| Index: fusl/src/regex/regcomp.c
|
| diff --git a/fusl/src/regex/regcomp.c b/fusl/src/regex/regcomp.c
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..330de46759730b55b90d9080fb7798d37ae5db86
|
| --- /dev/null
|
| +++ b/fusl/src/regex/regcomp.c
|
| @@ -0,0 +1,2910 @@
|
| +/*
|
| + regcomp.c - TRE POSIX compatible regex compilation functions.
|
| +
|
| + Copyright (c) 2001-2009 Ville Laurikari <vl@iki.fi>
|
| + All rights reserved.
|
| +
|
| + Redistribution and use in source and binary forms, with or without
|
| + modification, are permitted provided that the following conditions
|
| + are met:
|
| +
|
| + 1. Redistributions of source code must retain the above copyright
|
| + notice, this list of conditions and the following disclaimer.
|
| +
|
| + 2. Redistributions in binary form must reproduce the above copyright
|
| + notice, this list of conditions and the following disclaimer in the
|
| + documentation and/or other materials provided with the distribution.
|
| +
|
| + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER AND CONTRIBUTORS
|
| + ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
| + LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
| + A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
| + HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
| + SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
| + LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
| + DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
| + THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
| + (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
| + OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
| +
|
| +*/
|
| +
|
| +#include <string.h>
|
| +#include <stdlib.h>
|
| +#include <regex.h>
|
| +#include <limits.h>
|
| +#include <stdint.h>
|
| +#include <ctype.h>
|
| +
|
| +#include "tre.h"
|
| +
|
| +#include <assert.h>
|
| +
|
| +/***********************************************************************
|
| + from tre-compile.h
|
| +***********************************************************************/
|
| +
|
| +typedef struct {
|
| + int position;
|
| + int code_min;
|
| + int code_max;
|
| + int *tags;
|
| + int assertions;
|
| + tre_ctype_t class;
|
| + tre_ctype_t *neg_classes;
|
| + int backref;
|
| +} tre_pos_and_tags_t;
|
| +
|
| +
|
| +/***********************************************************************
|
| + from tre-ast.c and tre-ast.h
|
| +***********************************************************************/
|
| +
|
| +/* The different AST node types. */
|
| +typedef enum {
|
| + LITERAL,
|
| + CATENATION,
|
| + ITERATION,
|
| + UNION
|
| +} tre_ast_type_t;
|
| +
|
| +/* Special subtypes of TRE_LITERAL. */
|
| +#define EMPTY -1 /* Empty leaf (denotes empty string). */
|
| +#define ASSERTION -2 /* Assertion leaf. */
|
| +#define TAG -3 /* Tag leaf. */
|
| +#define BACKREF -4 /* Back reference leaf. */
|
| +
|
| +#define IS_SPECIAL(x) ((x)->code_min < 0)
|
| +#define IS_EMPTY(x) ((x)->code_min == EMPTY)
|
| +#define IS_ASSERTION(x) ((x)->code_min == ASSERTION)
|
| +#define IS_TAG(x) ((x)->code_min == TAG)
|
| +#define IS_BACKREF(x) ((x)->code_min == BACKREF)
|
| +
|
| +
|
| +/* A generic AST node. All AST nodes consist of this node on the top
|
| + level with `obj' pointing to the actual content. */
|
| +typedef struct {
|
| + tre_ast_type_t type; /* Type of the node. */
|
| + void *obj; /* Pointer to actual node. */
|
| + int nullable;
|
| + int submatch_id;
|
| + int num_submatches;
|
| + int num_tags;
|
| + tre_pos_and_tags_t *firstpos;
|
| + tre_pos_and_tags_t *lastpos;
|
| +} tre_ast_node_t;
|
| +
|
| +
|
| +/* A "literal" node. These are created for assertions, back references,
|
| + tags, matching parameter settings, and all expressions that match one
|
| + character. */
|
| +typedef struct {
|
| + long code_min;
|
| + long code_max;
|
| + int position;
|
| + tre_ctype_t class;
|
| + tre_ctype_t *neg_classes;
|
| +} tre_literal_t;
|
| +
|
| +/* A "catenation" node. These are created when two regexps are concatenated.
|
| + If there are more than one subexpressions in sequence, the `left' part
|
| + holds all but the last, and `right' part holds the last subexpression
|
| + (catenation is left associative). */
|
| +typedef struct {
|
| + tre_ast_node_t *left;
|
| + tre_ast_node_t *right;
|
| +} tre_catenation_t;
|
| +
|
| +/* An "iteration" node. These are created for the "*", "+", "?", and "{m,n}"
|
| + operators. */
|
| +typedef struct {
|
| + /* Subexpression to match. */
|
| + tre_ast_node_t *arg;
|
| + /* Minimum number of consecutive matches. */
|
| + int min;
|
| + /* Maximum number of consecutive matches. */
|
| + int max;
|
| + /* If 0, match as many characters as possible, if 1 match as few as
|
| + possible. Note that this does not always mean the same thing as
|
| + matching as many/few repetitions as possible. */
|
| + unsigned int minimal:1;
|
| +} tre_iteration_t;
|
| +
|
| +/* An "union" node. These are created for the "|" operator. */
|
| +typedef struct {
|
| + tre_ast_node_t *left;
|
| + tre_ast_node_t *right;
|
| +} tre_union_t;
|
| +
|
| +
|
| +static tre_ast_node_t *
|
| +tre_ast_new_node(tre_mem_t mem, int type, void *obj)
|
| +{
|
| + tre_ast_node_t *node = tre_mem_calloc(mem, sizeof *node);
|
| + if (!node || !obj)
|
| + return 0;
|
| + node->obj = obj;
|
| + node->type = type;
|
| + node->nullable = -1;
|
| + node->submatch_id = -1;
|
| + return node;
|
| +}
|
| +
|
| +static tre_ast_node_t *
|
| +tre_ast_new_literal(tre_mem_t mem, int code_min, int code_max, int position)
|
| +{
|
| + tre_ast_node_t *node;
|
| + tre_literal_t *lit;
|
| +
|
| + lit = tre_mem_calloc(mem, sizeof *lit);
|
| + node = tre_ast_new_node(mem, LITERAL, lit);
|
| + if (!node)
|
| + return 0;
|
| + lit->code_min = code_min;
|
| + lit->code_max = code_max;
|
| + lit->position = position;
|
| + return node;
|
| +}
|
| +
|
| +static tre_ast_node_t *
|
| +tre_ast_new_iter(tre_mem_t mem, tre_ast_node_t *arg, int min, int max, int minimal)
|
| +{
|
| + tre_ast_node_t *node;
|
| + tre_iteration_t *iter;
|
| +
|
| + iter = tre_mem_calloc(mem, sizeof *iter);
|
| + node = tre_ast_new_node(mem, ITERATION, iter);
|
| + if (!node)
|
| + return 0;
|
| + iter->arg = arg;
|
| + iter->min = min;
|
| + iter->max = max;
|
| + iter->minimal = minimal;
|
| + node->num_submatches = arg->num_submatches;
|
| + return node;
|
| +}
|
| +
|
| +static tre_ast_node_t *
|
| +tre_ast_new_union(tre_mem_t mem, tre_ast_node_t *left, tre_ast_node_t *right)
|
| +{
|
| + tre_ast_node_t *node;
|
| + tre_union_t *un;
|
| +
|
| + if (!left)
|
| + return right;
|
| + un = tre_mem_calloc(mem, sizeof *un);
|
| + node = tre_ast_new_node(mem, UNION, un);
|
| + if (!node || !right)
|
| + return 0;
|
| + un->left = left;
|
| + un->right = right;
|
| + node->num_submatches = left->num_submatches + right->num_submatches;
|
| + return node;
|
| +}
|
| +
|
| +static tre_ast_node_t *
|
| +tre_ast_new_catenation(tre_mem_t mem, tre_ast_node_t *left, tre_ast_node_t *right)
|
| +{
|
| + tre_ast_node_t *node;
|
| + tre_catenation_t *cat;
|
| +
|
| + if (!left)
|
| + return right;
|
| + cat = tre_mem_calloc(mem, sizeof *cat);
|
| + node = tre_ast_new_node(mem, CATENATION, cat);
|
| + if (!node)
|
| + return 0;
|
| + cat->left = left;
|
| + cat->right = right;
|
| + node->num_submatches = left->num_submatches + right->num_submatches;
|
| + return node;
|
| +}
|
| +
|
| +
|
| +/***********************************************************************
|
| + from tre-stack.c and tre-stack.h
|
| +***********************************************************************/
|
| +
|
| +typedef struct tre_stack_rec tre_stack_t;
|
| +
|
| +/* Creates a new stack object. `size' is initial size in bytes, `max_size'
|
| + is maximum size, and `increment' specifies how much more space will be
|
| + allocated with realloc() if all space gets used up. Returns the stack
|
| + object or NULL if out of memory. */
|
| +static tre_stack_t *
|
| +tre_stack_new(int size, int max_size, int increment);
|
| +
|
| +/* Frees the stack object. */
|
| +static void
|
| +tre_stack_destroy(tre_stack_t *s);
|
| +
|
| +/* Returns the current number of objects in the stack. */
|
| +static int
|
| +tre_stack_num_objects(tre_stack_t *s);
|
| +
|
| +/* Each tre_stack_push_*(tre_stack_t *s, <type> value) function pushes
|
| + `value' on top of stack `s'. Returns REG_ESPACE if out of memory.
|
| + This tries to realloc() more space before failing if maximum size
|
| + has not yet been reached. Returns REG_OK if successful. */
|
| +#define declare_pushf(typetag, type) \
|
| + static reg_errcode_t tre_stack_push_ ## typetag(tre_stack_t *s, type value)
|
| +
|
| +declare_pushf(voidptr, void *);
|
| +declare_pushf(int, int);
|
| +
|
| +/* Each tre_stack_pop_*(tre_stack_t *s) function pops the topmost
|
| + element off of stack `s' and returns it. The stack must not be
|
| + empty. */
|
| +#define declare_popf(typetag, type) \
|
| + static type tre_stack_pop_ ## typetag(tre_stack_t *s)
|
| +
|
| +declare_popf(voidptr, void *);
|
| +declare_popf(int, int);
|
| +
|
| +/* Just to save some typing. */
|
| +#define STACK_PUSH(s, typetag, value) \
|
| + do \
|
| + { \
|
| + status = tre_stack_push_ ## typetag(s, value); \
|
| + } \
|
| + while (/*CONSTCOND*/0)
|
| +
|
| +#define STACK_PUSHX(s, typetag, value) \
|
| + { \
|
| + status = tre_stack_push_ ## typetag(s, value); \
|
| + if (status != REG_OK) \
|
| + break; \
|
| + }
|
| +
|
| +#define STACK_PUSHR(s, typetag, value) \
|
| + { \
|
| + reg_errcode_t _status; \
|
| + _status = tre_stack_push_ ## typetag(s, value); \
|
| + if (_status != REG_OK) \
|
| + return _status; \
|
| + }
|
| +
|
| +union tre_stack_item {
|
| + void *voidptr_value;
|
| + int int_value;
|
| +};
|
| +
|
| +struct tre_stack_rec {
|
| + int size;
|
| + int max_size;
|
| + int increment;
|
| + int ptr;
|
| + union tre_stack_item *stack;
|
| +};
|
| +
|
| +
|
| +static tre_stack_t *
|
| +tre_stack_new(int size, int max_size, int increment)
|
| +{
|
| + tre_stack_t *s;
|
| +
|
| + s = xmalloc(sizeof(*s));
|
| + if (s != NULL)
|
| + {
|
| + s->stack = xmalloc(sizeof(*s->stack) * size);
|
| + if (s->stack == NULL)
|
| + {
|
| + xfree(s);
|
| + return NULL;
|
| + }
|
| + s->size = size;
|
| + s->max_size = max_size;
|
| + s->increment = increment;
|
| + s->ptr = 0;
|
| + }
|
| + return s;
|
| +}
|
| +
|
| +static void
|
| +tre_stack_destroy(tre_stack_t *s)
|
| +{
|
| + xfree(s->stack);
|
| + xfree(s);
|
| +}
|
| +
|
| +static int
|
| +tre_stack_num_objects(tre_stack_t *s)
|
| +{
|
| + return s->ptr;
|
| +}
|
| +
|
| +static reg_errcode_t
|
| +tre_stack_push(tre_stack_t *s, union tre_stack_item value)
|
| +{
|
| + if (s->ptr < s->size)
|
| + {
|
| + s->stack[s->ptr] = value;
|
| + s->ptr++;
|
| + }
|
| + else
|
| + {
|
| + if (s->size >= s->max_size)
|
| + {
|
| + return REG_ESPACE;
|
| + }
|
| + else
|
| + {
|
| + union tre_stack_item *new_buffer;
|
| + int new_size;
|
| + new_size = s->size + s->increment;
|
| + if (new_size > s->max_size)
|
| + new_size = s->max_size;
|
| + new_buffer = xrealloc(s->stack, sizeof(*new_buffer) * new_size);
|
| + if (new_buffer == NULL)
|
| + {
|
| + return REG_ESPACE;
|
| + }
|
| + assert(new_size > s->size);
|
| + s->size = new_size;
|
| + s->stack = new_buffer;
|
| + tre_stack_push(s, value);
|
| + }
|
| + }
|
| + return REG_OK;
|
| +}
|
| +
|
| +#define define_pushf(typetag, type) \
|
| + declare_pushf(typetag, type) { \
|
| + union tre_stack_item item; \
|
| + item.typetag ## _value = value; \
|
| + return tre_stack_push(s, item); \
|
| +}
|
| +
|
| +define_pushf(int, int)
|
| +define_pushf(voidptr, void *)
|
| +
|
| +#define define_popf(typetag, type) \
|
| + declare_popf(typetag, type) { \
|
| + return s->stack[--s->ptr].typetag ## _value; \
|
| + }
|
| +
|
| +define_popf(int, int)
|
| +define_popf(voidptr, void *)
|
| +
|
| +
|
| +/***********************************************************************
|
| + from tre-parse.c and tre-parse.h
|
| +***********************************************************************/
|
| +
|
| +/* Parse context. */
|
| +typedef struct {
|
| + /* Memory allocator. The AST is allocated using this. */
|
| + tre_mem_t mem;
|
| + /* Stack used for keeping track of regexp syntax. */
|
| + tre_stack_t *stack;
|
| + /* The parsed node after a parse function returns. */
|
| + tre_ast_node_t *n;
|
| + /* Position in the regexp pattern after a parse function returns. */
|
| + const char *s;
|
| + /* The first character of the regexp. */
|
| + const char *re;
|
| + /* Current submatch ID. */
|
| + int submatch_id;
|
| + /* Current position (number of literal). */
|
| + int position;
|
| + /* The highest back reference or -1 if none seen so far. */
|
| + int max_backref;
|
| + /* Compilation flags. */
|
| + int cflags;
|
| +} tre_parse_ctx_t;
|
| +
|
| +/* Some macros for expanding \w, \s, etc. */
|
| +static const struct {
|
| + char c;
|
| + const char *expansion;
|
| +} tre_macros[] = {
|
| + {'t', "\t"}, {'n', "\n"}, {'r', "\r"},
|
| + {'f', "\f"}, {'a', "\a"}, {'e', "\033"},
|
| + {'w', "[[:alnum:]_]"}, {'W', "[^[:alnum:]_]"}, {'s', "[[:space:]]"},
|
| + {'S', "[^[:space:]]"}, {'d', "[[:digit:]]"}, {'D', "[^[:digit:]]"},
|
| + { 0, 0 }
|
| +};
|
| +
|
| +/* Expands a macro delimited by `regex' and `regex_end' to `buf', which
|
| + must have at least `len' items. Sets buf[0] to zero if the there
|
| + is no match in `tre_macros'. */
|
| +static const char *tre_expand_macro(const char *s)
|
| +{
|
| + int i;
|
| + for (i = 0; tre_macros[i].c && tre_macros[i].c != *s; i++);
|
| + return tre_macros[i].expansion;
|
| +}
|
| +
|
| +static int
|
| +tre_compare_lit(const void *a, const void *b)
|
| +{
|
| + const tre_literal_t *const *la = a;
|
| + const tre_literal_t *const *lb = b;
|
| + /* assumes the range of valid code_min is < INT_MAX */
|
| + return la[0]->code_min - lb[0]->code_min;
|
| +}
|
| +
|
| +struct literals {
|
| + tre_mem_t mem;
|
| + tre_literal_t **a;
|
| + int len;
|
| + int cap;
|
| +};
|
| +
|
| +static tre_literal_t *tre_new_lit(struct literals *p)
|
| +{
|
| + tre_literal_t **a;
|
| + if (p->len >= p->cap) {
|
| + if (p->cap >= 1<<15)
|
| + return 0;
|
| + p->cap *= 2;
|
| + a = xrealloc(p->a, p->cap * sizeof *p->a);
|
| + if (!a)
|
| + return 0;
|
| + p->a = a;
|
| + }
|
| + a = p->a + p->len++;
|
| + *a = tre_mem_calloc(p->mem, sizeof **a);
|
| + return *a;
|
| +}
|
| +
|
| +static int add_icase_literals(struct literals *ls, int min, int max)
|
| +{
|
| + tre_literal_t *lit;
|
| + int b, e, c;
|
| + for (c=min; c<=max; ) {
|
| + /* assumes islower(c) and isupper(c) are exclusive
|
| + and toupper(c)!=c if islower(c).
