Index: fusl/src/math/tan.c |
diff --git a/fusl/src/math/tan.c b/fusl/src/math/tan.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..9c724a45af51e09f9da9069ba7ab1073e8fee05c |
--- /dev/null |
+++ b/fusl/src/math/tan.c |
@@ -0,0 +1,70 @@ |
+/* origin: FreeBSD /usr/src/lib/msun/src/s_tan.c */ |
+/* |
+ * ==================================================== |
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
+ * |
+ * Developed at SunPro, a Sun Microsystems, Inc. business. |
+ * Permission to use, copy, modify, and distribute this |
+ * software is freely granted, provided that this notice |
+ * is preserved. |
+ * ==================================================== |
+ */ |
+/* tan(x) |
+ * Return tangent function of x. |
+ * |
+ * kernel function: |
+ * __tan ... tangent function on [-pi/4,pi/4] |
+ * __rem_pio2 ... argument reduction routine |
+ * |
+ * Method. |
+ * Let S,C and T denote the sin, cos and tan respectively on |
+ * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 |
+ * in [-pi/4 , +pi/4], and let n = k mod 4. |
+ * We have |
+ * |
+ * n sin(x) cos(x) tan(x) |
+ * ---------------------------------------------------------- |
+ * 0 S C T |
+ * 1 C -S -1/T |
+ * 2 -S -C T |
+ * 3 -C S -1/T |
+ * ---------------------------------------------------------- |
+ * |
+ * Special cases: |
+ * Let trig be any of sin, cos, or tan. |
+ * trig(+-INF) is NaN, with signals; |
+ * trig(NaN) is that NaN; |
+ * |
+ * Accuracy: |
+ * TRIG(x) returns trig(x) nearly rounded |
+ */ |
+ |
+#include "libm.h" |
+ |
+double tan(double x) |
+{ |
+ double y[2]; |
+ uint32_t ix; |
+ unsigned n; |
+ |
+ GET_HIGH_WORD(ix, x); |
+ ix &= 0x7fffffff; |
+ |
+ /* |x| ~< pi/4 */ |
+ if (ix <= 0x3fe921fb) { |
+ if (ix < 0x3e400000) { /* |x| < 2**-27 */ |
+ /* raise inexact if x!=0 and underflow if subnormal */ |
+ FORCE_EVAL(ix < 0x00100000 ? x/0x1p120f : x+0x1p120f); |
+ return x; |
+ } |
+ return __tan(x, 0.0, 0); |
+ } |
+ |
+ /* tan(Inf or NaN) is NaN */ |
+ if (ix >= 0x7ff00000) |
+ return x - x; |
+ |
+ /* argument reduction */ |
+ n = __rem_pio2(x, y); |
+ return __tan(y[0], y[1], n&1); |
+} |