| Index: fusl/src/math/fma.c
|
| diff --git a/fusl/src/math/fma.c b/fusl/src/math/fma.c
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..741ccd757ab1544d5ed4d6fd2bd135d7cb0586e3
|
| --- /dev/null
|
| +++ b/fusl/src/math/fma.c
|
| @@ -0,0 +1,460 @@
|
| +#include <fenv.h>
|
| +#include "libm.h"
|
| +
|
| +#if LDBL_MANT_DIG==64 && LDBL_MAX_EXP==16384
|
| +/* exact add, assumes exponent_x >= exponent_y */
|
| +static void add(long double *hi, long double *lo, long double x, long double y)
|
| +{
|
| + long double r;
|
| +
|
| + r = x + y;
|
| + *hi = r;
|
| + r -= x;
|
| + *lo = y - r;
|
| +}
|
| +
|
| +/* exact mul, assumes no over/underflow */
|
| +static void mul(long double *hi, long double *lo, long double x, long double y)
|
| +{
|
| + static const long double c = 1.0 + 0x1p32L;
|
| + long double cx, xh, xl, cy, yh, yl;
|
| +
|
| + cx = c*x;
|
| + xh = (x - cx) + cx;
|
| + xl = x - xh;
|
| + cy = c*y;
|
| + yh = (y - cy) + cy;
|
| + yl = y - yh;
|
| + *hi = x*y;
|
| + *lo = (xh*yh - *hi) + xh*yl + xl*yh + xl*yl;
|
| +}
|
| +
|
| +/*
|
| +assume (long double)(hi+lo) == hi
|
| +return an adjusted hi so that rounding it to double (or less) precision is correct
|
| +*/
|
| +static long double adjust(long double hi, long double lo)
|
| +{
|
| + union ldshape uhi, ulo;
|
| +
|
| + if (lo == 0)
|
| + return hi;
|
| + uhi.f = hi;
|
| + if (uhi.i.m & 0x3ff)
|
| + return hi;
|
| + ulo.f = lo;
|
| + if ((uhi.i.se & 0x8000) == (ulo.i.se & 0x8000))
|
| + uhi.i.m++;
|
| + else {
|
| + /* handle underflow and take care of ld80 implicit msb */
|
| + if (uhi.i.m << 1 == 0) {
|
| + uhi.i.m = 0;
|
| + uhi.i.se--;
|
| + }
|
| + uhi.i.m--;
|
| + }
|
| + return uhi.f;
|
| +}
|
| +
|
| +/* adjusted add so the result is correct when rounded to double (or less) precision */
|
| +static long double dadd(long double x, long double y)
|
| +{
|
| + add(&x, &y, x, y);
|
| + return adjust(x, y);
|
| +}
|
| +
|
| +/* adjusted mul so the result is correct when rounded to double (or less) precision */
|
| +static long double dmul(long double x, long double y)
|
| +{
|
| + mul(&x, &y, x, y);
|
| + return adjust(x, y);
|
| +}
|
| +
|
| +static int getexp(long double x)
|
| +{
|
| + union ldshape u;
|
| + u.f = x;
|
| + return u.i.se & 0x7fff;
|
| +}
|
| +
|
| +double fma(double x, double y, double z)
|
| +{
|
| + #pragma STDC FENV_ACCESS ON
|
| + long double hi, lo1, lo2, xy;
|
| + int round, ez, exy;
|
| +
|
| + /* handle +-inf,nan */
|
| + if (!isfinite(x) || !isfinite(y))
|
| + return x*y + z;
|
| + if (!isfinite(z))
|
| + return z;
|
| + /* handle +-0 */
|
| + if (x == 0.0 || y == 0.0)
|
| + return x*y + z;
|
| + round = fegetround();
|
| + if (z == 0.0) {
|
| + if (round == FE_TONEAREST)
|
| + return dmul(x, y);
|
| + return x*y;
|
| + }
|
| +
|
| + /* exact mul and add require nearest rounding */
|
| + /* spurious inexact exceptions may be raised */
|
| + fesetround(FE_TONEAREST);
|
| + mul(&xy, &lo1, x, y);
|
| + exy = getexp(xy);
|
| + ez = getexp(z);
|
| + if (ez > exy) {
|
| + add(&hi, &lo2, z, xy);
|
| + } else if (ez > exy - 12) {
|
| + add(&hi, &lo2, xy, z);
|
| + if (hi == 0) {
|
| + /*
|
| + xy + z is 0, but it should be calculated with the
|
| + original rounding mode so the sign is correct, if the
|
| + compiler does not support FENV_ACCESS ON it does not
|
| + know about the changed rounding mode and eliminates
|
| + the xy + z below without the volatile memory access
|
| + */
|
| + volatile double z_;
|
| + fesetround(round);
|
| + z_ = z;
|
| + return (xy + z_) + lo1;
|
| + }
|
| + } else {
|
| + /*
|
| + ez <= exy - 12
|
| + the 12 extra bits (1guard, 11round+sticky) are needed so with
|
| + lo = dadd(lo1, lo2)
|
| + elo <= ehi - 11, and we use the last 10 bits in adjust so
|
| + dadd(hi, lo)
|
| + gives correct result when rounded to double