|
| + multiple opposite case characters are not supported */
|
| + if (tre_islower(c)) {
|
| + b = e = tre_toupper(c);
|
| + for (c++, e++; c<=max; c++, e++)
|
| + if (tre_toupper(c) != e) break;
|
| + } else if (tre_isupper(c)) {
|
| + b = e = tre_tolower(c);
|
| + for (c++, e++; c<=max; c++, e++)
|
| + if (tre_tolower(c) != e) break;
|
| + } else {
|
| + c++;
|
| + continue;
|
| + }
|
| + lit = tre_new_lit(ls);
|
| + if (!lit)
|
| + return -1;
|
| + lit->code_min = b;
|
| + lit->code_max = e-1;
|
| + lit->position = -1;
|
| + }
|
| + return 0;
|
| +}
|
| +
|
| +
|
| +/* Maximum number of character classes in a negated bracket expression. */
|
| +#define MAX_NEG_CLASSES 64
|
| +
|
| +struct neg {
|
| + int negate;
|
| + int len;
|
| + tre_ctype_t a[MAX_NEG_CLASSES];
|
| +};
|
| +
|
| +// TODO: parse bracket into a set of non-overlapping [lo,hi] ranges
|
| +
|
| +/*
|
| +bracket grammar:
|
| +Bracket = '[' List ']' | '[^' List ']'
|
| +List = Term | List Term
|
| +Term = Char | Range | Chclass | Eqclass
|
| +Range = Char '-' Char | Char '-' '-'
|
| +Char = Coll | coll_single
|
| +Meta = ']' | '-'
|
| +Coll = '[.' coll_single '.]' | '[.' coll_multi '.]' | '[.' Meta '.]'
|
| +Eqclass = '[=' coll_single '=]' | '[=' coll_multi '=]'
|
| +Chclass = '[:' class ':]'
|
| +
|
| +coll_single is a single char collating element but it can be
|
| + '-' only at the beginning or end of a List and
|
| + ']' only at the beginning of a List and
|
| + '^' anywhere except after the openning '['
|
| +*/
|
| +
|
| +static reg_errcode_t parse_bracket_terms(tre_parse_ctx_t *ctx, const char *s, struct literals *ls, struct neg *neg)
|
| +{
|
| + const char *start = s;
|
| + tre_ctype_t class;
|
| + int min, max;
|
| + wchar_t wc;
|
| + int len;
|
| +
|
| + for (;;) {
|
| + class = 0;
|
| + len = mbtowc(&wc, s, -1);
|
| + if (len <= 0)
|
| + return *s ? REG_BADPAT : REG_EBRACK;
|
| + if (*s == ']' && s != start) {
|
| + ctx->s = s+1;
|
| + return REG_OK;
|
| + }
|
| + if (*s == '-' && s != start && s[1] != ']' &&
|
| + /* extension: [a-z--@] is accepted as [a-z]|[--@] */
|
| + (s[1] != '-' || s[2] == ']'))
|
| + return REG_ERANGE;
|
| + if (*s == '[' && (s[1] == '.' || s[1] == '='))
|
| + /* collating symbols and equivalence classes are not supported */
|
| + return REG_ECOLLATE;
|
| + if (*s == '[' && s[1] == ':') {
|
| + char tmp[CHARCLASS_NAME_MAX+1];
|
| + s += 2;
|
| + for (len=0; len < CHARCLASS_NAME_MAX && s[len]; len++) {
|
| + if (s[len] == ':') {
|
| + memcpy(tmp, s, len);
|
| + tmp[len] = 0;
|
| + class = tre_ctype(tmp);
|
| + break;
|
| + }
|
| + }
|
| + if (!class || s[len+1] != ']')
|
| + return REG_ECTYPE;
|
| + min = 0;
|
| + max = TRE_CHAR_MAX;
|
| + s += len+2;
|
| + } else {
|
| + min = max = wc;
|
| + s += len;
|
| + if (*s == '-' && s[1] != ']') {
|
| + s++;
|
| + len = mbtowc(&wc, s, -1);
|
| + max = wc;
|
| + /* XXX - Should use collation order instead of
|
| + encoding values in character ranges. */
|
| + if (len <= 0 || min > max)
|
| + return REG_ERANGE;
|
| + s += len;
|
| + }
|
| + }
|
| +
|
| + if (class && neg->negate) {
|
| + if (neg->len >= MAX_NEG_CLASSES)
|
| + return REG_ESPACE;
|
| + neg->a[neg->len++] = class;
|
| + } else {
|
| + tre_literal_t *lit = tre_new_lit(ls);
|
| + if (!lit)
|
| + return REG_ESPACE;
|
| + lit->code_min = min;
|
| + lit->code_max = max;
|
| + lit->class = class;
|
| + lit->position = -1;
|
| +
|
| + /* Add opposite-case codepoints if REG_ICASE is present.
|
| + It seems that POSIX requires that bracket negation
|
| + should happen before case-folding, but most practical
|
| + implementations do it the other way around. Changing
|
| + the order would need efficient representation of
|
| + case-fold ranges and bracket range sets even with
|
| + simple patterns so this is ok for now. */
|
| + if (ctx->cflags & REG_ICASE && !class)
|
| + if (add_icase_literals(ls, min, max))
|
| + return REG_ESPACE;
|
| + }
|
| + }
|
| +}
|
| +
|
| +static reg_errcode_t parse_bracket(tre_parse_ctx_t *ctx, const char *s)
|
| +{
|
| + int i, max, min, negmax, negmin;
|
| + tre_ast_node_t *node = 0, *n;
|
| + tre_ctype_t *nc = 0;
|
| + tre_literal_t *lit;
|
| + struct literals ls;
|
| + struct neg neg;
|
| + reg_errcode_t err;
|
| +
|
| + ls.mem = ctx->mem;
|
| + ls.len = 0;
|
| + ls.cap = 32;
|
| + ls.a = xmalloc(ls.cap * sizeof *ls.a);
|
| + if (!ls.a)
|
| + return REG_ESPACE;
|
| + neg.len = 0;
|
| + neg.negate = *s == '^';
|
| + if (neg.negate)
|
| + s++;
|
| +
|
| + err = parse_bracket_terms(ctx, s, &ls, &neg);
|
| + if (err != REG_OK)
|
| + goto parse_bracket_done;
|
| +
|
| + if (neg.negate) {
|
| + /* Sort the array if we need to negate it. */
|
| + qsort(ls.a, ls.len, sizeof *ls.a, tre_compare_lit);
|
| + /* extra lit for the last negated range */
|
| + lit = tre_new_lit(&ls);
|
| + if (!lit) {
|
| + err = REG_ESPACE;
|
| + goto parse_bracket_done;
|
| + }
|
| + lit->code_min = TRE_CHAR_MAX+1;
|
| + lit->code_max = TRE_CHAR_MAX+1;
|
| + lit->position = -1;
|
| + /* negated classes */
|
| + if (neg.len) {
|
| + nc = tre_mem_alloc(ctx->mem, (neg.len+1)*sizeof *neg.a);
|
| + if (!nc) {
|
| + err = REG_ESPACE;
|
| + goto parse_bracket_done;
|
| + }
|
| + memcpy(nc, neg.a, neg.len*sizeof *neg.a);
|
| + nc[neg.len] = 0;
|
| + }
|
| + }
|
| +
|
| + /* Build a union of the items in the array, negated if necessary. */
|
| + negmax = negmin = 0;
|
| + for (i = 0; i < ls.len; i++) {
|
| + lit = ls.a[i];
|
| + min = lit->code_min;
|
| + max = lit->code_max;
|
| + if (neg.negate) {
|
| + if (min <= negmin) {
|
| + /* Overlap. */
|
| + negmin = MAX(max + 1, negmin);
|
| + continue;
|
| + }
|
| + negmax = min - 1;
|
| + lit->code_min = negmin;
|
| + lit->code_max = negmax;
|
| + negmin = max + 1;
|
| + }
|
| + lit->position = ctx->position;
|
| + lit->neg_classes = nc;
|
| + n = tre_ast_new_node(ctx->mem, LITERAL, lit);
|
| + node = tre_ast_new_union(ctx->mem, node, n);
|
| + if (!node) {
|
| + err = REG_ESPACE;
|
| + break;
|
| + }
|
| + }
|
| +
|
| +parse_bracket_done:
|
| + xfree(ls.a);
|
| + ctx->position++;
|
| + ctx->n = node;
|
| + return err;
|
| +}
|
| +
|
| +static const char *parse_dup_count(const char *s, int *n)
|
| +{
|
| + *n = -1;
|
| + if (!isdigit(*s))
|
| + return s;
|
| + *n = 0;
|
| + for (;;) {
|
| + *n = 10 * *n + (*s - '0');
|
| + s++;
|
| + if (!isdigit(*s) || *n > RE_DUP_MAX)
|
| + break;
|
| + }
|
| + return s;
|
| +}
|
| +
|
| +static reg_errcode_t parse_dup(tre_parse_ctx_t *ctx, const char *s)
|
| +{
|
| + int min, max;
|
| +
|
| + s = parse_dup_count(s, &min);
|
| + if (*s == ',')
|
| + s = parse_dup_count(s+1, &max);
|
| + else
|
| + max = min;
|
| +
|
| + if (
|
| + (max < min && max >= 0) ||
|
| + max > RE_DUP_MAX ||
|
| + min > RE_DUP_MAX ||
|
| + min < 0 ||
|
| + (!(ctx->cflags & REG_EXTENDED) && *s++ != '\\') ||
|
| + *s++ != '}'
|
| + )
|
| + return REG_BADBR;
|
| +
|
| + if (min == 0 && max == 0)
|
| + ctx->n = tre_ast_new_literal(ctx->mem, EMPTY, -1, -1);
|
| + else
|
| + ctx->n = tre_ast_new_iter(ctx->mem, ctx->n, min, max, 0);
|
| + if (!ctx->n)
|
| + return REG_ESPACE;
|
| + ctx->s = s;
|
| + return REG_OK;
|
| +}
|
| +
|
| +static int hexval(unsigned c)
|
| +{
|
| + if (c-'0'<10) return c-'0';
|
| + c |= 32;
|
| + if (c-'a'<6) return c-'a'+10;
|
| + return -1;
|
| +}
|
| +
|
| +static reg_errcode_t marksub(tre_parse_ctx_t *ctx, tre_ast_node_t *node, int subid)
|
| +{
|
| + if (node->submatch_id >= 0) {
|
| + tre_ast_node_t *n = tre_ast_new_literal(ctx->mem, EMPTY, -1, -1);
|
| + if (!n)
|
| + return REG_ESPACE;
|
| + n = tre_ast_new_catenation(ctx->mem, n, node);
|
| + if (!n)
|
| + return REG_ESPACE;
|
| + n->num_submatches = node->num_submatches;
|
| + node = n;
|
| + }
|
| + node->submatch_id = subid;
|
| + node->num_submatches++;
|
| + ctx->n = node;
|
| + return REG_OK;
|
| +}
|
| +
|
| +/*
|
| +BRE grammar:
|
| +Regex = Branch | '^' | '$' | '^$' | '^' Branch | Branch '$' | '^' Branch '$'
|
| +Branch = Atom | Branch Atom
|
| +Atom = char | quoted_char | '.' | Bracket | Atom Dup | '\(' Branch '\)' | back_ref
|
| +Dup = '*' | '\{' Count '\}' | '\{' Count ',\}' | '\{' Count ',' Count '\}'
|
| +
|
| +(leading ^ and trailing $ in a sub expr may be an anchor or literal as well)
|
| +
|
| +ERE grammar:
|
| +Regex = Branch | Regex '|' Branch
|
| +Branch = Atom | Branch Atom
|
| +Atom = char | quoted_char | '.' | Bracket | Atom Dup | '(' Regex ')' | '^' | '$'
|
| +Dup = '*' | '+' | '?' | '{' Count '}' | '{' Count ',}' | '{' Count ',' Count '}'
|
| +
|
| +(a*+?, ^*, $+, \X, {, (|a) are unspecified)
|
| +*/
|
| +
|
| +static reg_errcode_t parse_atom(tre_parse_ctx_t *ctx, const char *s)
