| Index: fusl/src/math/acosl.c
|
| diff --git a/fusl/src/math/acosl.c b/fusl/src/math/acosl.c
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..c03bdf0235ccffd08ca26b603531a9defe11070a
|
| --- /dev/null
|
| +++ b/fusl/src/math/acosl.c
|
| @@ -0,0 +1,67 @@
|
| +/* origin: FreeBSD /usr/src/lib/msun/src/e_acosl.c */
|
| +/*
|
| + * ====================================================
|
| + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
| + *
|
| + * Developed at SunSoft, a Sun Microsystems, Inc. business.
|
| + * Permission to use, copy, modify, and distribute this
|
| + * software is freely granted, provided that this notice
|
| + * is preserved.
|
| + * ====================================================
|
| + */
|
| +/*
|
| + * See comments in acos.c.
|
| + * Converted to long double by David Schultz <das@FreeBSD.ORG>.
|
| + */
|
| +
|
| +#include "libm.h"
|
| +
|
| +#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
|
| +long double acosl(long double x)
|
| +{
|
| + return acos(x);
|
| +}
|
| +#elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
|
| +#include "__invtrigl.h"
|
| +#if LDBL_MANT_DIG == 64
|
| +#define CLEARBOTTOM(u) (u.i.m &= -1ULL << 32)
|
| +#elif LDBL_MANT_DIG == 113
|
| +#define CLEARBOTTOM(u) (u.i.lo = 0)
|
| +#endif
|
| +
|
| +long double acosl(long double x)
|
| +{
|
| + union ldshape u = {x};
|
| + long double z, s, c, f;
|
| + uint16_t e = u.i.se & 0x7fff;
|
| +
|
| + /* |x| >= 1 or nan */
|
| + if (e >= 0x3fff) {
|
| + if (x == 1)
|
| + return 0;
|
| + if (x == -1)
|
| + return 2*pio2_hi + 0x1p-120f;
|
| + return 0/(x-x);
|
| + }
|
| + /* |x| < 0.5 */
|
| + if (e < 0x3fff - 1) {
|
| + if (e < 0x3fff - LDBL_MANT_DIG - 1)
|
| + return pio2_hi + 0x1p-120f;
|
| + return pio2_hi - (__invtrigl_R(x*x)*x - pio2_lo + x);
|
| + }
|
| + /* x < -0.5 */
|
| + if (u.i.se >> 15) {
|
| + z = (1 + x)*0.5;
|
| + s = sqrtl(z);
|
| + return 2*(pio2_hi - (__invtrigl_R(z)*s - pio2_lo + s));
|
| + }
|
| + /* x > 0.5 */
|
| + z = (1 - x)*0.5;
|
| + s = sqrtl(z);
|
| + u.f = s;
|
| + CLEARBOTTOM(u);
|
| + f = u.f;
|
| + c = (z - f*f)/(s + f);
|
| + return 2*(__invtrigl_R(z)*s + c + f);
|
| +}
|
| +#endif
|
|
|