|
| + */
|
| + hi = xy;
|
| + lo2 = z;
|
| + }
|
| + /*
|
| + the result is stored before return for correct precision and exceptions
|
| +
|
| + one corner case is when the underflow flag should be raised because
|
| + the precise result is an inexact subnormal double, but the calculated
|
| + long double result is an exact subnormal double
|
| + (so rounding to double does not raise exceptions)
|
| +
|
| + in nearest rounding mode dadd takes care of this: the last bit of the
|
| + result is adjusted so rounding sees an inexact value when it should
|
| +
|
| + in non-nearest rounding mode fenv is used for the workaround
|
| + */
|
| + fesetround(round);
|
| + if (round == FE_TONEAREST)
|
| + z = dadd(hi, dadd(lo1, lo2));
|
| + else {
|
| +#if defined(FE_INEXACT) && defined(FE_UNDERFLOW)
|
| + int e = fetestexcept(FE_INEXACT);
|
| + feclearexcept(FE_INEXACT);
|
| +#endif
|
| + z = hi + (lo1 + lo2);
|
| +#if defined(FE_INEXACT) && defined(FE_UNDERFLOW)
|
| + if (getexp(z) < 0x3fff-1022 && fetestexcept(FE_INEXACT))
|
| + feraiseexcept(FE_UNDERFLOW);
|
| + else if (e)
|
| + feraiseexcept(FE_INEXACT);
|
| +#endif
|
| + }
|
| + return z;
|
| +}
|
| +#else
|
| +/* origin: FreeBSD /usr/src/lib/msun/src/s_fma.c */
|
| +/*-
|
| + * Copyright (c) 2005-2011 David Schultz <das@FreeBSD.ORG>
|
| + * All rights reserved.
|
| + *
|
| + * Redistribution and use in source and binary forms, with or without
|
| + * modification, are permitted provided that the following conditions
|
| + * are met:
|
| + * 1. Redistributions of source code must retain the above copyright
|
| + * notice, this list of conditions and the following disclaimer.
|
| + * 2. Redistributions in binary form must reproduce the above copyright
|
| + * notice, this list of conditions and the following disclaimer in the
|
| + * documentation and/or other materials provided with the distribution.
|
| + *
|
| + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
| + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
| + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
| + * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
| + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
| + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
| + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
| + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
| + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
| + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
| + * SUCH DAMAGE.
|
| + */
|
| +
|
| +/*
|
| + * A struct dd represents a floating-point number with twice the precision
|
| + * of a double. We maintain the invariant that "hi" stores the 53 high-order
|
| + * bits of the result.
|
| + */
|
| +struct dd {
|
| + double hi;
|
| + double lo;
|
| +};
|
| +
|
| +/*
|
| + * Compute a+b exactly, returning the exact result in a struct dd. We assume
|
| + * that both a and b are finite, but make no assumptions about their relative
|
| + * magnitudes.
|
| + */
|
| +static inline struct dd dd_add(double a, double b)
|
| +{
|
| + struct dd ret;
|
| + double s;
|
| +
|
| + ret.hi = a + b;
|
| + s = ret.hi - a;
|
| + ret.lo = (a - (ret.hi - s)) + (b - s);
|
| + return (ret);
|
| +}
|
| +
|
| +/*
|
| + * Compute a+b, with a small tweak: The least significant bit of the
|
| + * result is adjusted into a sticky bit summarizing all the bits that
|
| + * were lost to rounding. This adjustment negates the effects of double
|
| + * rounding when the result is added to another number with a higher
|
| + * exponent. For an explanation of round and sticky bits, see any reference
|
| + * on FPU design, e.g.,
|
| + *
|
| + * J. Coonen. An Implementation Guide to a Proposed Standard for
|
| + * Floating-Point Arithmetic. Computer, vol. 13, no. 1, Jan 1980.