|
| +{
|
| + int len, ere = ctx->cflags & REG_EXTENDED;
|
| + const char *p;
|
| + tre_ast_node_t *node;
|
| + wchar_t wc;
|
| + switch (*s) {
|
| + case '[':
|
| + return parse_bracket(ctx, s+1);
|
| + case '\\':
|
| + p = tre_expand_macro(s+1);
|
| + if (p) {
|
| + /* assume \X expansion is a single atom */
|
| + reg_errcode_t err = parse_atom(ctx, p);
|
| + ctx->s = s+2;
|
| + return err;
|
| + }
|
| + /* extensions: \b, \B, \<, \>, \xHH \x{HHHH} */
|
| + switch (*++s) {
|
| + case 0:
|
| + return REG_EESCAPE;
|
| + case 'b':
|
| + node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_AT_WB, -1);
|
| + break;
|
| + case 'B':
|
| + node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_AT_WB_NEG, -1);
|
| + break;
|
| + case '<':
|
| + node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_AT_BOW, -1);
|
| + break;
|
| + case '>':
|
| + node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_AT_EOW, -1);
|
| + break;
|
| + case 'x':
|
| + s++;
|
| + int i, v = 0, c;
|
| + len = 2;
|
| + if (*s == '{') {
|
| + len = 8;
|
| + s++;
|
| + }
|
| + for (i=0; i<len && v<0x110000; i++) {
|
| + c = hexval(s[i]);
|
| + if (c < 0) break;
|
| + v = 16*v + c;
|
| + }
|
| + s += i;
|
| + if (len == 8) {
|
| + if (*s != '}')
|
| + return REG_EBRACE;
|
| + s++;
|
| + }
|
| + node = tre_ast_new_literal(ctx->mem, v, v, ctx->position);
|
| + ctx->position++;
|
| + s--;
|
| + break;
|
| + default:
|
| + if (!ere && (unsigned)*s-'1' < 9) {
|
| + /* back reference */
|
| + int val = *s - '0';
|
| + node = tre_ast_new_literal(ctx->mem, BACKREF, val, ctx->position);
|
| + ctx->max_backref = MAX(val, ctx->max_backref);
|
| + } else {
|
| + /* extension: accept unknown escaped char
|
| + as a literal */
|
| + goto parse_literal;
|
| + }
|
| + ctx->position++;
|
| + }
|
| + s++;
|
| + break;
|
| + case '.':
|
| + if (ctx->cflags & REG_NEWLINE) {
|
| + tre_ast_node_t *tmp1, *tmp2;
|
| + tmp1 = tre_ast_new_literal(ctx->mem, 0, '\n'-1, ctx->position++);
|
| + tmp2 = tre_ast_new_literal(ctx->mem, '\n'+1, TRE_CHAR_MAX, ctx->position++);
|
| + if (tmp1 && tmp2)
|
| + node = tre_ast_new_union(ctx->mem, tmp1, tmp2);
|
| + else
|
| + node = 0;
|
| + } else {
|
| + node = tre_ast_new_literal(ctx->mem, 0, TRE_CHAR_MAX, ctx->position++);
|
| + }
|
| + s++;
|
| + break;
|
| + case '^':
|
| + /* '^' has a special meaning everywhere in EREs, and at beginning of BRE. */
|
| + if (!ere && s != ctx->re)
|
| + goto parse_literal;
|
| + node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_AT_BOL, -1);
|
| + s++;
|
| + break;
|
| + case '$':
|
| + /* '$' is special everywhere in EREs, and in the end of the string in BREs. */
|
| + if (!ere && s[1])
|
| + goto parse_literal;
|
| + node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_AT_EOL, -1);
|
| + s++;
|
| + break;
|
| + case '*':
|
| + case '|':
|
| + case '{':
|
| + case '+':
|
| + case '?':
|
| + if (!ere)
|
| + goto parse_literal;
|
| + case 0:
|
| + node = tre_ast_new_literal(ctx->mem, EMPTY, -1, -1);
|
| + break;
|
| + default:
|
| +parse_literal:
|
| + len = mbtowc(&wc, s, -1);
|
| + if (len < 0)
|
| + return REG_BADPAT;
|
| + if (ctx->cflags & REG_ICASE && (tre_isupper(wc) || tre_islower(wc))) {
|
| + tre_ast_node_t *tmp1, *tmp2;
|
| + /* multiple opposite case characters are not supported */
|
| + tmp1 = tre_ast_new_literal(ctx->mem, tre_toupper(wc), tre_toupper(wc), ctx->position);
|
| + tmp2 = tre_ast_new_literal(ctx->mem, tre_tolower(wc), tre_tolower(wc), ctx->position);
|
| + if (tmp1 && tmp2)
|
| + node = tre_ast_new_union(ctx->mem, tmp1, tmp2);
|
| + else
|
| + node = 0;
|
| + } else {
|
| + node = tre_ast_new_literal(ctx->mem, wc, wc, ctx->position);
|
| + }
|
| + ctx->position++;
|
| + s += len;
|
| + break;
|
| + }
|
| + if (!node)
|
| + return REG_ESPACE;
|
| + ctx->n = node;
|
| + ctx->s = s;
|
| + return REG_OK;
|
| +}
|
| +
|
| +#define PUSHPTR(err, s, v) do { \
|
| + if ((err = tre_stack_push_voidptr(s, v)) != REG_OK) \
|
| + return err; \
|
| +} while(0)
|
| +
|
| +#define PUSHINT(err, s, v) do { \
|
| + if ((err = tre_stack_push_int(s, v)) != REG_OK) \
|
| + return err; \
|
| +} while(0)
|
| +
|
| +static reg_errcode_t tre_parse(tre_parse_ctx_t *ctx)
|
| +{
|
| + tre_ast_node_t *nbranch=0, *nunion=0;
|
| + int ere = ctx->cflags & REG_EXTENDED;
|
| + const char *s = ctx->re;
|
| + int subid = 0;
|
| + int depth = 0;
|
| + reg_errcode_t err;
|
| + tre_stack_t *stack = ctx->stack;
|
| +
|
| + PUSHINT(err, stack, subid++);
|
| + for (;;) {
|
| + if ((!ere && *s == '\\' && s[1] == '(') ||
|
| + (ere && *s == '(')) {
|
| + PUSHPTR(err, stack, nunion);
|
| + PUSHPTR(err, stack, nbranch);
|
| + PUSHINT(err, stack, subid++);
|
| + s++;
|
| + if (!ere)
|
| + s++;
|
| + depth++;
|
| + nbranch = nunion = 0;
|
| + continue;
|
| + }
|
| + if ((!ere && *s == '\\' && s[1] == ')') ||
|
| + (ere && *s == ')' && depth)) {
|
| + ctx->n = tre_ast_new_literal(ctx->mem, EMPTY, -1, -1);
|
| + if (!ctx->n)
|
| + return REG_ESPACE;
|
| + } else {
|
| + err = parse_atom(ctx, s);
|
| + if (err != REG_OK)
|
| + return err;
|
| + s = ctx->s;
|
| + }
|
| +
|
| + parse_iter:
|
| + /* extension: repetitions are accepted after an empty node
|
| + eg. (+), ^*, a$?, a|{2} */
|
| + switch (*s) {
|
| + case '+':
|
| + case '?':
|
| + if (!ere)
|
| + break;
|
| + /* fallthrough */
|
| + case '*':;
|
| + int min=0, max=-1;
|
| + if (*s == '+')
|
| + min = 1;
|
| + if (*s == '?')
|
| + max = 1;
|
| + s++;
|
| + ctx->n = tre_ast_new_iter(ctx->mem, ctx->n, min, max, 0);
|
| + if (!ctx->n)
|
| + return REG_ESPACE;
|
| + /* extension: multiple consecutive *+?{,} is unspecified,
|
| + but (a+)+ has to be supported so accepting a++ makes
|
| + sense, note however that the RE_DUP_MAX limit can be
|
| + circumvented: (a{255}){255} uses a lot of memory.. */
|
| + goto parse_iter;
|
| + case '\\':
|
| + if (ere || s[1] != '{')
|
| + break;
|
| + s++;
|
| + goto parse_brace;
|
| + case '{':
|
| + if (!ere)
|
| + break;
|
| + parse_brace:
|
| + err = parse_dup(ctx, s+1);
|
| + if (err != REG_OK)
|
| + return err;
|
| + s = ctx->s;
|
| + goto parse_iter;
|
| + }
|
| +
|
| + nbranch = tre_ast_new_catenation(ctx->mem, nbranch, ctx->n);
|
| + if ((ere && *s == '|') ||
|
| + (ere && *s == ')' && depth) ||
|
| + (!ere && *s == '\\' && s[1] == ')') ||
|
| + !*s) {
|
| + /* extension: empty branch is unspecified (), (|a), (a|)
|
| + here they are not rejected but match on empty string */
|
| + int c = *s;
|
| + nunion = tre_ast_new_union(ctx->mem, nunion, nbranch);
|
| + nbranch = 0;
|
| + if (c != '|') {
|
| + if (c == '\\') {
|
| + if (!depth) return REG_EPAREN;
|
| + s+=2;
|
| + } else if (c == ')')
|
| + s++;
|
| + depth--;
|
| + err = marksub(ctx, nunion, tre_stack_pop_int(stack));
|
| + if (err != REG_OK)
|
| + return err;
|
| + if (!c && depth<0) {
|
| + ctx->submatch_id = subid;
|
| + return REG_OK;
|
| + }
|
| + if (!c || depth<0)
|
| + return REG_EPAREN;
|
| + nbranch = tre_stack_pop_voidptr(stack);
|
| + nunion = tre_stack_pop_voidptr(stack);
|
| + goto parse_iter;
|
| + }
|
| + s++;
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +/***********************************************************************
|
| + from tre-compile.c
|
| +***********************************************************************/
|
| +
|
| +
|
| +/*
|
| + TODO:
|
| + - Fix tre_ast_to_tnfa() to recurse using a stack instead of recursive
|
| + function calls.
|
| +*/
|
| +
|
| +/*
|
| + Algorithms to setup tags so that submatch addressing can be done.
|
| +*/
|
| +
|
| +
|
| +/* Inserts a catenation node to the root of the tree given in `node'.
|
| + As the left child a new tag with number `tag_id' to `node' is added,
|
| + and the right child is the old root. */
|
| +static reg_errcode_t
|
| +tre_add_tag_left(tre_mem_t mem, tre_ast_node_t *node, int tag_id)
|
| +{
|
| + tre_catenation_t *c;
|
| +
|
| + c = tre_mem_alloc(mem, sizeof(*c));
|
| + if (c == NULL)
|
| + return REG_ESPACE;
|
| + c->left = tre_ast_new_literal(mem, TAG, tag_id, -1);
|
| + if (c->left == NULL)
|
| + return REG_ESPACE;
|
| + c->right = tre_mem_alloc(mem, sizeof(tre_ast_node_t));
|
| + if (c->right == NULL)
|
| + return REG_ESPACE;
|
| +
|
| + c->right->obj = node->obj;
|
| + c->right->type = node->type;
|
| + c->right->nullable = -1;
|
| + c->right->submatch_id = -1;
|
| + c->right->firstpos = NULL;
|
| + c->right->lastpos = NULL;
|
| + c->right->num_tags = 0;
|
| + node->obj = c;
|
| + node->type = CATENATION;
|
| + return REG_OK;
|
| +}
|
| +
|
| +/* Inserts a catenation node to the root of the tree given in `node'.
