| Index: fusl/src/math/logl.c
|
| diff --git a/fusl/src/math/logl.c b/fusl/src/math/logl.c
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..5d5365929e62a351c4544bd9e6aace6e02834292
|
| --- /dev/null
|
| +++ b/fusl/src/math/logl.c
|
| @@ -0,0 +1,175 @@
|
| +/* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_logl.c */
|
| +/*
|
| + * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
|
| + *
|
| + * Permission to use, copy, modify, and distribute this software for any
|
| + * purpose with or without fee is hereby granted, provided that the above
|
| + * copyright notice and this permission notice appear in all copies.
|
| + *
|
| + * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
| + * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
| + * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
| + * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
| + * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
| + * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
| + * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
| + */
|
| +/*
|
| + * Natural logarithm, long double precision
|
| + *
|
| + *
|
| + * SYNOPSIS:
|
| + *
|
| + * long double x, y, logl();
|
| + *
|
| + * y = logl( x );
|
| + *
|
| + *
|
| + * DESCRIPTION:
|
| + *
|
| + * Returns the base e (2.718...) logarithm of x.
|
| + *
|
| + * The argument is separated into its exponent and fractional
|
| + * parts. If the exponent is between -1 and +1, the logarithm
|
| + * of the fraction is approximated by
|
| + *
|
| + * log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x).
|
| + *
|
| + * Otherwise, setting z = 2(x-1)/(x+1),
|
| + *
|
| + * log(x) = log(1+z/2) - log(1-z/2) = z + z**3 P(z)/Q(z).
|
| + *
|
| + *
|
| + * ACCURACY:
|
| + *
|
| + * Relative error:
|
| + * arithmetic domain # trials peak rms
|
| + * IEEE 0.5, 2.0 150000 8.71e-20 2.75e-20
|
| + * IEEE exp(+-10000) 100000 5.39e-20 2.34e-20
|
| + *
|
| + * In the tests over the interval exp(+-10000), the logarithms
|
| + * of the random arguments were uniformly distributed over
|
| + * [-10000, +10000].
|
| + */
|
| +
|
| +#include "libm.h"
|
| +
|
| +#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
|
| +long double logl(long double x)
|
| +{
|
| + return log(x);
|
| +}
|
| +#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
|
| +/* Coefficients for log(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
|
| + * 1/sqrt(2) <= x < sqrt(2)
|
| + * Theoretical peak relative error = 2.32e-20
|
| + */
|
| +static const long double P[] = {
|
| + 4.5270000862445199635215E-5L,
|
| + 4.9854102823193375972212E-1L,
|
| + 6.5787325942061044846969E0L,
|
| + 2.9911919328553073277375E1L,
|
| + 6.0949667980987787057556E1L,
|
| + 5.7112963590585538103336E1L,
|
| + 2.0039553499201281259648E1L,
|
| +};
|
| +static const long double Q[] = {
|
| +/* 1.0000000000000000000000E0,*/
|
| + 1.5062909083469192043167E1L,
|
| + 8.3047565967967209469434E1L,
|
| + 2.2176239823732856465394E2L,
|
| + 3.0909872225312059774938E2L,
|
| + 2.1642788614495947685003E2L,
|
| + 6.0118660497603843919306E1L,
|
| +};
|
| +
|
| +/* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
|
| + * where z = 2(x-1)/(x+1)
|
| + * 1/sqrt(2) <= x < sqrt(2)
|
| + * Theoretical peak relative error = 6.16e-22
|
| + */
|
| +static const long double R[4] = {
|
| + 1.9757429581415468984296E-3L,
|
| +-7.1990767473014147232598E-1L,
|
| + 1.0777257190312272158094E1L,
|
| +-3.5717684488096787370998E1L,
|
| +};
|
| +static const long double S[4] = {
|
| +/* 1.00000000000000000000E0L,*/
|
| +-2.6201045551331104417768E1L,
|
| + 1.9361891836232102174846E2L,
|
| +-4.2861221385716144629696E2L,
|
| +};
|
| +static const long double C1 = 6.9314575195312500000000E-1L;
|
| +static const long double C2 = 1.4286068203094172321215E-6L;
|
| +
|
| +#define SQRTH 0.70710678118654752440L
|
| +
|
| +long double logl(long double x)
|
| +{
|
| + long double y, z;
|
| + int e;
|
| +
|
| + if (isnan(x))
|
| + return x;
|
| + if (x == INFINITY)
|
| + return x;
|
| + if (x <= 0.0) {
|
| + if (x == 0.0)
|
| + return -1/(x*x); /* -inf with divbyzero */
|
| + return 0/0.0f; /* nan with invalid */
|
| + }
|
| +
|
| + /* separate mantissa from exponent */
|
| + /* Note, frexp is used so that denormal numbers
|
| + * will be handled properly.
|
| + */
|
| + x = frexpl(x, &e);
|
| +
|
| + /* logarithm using log(x) = z + z**3 P(z)/Q(z),
|
| + * where z = 2(x-1)/(x+1)
|
| + */
|
| + if (e > 2 || e < -2) {
|
| + if (x < SQRTH) { /* 2(2x-1)/(2x+1) */
|
| + e -= 1;
|
| + z = x - 0.5;
|
| + y = 0.5 * z + 0.5;
|
| + } else { /* 2 (x-1)/(x+1) */
|
| + z = x - 0.5;
|
| + z -= 0.5;
|
| + y = 0.5 * x + 0.5;
|
| + }
|
| + x = z / y;
|
| + z = x*x;
|
| + z = x * (z * __polevll(z, R, 3) / __p1evll(z, S, 3));
|
| + z = z + e * C2;
|
| + z = z + x;
|
| + z = z + e * C1;
|
| + return z;
|
| + }
|
| +
|
| + /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
|
| + if (x < SQRTH) {
|
| + e -= 1;
|
| + x = 2.0*x - 1.0;
|
| + } else {
|
| + x = x - 1.0;
|
| + }
|
| + z = x*x;
|
| + y = x * (z * __polevll(x, P, 6) / __p1evll(x, Q, 6));
|
| + y = y + e * C2;
|
| + z = y - 0.5*z;
|
| + /* Note, the sum of above terms does not exceed x/4,
|
| + * so it contributes at most about 1/4 lsb to the error.
|
| + */
|
| + z = z + x;
|
| + z = z + e * C1; /* This sum has an error of 1/2 lsb. */
|
| + return z;
|
| +}
|
| +#elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
|
| +// TODO: broken implementation to make things compile
|
| +long double logl(long double x)
|
| +{
|
| + return log(x);
|
| +}
|
| +#endif
|
|
|