|
| + */
|
| +static inline double add_adjusted(double a, double b)
|
| +{
|
| + struct dd sum;
|
| + union {double f; uint64_t i;} uhi, ulo;
|
| +
|
| + sum = dd_add(a, b);
|
| + if (sum.lo != 0) {
|
| + uhi.f = sum.hi;
|
| + if ((uhi.i & 1) == 0) {
|
| + /* hibits += (int)copysign(1.0, sum.hi * sum.lo) */
|
| + ulo.f = sum.lo;
|
| + uhi.i += 1 - ((uhi.i ^ ulo.i) >> 62);
|
| + sum.hi = uhi.f;
|
| + }
|
| + }
|
| + return (sum.hi);
|
| +}
|
| +
|
| +/*
|
| + * Compute ldexp(a+b, scale) with a single rounding error. It is assumed
|
| + * that the result will be subnormal, and care is taken to ensure that
|
| + * double rounding does not occur.
|
| + */
|
| +static inline double add_and_denormalize(double a, double b, int scale)
|
| +{
|
| + struct dd sum;
|
| + union {double f; uint64_t i;} uhi, ulo;
|
| + int bits_lost;
|
| +
|
| + sum = dd_add(a, b);
|
| +
|
| + /*
|
| + * If we are losing at least two bits of accuracy to denormalization,
|
| + * then the first lost bit becomes a round bit, and we adjust the
|
| + * lowest bit of sum.hi to make it a sticky bit summarizing all the
|
| + * bits in sum.lo. With the sticky bit adjusted, the hardware will
|
| + * break any ties in the correct direction.
|
| + *
|
| + * If we are losing only one bit to denormalization, however, we must
|
| + * break the ties manually.
|
| + */
|
| + if (sum.lo != 0) {
|
| + uhi.f = sum.hi;
|
| + bits_lost = -((int)(uhi.i >> 52) & 0x7ff) - scale + 1;
|
| + if ((bits_lost != 1) ^ (int)(uhi.i & 1)) {
|
| + /* hibits += (int)copysign(1.0, sum.hi * sum.lo) */
|
| + ulo.f = sum.lo;
|
| + uhi.i += 1 - (((uhi.i ^ ulo.i) >> 62) & 2);
|
| + sum.hi = uhi.f;
|
| + }
|
| + }
|
| + return scalbn(sum.hi, scale);
|
| +}
|
| +
|
| +/*
|
| + * Compute a*b exactly, returning the exact result in a struct dd. We assume
|
| + * that both a and b are normalized, so no underflow or overflow will occur.
|
| + * The current rounding mode must be round-to-nearest.
|
| + */
|
| +static inline struct dd dd_mul(double a, double b)
|
| +{
|
| + static const double split = 0x1p27 + 1.0;
|
| + struct dd ret;
|
| + double ha, hb, la, lb, p, q;
|
| +
|
| + p = a * split;
|
| + ha = a - p;
|
| + ha += p;
|
| + la = a - ha;
|
| +
|
| + p = b * split;
|
| + hb = b - p;
|
| + hb += p;
|
| + lb = b - hb;
|
| +
|
| + p = ha * hb;
|
| + q = ha * lb + la * hb;
|
| +
|
| + ret.hi = p + q;
|
| + ret.lo = p - ret.hi + q + la * lb;
|
| + return (ret);
|
| +}
|
| +
|
| +/*
|
| + * Fused multiply-add: Compute x * y + z with a single rounding error.
|
| + *
|
| + * We use scaling to avoid overflow/underflow, along with the
|
| + * canonical precision-doubling technique adapted from:
|
| + *
|
| + * Dekker, T. A Floating-Point Technique for Extending the
|
| + * Available Precision. Numer. Math. 18, 224-242 (1971).
|
| + *
|
| + * This algorithm is sensitive to the rounding precision. FPUs such
|
| + * as the i387 must be set in double-precision mode if variables are
|
| + * to be stored in FP registers in order to avoid incorrect results.
|
| + * This is the default on FreeBSD, but not on many other systems.
|
| + *
|
| + * Hardware instructions should be used on architectures that support it,
|
| + * since this implementation will likely be several times slower.
|
| + */
|
| +double fma(double x, double y, double z)
|
| +{
|
| + #pragma STDC FENV_ACCESS ON
|
| + double xs, ys, zs, adj;
|
| + struct dd xy, r;
|
| + int oround;
|
| + int ex, ey, ez;
|
| + int spread;
|
| +
|
| + /*
|
| + * Handle special cases. The order of operations and the particular
|
| + * return values here are crucial in handling special cases involving
|
| + * infinities, NaNs, overflows, and signed zeroes correctly.