|
| + As the right child a new tag with number `tag_id' to `node' is added,
|
| + and the left child is the old root. */
|
| +static reg_errcode_t
|
| +tre_add_tag_right(tre_mem_t mem, tre_ast_node_t *node, int tag_id)
|
| +{
|
| + tre_catenation_t *c;
|
| +
|
| + c = tre_mem_alloc(mem, sizeof(*c));
|
| + if (c == NULL)
|
| + return REG_ESPACE;
|
| + c->right = tre_ast_new_literal(mem, TAG, tag_id, -1);
|
| + if (c->right == NULL)
|
| + return REG_ESPACE;
|
| + c->left = tre_mem_alloc(mem, sizeof(tre_ast_node_t));
|
| + if (c->left == NULL)
|
| + return REG_ESPACE;
|
| +
|
| + c->left->obj = node->obj;
|
| + c->left->type = node->type;
|
| + c->left->nullable = -1;
|
| + c->left->submatch_id = -1;
|
| + c->left->firstpos = NULL;
|
| + c->left->lastpos = NULL;
|
| + c->left->num_tags = 0;
|
| + node->obj = c;
|
| + node->type = CATENATION;
|
| + return REG_OK;
|
| +}
|
| +
|
| +typedef enum {
|
| + ADDTAGS_RECURSE,
|
| + ADDTAGS_AFTER_ITERATION,
|
| + ADDTAGS_AFTER_UNION_LEFT,
|
| + ADDTAGS_AFTER_UNION_RIGHT,
|
| + ADDTAGS_AFTER_CAT_LEFT,
|
| + ADDTAGS_AFTER_CAT_RIGHT,
|
| + ADDTAGS_SET_SUBMATCH_END
|
| +} tre_addtags_symbol_t;
|
| +
|
| +
|
| +typedef struct {
|
| + int tag;
|
| + int next_tag;
|
| +} tre_tag_states_t;
|
| +
|
| +
|
| +/* Go through `regset' and set submatch data for submatches that are
|
| + using this tag. */
|
| +static void
|
| +tre_purge_regset(int *regset, tre_tnfa_t *tnfa, int tag)
|
| +{
|
| + int i;
|
| +
|
| + for (i = 0; regset[i] >= 0; i++)
|
| + {
|
| + int id = regset[i] / 2;
|
| + int start = !(regset[i] % 2);
|
| + if (start)
|
| + tnfa->submatch_data[id].so_tag = tag;
|
| + else
|
| + tnfa->submatch_data[id].eo_tag = tag;
|
| + }
|
| + regset[0] = -1;
|
| +}
|
| +
|
| +
|
| +/* Adds tags to appropriate locations in the parse tree in `tree', so that
|
| + subexpressions marked for submatch addressing can be traced. */
|
| +static reg_errcode_t
|
| +tre_add_tags(tre_mem_t mem, tre_stack_t *stack, tre_ast_node_t *tree,
|
| + tre_tnfa_t *tnfa)
|
| +{
|
| + reg_errcode_t status = REG_OK;
|
| + tre_addtags_symbol_t symbol;
|
| + tre_ast_node_t *node = tree; /* Tree node we are currently looking at. */
|
| + int bottom = tre_stack_num_objects(stack);
|
| + /* True for first pass (counting number of needed tags) */
|
| + int first_pass = (mem == NULL || tnfa == NULL);
|
| + int *regset, *orig_regset;
|
| + int num_tags = 0; /* Total number of tags. */
|
| + int num_minimals = 0; /* Number of special minimal tags. */
|
| + int tag = 0; /* The tag that is to be added next. */
|
| + int next_tag = 1; /* Next tag to use after this one. */
|
| + int *parents; /* Stack of submatches the current submatch is
|
| + contained in. */
|
| + int minimal_tag = -1; /* Tag that marks the beginning of a minimal match. */
|
| + tre_tag_states_t *saved_states;
|
| +
|
| + tre_tag_direction_t direction = TRE_TAG_MINIMIZE;
|
| + if (!first_pass)
|
| + {
|
| + tnfa->end_tag = 0;
|
| + tnfa->minimal_tags[0] = -1;
|
| + }
|
| +
|
| + regset = xmalloc(sizeof(*regset) * ((tnfa->num_submatches + 1) * 2));
|
| + if (regset == NULL)
|
| + return REG_ESPACE;
|
| + regset[0] = -1;
|
| + orig_regset = regset;
|
| +
|
| + parents = xmalloc(sizeof(*parents) * (tnfa->num_submatches + 1));
|
| + if (parents == NULL)
|
| + {
|
| + xfree(regset);
|
| + return REG_ESPACE;
|
| + }
|
| + parents[0] = -1;
|
| +
|
| + saved_states = xmalloc(sizeof(*saved_states) * (tnfa->num_submatches + 1));
|
| + if (saved_states == NULL)
|
| + {
|
| + xfree(regset);
|
| + xfree(parents);
|
| + return REG_ESPACE;
|
| + }
|
| + else
|
| + {
|
| + unsigned int i;
|
| + for (i = 0; i <= tnfa->num_submatches; i++)
|
| + saved_states[i].tag = -1;
|
| + }
|
| +
|
| + STACK_PUSH(stack, voidptr, node);
|
| + STACK_PUSH(stack, int, ADDTAGS_RECURSE);
|
| +
|
| + while (tre_stack_num_objects(stack) > bottom)
|
| + {
|
| + if (status != REG_OK)
|
| + break;
|
| +
|
| + symbol = (tre_addtags_symbol_t)tre_stack_pop_int(stack);
|
| + switch (symbol)
|
| + {
|
| +
|
| + case ADDTAGS_SET_SUBMATCH_END:
|
| + {
|
| + int id = tre_stack_pop_int(stack);
|
| + int i;
|
| +
|
| + /* Add end of this submatch to regset. */
|
| + for (i = 0; regset[i] >= 0; i++);
|
| + regset[i] = id * 2 + 1;
|
| + regset[i + 1] = -1;
|
| +
|
| + /* Pop this submatch from the parents stack. */
|
| + for (i = 0; parents[i] >= 0; i++);
|
| + parents[i - 1] = -1;
|
| + break;
|
| + }
|
| +
|
| + case ADDTAGS_RECURSE:
|
| + node = tre_stack_pop_voidptr(stack);
|
| +
|
| + if (node->submatch_id >= 0)
|
| + {
|
| + int id = node->submatch_id;
|
| + int i;
|
| +
|
| +
|
| + /* Add start of this submatch to regset. */
|
| + for (i = 0; regset[i] >= 0; i++);
|
| + regset[i] = id * 2;
|
| + regset[i + 1] = -1;
|
| +
|
| + if (!first_pass)
|
| + {
|
| + for (i = 0; parents[i] >= 0; i++);
|
| + tnfa->submatch_data[id].parents = NULL;
|
| + if (i > 0)
|
| + {
|
| + int *p = xmalloc(sizeof(*p) * (i + 1));
|
| + if (p == NULL)
|
| + {
|
| + status = REG_ESPACE;
|
| + break;
|
| + }
|
| + assert(tnfa->submatch_data[id].parents == NULL);
|
| + tnfa->submatch_data[id].parents = p;
|
| + for (i = 0; parents[i] >= 0; i++)
|
| + p[i] = parents[i];
|
| + p[i] = -1;
|
| + }
|
| + }
|
| +
|
| + /* Add end of this submatch to regset after processing this
|
| + node. */
|
| + STACK_PUSHX(stack, int, node->submatch_id);
|
| + STACK_PUSHX(stack, int, ADDTAGS_SET_SUBMATCH_END);
|
| + }
|
| +
|
| + switch (node->type)
|
| + {
|
| + case LITERAL:
|
| + {
|
| + tre_literal_t *lit = node->obj;
|
| +
|
| + if (!IS_SPECIAL(lit) || IS_BACKREF(lit))
|
| + {
|
| + int i;
|
| + if (regset[0] >= 0)
|
| + {
|
| + /* Regset is not empty, so add a tag before the
|
| + literal or backref. */
|
| + if (!first_pass)
|
| + {
|
| + status = tre_add_tag_left(mem, node, tag);
|
| + tnfa->tag_directions[tag] = direction;
|
| + if (minimal_tag >= 0)
|
| + {
|
| + for (i = 0; tnfa->minimal_tags[i] >= 0; i++);
|
| + tnfa->minimal_tags[i] = tag;
|
| + tnfa->minimal_tags[i + 1] = minimal_tag;
|
| + tnfa->minimal_tags[i + 2] = -1;
|
| + minimal_tag = -1;
|
| + num_minimals++;
|
| + }
|
| + tre_purge_regset(regset, tnfa, tag);
|
| + }
|
| + else
|
| + {
|
| + node->num_tags = 1;
|
| + }
|
| +
|
| + regset[0] = -1;
|
| + tag = next_tag;
|
| + num_tags++;
|
| + next_tag++;
|
| + }
|
| + }
|
| + else
|
| + {
|
| + assert(!IS_TAG(lit));
|
| + }
|
| + break;
|
| + }
|
| + case CATENATION:
|
| + {
|
| + tre_catenation_t *cat = node->obj;
|
| + tre_ast_node_t *left = cat->left;
|
| + tre_ast_node_t *right = cat->right;
|
| + int reserved_tag = -1;
|
| +
|
| +
|
| + /* After processing right child. */
|
| + STACK_PUSHX(stack, voidptr, node);
|
| + STACK_PUSHX(stack, int, ADDTAGS_AFTER_CAT_RIGHT);
|
| +
|
| + /* Process right child. */
|
| + STACK_PUSHX(stack, voidptr, right);
|
| + STACK_PUSHX(stack, int, ADDTAGS_RECURSE);
|
| +
|
| + /* After processing left child. */
|
| + STACK_PUSHX(stack, int, next_tag + left->num_tags);
|
| + if (left->num_tags > 0 && right->num_tags > 0)
|
| + {
|
| + /* Reserve the next tag to the right child. */
|
| + reserved_tag = next_tag;
|
| + next_tag++;
|
| + }
|
| + STACK_PUSHX(stack, int, reserved_tag);
|
| + STACK_PUSHX(stack, int, ADDTAGS_AFTER_CAT_LEFT);
|
| +
|
| + /* Process left child. */
|
| + STACK_PUSHX(stack, voidptr, left);
|
| + STACK_PUSHX(stack, int, ADDTAGS_RECURSE);
|
| +
|
| + }
|
| + break;
|
| + case ITERATION:
|
| + {
|
| + tre_iteration_t *iter = node->obj;
|
| +
|
| + if (first_pass)
|
| + {
|
| + STACK_PUSHX(stack, int, regset[0] >= 0 || iter->minimal);
|
| + }
|
| + else
|
| + {
|
| + STACK_PUSHX(stack, int, tag);
|
| + STACK_PUSHX(stack, int, iter->minimal);
|
| + }
|
| + STACK_PUSHX(stack, voidptr, node);
|
| + STACK_PUSHX(stack, int, ADDTAGS_AFTER_ITERATION);
|
| +
|
| + STACK_PUSHX(stack, voidptr, iter->arg);
|
| + STACK_PUSHX(stack, int, ADDTAGS_RECURSE);
|
| +
|
| + /* Regset is not empty, so add a tag here. */
|
| + if (regset[0] >= 0 || iter->minimal)
|
| + {
|
| + if (!first_pass)
|
| + {
|
| + int i;
|
| + status = tre_add_tag_left(mem, node, tag);
|
| + if (iter->minimal)
|
| + tnfa->tag_directions[tag] = TRE_TAG_MAXIMIZE;
|
| + else
|
| + tnfa->tag_directions[tag] = direction;
|
| + if (minimal_tag >= 0)
|
| + {
|
| + for (i = 0; tnfa->minimal_tags[i] >= 0; i++);
|
| + tnfa->minimal_tags[i] = tag;
|
| + tnfa->minimal_tags[i + 1] = minimal_tag;
|
| + tnfa->minimal_tags[i + 2] = -1;
|
| + minimal_tag = -1;
|
| + num_minimals++;
|
| + }
|
| + tre_purge_regset(regset, tnfa, tag);
|
| + }
|
| +
|
| + regset[0] = -1;
|
| + tag = next_tag;
|
| + num_tags++;
|
| + next_tag++;
|
| + }
|
| + direction = TRE_TAG_MINIMIZE;
|
| + }
|
| + break;
|
| + case UNION:
|
| + {
|
| + tre_union_t *uni = node->obj;
|
| + tre_ast_node_t *left = uni->left;
|
| + tre_ast_node_t *right = uni->right;
|
| + int left_tag;
|
| + int right_tag;
|
| +
|
| + if (regset[0] >= 0)
|
| + {
|
| + left_tag = next_tag;
|
| + right_tag = next_tag + 1;
|
| + }
|
| + else
|
| + {
|
| + left_tag = tag;
|
| + right_tag = next_tag;
|
| + }
|
| +
|
| + /* After processing right child. */
|
| + STACK_PUSHX(stack, int, right_tag);
|
| + STACK_PUSHX(stack, int, left_tag);
|
| + STACK_PUSHX(stack, voidptr, regset);
|
| + STACK_PUSHX(stack, int, regset[0] >= 0);
|
| + STACK_PUSHX(stack, voidptr, node);
|
| + STACK_PUSHX(stack, voidptr, right);
|
| + STACK_PUSHX(stack, voidptr, left);
|
| + STACK_PUSHX(stack, int, ADDTAGS_AFTER_UNION_RIGHT);
|
| +
|
| + /* Process right child. */
|
| + STACK_PUSHX(stack, voidptr, right);
|
| + STACK_PUSHX(stack, int, ADDTAGS_RECURSE);
|
| +
|
| + /* After processing left child. */
|
| + STACK_PUSHX(stack, int, ADDTAGS_AFTER_UNION_LEFT);
|
| +
|
| + /* Process left child. */
