  8.412723297322498080632E-4L, | 
| +w6 = -1.880801938119376907179E-3L, | 
| +w7 =  4.885026142432270781165E-3L; | 
| + | 
| +/* sin(pi*x) assuming x > 2^-1000, if sin(pi*x)==0 the sign is arbitrary */ | 
| +static long double sin_pi(long double x) | 
| +{ | 
| +	int n; | 
| + | 
| +	/* spurious inexact if odd int */ | 
| +	x *= 0.5; | 
| +	x = 2.0*(x - floorl(x));  /* x mod 2.0 */ | 
| + | 
| +	n = (int)(x*4.0); | 
| +	n = (n+1)/2; | 
| +	x -= n*0.5f; | 
| +	x *= pi; | 
| + | 
| +	switch (n) { | 
| +	default: /* case 4: */ | 
| +	case 0: return __sinl(x, 0.0, 0); | 
| +	case 1: return __cosl(x, 0.0); | 
| +	case 2: return __sinl(-x, 0.0, 0); | 
| +	case 3: return -__cosl(x, 0.0); | 
| +	} | 
| +} | 
| + | 
| +long double __lgammal_r(long double x, int *sg) { | 
| +	long double t, y, z, nadj, p, p1, p2, q, r, w; | 
| +	union ldshape u = {x}; | 
| +	uint32_t ix = (u.i.se & 0x7fffU)<<16 | u.i.m>>48; | 
| +	int sign = u.i.se >> 15; | 
| +	int i; | 
| + | 
| +	*sg = 1; | 
| + | 
| +	/* purge off +-inf, NaN, +-0, tiny and negative arguments */ | 
| +	if (ix >= 0x7fff0000) | 
| +		return x * x; | 
| +	if (ix < 0x3fc08000) {  /* |x|<2**-63, return -log(|x|) */ | 
| +		if (sign) { | 
| +			*sg = -1; | 
| +			x = -x; | 
| +		} | 
| +		return -logl(x); | 
| +	} | 
| +	if (sign) { | 
| +		x = -x; | 
| +		t = sin_pi(x); | 
| +		if (t == 0.0) | 
| +			return 1.0 / (x-x); /* -integer */ | 
| +		if (t > 0.0) | 
| +			*sg = -1; | 
| +		else | 
| +			t = -t; | 
| +		nadj = logl(pi / (t * x)); | 
| +	} | 
| + | 
| +	/* purge off 1 and 2 (so the sign is ok with downward rounding) */ | 
| +	if ((ix == 0x3fff8000 || ix == 0x40008000) && u.i.m == 0) { | 
| +		r = 0; | 
| +	} else if (ix < 0x40008000) {  /* x < 2.0 */ | 
| +		if (ix <= 0x3ffee666) {  /* 8.99993896484375e-1 */ | 
| +			/* lgamma(x) = lgamma(x+1) - log(x) */ | 
| +			r = -logl(x); | 
| +			if (ix >= 0x3ffebb4a) {  /* 7.31597900390625e-1 */ | 
| +				y = x - 1.0; | 
| +				i = 0; | 
| +			} else if (ix >= 0x3ffced33) {  /* 2.31639862060546875e-1 */ | 
| +				y = x - (tc - 1.0); | 
| +				i = 1; | 
| +			} else { /* x < 0.23 */ | 
| +				y = x; | 
| +				i = 2; | 
| +			} | 
| +		} else { | 
| +			r = 0.0; | 
| +			if (ix >= 0x3fffdda6) {  /* 1.73162841796875 */ | 
| +				/* [1.7316,2] */ | 
| +				y = x - 2.0; | 
| +				i = 0; | 
| +			} else if (ix >= 0x3fff9da6) {  /* 1.23162841796875 */ | 
| +				/* [1.23,1.73] */ | 
| +				y = x - tc; | 
| +				i = 1; | 
| +			} else { | 
| +				/* [0.9, 1.23] */ | 
| +				y = x - 1.0; | 
| +				i = 2; | 
| +			} | 
| +		} | 
| +		switch (i) { | 
| +		case 0: | 
| +			p1 = a0 + y * (a1 + y * (a2 + y * (a3 + y * (a4 + y * a5)))); | 
| +			p2 = b0 + y * (b1 + y * (b2 + y * (b3 + y * (b4 + y)))); | 
| +			r += 0.5 * y + y * p1/p2; | 
| +			break; | 
| +		case 1: | 
| +			p1 = g0 + y * (g1 + y * (g2 + y * (g3 + y * (g4 + y * (g5 + y * g6))))); | 
| +			p2 = h0 + y * (h1 + y * (h2 + y * (h3 + y * (h4 + y * (h5 + y))))); | 
| +			p = tt + y * p1/p2; | 
| +			r += (tf + p); | 
| +			break; | 
| +		case 2: | 
| +			p1 = y * (u0 + y * (u1 + y * (u2 + y * (u3 + y * (u4 + y * (u5 + y * u6)))))); | 
| +			p2 = v0 + y * (v1 + y * (v2 + y * (v3 + y * (v4 + y * (v5 + y))))); | 
| +			r += (-0.5 * y + p1 / p2); | 
| +		} | 
| +	} else if (ix < 0x40028000) {  /* 8.0 */ | 
| +		/* x < 8.0 */ | 
| +		i = (int)x; | 
| +		y = x - (double)i; | 
| +		p = y * (s0 + y * (s1 + y * (s2 + y * (s3 + y * (s4 + y * (s5 + y * s6)))))); | 
| +		q = r0 + y * (r1 + y * (r2 + y * (r3 + y * (r4 + y * (r5 + y * (r6 + y)))))); | 
| +		r = 0.5 * y + p / q; | 
| +		z = 1.0; | 
| +		/* lgamma(1+s) = log(s) + lgamma(s) */ | 
| +		switch (i) { | 
| +		case 7: | 
| +			z *= (y + 6.0); /* FALLTHRU */ | 
| +		case 6: | 
| +			z *= (y + 5.0); /* FALLTHRU */ | 
| +		case 5: | 
| +			z *= (y + 4.0); /* FALLTHRU */ | 
| +		case 4: | 
| +			z *= (y + 3.0); /* FALLTHRU */ | 
| +		case 3: | 
| +			z *= (y + 2.0); /* FALLTHRU */ | 
| +			r += logl(z); | 
| +			break; | 
| +		} | 
| +	} else if (ix < 0x40418000) {  /* 2^66 */ | 
| +		/* 8.0 <= x < 2**66 */ | 
| +		t = logl(x); | 
| +		z = 1.0 / x; | 
| +		y = z * z; | 
| +		w = w0 + z * (w1 + y * (w2 + y * (w3 + y * (w4 + y * (w5 + y * (w6 + y * w7)))))); | 
| +		r = (x - 0.5) * (t - 1.0) + w; | 
| +	} else /* 2**66 <= x <= inf */ | 
| +		r = x * (logl(x) - 1.0); | 
| +	if (sign) | 
| +		r = nadj - r; | 
| +	return r; | 
| +} | 
| +#elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384 | 
| +// TODO: broken implementation to make things compile | 
| +double __lgamma_r(double x, int *sg); | 
| + | 
| +long double __lgammal_r(long double x, int *sg) | 
| +{ | 
| +	return __lgamma_r(x, sg); | 
| +} | 
| +#endif | 
| + | 
| +extern int __signgam; | 
| + | 
| +long double lgammal(long double x) | 
| +{ | 
| +	return __lgammal_r(x, &__signgam); | 
| +} | 
| + | 
| +weak_alias(__lgammal_r, lgammal_r); | 
|  |