|
| + */
|
| + if (!isfinite(x) || !isfinite(y))
|
| + return (x * y + z);
|
| + if (!isfinite(z))
|
| + return (z);
|
| + if (x == 0.0 || y == 0.0)
|
| + return (x * y + z);
|
| + if (z == 0.0)
|
| + return (x * y);
|
| +
|
| + xs = frexp(x, &ex);
|
| + ys = frexp(y, &ey);
|
| + zs = frexp(z, &ez);
|
| + oround = fegetround();
|
| + spread = ex + ey - ez;
|
| +
|
| + /*
|
| + * If x * y and z are many orders of magnitude apart, the scaling
|
| + * will overflow, so we handle these cases specially. Rounding
|
| + * modes other than FE_TONEAREST are painful.
|
| + */
|
| + if (spread < -DBL_MANT_DIG) {
|
| +#ifdef FE_INEXACT
|
| + feraiseexcept(FE_INEXACT);
|
| +#endif
|
| +#ifdef FE_UNDERFLOW
|
| + if (!isnormal(z))
|
| + feraiseexcept(FE_UNDERFLOW);
|
| +#endif
|
| + switch (oround) {
|
| + default: /* FE_TONEAREST */
|
| + return (z);
|
| +#ifdef FE_TOWARDZERO
|
| + case FE_TOWARDZERO:
|
| + if (x > 0.0 ^ y < 0.0 ^ z < 0.0)
|
| + return (z);
|
| + else
|
| + return (nextafter(z, 0));
|
| +#endif
|
| +#ifdef FE_DOWNWARD
|
| + case FE_DOWNWARD:
|
| + if (x > 0.0 ^ y < 0.0)
|
| + return (z);
|
| + else
|
| + return (nextafter(z, -INFINITY));
|
| +#endif
|
| +#ifdef FE_UPWARD
|
| + case FE_UPWARD:
|
| + if (x > 0.0 ^ y < 0.0)
|
| + return (nextafter(z, INFINITY));
|
| + else
|
| + return (z);
|
| +#endif
|
| + }
|
| + }
|
| + if (spread <= DBL_MANT_DIG * 2)
|
| + zs = scalbn(zs, -spread);
|
| + else
|
| + zs = copysign(DBL_MIN, zs);
|
| +
|
| + fesetround(FE_TONEAREST);
|
| +
|
| + /*
|
| + * Basic approach for round-to-nearest:
|
| + *
|
| + * (xy.hi, xy.lo) = x * y (exact)
|
| + * (r.hi, r.lo) = xy.hi + z (exact)
|
| + * adj = xy.lo + r.lo (inexact; low bit is sticky)
|
| + * result = r.hi + adj (correctly rounded)
|
| + */
|
| + xy = dd_mul(xs, ys);
|
| + r = dd_add(xy.hi, zs);
|
| +
|
| + spread = ex + ey;
|
| +
|
| + if (r.hi == 0.0) {
|
| + /*
|
| + * When the addends cancel to 0, ensure that the result has
|
| + * the correct sign.
|
| + */
|
| + fesetround(oround);
|
| + volatile double vzs = zs; /* XXX gcc CSE bug workaround */
|
| + return xy.hi + vzs + scalbn(xy.lo, spread);
|
| + }
|
| +
|
| + if (oround != FE_TONEAREST) {
|
| + /*
|
| + * There is no need to worry about double rounding in directed
|
| + * rounding modes.
|
| + * But underflow may not be raised properly, example in downward rounding:
|
| + * fma(0x1.000000001p-1000, 0x1.000000001p-30, -0x1p-1066)
|
| + */
|
| + double ret;
|
| +#if defined(FE_INEXACT) && defined(FE_UNDERFLOW)
|
| + int e = fetestexcept(FE_INEXACT);
|
| + feclearexcept(FE_INEXACT);
|
| +#endif
|
| + fesetround(oround);
|
| + adj = r.lo + xy.lo;
|
| + ret = scalbn(r.hi + adj, spread);
|
| +#if defined(FE_INEXACT) && defined(FE_UNDERFLOW)
|
| + if (ilogb(ret) < -1022 && fetestexcept(FE_INEXACT))
|
| + feraiseexcept(FE_UNDERFLOW);
|
| + else if (e)
|
| + feraiseexcept(FE_INEXACT);
|
| +#endif
|
| + return ret;
|
| + }
|
| +
|
| + adj = add_adjusted(r.lo, xy.lo);
|
| + if (spread + ilogb(r.hi) > -1023)
|
| + return scalbn(r.hi + adj, spread);
|
| + else
|
| + return add_and_denormalize(r.hi, adj, spread);
|
| +}
|
| +#endif
|
|
|