|
| + STACK_PUSHX(stack, voidptr, left);
|
| + STACK_PUSHX(stack, int, ADDTAGS_RECURSE);
|
| +
|
| + /* Regset is not empty, so add a tag here. */
|
| + if (regset[0] >= 0)
|
| + {
|
| + if (!first_pass)
|
| + {
|
| + int i;
|
| + status = tre_add_tag_left(mem, node, tag);
|
| + tnfa->tag_directions[tag] = direction;
|
| + if (minimal_tag >= 0)
|
| + {
|
| + for (i = 0; tnfa->minimal_tags[i] >= 0; i++);
|
| + tnfa->minimal_tags[i] = tag;
|
| + tnfa->minimal_tags[i + 1] = minimal_tag;
|
| + tnfa->minimal_tags[i + 2] = -1;
|
| + minimal_tag = -1;
|
| + num_minimals++;
|
| + }
|
| + tre_purge_regset(regset, tnfa, tag);
|
| + }
|
| +
|
| + regset[0] = -1;
|
| + tag = next_tag;
|
| + num_tags++;
|
| + next_tag++;
|
| + }
|
| +
|
| + if (node->num_submatches > 0)
|
| + {
|
| + /* The next two tags are reserved for markers. */
|
| + next_tag++;
|
| + tag = next_tag;
|
| + next_tag++;
|
| + }
|
| +
|
| + break;
|
| + }
|
| + }
|
| +
|
| + if (node->submatch_id >= 0)
|
| + {
|
| + int i;
|
| + /* Push this submatch on the parents stack. */
|
| + for (i = 0; parents[i] >= 0; i++);
|
| + parents[i] = node->submatch_id;
|
| + parents[i + 1] = -1;
|
| + }
|
| +
|
| + break; /* end case: ADDTAGS_RECURSE */
|
| +
|
| + case ADDTAGS_AFTER_ITERATION:
|
| + {
|
| + int minimal = 0;
|
| + int enter_tag;
|
| + node = tre_stack_pop_voidptr(stack);
|
| + if (first_pass)
|
| + {
|
| + node->num_tags = ((tre_iteration_t *)node->obj)->arg->num_tags
|
| + + tre_stack_pop_int(stack);
|
| + minimal_tag = -1;
|
| + }
|
| + else
|
| + {
|
| + minimal = tre_stack_pop_int(stack);
|
| + enter_tag = tre_stack_pop_int(stack);
|
| + if (minimal)
|
| + minimal_tag = enter_tag;
|
| + }
|
| +
|
| + if (!first_pass)
|
| + {
|
| + if (minimal)
|
| + direction = TRE_TAG_MINIMIZE;
|
| + else
|
| + direction = TRE_TAG_MAXIMIZE;
|
| + }
|
| + break;
|
| + }
|
| +
|
| + case ADDTAGS_AFTER_CAT_LEFT:
|
| + {
|
| + int new_tag = tre_stack_pop_int(stack);
|
| + next_tag = tre_stack_pop_int(stack);
|
| + if (new_tag >= 0)
|
| + {
|
| + tag = new_tag;
|
| + }
|
| + break;
|
| + }
|
| +
|
| + case ADDTAGS_AFTER_CAT_RIGHT:
|
| + node = tre_stack_pop_voidptr(stack);
|
| + if (first_pass)
|
| + node->num_tags = ((tre_catenation_t *)node->obj)->left->num_tags
|
| + + ((tre_catenation_t *)node->obj)->right->num_tags;
|
| + break;
|
| +
|
| + case ADDTAGS_AFTER_UNION_LEFT:
|
| + /* Lift the bottom of the `regset' array so that when processing
|
| + the right operand the items currently in the array are
|
| + invisible. The original bottom was saved at ADDTAGS_UNION and
|
| + will be restored at ADDTAGS_AFTER_UNION_RIGHT below. */
|
| + while (*regset >= 0)
|
| + regset++;
|
| + break;
|
| +
|
| + case ADDTAGS_AFTER_UNION_RIGHT:
|
| + {
|
| + int added_tags, tag_left, tag_right;
|
| + tre_ast_node_t *left = tre_stack_pop_voidptr(stack);
|
| + tre_ast_node_t *right = tre_stack_pop_voidptr(stack);
|
| + node = tre_stack_pop_voidptr(stack);
|
| + added_tags = tre_stack_pop_int(stack);
|
| + if (first_pass)
|
| + {
|
| + node->num_tags = ((tre_union_t *)node->obj)->left->num_tags
|
| + + ((tre_union_t *)node->obj)->right->num_tags + added_tags
|
| + + ((node->num_submatches > 0) ? 2 : 0);
|
| + }
|
| + regset = tre_stack_pop_voidptr(stack);
|
| + tag_left = tre_stack_pop_int(stack);
|
| + tag_right = tre_stack_pop_int(stack);
|
| +
|
| + /* Add tags after both children, the left child gets a smaller
|
| + tag than the right child. This guarantees that we prefer
|
| + the left child over the right child. */
|
| + /* XXX - This is not always necessary (if the children have
|
| + tags which must be seen for every match of that child). */
|
| + /* XXX - Check if this is the only place where tre_add_tag_right
|
| + is used. If so, use tre_add_tag_left (putting the tag before
|
| + the child as opposed after the child) and throw away
|
| + tre_add_tag_right. */
|
| + if (node->num_submatches > 0)
|
| + {
|
| + if (!first_pass)
|
| + {
|
| + status = tre_add_tag_right(mem, left, tag_left);
|
| + tnfa->tag_directions[tag_left] = TRE_TAG_MAXIMIZE;
|
| + if (status == REG_OK)
|
| + status = tre_add_tag_right(mem, right, tag_right);
|
| + tnfa->tag_directions[tag_right] = TRE_TAG_MAXIMIZE;
|
| + }
|
| + num_tags += 2;
|
| + }
|
| + direction = TRE_TAG_MAXIMIZE;
|
| + break;
|
| + }
|
| +
|
| + default:
|
| + assert(0);
|
| + break;
|
| +
|
| + } /* end switch(symbol) */
|
| + } /* end while(tre_stack_num_objects(stack) > bottom) */
|
| +
|
| + if (!first_pass)
|
| + tre_purge_regset(regset, tnfa, tag);
|
| +
|
| + if (!first_pass && minimal_tag >= 0)
|
| + {
|
| + int i;
|
| + for (i = 0; tnfa->minimal_tags[i] >= 0; i++);
|
| + tnfa->minimal_tags[i] = tag;
|
| + tnfa->minimal_tags[i + 1] = minimal_tag;
|
| + tnfa->minimal_tags[i + 2] = -1;
|
| + minimal_tag = -1;
|
| + num_minimals++;
|
| + }
|
| +
|
| + assert(tree->num_tags == num_tags);
|
| + tnfa->end_tag = num_tags;
|
| + tnfa->num_tags = num_tags;
|
| + tnfa->num_minimals = num_minimals;
|
| + xfree(orig_regset);
|
| + xfree(parents);
|
| + xfree(saved_states);
|
| + return status;
|
| +}
|
| +
|
| +
|
| +
|
| +/*
|
| + AST to TNFA compilation routines.
|
| +*/
|
| +
|
| +typedef enum {
|
| + COPY_RECURSE,
|
| + COPY_SET_RESULT_PTR
|
| +} tre_copyast_symbol_t;
|
| +
|
| +/* Flags for tre_copy_ast(). */
|
| +#define COPY_REMOVE_TAGS 1
|
| +#define COPY_MAXIMIZE_FIRST_TAG 2
|
| +
|
| +static reg_errcode_t
|
| +tre_copy_ast(tre_mem_t mem, tre_stack_t *stack, tre_ast_node_t *ast,
|
| + int flags, int *pos_add, tre_tag_direction_t *tag_directions,
|
| + tre_ast_node_t **copy, int *max_pos)
|
| +{
|
| + reg_errcode_t status = REG_OK;
|
| + int bottom = tre_stack_num_objects(stack);
|
| + int num_copied = 0;
|
| + int first_tag = 1;
|
| + tre_ast_node_t **result = copy;
|
| + tre_copyast_symbol_t symbol;
|
| +
|
| + STACK_PUSH(stack, voidptr, ast);
|
| + STACK_PUSH(stack, int, COPY_RECURSE);
|
| +
|
| + while (status == REG_OK && tre_stack_num_objects(stack) > bottom)
|
| + {
|
| + tre_ast_node_t *node;
|
| + if (status != REG_OK)
|
| + break;
|
| +
|
| + symbol = (tre_copyast_symbol_t)tre_stack_pop_int(stack);
|
| + switch (symbol)
|
| + {
|
| + case COPY_SET_RESULT_PTR:
|
| + result = tre_stack_pop_voidptr(stack);
|
| + break;
|
| + case COPY_RECURSE:
|
| + node = tre_stack_pop_voidptr(stack);
|
| + switch (node->type)
|
| + {
|
| + case LITERAL:
|
| + {
|
| + tre_literal_t *lit = node->obj;
|
| + int pos = lit->position;
|
| + int min = lit->code_min;
|
| + int max = lit->code_max;
|
| + if (!IS_SPECIAL(lit) || IS_BACKREF(lit))
|
| + {
|
| + /* XXX - e.g. [ab] has only one position but two
|
| + nodes, so we are creating holes in the state space
|
| + here. Not fatal, just wastes memory. */
|
| + pos += *pos_add;
|
| + num_copied++;
|
| + }
|
| + else if (IS_TAG(lit) && (flags & COPY_REMOVE_TAGS))
|
| + {
|
| + /* Change this tag to empty. */
|
| + min = EMPTY;
|
| + max = pos = -1;
|
| + }
|
| + else if (IS_TAG(lit) && (flags & COPY_MAXIMIZE_FIRST_TAG)
|
| + && first_tag)
|
| + {
|
| + /* Maximize the first tag. */
|
| + tag_directions[max] = TRE_TAG_MAXIMIZE;
|
| + first_tag = 0;
|
| + }
|
| + *result = tre_ast_new_literal(mem, min, max, pos);
|
| + if (*result == NULL)
|
| + status = REG_ESPACE;
|
| + else {
|
| + tre_literal_t *p = (*result)->obj;
|
| + p->class = lit->class;
|
| + p->neg_classes = lit->neg_classes;
|
| + }
|
| +
|
| + if (pos > *max_pos)
|
| + *max_pos = pos;
|
| + break;
|
| + }
|
| + case UNION:
|
| + {
|
| + tre_union_t *uni = node->obj;
|
| + tre_union_t *tmp;
|
| + *result = tre_ast_new_union(mem, uni->left, uni->right);
|
| + if (*result == NULL)
|
| + {
|
| + status = REG_ESPACE;
|
| + break;
|
| + }
|
| + tmp = (*result)->obj;
|
| + result = &tmp->left;
|
| + STACK_PUSHX(stack, voidptr, uni->right);
|
| + STACK_PUSHX(stack, int, COPY_RECURSE);
|
| + STACK_PUSHX(stack, voidptr, &tmp->right);
|
| + STACK_PUSHX(stack, int, COPY_SET_RESULT_PTR);
|
| + STACK_PUSHX(stack, voidptr, uni->left);
|
| + STACK_PUSHX(stack, int, COPY_RECURSE);
|
| + break;
|
| + }
|
| + case CATENATION:
|
| + {
|
| + tre_catenation_t *cat = node->obj;
|
| + tre_catenation_t *tmp;
|
| + *result = tre_ast_new_catenation(mem, cat->left, cat->right);
|
| + if (*result == NULL)
|
| + {
|
| + status = REG_ESPACE;
|
| + break;
|
| + }
|
| + tmp = (*result)->obj;
|
| + tmp->left = NULL;
|
| + tmp->right = NULL;
|
| + result = &tmp->left;
|
| +
|
| + STACK_PUSHX(stack, voidptr, cat->right);
|
| + STACK_PUSHX(stack, int, COPY_RECURSE);
|
| + STACK_PUSHX(stack, voidptr, &tmp->right);
|
| + STACK_PUSHX(stack, int, COPY_SET_RESULT_PTR);
|
| + STACK_PUSHX(stack, voidptr, cat->left);
|
| + STACK_PUSHX(stack, int, COPY_RECURSE);
|
| + break;
|
| + }
|
| + case ITERATION:
|
| + {
|
| + tre_iteration_t *iter = node->obj;
|
| + STACK_PUSHX(stack, voidptr, iter->arg);
|
| + STACK_PUSHX(stack, int, COPY_RECURSE);
|
| + *result = tre_ast_new_iter(mem, iter->arg, iter->min,
|
| + iter->max, iter->minimal);
|
| + if (*result == NULL)
|
| + {
|
| + status = REG_ESPACE;
|
| + break;
|
| + }
|
| + iter = (*result)->obj;
|
| + result = &iter->arg;
|
| + break;
|
| + }
|
| + default:
|
| + assert(0);
|
| + break;
|
| + }
|
| + break;
|
| + }
|
| + }
|
| + *pos_add += num_copied;
|
| + return status;
|
| +}
|
| +
|
| +typedef enum {
|
| + EXPAND_RECURSE,
|
| + EXPAND_AFTER_ITER
|
| +} tre_expand_ast_symbol_t;
|
| +
|
| +/* Expands each iteration node that has a finite nonzero minimum or maximum
|
| + iteration count to a catenated sequence of copies of the node. */
|
| +static reg_errcode_t
|
| +tre_expand_ast(tre_mem_t mem, tre_stack_t *stack, tre_ast_node_t *ast,
|
| + int *position, tre_tag_direction_t *tag_directions)
|
| +{
|
| + reg_errcode_t status = REG_OK;
|
| + int bottom = tre_stack_num_objects(stack);
|
| + int pos_add = 0;
|
| + int pos_add_total = 0;
|
| + int max_pos = 0;
|
| + int iter_depth = 0;
|
| +
|
| + STACK_PUSHR(stack, voidptr, ast);
|
| + STACK_PUSHR(stack, int, EXPAND_RECURSE);
|
| + while (status == REG_OK && tre_stack_num_objects(stack) > bottom)
|
| + {
|
| + tre_ast_node_t *node;
|
| + tre_expand_ast_symbol_t symbol;
|
| +
|
| + if (status != REG_OK)
|
| + break;
|
| +
|
| + symbol = (tre_expand_ast_symbol_t)tre_stack_pop_int(stack);
|
| + node = tre_stack_pop_voidptr(stack);
|
| + switch (symbol)
|
| + {
|
| + case EXPAND_RECURSE:
|
| + switch (node->type)
|
| + {
|
| + case LITERAL:
|
| + {
|
| + tre_literal_t *lit= node->obj;
|
| + if (!IS_SPECIAL(lit) || IS_BACKREF(lit))
|
| + {
|
| + lit->position += pos_add;
|
| + if (lit->position > max_pos)
|
| + max_pos = lit->position;
|
| + }
|
| + break;
|
| + }
|
| + case UNION:
|
| + {
|
| + tre_union_t *uni = node->obj;
|
| + STACK_PUSHX(stack, voidptr, uni->right);
|
| + STACK_PUSHX(stack, int, EXPAND_RECURSE);
|
| + STACK_PUSHX(stack, voidptr, uni->left);
|
| + STACK_PUSHX(stack, int, EXPAND_RECURSE);
|
| + break;
|
| + }
|
| + case CATENATION:
|
| + {
|
| + tre_catenation_t *cat = node->obj;
|
| + STACK_PUSHX(stack, voidptr, cat->right);
|
| + STACK_PUSHX(stack, int, EXPAND_RECURSE);
|
| + STACK_PUSHX(stack, voidptr, cat->left);
|
| + STACK_PUSHX(stack, int, EXPAND_RECURSE);
|
| + break;
|
| + }
|
| + case ITERATION:
|
| + {
|
| + tre_iteration_t *iter = node->obj;
|
| + STACK_PUSHX(stack, int, pos_add);
|
| + STACK_PUSHX(stack, voidptr, node);
|
| + STACK_PUSHX(stack, int, EXPAND_AFTER_ITER);
|
| + STACK_PUSHX(stack, voidptr, iter->arg);
|
| + STACK_PUSHX(stack, int, EXPAND_RECURSE);
|
| + /* If we are going to expand this node at EXPAND_AFTER_ITER
|
| + then don't increase the `pos' fields of the nodes now, it
|
| + will get done when expanding. */
|
| + if (iter->min > 1 || iter->max > 1)
|
| + pos_add = 0;
|
| + iter_depth++;
|
| + break;
|
| + }
|
| + default:
|
| + assert(0);
|
| + break;
|
| + }
|
| + break;
|
| + case EXPAND_AFTER_ITER:
|
| + {
|
| + tre_iteration_t *iter = node->obj;
|
| + int pos_add_last;
|
| + pos_add = tre_stack_pop_int(stack);
|
| + pos_add_last = pos_add;
|
| + if (iter->min > 1 || iter->max > 1)
|
| + {
|
| + tre_ast_node_t *seq1 = NULL, *seq2 = NULL;
|
| + int j;
|
| + int pos_add_save = pos_add;
|
| +
|
| + /* Create a catenated sequence of copies of the node. */
|
| + for (j = 0; j < iter->min; j++)
|
| + {
|
| + tre_ast_node_t *copy;
|
| + /* Remove tags from all but the last copy. */
|
| + int flags = ((j + 1 < iter->min)
|
| + ? COPY_REMOVE_TAGS
|
| + : COPY_MAXIMIZE_FIRST_TAG);
|
| + pos_add_save = pos_add;
|
| + status = tre_copy_ast(mem, stack, iter->arg, flags,
|
| + &pos_add, tag_directions, ©,
|
| + &max_pos);
|
| + if (status != REG_OK)
|
| + return status;
|
| + if (seq1 != NULL)
|
| + seq1 = tre_ast_new_catenation(mem, seq1, copy);
|
| + else
|
| + seq1 = copy;
|
| + if (seq1 == NULL)
|
| + return REG_ESPACE;
|
| + }
|
| +
|
| + if (iter->max == -1)
|
| + {
|
| + /* No upper limit. */
|
| + pos_add_save = pos_add;
|
| + status = tre_copy_ast(mem, stack, iter->arg, 0,
|
| + &pos_add, NULL, &seq2, &max_pos);
|
| + if (status != REG_OK)
|
| + return status;
|
| + seq2 = tre_ast_new_iter(mem, seq2, 0, -1, 0);
|
| + if (seq2 == NULL)
|
| + return REG_ESPACE;
|
| + }
|
| + else
|
| + {
|
| + for (j = iter->min; j < iter->max; j++)
|
| + {
|
| + tre_ast_node_t *tmp, *copy;
|
| + pos_add_save = pos_add;
|
| + status = tre_copy_ast(mem, stack, iter->arg, 0,
|
| + &pos_add, NULL, ©, &max_pos);
|
| + if (status != REG_OK)
|
| + return status;
|
| + if (seq2 != NULL)
|
| + seq2 = tre_ast_new_catenation(mem, copy, seq2);
|
| + else
|
| + seq2 = copy;
|
| + if (seq2 == NULL)
|
| + return REG_ESPACE;
|
| + tmp = tre_ast_new_literal(mem, EMPTY, -1, -1);
|
| + if (tmp == NULL)
|
| + return REG_ESPACE;
|
| + seq2 = tre_ast_new_union(mem, tmp, seq2);
|
| + if (seq2 == NULL)
|
| + return REG_ESPACE;
|
| + }
|
| + }
|
| +
|
| + pos_add = pos_add_save;
|
| + if (seq1 == NULL)
|
| + seq1 = seq2;
|
| + else if (seq2 != NULL)
|
| + seq1 = tre_ast_new_catenation(mem, seq1, seq2);
|
| + if (seq1 == NULL)
|
| + return REG_ESPACE;
|
| + node->obj = seq1->obj;
|
| + node->type = seq1->type;
|
| + }
|
| +
|
| + iter_depth--;
|
| + pos_add_total += pos_add - pos_add_last;
|
| + if (iter_depth == 0)
|
| + pos_add = pos_add_total;
|
| +
|
| + break;
|
| + }
|
| + default:
|
| + assert(0);
|
| + break;
|
| + }
|
| + }
|
| +
|
| + *position += pos_add_total;
|
| +
|
| + /* `max_pos' should never be larger than `*position' if the above
|
| + code works, but just an extra safeguard let's make sure
|
| + `*position' is set large enough so enough memory will be
|
| + allocated for the transition table. */
|
| + if (max_pos > *position)
|
| + *position = max_pos;
|
| +
|
| + return status;
|
| +}
|
| +
|
| +static tre_pos_and_tags_t *
|
| +tre_set_empty(tre_mem_t mem)
|
| +{
|
| + tre_pos_and_tags_t *new_set;
|
| +
|
| + new_set = tre_mem_calloc(mem, sizeof(*new_set));
|
| + if (new_set == NULL)
|
| + return NULL;
|
| +
|
| + new_set[0].position = -1;
|
| + new_set[0].code_min = -1;
|
| + new_set[0].code_max = -1;
|
| +
|
| + return new_set;
|
| +}
|
| +
|
| +static tre_pos_and_tags_t *
|
| +tre_set_one(tre_mem_t mem, int position, int code_min, int code_max,
|
| + tre_ctype_t class, tre_ctype_t *neg_classes, int backref)
|
| +{
|
| + tre_pos_and_tags_t *new_set;
|
| +
|
| + new_set = tre_mem_calloc(mem, sizeof(*new_set) * 2);
|
| + if (new_set == NULL)
|
| + return NULL;
|
| +
|
| + new_set[0].position = position;
|
| + new_set[0].code_min = code_min;
|
| + new_set[0].code_max = code_max;
|
| + new_set[0].class = class;
|
| + new_set[0].neg_classes = neg_classes;
|
| + new_set[0].backref = backref;
|
| + new_set[1].position = -1;
|
| + new_set[1].code_min = -1;
|
| + new_set[1].code_max = -1;
|
| +
|
| + return new_set;
|
| +}
|
| +
|
| +static tre_pos_and_tags_t *
|
| +tre_set_union(tre_mem_t mem, tre_pos_and_tags_t *set1, tre_pos_and_tags_t *set2,
|
| + int *tags, int assertions)
|
| +{
|
| + int s1, s2, i, j;
|
| + tre_pos_and_tags_t *new_set;
|
| + int *new_tags;
|
| + int num_tags;
|
| +
|
| + for (num_tags = 0; tags != NULL && tags[num_tags] >= 0; num_tags++);
|
| + for (s1 = 0; set1[s1].position >= 0; s1++);
|
| + for (s2 = 0; set2[s2].position >= 0; s2++);
|
| + new_set = tre_mem_calloc(mem, sizeof(*new_set) * (s1 + s2 + 1));
|
| + if (!new_set )
|
| + return NULL;
|
| +
|
| + for (s1 = 0; set1[s1].position >= 0; s1++)
|
| + {
|
| + new_set[s1].position = set1[s1].position;
|
| + new_set[s1].code_min = set1[s1].code_min;
|
| + new_set[s1].code_max = set1[s1].code_max;
|
| + new_set[s1].assertions = set1[s1].assertions | assertions;
|
| + new_set[s1].class = set1[s1].class;
|
| + new_set[s1].neg_classes = set1[s1].neg_classes;
|
| + new_set[s1].backref = set1[s1].backref;
|
| + if (set1[s1].tags == NULL && tags == NULL)
|
| + new_set[s1].tags = NULL;
|
| + else
|
| + {
|
| + for (i = 0; set1[s1].tags != NULL && set1[s1].tags[i] >= 0; i++);
|
| + new_tags = tre_mem_alloc(mem, (sizeof(*new_tags)
|
| + * (i + num_tags + 1)));
|
| + if (new_tags == NULL)
|
| + return NULL;
|
| + for (j = 0; j < i; j++)
|
| + new_tags[j] = set1[s1].tags[j];
|
| + for (i = 0; i < num_tags; i++)
|
| + new_tags[j + i] = tags[i];
|
| + new_tags[j + i] = -1;
|
| + new_set[s1].tags = new_tags;
|
| + }
|
| + }
|
| +
|
| + for (s2 = 0; set2[s2].position >= 0; s2++)
|
| + {
|
| + new_set[s1 + s2].position = set2[s2].position;
|
| + new_set[s1 + s2].code_min = set2[s2].code_min;
|
| + new_set[s1 + s2].code_max = set2[s2].code_max;
|
| + /* XXX - why not | assertions here as well? */
|
| + new_set[s1 + s2].assertions = set2[s2].assertions;
|
| + new_set[s1 + s2].class = set2[s2].class;
|
| + new_set[s1 + s2].neg_classes = set2[s2].neg_classes;
|
| + new_set[s1 + s2].backref = set2[s2].backref;
|
| + if (set2[s2].tags == NULL)
|
| + new_set[s1 + s2].tags = NULL;
|
| + else
|
| + {
|
| + for (i = 0; set2[s2].tags[i] >= 0; i++);
|
| + new_tags = tre_mem_alloc(mem, sizeof(*new_tags) * (i + 1));
|
| + if (new_tags == NULL)
|
| + return NULL;
|
| + for (j = 0; j < i; j++)
|
| + new_tags[j] = set2[s2].tags[j];
|
| + new_tags[j] = -1;
|
| + new_set[s1 + s2].tags = new_tags;
|
| + }
|
| + }
|
| + new_set[s1 + s2].position = -1;
|
| + return new_set;
|
| +}
|
| +
|
| +/* Finds the empty path through `node' which is the one that should be
|
| + taken according to POSIX.2 rules, and adds the tags on that path to
|
| + `tags'. `tags' may be NULL. If `num_tags_seen' is not NULL, it is
|
| + set to the number of tags seen on the path. */
|
| +static reg_errcode_t
|
| +tre_match_empty(tre_stack_t *stack, tre_ast_node_t *node, int *tags,
|
| + int *assertions, int *num_tags_seen)
|
| +{
|
| + tre_literal_t *lit;
|
| + tre_union_t *uni;
|
| + tre_catenation_t *cat;
|
| + tre_iteration_t *iter;
|
| + int i;
|
| + int bottom = tre_stack_num_objects(stack);
|
| + reg_errcode_t status = REG_OK;
|
| + if (num_tags_seen)
|
| + *num_tags_seen = 0;
|
| +
|
| + status = tre_stack_push_voidptr(stack, node);
|
| +
|
| + /* Walk through the tree recursively. */
|
| + while (status == REG_OK && tre_stack_num_objects(stack) > bottom)
|
| + {
|
| + node = tre_stack_pop_voidptr(stack);
|
| +
|
| + switch (node->type)
|
| + {
|
| + case LITERAL:
|
| + lit = (tre_literal_t *)node->obj;
|
| + switch (lit->code_min)
|
| + {
|
| + case TAG:
|
| + if (lit->code_max >= 0)
|
| + {
|
| + if (tags != NULL)
|
| + {
|
| + /* Add the tag to `tags'. */
|
| + for (i = 0; tags[i] >= 0; i++)
|
| + if (tags[i] == lit->code_max)
|
| + break;
|
| + if (tags[i] < 0)
|
| + {
|
| + tags[i] = lit->code_max;
|
| + tags[i + 1] = -1;
|
| + }
|
| + }
|
| + if (num_tags_seen)
|
| + (*num_tags_seen)++;
|
| + }
|
| + break;
|
| + case ASSERTION:
|
| + assert(lit->code_max >= 1
|
| + || lit->code_max <= ASSERT_LAST);
|
| + if (assertions != NULL)
|
| + *assertions |= lit->code_max;
|
| + break;
|
| + case EMPTY:
|
| + break;
|
| + default:
|
| + assert(0);
|
| + break;
|
| + }
|
| + break;
|
| +
|
| + case UNION:
|
| + /* Subexpressions starting earlier take priority over ones
|
| + starting later, so we prefer the left subexpression over the
|
| + right subexpression. */
|
| + uni = (tre_union_t *)node->obj;
|
| + if (uni->left->nullable)
|
| + STACK_PUSHX(stack, voidptr, uni->left)
|
| + else if (uni->right->nullable)
|
| + STACK_PUSHX(stack, voidptr, uni->right)
|
| + else
|
| + assert(0);
|
| + break;
|
| +
|
| + case CATENATION:
|
| + /* The path must go through both children. */
|
| + cat = (tre_catenation_t *)node->obj;
|
| + assert(cat->left->nullable);
|
| + assert(cat->right->nullable);
|
| + STACK_PUSHX(stack, voidptr, cat->left);
|
| + STACK_PUSHX(stack, voidptr, cat->right);
|
| + break;
|
| +
|
| + case ITERATION:
|
| + /* A match with an empty string is preferred over no match at
|
| + all, so we go through the argument if possible. */
|
| + iter = (tre_iteration_t *)node->obj;
|
| + if (iter->arg->nullable)
|
| + STACK_PUSHX(stack, voidptr, iter->arg);
|
| + break;
|
| +
|
| + default:
|
| + assert(0);
|
| + break;
|
| + }
|
| + }
|
| +
|
| + return status;
|
| +}
|
| +
|
| +
|
| +typedef enum {
|
| + NFL_RECURSE,
|
| + NFL_POST_UNION,
|
| + NFL_POST_CATENATION,
|
| + NFL_POST_ITERATION
|
| +} tre_nfl_stack_symbol_t;
|
| +
|
| +
|
| +/* Computes and fills in the fields `nullable', `firstpos', and `lastpos' for
|
| + the nodes of the AST `tree'. */
|
| +static reg_errcode_t
|
| +tre_compute_nfl(tre_mem_t mem, tre_stack_t *stack, tre_ast_node_t *tree)
|
| +{
|
| + int bottom = tre_stack_num_objects(stack);
|
| +
|
| + STACK_PUSHR(stack, voidptr, tree);
|
| + STACK_PUSHR(stack, int, NFL_RECURSE);
|
| +
|
| + while (tre_stack_num_objects(stack) > bottom)
|
| + {
|
| + tre_nfl_stack_symbol_t symbol;
|
| + tre_ast_node_t *node;
|
| +
|
| + symbol = (tre_nfl_stack_symbol_t)tre_stack_pop_int(stack);
|
| + node = tre_stack_pop_voidptr(stack);
|
| + switch (symbol)
|
| + {
|
| + case NFL_RECURSE:
|
| + switch (node->type)
|
| + {
|
| + case LITERAL:
|
| + {
|
| + tre_literal_t *lit = (tre_literal_t *)node->obj;
|
| + if (IS_BACKREF(lit))
|
| + {
|
| + /* Back references: nullable = false, firstpos = {i},
|
| + lastpos = {i}. */
|
| + node->nullable = 0;
|
| + node->firstpos = tre_set_one(mem, lit->position, 0,
|
| + TRE_CHAR_MAX, 0, NULL, -1);
|
| + if (!node->firstpos)
|
| + return REG_ESPACE;
|
| + node->lastpos = tre_set_one(mem, lit->position, 0,
|
| + TRE_CHAR_MAX, 0, NULL,
|
| + (int)lit->code_max);
|
| + if (!node->lastpos)
|
| + return REG_ESPACE;
|
| + }
|
| + else if (lit->code_min < 0)
|
| + {
|
| + /* Tags, empty strings, params, and zero width assertions:
|
| + nullable = true, firstpos = {}, and lastpos = {}. */
|
| + node->nullable = 1;
|
| + node->firstpos = tre_set_empty(mem);
|
| + if (!node->firstpos)
|
| + return REG_ESPACE;
|
| + node->lastpos = tre_set_empty(mem);
|
| + if (!node->lastpos)
|
| + return REG_ESPACE;
|
| + }
|
| + else
|
| + {
|
| + /* Literal at position i: nullable = false, firstpos = {i},
|
| + lastpos = {i}. */
|
| + node->nullable = 0;
|
| + node->firstpos =
|
| + tre_set_one(mem, lit->position, (int)lit->code_min,
|
| + (int)lit->code_max, 0, NULL, -1);
|
| + if (!node->firstpos)
|
| + return REG_ESPACE;
|
| + node->lastpos = tre_set_one(mem, lit->position,
|
| + (int)lit->code_min,
|
| + (int)lit->code_max,
|
| + lit->class, lit->neg_classes,
|
| + -1);
|
| + if (!node->lastpos)
|
| + return REG_ESPACE;
|
| + }
|
| + break;
|
| + }
|
| +
|
| + case UNION:
|
| + /* Compute the attributes for the two subtrees, and after that
|
| + for this node. */
|
| + STACK_PUSHR(stack, voidptr, node);
|
| + STACK_PUSHR(stack, int, NFL_POST_UNION);
|
| + STACK_PUSHR(stack, voidptr, ((tre_union_t *)node->obj)->right);
|
| + STACK_PUSHR(stack, int, NFL_RECURSE);
|
| + STACK_PUSHR(stack, voidptr, ((tre_union_t *)node->obj)->left);
|
| + STACK_PUSHR(stack, int, NFL_RECURSE);
|
| + break;
|
| +
|
| + case CATENATION:
|
| + /* Compute the attributes for the two subtrees, and after that
|
| + for this node. */
|
| + STACK_PUSHR(stack, voidptr, node);
|
| + STACK_PUSHR(stack, int, NFL_POST_CATENATION);
|
| + STACK_PUSHR(stack, voidptr, ((tre_catenation_t *)node->obj)->right);
|
| + STACK_PUSHR(stack, int, NFL_RECURSE);
|
| + STACK_PUSHR(stack, voidptr, ((tre_catenation_t *)node->obj)->left);
|
| + STACK_PUSHR(stack, int, NFL_RECURSE);
|
| + break;
|
| +
|
| + case ITERATION:
|
| + /* Compute the attributes for the subtree, and after that for
|
| + this node. */
|
| + STACK_PUSHR(stack, voidptr, node);
|
| + STACK_PUSHR(stack, int, NFL_POST_ITERATION);
|
| + STACK_PUSHR(stack, voidptr, ((tre_iteration_t *)node->obj)->arg);
|
| + STACK_PUSHR(stack, int, NFL_RECURSE);
|
| + break;
|
| + }
|
| + break; /* end case: NFL_RECURSE */
|
| +
|
| + case NFL_POST_UNION:
|
| + {
|
| + tre_union_t *uni = (tre_union_t *)node->obj;
|
| + node->nullable = uni->left->nullable || uni->right->nullable;
|
| + node->firstpos = tre_set_union(mem, uni->left->firstpos,
|
| + uni->right->firstpos, NULL, 0);
|
| + if (!node->firstpos)
|
| + return REG_ESPACE;
|
| + node->lastpos = tre_set_union(mem, uni->left->lastpos,
|
| + uni->right->lastpos, NULL, 0);
|
| + if (!node->lastpos)
|
| + return REG_ESPACE;
|
| + break;
|
| + }
|
| +
|
| + case NFL_POST_ITERATION:
|
| + {
|
| + tre_iteration_t *iter = (tre_iteration_t *)node->obj;
|
| +
|
| + if (iter->min == 0 || iter->arg->nullable)
|
| + node->nullable = 1;
|
| + else
|
| + node->nullable = 0;
|
| + node->firstpos = iter->arg->firstpos;
|
| + node->lastpos = iter->arg->lastpos;
|
| + break;
|
| + }
|
| +
|
| + case NFL_POST_CATENATION:
|
| + {
|
| + int num_tags, *tags, assertions;
|
| + reg_errcode_t status;
|
| + tre_catenation_t *cat = node->obj;
|
| + node->nullable = cat->left->nullable && cat->right->nullable;
|
| +
|
| + /* Compute firstpos. */
|
| + if (cat->left->nullable)
|
| + {
|
| + /* The left side matches the empty string. Make a first pass
|
| + with tre_match_empty() to get the number of tags and
|
| + parameters. */
|
| + status = tre_match_empty(stack, cat->left,
|
| + NULL, NULL, &num_tags);
|
| + if (status != REG_OK)
|
| + return status;
|
| + /* Allocate arrays for the tags and parameters. */
|
| + tags = xmalloc(sizeof(*tags) * (num_tags + 1));
|
| + if (!tags)
|
| + return REG_ESPACE;
|
| + tags[0] = -1;
|
| + assertions = 0;
|
| + /* Second pass with tre_mach_empty() to get the list of
|
| + tags and parameters. */
|
| + status = tre_match_empty(stack, cat->left, tags,
|
| + &assertions, NULL);
|
| + if (status != REG_OK)
|
| + {
|
| + xfree(tags);
|
| + return status;
|
| + }
|
| + node->firstpos =
|
| + tre_set_union(mem, cat->right->firstpos, cat->left->firstpos,
|
| + tags, assertions);
|
| + xfree(tags);
|
| + if (!node->firstpos)
|
| + return REG_ESPACE;
|
| + }
|
| + else
|
| + {
|
| + node->firstpos = cat->left->firstpos;
|
| + }
|
| +
|
| + /* Compute lastpos. */
|
| + if (cat->right->nullable)
|
| + {
|
| + /* The right side matches the empty string. Make a first pass
|
| + with tre_match_empty() to get the number of tags and
|
| + parameters. */
|
| + status = tre_match_empty(stack, cat->right,
|
| + NULL, NULL, &num_tags);
|
| + if (status != REG_OK)
|
| + return status;
|
| + /* Allocate arrays for the tags and parameters. */
|
| + tags = xmalloc(sizeof(int) * (num_tags + 1));
|
| + if (!tags)
|
| + return REG_ESPACE;
|
| + tags[0] = -1;
|
| + assertions = 0;
|
| + /* Second pass with tre_mach_empty() to get the list of
|
| + tags and parameters. */
|
| + status = tre_match_empty(stack, cat->right, tags,
|
| + &assertions, NULL);
|
| + if (status != REG_OK)
|
| + {
|
| + xfree(tags);
|
| + return status;
|
| + }
|
| + node->lastpos =
|
| + tre_set_union(mem, cat->left->lastpos, cat->right->lastpos,
|
| + tags, assertions);
|
| + xfree(tags);
|
| + if (!node->lastpos)
|
| + return REG_ESPACE;
|
| + }
|
| + else
|
| + {
|
| + node->lastpos = cat->right->lastpos;
|
| + }
|
| + break;
|
| + }
|
| +
|
| + default:
|
| + assert(0);
|
| + break;
|
| + }
|
| + }
|
| +
|
| + return REG_OK;
|
| +}
|
| +
|
| +
|
| +/* Adds a transition from each position in `p1' to each position in `p2'. */
|
| +static reg_errcode_t
|
| +tre_make_trans(tre_pos_and_tags_t *p1, tre_pos_and_tags_t *p2,
|
| + tre_tnfa_transition_t *transitions,
|
| + int *counts, int *offs)
|
| +{
|
| + tre_pos_and_tags_t *orig_p2 = p2;
|
| + tre_tnfa_transition_t *trans;
|
| + int i, j, k, l, dup, prev_p2_pos;
|
| +
|
| + if (transitions != NULL)
|
| + while (p1->position >= 0)
|
| + {
|
| + p2 = orig_p2;
|
| + prev_p2_pos = -1;
|
| + while (p2->position >= 0)
|
| + {
|
| + /* Optimization: if this position was already handled, skip it. */
|
| + if (p2->position == prev_p2_pos)
|
| + {
|
| + p2++;
|
| + continue;
|
| + }
|
| + prev_p2_pos = p2->position;
|
| + /* Set `trans' to point to the next unused transition from
|
| + position `p1->position'. */
|
| + trans = transitions + offs[p1->position];
|
| + while (trans->state != NULL)
|
| + {
|
| +#if 0
|
| + /* If we find a previous transition from `p1->position' to
|
| + `p2->position', it is overwritten. This can happen only
|
| + if there are nested loops in the regexp, like in "((a)*)*".
|
| + In POSIX.2 repetition using the outer loop is always
|
| + preferred over using the inner loop. Therefore the
|
| + transition for the inner loop is useless and can be thrown
|
| + away. */
|
| + /* XXX - The same position is used for all nodes in a bracket
|
| + expression, so this optimization cannot be used (it will
|
| + break bracket expressions) unless I figure out a way to
|
| + detect it here. */
|
| + if (trans->state_id == p2->position)
|
| + {
|
| + break;
|
| + }
|
| +#endif
|
| + trans++;
|
| + }
|
| +
|
| + if (trans->state == NULL)
|
| + (trans + 1)->state = NULL;
|
| + /* Use the character ranges, assertions, etc. from `p1' for
|
| + the transition from `p1' to `p2'. */
|
| + trans->code_min = p1->code_min;
|
| + trans->code_max = p1->code_max;
|
| + trans->state = transitions + offs[p2->position];
|
| + trans->state_id = p2->position;
|
| + trans->assertions = p1->assertions | p2->assertions
|
| + | (p1->class ? ASSERT_CHAR_CLASS : 0)
|
| + | (p1->neg_classes != NULL ? ASSERT_CHAR_CLASS_NEG : 0);
|
| + if (p1->backref >= 0)
|
| + {
|
| + assert((trans->assertions & ASSERT_CHAR_CLASS) == 0);
|
| + assert(p2->backref < 0);
|
| + trans->u.backref = p1->backref;
|
| + trans->assertions |= ASSERT_BACKREF;
|
| + }
|
| + else
|
| + trans->u.class = p1->class;
|
| + if (p1->neg_classes != NULL)
|
| + {
|
| + for (i = 0; p1->neg_classes[i] != (tre_ctype_t)0; i++);
|
| + trans->neg_classes =
|
| + xmalloc(sizeof(*trans->neg_classes) * (i + 1));
|
| + if (trans->neg_classes == NULL)
|
| + return REG_ESPACE;
|
| + for (i = 0; p1->neg_classes[i] != (tre_ctype_t)0; i++)
|
| + trans->neg_classes[i] = p1->neg_classes[i];
|
| + trans->neg_classes[i] = (tre_ctype_t)0;
|
| + }
|
| + else
|
| + trans->neg_classes = NULL;
|
| +
|
| + /* Find out how many tags this transition has. */
|
| + i = 0;
|
| + if (p1->tags != NULL)
|
| + while(p1->tags[i] >= 0)
|
| + i++;
|
| + j = 0;
|
| + if (p2->tags != NULL)
|
| + while(p2->tags[j] >= 0)
|
| + j++;
|
| +
|
| + /* If we are overwriting a transition, free the old tag array. */
|
| + if (trans->tags != NULL)
|
| + xfree(trans->tags);
|
| + trans->tags = NULL;
|
| +
|
| + /* If there were any tags, allocate an array and fill it. */
|
| + if (i + j > 0)
|
| + {
|
| + trans->tags = xmalloc(sizeof(*trans->tags) * (i + j + 1));
|
| + if (!trans->tags)
|
| + return REG_ESPACE;
|
| + i = 0;
|
| + if (p1->tags != NULL)
|
| + while(p1->tags[i] >= 0)
|
| + {
|
| + trans->tags[i] = p1->tags[i];
|
| + i++;
|
| + }
|
| + l = i;
|
| + j = 0;
|
| + if (p2->tags != NULL)
|
| + while (p2->tags[j] >= 0)
|
| + {
|
| + /* Don't add duplicates. */
|
| + dup = 0;
|
| + for (k = 0; k < i; k++)
|
| + if (trans->tags[k] == p2->tags[j])
|
| + {
|
| + dup = 1;
|
| + break;
|
| + }
|
| + if (!dup)
|
| + trans->tags[l++] = p2->tags[j];
|
| + j++;
|
| + }
|
| + trans->tags[l] = -1;
|
| + }
|
| +
|
| + p2++;
|
| + }
|
| + p1++;
|
| + }
|
| + else
|
| + /* Compute a maximum limit for the number of transitions leaving
|
| + from each state. */
|
| + while (p1->position >= 0)
|
| + {
|
| + p2 = orig_p2;
|
| + while (p2->position >= 0)
|
| + {
|
| + counts[p1->position]++;
|
| + p2++;
|
| + }
|
| + p1++;
|
| + }
|
| + return REG_OK;
|
| +}
|
| +
|
| +/* Converts the syntax tree to a TNFA. All the transitions in the TNFA are
|
| + labelled with one character range (there are no transitions on empty
|
| + strings). The TNFA takes O(n^2) space in the worst case, `n' is size of
|
| + the regexp. */
|
| +static reg_errcode_t
|
| +tre_ast_to_tnfa(tre_ast_node_t *node, tre_tnfa_transition_t *transitions,
|
| + int *counts, int *offs)
|
| +{
|
| + tre_union_t *uni;
|
| + tre_catenation_t *cat;
|
| + tre_iteration_t *iter;
|
| + reg_errcode_t errcode = REG_OK;
|
| +
|
| + /* XXX - recurse using a stack!. */
|
| + switch (node->type)
|
| + {
|
| + case LITERAL:
|
| + break;
|
| + case UNION:
|
| + uni = (tre_union_t *)node->obj;
|
| + errcode = tre_ast_to_tnfa(uni->left, transitions, counts, offs);
|
| + if (errcode != REG_OK)
|
| + return errcode;
|
| + errcode = tre_ast_to_tnfa(uni->right, transitions, counts, offs);
|
| + break;
|
| +
|
| + case CATENATION:
|
| + cat = (tre_catenation_t *)node->obj;
|
| + /* Add a transition from each position in cat->left->lastpos
|
| + to each position in cat->right->firstpos. */
|
| + errcode = tre_make_trans(cat->left->lastpos, cat->right->firstpos,
|
| + transitions, counts, offs);
|
| + if (errcode != REG_OK)
|
| + return errcode;
|
| + errcode = tre_ast_to_tnfa(cat->left, transitions, counts, offs);
|
| + if (errcode != REG_OK)
|
| + return errcode;
|
| + errcode = tre_ast_to_tnfa(cat->right, transitions, counts, offs);
|
| + break;
|
| +
|
| + case ITERATION:
|
| + iter = (tre_iteration_t *)node->obj;
|
| + assert(iter->max == -1 || iter->max == 1);
|
| +
|
| + if (iter->max == -1)
|
| + {
|
| + assert(iter->min == 0 || iter->min == 1);
|
| + /* Add a transition from each last position in the iterated
|
| + expression to each first position. */
|
| + errcode = tre_make_trans(iter->arg->lastpos, iter->arg->firstpos,
|
| + transitions, counts, offs);
|
| + if (errcode != REG_OK)
|
| + return errcode;
|
| + }
|
| + errcode = tre_ast_to_tnfa(iter->arg, transitions, counts, offs);
|
| + break;
|
| + }
|
| + return errcode;
|
| +}
|
| +
|
| +
|
| +#define ERROR_EXIT(err) \
|
| + do \
|
| + { \
|
| + errcode = err; \
|
| + if (/*CONSTCOND*/1) \
|
| + goto error_exit; \
|
| + } \
|
| + while (/*CONSTCOND*/0)
|
| +
|
| +
|
| +int
|
| +regcomp(regex_t *restrict preg, const char *restrict regex, int cflags)
|
| +{
|
| + tre_stack_t *stack;
|
| + tre_ast_node_t *tree, *tmp_ast_l, *tmp_ast_r;
|
| + tre_pos_and_tags_t *p;
|
| + int *counts = NULL, *offs = NULL;
|
| + int i, add = 0;
|
| + tre_tnfa_transition_t *transitions, *initial;
|
| + tre_tnfa_t *tnfa = NULL;
|
| + tre_submatch_data_t *submatch_data;
|
| + tre_tag_direction_t *tag_directions = NULL;
|
| + reg_errcode_t errcode;
|
| + tre_mem_t mem;
|
| +
|
| + /* Parse context. */
|
| + tre_parse_ctx_t parse_ctx;
|
| +
|
| + /* Allocate a stack used throughout the compilation process for various
|
| + purposes. */
|
| + stack = tre_stack_new(512, 10240, 128);
|
| + if (!stack)
|
| + return REG_ESPACE;
|
| + /* Allocate a fast memory allocator. */
|
| + mem = tre_mem_new();
|
| + if (!mem)
|
| + {
|
| + tre_stack_destroy(stack);
|
| + return REG_ESPACE;
|
| + }
|
| +
|
| + /* Parse the regexp. */
|
| + memset(&parse_ctx, 0, sizeof(parse_ctx));
|
| + parse_ctx.mem = mem;
|
| + parse_ctx.stack = stack;
|
| + parse_ctx.re = regex;
|
| + parse_ctx.cflags = cflags;
|
| + parse_ctx.max_backref = -1;
|
| + errcode = tre_parse(&parse_ctx);
|
| + if (errcode != REG_OK)
|
| + ERROR_EXIT(errcode);
|
| + preg->re_nsub = parse_ctx.submatch_id - 1;
|
| + tree = parse_ctx.n;
|
| +
|
| +#ifdef TRE_DEBUG
|
| + tre_ast_print(tree);
|
| +#endif /* TRE_DEBUG */
|
| +
|
| + /* Referring to nonexistent subexpressions is illegal. */
|
| + if (parse_ctx.max_backref > (int)preg->re_nsub)
|
| + ERROR_EXIT(REG_ESUBREG);
|
| +
|
| + /* Allocate the TNFA struct. */
|
| + tnfa = xcalloc(1, sizeof(tre_tnfa_t));
|
| + if (tnfa == NULL)
|
| + ERROR_EXIT(REG_ESPACE);
|
| + tnfa->have_backrefs = parse_ctx.max_backref >= 0;
|
| + tnfa->have_approx = 0;
|
| + tnfa->num_submatches = parse_ctx.submatch_id;
|
| +
|
| + /* Set up tags for submatch addressing. If REG_NOSUB is set and the
|
| + regexp does not have back references, this can be skipped. */
|
| + if (tnfa->have_backrefs || !(cflags & REG_NOSUB))
|
| + {
|
| +
|
| + /* Figure out how many tags we will need. */
|
| + errcode = tre_add_tags(NULL, stack, tree, tnfa);
|
| + if (errcode != REG_OK)
|
| + ERROR_EXIT(errcode);
|
| +
|
| + if (tnfa->num_tags > 0)
|
| + {
|
| + tag_directions = xmalloc(sizeof(*tag_directions)
|
| + * (tnfa->num_tags + 1));
|
| + if (tag_directions == NULL)
|
| + ERROR_EXIT(REG_ESPACE);
|
| + tnfa->tag_directions = tag_directions;
|
| + memset(tag_directions, -1,
|
| + sizeof(*tag_directions) * (tnfa->num_tags + 1));
|
| + }
|
| + tnfa->minimal_tags = xcalloc((unsigned)tnfa->num_tags * 2 + 1,
|
| + sizeof(*tnfa->minimal_tags));
|
| + if (tnfa->minimal_tags == NULL)
|
| + ERROR_EXIT(REG_ESPACE);
|
| +
|
| + submatch_data = xcalloc((unsigned)parse_ctx.submatch_id,
|
| + sizeof(*submatch_data));
|
| + if (submatch_data == NULL)
|
| + ERROR_EXIT(REG_ESPACE);
|
| + tnfa->submatch_data = submatch_data;
|
| +
|
| + errcode = tre_add_tags(mem, stack, tree, tnfa);
|
| + if (errcode != REG_OK)
|
| + ERROR_EXIT(errcode);
|
| +
|
| + }
|
| +
|
| + /* Expand iteration nodes. */
|
| + errcode = tre_expand_ast(mem, stack, tree, &parse_ctx.position,
|
| + tag_directions);
|
| + if (errcode != REG_OK)
|
| + ERROR_EXIT(errcode);
|
| +
|
| + /* Add a dummy node for the final state.
|
| + XXX - For certain patterns this dummy node can be optimized away,
|
| + for example "a*" or "ab*". Figure out a simple way to detect
|
| + this possibility. */
|
| + tmp_ast_l = tree;
|
| + tmp_ast_r = tre_ast_new_literal(mem, 0, 0, parse_ctx.position++);
|
| + if (tmp_ast_r == NULL)
|
| + ERROR_EXIT(REG_ESPACE);
|
| +
|
| + tree = tre_ast_new_catenation(mem, tmp_ast_l, tmp_ast_r);
|
| + if (tree == NULL)
|
| + ERROR_EXIT(REG_ESPACE);
|
| +
|
| + errcode = tre_compute_nfl(mem, stack, tree);
|
| + if (errcode != REG_OK)
|
| + ERROR_EXIT(errcode);
|
| +
|
| + counts = xmalloc(sizeof(int) * parse_ctx.position);
|
| + if (counts == NULL)
|
| + ERROR_EXIT(REG_ESPACE);
|
| +
|
| + offs = xmalloc(sizeof(int) * parse_ctx.position);
|
| + if (offs == NULL)
|
| + ERROR_EXIT(REG_ESPACE);
|
| +
|
| + for (i = 0; i < parse_ctx.position; i++)
|
| + counts[i] = 0;
|
| + tre_ast_to_tnfa(tree, NULL, counts, NULL);
|
| +
|
| + add = 0;
|
| + for (i = 0; i < parse_ctx.position; i++)
|
| + {
|
| + offs[i] = add;
|
| + add += counts[i] + 1;
|
| + counts[i] = 0;
|
| + }
|
| + transitions = xcalloc((unsigned)add + 1, sizeof(*transitions));
|
| + if (transitions == NULL)
|
| + ERROR_EXIT(REG_ESPACE);
|
| + tnfa->transitions = transitions;
|
| + tnfa->num_transitions = add;
|
| +
|
| + errcode = tre_ast_to_tnfa(tree, transitions, counts, offs);
|
| + if (errcode != REG_OK)
|
| + ERROR_EXIT(errcode);
|
| +
|
| + tnfa->firstpos_chars = NULL;
|
| +
|
| + p = tree->firstpos;
|
| + i = 0;
|
| + while (p->position >= 0)
|
| + {
|
| + i++;
|
| + p++;
|
| + }
|
| +
|
| + initial = xcalloc((unsigned)i + 1, sizeof(tre_tnfa_transition_t));
|
| + if (initial == NULL)
|
| + ERROR_EXIT(REG_ESPACE);
|
| + tnfa->initial = initial;
|
| +
|
| + i = 0;
|
| + for (p = tree->firstpos; p->position >= 0; p++)
|
| + {
|
| + initial[i].state = transitions + offs[p->position];
|
| + initial[i].state_id = p->position;
|
| + initial[i].tags = NULL;
|
| + /* Copy the arrays p->tags, and p->params, they are allocated
|
| + from a tre_mem object. */
|
| + if (p->tags)
|
| + {
|
| + int j;
|
| + for (j = 0; p->tags[j] >= 0; j++);
|
| + initial[i].tags = xmalloc(sizeof(*p->tags) * (j + 1));
|
| + if (!initial[i].tags)
|
| + ERROR_EXIT(REG_ESPACE);
|
| + memcpy(initial[i].tags, p->tags, sizeof(*p->tags) * (j + 1));
|
| + }
|
| + initial[i].assertions = p->assertions;
|
| + i++;
|
| + }
|
| + initial[i].state = NULL;
|
| +
|
| + tnfa->num_transitions = add;
|
| + tnfa->final = transitions + offs[tree->lastpos[0].position];
|
| + tnfa->num_states = parse_ctx.position;
|
| + tnfa->cflags = cflags;
|
| +
|
| + tre_mem_destroy(mem);
|
| + tre_stack_destroy(stack);
|
| + xfree(counts);
|
| + xfree(offs);
|
| +
|
| + preg->TRE_REGEX_T_FIELD = (void *)tnfa;
|
| + return REG_OK;
|
| +
|
| + error_exit:
|
| + /* Free everything that was allocated and return the error code. */
|
| + tre_mem_destroy(mem);
|
| + if (stack != NULL)
|
| + tre_stack_destroy(stack);
|
| + if (counts != NULL)
|
| + xfree(counts);
|
| + if (offs != NULL)
|
| + xfree(offs);
|
| + preg->TRE_REGEX_T_FIELD = (void *)tnfa;
|
| + regfree(preg);
|
| + return errcode;
|
| +}
|
| +
|
| +
|
| +
|
| +
|
| +void
|
| +regfree(regex_t *preg)
|
| +{
|
| + tre_tnfa_t *tnfa;
|
| + unsigned int i;
|
| + tre_tnfa_transition_t *trans;
|
| +
|
| + tnfa = (void *)preg->TRE_REGEX_T_FIELD;
|
| + if (!tnfa)
|
| + return;
|
| +
|
| + for (i = 0; i < tnfa->num_transitions; i++)
|
| + if (tnfa->transitions[i].state)
|
| + {
|
| + if (tnfa->transitions[i].tags)
|
| + xfree(tnfa->transitions[i].tags);
|
| + if (tnfa->transitions[i].neg_classes)
|
| + xfree(tnfa->transitions[i].neg_classes);
|
| + }
|
| + if (tnfa->transitions)
|
| + xfree(tnfa->transitions);
|
| +
|
| + if (tnfa->initial)
|
| + {
|
| + for (trans = tnfa->initial; trans->state; trans++)
|
| + {
|
| + if (trans->tags)
|
| + xfree(trans->tags);
|
| + }
|
| + xfree(tnfa->initial);
|
| + }
|
| +
|
| + if (tnfa->submatch_data)
|
| + {
|
| + for (i = 0; i < tnfa->num_submatches; i++)
|
| + if (tnfa->submatch_data[i].parents)
|
| + xfree(tnfa->submatch_data[i].parents);
|
| + xfree(tnfa->submatch_data);
|
| + }
|
| +
|
| + if (tnfa->tag_directions)
|
| + xfree(tnfa->tag_directions);
|
| + if (tnfa->firstpos_chars)
|
| + xfree(tnfa->firstpos_chars);
|
| + if (tnfa->minimal_tags)
|
| + xfree(tnfa->minimal_tags);
|
| + xfree(tnfa);
|
| +}
|
|
|